lguest: avoid sending interrupts to Guest when no activity occurs.
[deliverable/linux.git] / Documentation / lguest / lguest.c
CommitLineData
f938d2c8 1/*P:100 This is the Launcher code, a simple program which lays out the
a6bd8e13
RR
2 * "physical" memory for the new Guest by mapping the kernel image and
3 * the virtual devices, then opens /dev/lguest to tell the kernel
4 * about the Guest and control it. :*/
8ca47e00
RR
5#define _LARGEFILE64_SOURCE
6#define _GNU_SOURCE
7#include <stdio.h>
8#include <string.h>
9#include <unistd.h>
10#include <err.h>
11#include <stdint.h>
12#include <stdlib.h>
13#include <elf.h>
14#include <sys/mman.h>
6649bb7a 15#include <sys/param.h>
8ca47e00
RR
16#include <sys/types.h>
17#include <sys/stat.h>
18#include <sys/wait.h>
659a0e66 19#include <sys/eventfd.h>
8ca47e00
RR
20#include <fcntl.h>
21#include <stdbool.h>
22#include <errno.h>
23#include <ctype.h>
24#include <sys/socket.h>
25#include <sys/ioctl.h>
26#include <sys/time.h>
27#include <time.h>
28#include <netinet/in.h>
29#include <net/if.h>
30#include <linux/sockios.h>
31#include <linux/if_tun.h>
32#include <sys/uio.h>
33#include <termios.h>
34#include <getopt.h>
35#include <zlib.h>
17cbca2b
RR
36#include <assert.h>
37#include <sched.h>
a586d4f6
RR
38#include <limits.h>
39#include <stddef.h>
a161883a 40#include <signal.h>
b45d8cb0 41#include "linux/lguest_launcher.h"
17cbca2b
RR
42#include "linux/virtio_config.h"
43#include "linux/virtio_net.h"
44#include "linux/virtio_blk.h"
45#include "linux/virtio_console.h"
28fd6d7f 46#include "linux/virtio_rng.h"
17cbca2b 47#include "linux/virtio_ring.h"
d5d02d6d 48#include "asm/bootparam.h"
a6bd8e13 49/*L:110 We can ignore the 39 include files we need for this program, but I do
db24e8c2
RR
50 * want to draw attention to the use of kernel-style types.
51 *
52 * As Linus said, "C is a Spartan language, and so should your naming be." I
53 * like these abbreviations, so we define them here. Note that u64 is always
54 * unsigned long long, which works on all Linux systems: this means that we can
55 * use %llu in printf for any u64. */
56typedef unsigned long long u64;
57typedef uint32_t u32;
58typedef uint16_t u16;
59typedef uint8_t u8;
dde79789 60/*:*/
8ca47e00
RR
61
62#define PAGE_PRESENT 0x7 /* Present, RW, Execute */
8ca47e00
RR
63#define BRIDGE_PFX "bridge:"
64#ifndef SIOCBRADDIF
65#define SIOCBRADDIF 0x89a2 /* add interface to bridge */
66#endif
3c6b5bfa
RR
67/* We can have up to 256 pages for devices. */
68#define DEVICE_PAGES 256
0f0c4fab
RR
69/* This will occupy 3 pages: it must be a power of 2. */
70#define VIRTQUEUE_NUM 256
8ca47e00 71
dde79789
RR
72/*L:120 verbose is both a global flag and a macro. The C preprocessor allows
73 * this, and although I wouldn't recommend it, it works quite nicely here. */
8ca47e00
RR
74static bool verbose;
75#define verbose(args...) \
76 do { if (verbose) printf(args); } while(0)
dde79789
RR
77/*:*/
78
3c6b5bfa
RR
79/* The pointer to the start of guest memory. */
80static void *guest_base;
81/* The maximum guest physical address allowed, and maximum possible. */
82static unsigned long guest_limit, guest_max;
56739c80
RR
83/* The /dev/lguest file descriptor. */
84static int lguest_fd;
8ca47e00 85
e3283fa0
GOC
86/* a per-cpu variable indicating whose vcpu is currently running */
87static unsigned int __thread cpu_id;
88
dde79789 89/* This is our list of devices. */
8ca47e00
RR
90struct device_list
91{
17cbca2b
RR
92 /* Counter to assign interrupt numbers. */
93 unsigned int next_irq;
94
95 /* Counter to print out convenient device numbers. */
96 unsigned int device_num;
97
dde79789 98 /* The descriptor page for the devices. */
17cbca2b
RR
99 u8 *descpage;
100
dde79789 101 /* A single linked list of devices. */
8ca47e00 102 struct device *dev;
a586d4f6
RR
103 /* And a pointer to the last device for easy append and also for
104 * configuration appending. */
105 struct device *lastdev;
8ca47e00
RR
106};
107
17cbca2b
RR
108/* The list of Guest devices, based on command line arguments. */
109static struct device_list devices;
110
dde79789 111/* The device structure describes a single device. */
8ca47e00
RR
112struct device
113{
dde79789 114 /* The linked-list pointer. */
8ca47e00 115 struct device *next;
17cbca2b 116
713b15b3 117 /* The device's descriptor, as mapped into the Guest. */
8ca47e00 118 struct lguest_device_desc *desc;
17cbca2b 119
713b15b3
RR
120 /* We can't trust desc values once Guest has booted: we use these. */
121 unsigned int feature_len;
122 unsigned int num_vq;
123
17cbca2b
RR
124 /* The name of this device, for --verbose. */
125 const char *name;
8ca47e00 126
17cbca2b
RR
127 /* Any queues attached to this device */
128 struct virtqueue *vq;
8ca47e00 129
659a0e66
RR
130 /* Is it operational */
131 bool running;
a007a751 132
8ca47e00
RR
133 /* Device-specific data. */
134 void *priv;
135};
136
17cbca2b
RR
137/* The virtqueue structure describes a queue attached to a device. */
138struct virtqueue
139{
140 struct virtqueue *next;
141
142 /* Which device owns me. */
143 struct device *dev;
144
145 /* The configuration for this queue. */
146 struct lguest_vqconfig config;
147
148 /* The actual ring of buffers. */
149 struct vring vring;
150
151 /* Last available index we saw. */
152 u16 last_avail_idx;
153
95c517c0
RR
154 /* How many are used since we sent last irq? */
155 unsigned int pending_used;
156
659a0e66
RR
157 /* Eventfd where Guest notifications arrive. */
158 int eventfd;
20887611 159
659a0e66
RR
160 /* Function for the thread which is servicing this virtqueue. */
161 void (*service)(struct virtqueue *vq);
162 pid_t thread;
17cbca2b
RR
163};
164
ec04b13f
BR
165/* Remember the arguments to the program so we can "reboot" */
166static char **main_args;
167
659a0e66
RR
168/* The original tty settings to restore on exit. */
169static struct termios orig_term;
170
f7027c63
RR
171/* We have to be careful with barriers: our devices are all run in separate
172 * threads and so we need to make sure that changes visible to the Guest happen
173 * in precise order. */
174#define wmb() __asm__ __volatile__("" : : : "memory")
17cbca2b
RR
175
176/* Convert an iovec element to the given type.
177 *
178 * This is a fairly ugly trick: we need to know the size of the type and
179 * alignment requirement to check the pointer is kosher. It's also nice to
180 * have the name of the type in case we report failure.
181 *
182 * Typing those three things all the time is cumbersome and error prone, so we
183 * have a macro which sets them all up and passes to the real function. */
184#define convert(iov, type) \
185 ((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
186
187static void *_convert(struct iovec *iov, size_t size, size_t align,
188 const char *name)
189{
190 if (iov->iov_len != size)
191 errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
192 if ((unsigned long)iov->iov_base % align != 0)
193 errx(1, "Bad alignment %p for %s", iov->iov_base, name);
194 return iov->iov_base;
195}
196
b5111790
RR
197/* Wrapper for the last available index. Makes it easier to change. */
198#define lg_last_avail(vq) ((vq)->last_avail_idx)
199
17cbca2b
RR
200/* The virtio configuration space is defined to be little-endian. x86 is
201 * little-endian too, but it's nice to be explicit so we have these helpers. */
202#define cpu_to_le16(v16) (v16)
203#define cpu_to_le32(v32) (v32)
204#define cpu_to_le64(v64) (v64)
205#define le16_to_cpu(v16) (v16)
206#define le32_to_cpu(v32) (v32)
a586d4f6 207#define le64_to_cpu(v64) (v64)
17cbca2b 208
28fd6d7f
RR
209/* Is this iovec empty? */
210static bool iov_empty(const struct iovec iov[], unsigned int num_iov)
211{
212 unsigned int i;
213
214 for (i = 0; i < num_iov; i++)
215 if (iov[i].iov_len)
216 return false;
217 return true;
218}
219
220/* Take len bytes from the front of this iovec. */
221static void iov_consume(struct iovec iov[], unsigned num_iov, unsigned len)
222{
223 unsigned int i;
224
225 for (i = 0; i < num_iov; i++) {
226 unsigned int used;
227
228 used = iov[i].iov_len < len ? iov[i].iov_len : len;
229 iov[i].iov_base += used;
230 iov[i].iov_len -= used;
231 len -= used;
232 }
233 assert(len == 0);
234}
235
6e5aa7ef
RR
236/* The device virtqueue descriptors are followed by feature bitmasks. */
237static u8 *get_feature_bits(struct device *dev)
238{
239 return (u8 *)(dev->desc + 1)
713b15b3 240 + dev->num_vq * sizeof(struct lguest_vqconfig);
6e5aa7ef
RR
241}
242
3c6b5bfa
RR
243/*L:100 The Launcher code itself takes us out into userspace, that scary place
244 * where pointers run wild and free! Unfortunately, like most userspace
245 * programs, it's quite boring (which is why everyone likes to hack on the
246 * kernel!). Perhaps if you make up an Lguest Drinking Game at this point, it
247 * will get you through this section. Or, maybe not.
248 *
249 * The Launcher sets up a big chunk of memory to be the Guest's "physical"
250 * memory and stores it in "guest_base". In other words, Guest physical ==
251 * Launcher virtual with an offset.
252 *
253 * This can be tough to get your head around, but usually it just means that we
254 * use these trivial conversion functions when the Guest gives us it's
255 * "physical" addresses: */
256static void *from_guest_phys(unsigned long addr)
257{
258 return guest_base + addr;
259}
260
261static unsigned long to_guest_phys(const void *addr)
262{
263 return (addr - guest_base);
264}
265
dde79789
RR
266/*L:130
267 * Loading the Kernel.
268 *
269 * We start with couple of simple helper routines. open_or_die() avoids
270 * error-checking code cluttering the callers: */
8ca47e00
RR
271static int open_or_die(const char *name, int flags)
272{
273 int fd = open(name, flags);
274 if (fd < 0)
275 err(1, "Failed to open %s", name);
276 return fd;
277}
278
3c6b5bfa
RR
279/* map_zeroed_pages() takes a number of pages. */
280static void *map_zeroed_pages(unsigned int num)
8ca47e00 281{
3c6b5bfa
RR
282 int fd = open_or_die("/dev/zero", O_RDONLY);
283 void *addr;
8ca47e00 284
dde79789 285 /* We use a private mapping (ie. if we write to the page, it will be
3c6b5bfa
RR
286 * copied). */
287 addr = mmap(NULL, getpagesize() * num,
288 PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0);
289 if (addr == MAP_FAILED)
290 err(1, "Mmaping %u pages of /dev/zero", num);
34bdaab4 291 close(fd);
3c6b5bfa
RR
292
293 return addr;
294}
295
296/* Get some more pages for a device. */
297static void *get_pages(unsigned int num)
298{
299 void *addr = from_guest_phys(guest_limit);
300
301 guest_limit += num * getpagesize();
302 if (guest_limit > guest_max)
303 errx(1, "Not enough memory for devices");
304 return addr;
8ca47e00
RR
305}
306
6649bb7a
RM
307/* This routine is used to load the kernel or initrd. It tries mmap, but if
308 * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
309 * it falls back to reading the memory in. */
310static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
311{
312 ssize_t r;
313
314 /* We map writable even though for some segments are marked read-only.
315 * The kernel really wants to be writable: it patches its own
316 * instructions.
317 *
318 * MAP_PRIVATE means that the page won't be copied until a write is
319 * done to it. This allows us to share untouched memory between
320 * Guests. */
321 if (mmap(addr, len, PROT_READ|PROT_WRITE|PROT_EXEC,
322 MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
323 return;
324
325 /* pread does a seek and a read in one shot: saves a few lines. */
326 r = pread(fd, addr, len, offset);
327 if (r != len)
328 err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
329}
330
dde79789
RR
331/* This routine takes an open vmlinux image, which is in ELF, and maps it into
332 * the Guest memory. ELF = Embedded Linking Format, which is the format used
333 * by all modern binaries on Linux including the kernel.
334 *
335 * The ELF headers give *two* addresses: a physical address, and a virtual
47436aa4
RR
336 * address. We use the physical address; the Guest will map itself to the
337 * virtual address.
dde79789
RR
338 *
339 * We return the starting address. */
47436aa4 340static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
8ca47e00 341{
8ca47e00
RR
342 Elf32_Phdr phdr[ehdr->e_phnum];
343 unsigned int i;
8ca47e00 344
dde79789
RR
345 /* Sanity checks on the main ELF header: an x86 executable with a
346 * reasonable number of correctly-sized program headers. */
8ca47e00
RR
347 if (ehdr->e_type != ET_EXEC
348 || ehdr->e_machine != EM_386
349 || ehdr->e_phentsize != sizeof(Elf32_Phdr)
350 || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
351 errx(1, "Malformed elf header");
352
dde79789
RR
353 /* An ELF executable contains an ELF header and a number of "program"
354 * headers which indicate which parts ("segments") of the program to
355 * load where. */
356
357 /* We read in all the program headers at once: */
8ca47e00
RR
358 if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
359 err(1, "Seeking to program headers");
360 if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
361 err(1, "Reading program headers");
362
dde79789 363 /* Try all the headers: there are usually only three. A read-only one,
a6bd8e13 364 * a read-write one, and a "note" section which we don't load. */
8ca47e00 365 for (i = 0; i < ehdr->e_phnum; i++) {
dde79789 366 /* If this isn't a loadable segment, we ignore it */
8ca47e00
RR
367 if (phdr[i].p_type != PT_LOAD)
368 continue;
369
370 verbose("Section %i: size %i addr %p\n",
371 i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
372
6649bb7a 373 /* We map this section of the file at its physical address. */
3c6b5bfa 374 map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
6649bb7a 375 phdr[i].p_offset, phdr[i].p_filesz);
8ca47e00
RR
376 }
377
814a0e5c
RR
378 /* The entry point is given in the ELF header. */
379 return ehdr->e_entry;
8ca47e00
RR
380}
381
dde79789 382/*L:150 A bzImage, unlike an ELF file, is not meant to be loaded. You're
5bbf89fc
RR
383 * supposed to jump into it and it will unpack itself. We used to have to
384 * perform some hairy magic because the unpacking code scared me.
dde79789 385 *
5bbf89fc
RR
386 * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
387 * a small patch to jump over the tricky bits in the Guest, so now we just read
388 * the funky header so we know where in the file to load, and away we go! */
47436aa4 389static unsigned long load_bzimage(int fd)
8ca47e00 390{
43d33b21 391 struct boot_params boot;
5bbf89fc
RR
392 int r;
393 /* Modern bzImages get loaded at 1M. */
394 void *p = from_guest_phys(0x100000);
395
396 /* Go back to the start of the file and read the header. It should be
71cced6e 397 * a Linux boot header (see Documentation/x86/i386/boot.txt) */
5bbf89fc 398 lseek(fd, 0, SEEK_SET);
43d33b21 399 read(fd, &boot, sizeof(boot));
5bbf89fc 400
43d33b21
RR
401 /* Inside the setup_hdr, we expect the magic "HdrS" */
402 if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
5bbf89fc
RR
403 errx(1, "This doesn't look like a bzImage to me");
404
43d33b21
RR
405 /* Skip over the extra sectors of the header. */
406 lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
5bbf89fc
RR
407
408 /* Now read everything into memory. in nice big chunks. */
409 while ((r = read(fd, p, 65536)) > 0)
410 p += r;
411
43d33b21
RR
412 /* Finally, code32_start tells us where to enter the kernel. */
413 return boot.hdr.code32_start;
8ca47e00
RR
414}
415
dde79789 416/*L:140 Loading the kernel is easy when it's a "vmlinux", but most kernels
e1e72965
RR
417 * come wrapped up in the self-decompressing "bzImage" format. With a little
418 * work, we can load those, too. */
47436aa4 419static unsigned long load_kernel(int fd)
8ca47e00
RR
420{
421 Elf32_Ehdr hdr;
422
dde79789 423 /* Read in the first few bytes. */
8ca47e00
RR
424 if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
425 err(1, "Reading kernel");
426
dde79789 427 /* If it's an ELF file, it starts with "\177ELF" */
8ca47e00 428 if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
47436aa4 429 return map_elf(fd, &hdr);
8ca47e00 430
a6bd8e13 431 /* Otherwise we assume it's a bzImage, and try to load it. */
47436aa4 432 return load_bzimage(fd);
8ca47e00
RR
433}
434
dde79789
RR
435/* This is a trivial little helper to align pages. Andi Kleen hated it because
436 * it calls getpagesize() twice: "it's dumb code."
437 *
438 * Kernel guys get really het up about optimization, even when it's not
439 * necessary. I leave this code as a reaction against that. */
8ca47e00
RR
440static inline unsigned long page_align(unsigned long addr)
441{
dde79789 442 /* Add upwards and truncate downwards. */
8ca47e00
RR
443 return ((addr + getpagesize()-1) & ~(getpagesize()-1));
444}
445
dde79789
RR
446/*L:180 An "initial ram disk" is a disk image loaded into memory along with
447 * the kernel which the kernel can use to boot from without needing any
448 * drivers. Most distributions now use this as standard: the initrd contains
449 * the code to load the appropriate driver modules for the current machine.
450 *
451 * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
452 * kernels. He sent me this (and tells me when I break it). */
8ca47e00
RR
453static unsigned long load_initrd(const char *name, unsigned long mem)
454{
455 int ifd;
456 struct stat st;
457 unsigned long len;
8ca47e00
RR
458
459 ifd = open_or_die(name, O_RDONLY);
dde79789 460 /* fstat() is needed to get the file size. */
8ca47e00
RR
461 if (fstat(ifd, &st) < 0)
462 err(1, "fstat() on initrd '%s'", name);
463
6649bb7a
RM
464 /* We map the initrd at the top of memory, but mmap wants it to be
465 * page-aligned, so we round the size up for that. */
8ca47e00 466 len = page_align(st.st_size);
3c6b5bfa 467 map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
dde79789
RR
468 /* Once a file is mapped, you can close the file descriptor. It's a
469 * little odd, but quite useful. */
8ca47e00 470 close(ifd);
6649bb7a 471 verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
dde79789
RR
472
473 /* We return the initrd size. */
8ca47e00
RR
474 return len;
475}
e1e72965 476/*:*/
8ca47e00 477
dde79789
RR
478/* Simple routine to roll all the commandline arguments together with spaces
479 * between them. */
8ca47e00
RR
480static void concat(char *dst, char *args[])
481{
482 unsigned int i, len = 0;
483
484 for (i = 0; args[i]; i++) {
1ef36fa6
PB
485 if (i) {
486 strcat(dst+len, " ");
487 len++;
488 }
8ca47e00 489 strcpy(dst+len, args[i]);
1ef36fa6 490 len += strlen(args[i]);
8ca47e00
RR
491 }
492 /* In case it's empty. */
493 dst[len] = '\0';
494}
495
e1e72965
RR
496/*L:185 This is where we actually tell the kernel to initialize the Guest. We
497 * saw the arguments it expects when we looked at initialize() in lguest_user.c:
58a24566
MZ
498 * the base of Guest "physical" memory, the top physical page to allow and the
499 * entry point for the Guest. */
56739c80 500static void tell_kernel(unsigned long start)
8ca47e00 501{
511801dc
JS
502 unsigned long args[] = { LHREQ_INITIALIZE,
503 (unsigned long)guest_base,
58a24566 504 guest_limit / getpagesize(), start };
3c6b5bfa
RR
505 verbose("Guest: %p - %p (%#lx)\n",
506 guest_base, guest_base + guest_limit, guest_limit);
56739c80
RR
507 lguest_fd = open_or_die("/dev/lguest", O_RDWR);
508 if (write(lguest_fd, args, sizeof(args)) < 0)
8ca47e00 509 err(1, "Writing to /dev/lguest");
8ca47e00 510}
dde79789 511/*:*/
8ca47e00 512
e1e72965 513/*
dde79789
RR
514 * Device Handling.
515 *
e1e72965 516 * When the Guest gives us a buffer, it sends an array of addresses and sizes.
dde79789 517 * We need to make sure it's not trying to reach into the Launcher itself, so
e1e72965 518 * we have a convenient routine which checks it and exits with an error message
dde79789
RR
519 * if something funny is going on:
520 */
8ca47e00
RR
521static void *_check_pointer(unsigned long addr, unsigned int size,
522 unsigned int line)
523{
dde79789
RR
524 /* We have to separately check addr and addr+size, because size could
525 * be huge and addr + size might wrap around. */
3c6b5bfa 526 if (addr >= guest_limit || addr + size >= guest_limit)
17cbca2b 527 errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
dde79789
RR
528 /* We return a pointer for the caller's convenience, now we know it's
529 * safe to use. */
3c6b5bfa 530 return from_guest_phys(addr);
8ca47e00 531}
dde79789 532/* A macro which transparently hands the line number to the real function. */
8ca47e00
RR
533#define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
534
e1e72965
RR
535/* Each buffer in the virtqueues is actually a chain of descriptors. This
536 * function returns the next descriptor in the chain, or vq->vring.num if we're
537 * at the end. */
17cbca2b
RR
538static unsigned next_desc(struct virtqueue *vq, unsigned int i)
539{
540 unsigned int next;
541
542 /* If this descriptor says it doesn't chain, we're done. */
543 if (!(vq->vring.desc[i].flags & VRING_DESC_F_NEXT))
544 return vq->vring.num;
545
546 /* Check they're not leading us off end of descriptors. */
547 next = vq->vring.desc[i].next;
548 /* Make sure compiler knows to grab that: we don't want it changing! */
549 wmb();
550
551 if (next >= vq->vring.num)
552 errx(1, "Desc next is %u", next);
553
554 return next;
555}
556
38bc2b8c
RR
557/* This actually sends the interrupt for this virtqueue */
558static void trigger_irq(struct virtqueue *vq)
559{
560 unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
561
95c517c0
RR
562 /* Don't inform them if nothing used. */
563 if (!vq->pending_used)
564 return;
565 vq->pending_used = 0;
566
38bc2b8c
RR
567 /* If they don't want an interrupt, don't send one, unless empty. */
568 if ((vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
569 && lg_last_avail(vq) != vq->vring.avail->idx)
570 return;
571
572 /* Send the Guest an interrupt tell them we used something up. */
573 if (write(lguest_fd, buf, sizeof(buf)) != 0)
574 err(1, "Triggering irq %i", vq->config.irq);
575}
576
17cbca2b
RR
577/* This looks in the virtqueue and for the first available buffer, and converts
578 * it to an iovec for convenient access. Since descriptors consist of some
579 * number of output then some number of input descriptors, it's actually two
580 * iovecs, but we pack them into one and note how many of each there were.
581 *
659a0e66
RR
582 * This function returns the descriptor number found. */
583static unsigned wait_for_vq_desc(struct virtqueue *vq,
584 struct iovec iov[],
585 unsigned int *out_num, unsigned int *in_num)
17cbca2b
RR
586{
587 unsigned int i, head;
659a0e66
RR
588 u16 last_avail = lg_last_avail(vq);
589
590 while (last_avail == vq->vring.avail->idx) {
591 u64 event;
592
38bc2b8c
RR
593 /* OK, tell Guest about progress up to now. */
594 trigger_irq(vq);
595
659a0e66
RR
596 /* Nothing new? Wait for eventfd to tell us they refilled. */
597 if (read(vq->eventfd, &event, sizeof(event)) != sizeof(event))
598 errx(1, "Event read failed?");
599 }
17cbca2b
RR
600
601 /* Check it isn't doing very strange things with descriptor numbers. */
b5111790 602 if ((u16)(vq->vring.avail->idx - last_avail) > vq->vring.num)
17cbca2b 603 errx(1, "Guest moved used index from %u to %u",
b5111790 604 last_avail, vq->vring.avail->idx);
17cbca2b 605
17cbca2b
RR
606 /* Grab the next descriptor number they're advertising, and increment
607 * the index we've seen. */
b5111790
RR
608 head = vq->vring.avail->ring[last_avail % vq->vring.num];
609 lg_last_avail(vq)++;
17cbca2b
RR
610
611 /* If their number is silly, that's a fatal mistake. */
612 if (head >= vq->vring.num)
613 errx(1, "Guest says index %u is available", head);
614
615 /* When we start there are none of either input nor output. */
616 *out_num = *in_num = 0;
617
618 i = head;
619 do {
620 /* Grab the first descriptor, and check it's OK. */
621 iov[*out_num + *in_num].iov_len = vq->vring.desc[i].len;
622 iov[*out_num + *in_num].iov_base
623 = check_pointer(vq->vring.desc[i].addr,
624 vq->vring.desc[i].len);
625 /* If this is an input descriptor, increment that count. */
626 if (vq->vring.desc[i].flags & VRING_DESC_F_WRITE)
627 (*in_num)++;
628 else {
629 /* If it's an output descriptor, they're all supposed
630 * to come before any input descriptors. */
631 if (*in_num)
632 errx(1, "Descriptor has out after in");
633 (*out_num)++;
634 }
635
636 /* If we've got too many, that implies a descriptor loop. */
637 if (*out_num + *in_num > vq->vring.num)
638 errx(1, "Looped descriptor");
639 } while ((i = next_desc(vq, i)) != vq->vring.num);
dde79789 640
17cbca2b 641 return head;
8ca47e00
RR
642}
643
e1e72965 644/* After we've used one of their buffers, we tell them about it. We'll then
17cbca2b
RR
645 * want to send them an interrupt, using trigger_irq(). */
646static void add_used(struct virtqueue *vq, unsigned int head, int len)
8ca47e00 647{
17cbca2b
RR
648 struct vring_used_elem *used;
649
e1e72965
RR
650 /* The virtqueue contains a ring of used buffers. Get a pointer to the
651 * next entry in that used ring. */
17cbca2b
RR
652 used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
653 used->id = head;
654 used->len = len;
655 /* Make sure buffer is written before we update index. */
656 wmb();
657 vq->vring.used->idx++;
95c517c0 658 vq->pending_used++;
8ca47e00
RR
659}
660
17cbca2b 661/* And here's the combo meal deal. Supersize me! */
56739c80 662static void add_used_and_trigger(struct virtqueue *vq, unsigned head, int len)
8ca47e00 663{
17cbca2b 664 add_used(vq, head, len);
56739c80 665 trigger_irq(vq);
8ca47e00
RR
666}
667
e1e72965
RR
668/*
669 * The Console
670 *
659a0e66 671 * We associate some data with the console for our exit hack. */
8ca47e00
RR
672struct console_abort
673{
dde79789 674 /* How many times have they hit ^C? */
8ca47e00 675 int count;
dde79789 676 /* When did they start? */
8ca47e00
RR
677 struct timeval start;
678};
679
dde79789 680/* This is the routine which handles console input (ie. stdin). */
659a0e66 681static void console_input(struct virtqueue *vq)
8ca47e00 682{
8ca47e00 683 int len;
17cbca2b 684 unsigned int head, in_num, out_num;
659a0e66
RR
685 struct console_abort *abort = vq->dev->priv;
686 struct iovec iov[vq->vring.num];
56ae43df 687
659a0e66
RR
688 /* Make sure there's a descriptor waiting. */
689 head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
56ae43df 690 if (out_num)
17cbca2b 691 errx(1, "Output buffers in console in queue?");
8ca47e00 692
659a0e66
RR
693 /* Read it in. */
694 len = readv(STDIN_FILENO, iov, in_num);
8ca47e00 695 if (len <= 0) {
659a0e66 696 /* Ran out of input? */
8ca47e00 697 warnx("Failed to get console input, ignoring console.");
659a0e66
RR
698 /* For simplicity, dying threads kill the whole Launcher. So
699 * just nap here. */
700 for (;;)
701 pause();
8ca47e00
RR
702 }
703
659a0e66 704 add_used_and_trigger(vq, head, len);
8ca47e00 705
dde79789
RR
706 /* Three ^C within one second? Exit.
707 *
659a0e66
RR
708 * This is such a hack, but works surprisingly well. Each ^C has to
709 * be in a buffer by itself, so they can't be too fast. But we check
710 * that we get three within about a second, so they can't be too
711 * slow. */
712 if (len != 1 || ((char *)iov[0].iov_base)[0] != 3) {
8ca47e00 713 abort->count = 0;
659a0e66
RR
714 return;
715 }
8ca47e00 716
659a0e66
RR
717 abort->count++;
718 if (abort->count == 1)
719 gettimeofday(&abort->start, NULL);
720 else if (abort->count == 3) {
721 struct timeval now;
722 gettimeofday(&now, NULL);
723 /* Kill all Launcher processes with SIGINT, like normal ^C */
724 if (now.tv_sec <= abort->start.tv_sec+1)
725 kill(0, SIGINT);
726 abort->count = 0;
727 }
8ca47e00
RR
728}
729
659a0e66
RR
730/* This is the routine which handles console output (ie. stdout). */
731static void console_output(struct virtqueue *vq)
8ca47e00 732{
17cbca2b 733 unsigned int head, out, in;
17cbca2b
RR
734 struct iovec iov[vq->vring.num];
735
659a0e66
RR
736 head = wait_for_vq_desc(vq, iov, &out, &in);
737 if (in)
738 errx(1, "Input buffers in console output queue?");
739 while (!iov_empty(iov, out)) {
740 int len = writev(STDOUT_FILENO, iov, out);
741 if (len <= 0)
742 err(1, "Write to stdout gave %i", len);
743 iov_consume(iov, out, len);
17cbca2b 744 }
38bc2b8c 745 add_used(vq, head, 0);
a161883a
RR
746}
747
e1e72965
RR
748/*
749 * The Network
750 *
751 * Handling output for network is also simple: we get all the output buffers
659a0e66 752 * and write them to /dev/net/tun.
a6bd8e13 753 */
659a0e66
RR
754struct net_info {
755 int tunfd;
756};
757
758static void net_output(struct virtqueue *vq)
8ca47e00 759{
659a0e66
RR
760 struct net_info *net_info = vq->dev->priv;
761 unsigned int head, out, in;
17cbca2b 762 struct iovec iov[vq->vring.num];
a161883a 763
659a0e66
RR
764 head = wait_for_vq_desc(vq, iov, &out, &in);
765 if (in)
766 errx(1, "Input buffers in net output queue?");
767 if (writev(net_info->tunfd, iov, out) < 0)
768 errx(1, "Write to tun failed?");
38bc2b8c 769 add_used(vq, head, 0);
8ca47e00
RR
770}
771
659a0e66 772/* This is where we handle packets coming in from the tun device to our
17cbca2b 773 * Guest. */
659a0e66 774static void net_input(struct virtqueue *vq)
8ca47e00 775{
8ca47e00 776 int len;
659a0e66
RR
777 unsigned int head, out, in;
778 struct iovec iov[vq->vring.num];
779 struct net_info *net_info = vq->dev->priv;
780
781 head = wait_for_vq_desc(vq, iov, &out, &in);
782 if (out)
783 errx(1, "Output buffers in net input queue?");
784 len = readv(net_info->tunfd, iov, in);
8ca47e00 785 if (len <= 0)
659a0e66
RR
786 err(1, "Failed to read from tun.");
787 add_used_and_trigger(vq, head, len);
788}
dde79789 789
659a0e66
RR
790/* This is the helper to create threads. */
791static int do_thread(void *_vq)
792{
793 struct virtqueue *vq = _vq;
17cbca2b 794
659a0e66
RR
795 for (;;)
796 vq->service(vq);
797 return 0;
798}
17cbca2b 799
659a0e66
RR
800/* When a child dies, we kill our entire process group with SIGTERM. This
801 * also has the side effect that the shell restores the console for us! */
802static void kill_launcher(int signal)
803{
804 kill(0, SIGTERM);
8ca47e00
RR
805}
806
659a0e66 807static void reset_device(struct device *dev)
56ae43df 808{
659a0e66
RR
809 struct virtqueue *vq;
810
811 verbose("Resetting device %s\n", dev->name);
812
813 /* Clear any features they've acked. */
814 memset(get_feature_bits(dev) + dev->feature_len, 0, dev->feature_len);
815
816 /* We're going to be explicitly killing threads, so ignore them. */
817 signal(SIGCHLD, SIG_IGN);
818
819 /* Zero out the virtqueues, get rid of their threads */
820 for (vq = dev->vq; vq; vq = vq->next) {
821 if (vq->thread != (pid_t)-1) {
822 kill(vq->thread, SIGTERM);
823 waitpid(vq->thread, NULL, 0);
824 vq->thread = (pid_t)-1;
825 }
826 memset(vq->vring.desc, 0,
827 vring_size(vq->config.num, LGUEST_VRING_ALIGN));
828 lg_last_avail(vq) = 0;
829 }
830 dev->running = false;
831
832 /* Now we care if threads die. */
833 signal(SIGCHLD, (void *)kill_launcher);
56ae43df
RR
834}
835
659a0e66 836static void create_thread(struct virtqueue *vq)
5dae785a 837{
659a0e66
RR
838 /* Create stack for thread and run it. Since stack grows
839 * upwards, we point the stack pointer to the end of this
840 * region. */
841 char *stack = malloc(32768);
842 unsigned long args[] = { LHREQ_EVENTFD,
843 vq->config.pfn*getpagesize(), 0 };
844
845 /* Create a zero-initialized eventfd. */
846 vq->eventfd = eventfd(0, 0);
847 if (vq->eventfd < 0)
848 err(1, "Creating eventfd");
849 args[2] = vq->eventfd;
850
851 /* Attach an eventfd to this virtqueue: it will go off
852 * when the Guest does an LHCALL_NOTIFY for this vq. */
853 if (write(lguest_fd, &args, sizeof(args)) != 0)
854 err(1, "Attaching eventfd");
855
856 /* CLONE_VM: because it has to access the Guest memory, and
857 * SIGCHLD so we get a signal if it dies. */
858 vq->thread = clone(do_thread, stack + 32768, CLONE_VM | SIGCHLD, vq);
859 if (vq->thread == (pid_t)-1)
860 err(1, "Creating clone");
861 /* We close our local copy, now the child has it. */
862 close(vq->eventfd);
5dae785a
RR
863}
864
659a0e66 865static void start_device(struct device *dev)
6e5aa7ef 866{
659a0e66 867 unsigned int i;
6e5aa7ef
RR
868 struct virtqueue *vq;
869
659a0e66
RR
870 verbose("Device %s OK: offered", dev->name);
871 for (i = 0; i < dev->feature_len; i++)
872 verbose(" %02x", get_feature_bits(dev)[i]);
873 verbose(", accepted");
874 for (i = 0; i < dev->feature_len; i++)
875 verbose(" %02x", get_feature_bits(dev)
876 [dev->feature_len+i]);
877
878 for (vq = dev->vq; vq; vq = vq->next) {
879 if (vq->service)
880 create_thread(vq);
881 }
882 dev->running = true;
883}
884
885static void cleanup_devices(void)
886{
887 struct device *dev;
888
889 for (dev = devices.dev; dev; dev = dev->next)
890 reset_device(dev);
6e5aa7ef 891
659a0e66
RR
892 /* If we saved off the original terminal settings, restore them now. */
893 if (orig_term.c_lflag & (ISIG|ICANON|ECHO))
894 tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
895}
6e5aa7ef 896
659a0e66
RR
897/* When the Guest tells us they updated the status field, we handle it. */
898static void update_device_status(struct device *dev)
899{
900 /* A zero status is a reset, otherwise it's a set of flags. */
901 if (dev->desc->status == 0)
902 reset_device(dev);
903 else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) {
a007a751 904 warnx("Device %s configuration FAILED", dev->name);
659a0e66
RR
905 if (dev->running)
906 reset_device(dev);
a007a751 907 } else if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK) {
659a0e66
RR
908 if (!dev->running)
909 start_device(dev);
6e5aa7ef
RR
910 }
911}
912
17cbca2b 913/* This is the generic routine we call when the Guest uses LHCALL_NOTIFY. */
56739c80 914static void handle_output(unsigned long addr)
8ca47e00
RR
915{
916 struct device *i;
17cbca2b 917
659a0e66 918 /* Check each device. */
17cbca2b 919 for (i = devices.dev; i; i = i->next) {
659a0e66
RR
920 struct virtqueue *vq;
921
a007a751 922 /* Notifications to device descriptors update device status. */
6e5aa7ef 923 if (from_guest_phys(addr) == i->desc) {
a007a751 924 update_device_status(i);
6e5aa7ef
RR
925 return;
926 }
927
659a0e66 928 /* Devices *can* be used before status is set to DRIVER_OK. */
17cbca2b 929 for (vq = i->vq; vq; vq = vq->next) {
659a0e66 930 if (addr != vq->config.pfn*getpagesize())
6e5aa7ef 931 continue;
659a0e66
RR
932 if (i->running)
933 errx(1, "Notification on running %s", i->name);
934 start_device(i);
6e5aa7ef 935 return;
8ca47e00
RR
936 }
937 }
dde79789 938
17cbca2b
RR
939 /* Early console write is done using notify on a nul-terminated string
940 * in Guest memory. */
941 if (addr >= guest_limit)
942 errx(1, "Bad NOTIFY %#lx", addr);
943
944 write(STDOUT_FILENO, from_guest_phys(addr),
945 strnlen(from_guest_phys(addr), guest_limit - addr));
8ca47e00
RR
946}
947
dde79789
RR
948/*L:190
949 * Device Setup
950 *
951 * All devices need a descriptor so the Guest knows it exists, and a "struct
952 * device" so the Launcher can keep track of it. We have common helper
a6bd8e13
RR
953 * routines to allocate and manage them.
954 */
8ca47e00 955
a586d4f6
RR
956/* The layout of the device page is a "struct lguest_device_desc" followed by a
957 * number of virtqueue descriptors, then two sets of feature bits, then an
958 * array of configuration bytes. This routine returns the configuration
959 * pointer. */
960static u8 *device_config(const struct device *dev)
961{
962 return (void *)(dev->desc + 1)
713b15b3
RR
963 + dev->num_vq * sizeof(struct lguest_vqconfig)
964 + dev->feature_len * 2;
17cbca2b
RR
965}
966
a586d4f6
RR
967/* This routine allocates a new "struct lguest_device_desc" from descriptor
968 * table page just above the Guest's normal memory. It returns a pointer to
969 * that descriptor. */
970static struct lguest_device_desc *new_dev_desc(u16 type)
17cbca2b 971{
a586d4f6
RR
972 struct lguest_device_desc d = { .type = type };
973 void *p;
17cbca2b 974
a586d4f6
RR
975 /* Figure out where the next device config is, based on the last one. */
976 if (devices.lastdev)
977 p = device_config(devices.lastdev)
978 + devices.lastdev->desc->config_len;
979 else
980 p = devices.descpage;
17cbca2b 981
a586d4f6
RR
982 /* We only have one page for all the descriptors. */
983 if (p + sizeof(d) > (void *)devices.descpage + getpagesize())
984 errx(1, "Too many devices");
17cbca2b 985
a586d4f6
RR
986 /* p might not be aligned, so we memcpy in. */
987 return memcpy(p, &d, sizeof(d));
17cbca2b
RR
988}
989
a586d4f6
RR
990/* Each device descriptor is followed by the description of its virtqueues. We
991 * specify how many descriptors the virtqueue is to have. */
17cbca2b 992static void add_virtqueue(struct device *dev, unsigned int num_descs,
659a0e66 993 void (*service)(struct virtqueue *))
17cbca2b
RR
994{
995 unsigned int pages;
996 struct virtqueue **i, *vq = malloc(sizeof(*vq));
997 void *p;
998
a6bd8e13 999 /* First we need some memory for this virtqueue. */
2966af73 1000 pages = (vring_size(num_descs, LGUEST_VRING_ALIGN) + getpagesize() - 1)
42b36cc0 1001 / getpagesize();
17cbca2b
RR
1002 p = get_pages(pages);
1003
d1c856e0
RR
1004 /* Initialize the virtqueue */
1005 vq->next = NULL;
1006 vq->last_avail_idx = 0;
1007 vq->dev = dev;
659a0e66
RR
1008 vq->service = service;
1009 vq->thread = (pid_t)-1;
d1c856e0 1010
17cbca2b
RR
1011 /* Initialize the configuration. */
1012 vq->config.num = num_descs;
1013 vq->config.irq = devices.next_irq++;
1014 vq->config.pfn = to_guest_phys(p) / getpagesize();
1015
1016 /* Initialize the vring. */
2966af73 1017 vring_init(&vq->vring, num_descs, p, LGUEST_VRING_ALIGN);
17cbca2b 1018
a586d4f6
RR
1019 /* Append virtqueue to this device's descriptor. We use
1020 * device_config() to get the end of the device's current virtqueues;
1021 * we check that we haven't added any config or feature information
1022 * yet, otherwise we'd be overwriting them. */
1023 assert(dev->desc->config_len == 0 && dev->desc->feature_len == 0);
1024 memcpy(device_config(dev), &vq->config, sizeof(vq->config));
713b15b3 1025 dev->num_vq++;
a586d4f6
RR
1026 dev->desc->num_vq++;
1027
1028 verbose("Virtqueue page %#lx\n", to_guest_phys(p));
17cbca2b
RR
1029
1030 /* Add to tail of list, so dev->vq is first vq, dev->vq->next is
1031 * second. */
1032 for (i = &dev->vq; *i; i = &(*i)->next);
1033 *i = vq;
8ca47e00
RR
1034}
1035
6e5aa7ef 1036/* The first half of the feature bitmask is for us to advertise features. The
a6bd8e13 1037 * second half is for the Guest to accept features. */
a586d4f6
RR
1038static void add_feature(struct device *dev, unsigned bit)
1039{
6e5aa7ef 1040 u8 *features = get_feature_bits(dev);
a586d4f6
RR
1041
1042 /* We can't extend the feature bits once we've added config bytes */
1043 if (dev->desc->feature_len <= bit / CHAR_BIT) {
1044 assert(dev->desc->config_len == 0);
713b15b3 1045 dev->feature_len = dev->desc->feature_len = (bit/CHAR_BIT) + 1;
a586d4f6
RR
1046 }
1047
a586d4f6
RR
1048 features[bit / CHAR_BIT] |= (1 << (bit % CHAR_BIT));
1049}
1050
1051/* This routine sets the configuration fields for an existing device's
1052 * descriptor. It only works for the last device, but that's OK because that's
1053 * how we use it. */
1054static void set_config(struct device *dev, unsigned len, const void *conf)
1055{
1056 /* Check we haven't overflowed our single page. */
1057 if (device_config(dev) + len > devices.descpage + getpagesize())
1058 errx(1, "Too many devices");
1059
1060 /* Copy in the config information, and store the length. */
1061 memcpy(device_config(dev), conf, len);
1062 dev->desc->config_len = len;
1063}
1064
17cbca2b 1065/* This routine does all the creation and setup of a new device, including
a6bd8e13
RR
1066 * calling new_dev_desc() to allocate the descriptor and device memory.
1067 *
1068 * See what I mean about userspace being boring? */
659a0e66 1069static struct device *new_device(const char *name, u16 type)
8ca47e00
RR
1070{
1071 struct device *dev = malloc(sizeof(*dev));
1072
dde79789 1073 /* Now we populate the fields one at a time. */
17cbca2b 1074 dev->desc = new_dev_desc(type);
17cbca2b 1075 dev->name = name;
d1c856e0 1076 dev->vq = NULL;
713b15b3
RR
1077 dev->feature_len = 0;
1078 dev->num_vq = 0;
659a0e66 1079 dev->running = false;
a586d4f6
RR
1080
1081 /* Append to device list. Prepending to a single-linked list is
1082 * easier, but the user expects the devices to be arranged on the bus
1083 * in command-line order. The first network device on the command line
1084 * is eth0, the first block device /dev/vda, etc. */
1085 if (devices.lastdev)
1086 devices.lastdev->next = dev;
1087 else
1088 devices.dev = dev;
1089 devices.lastdev = dev;
1090
8ca47e00
RR
1091 return dev;
1092}
1093
dde79789
RR
1094/* Our first setup routine is the console. It's a fairly simple device, but
1095 * UNIX tty handling makes it uglier than it could be. */
17cbca2b 1096static void setup_console(void)
8ca47e00
RR
1097{
1098 struct device *dev;
1099
dde79789 1100 /* If we can save the initial standard input settings... */
8ca47e00
RR
1101 if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
1102 struct termios term = orig_term;
dde79789
RR
1103 /* Then we turn off echo, line buffering and ^C etc. We want a
1104 * raw input stream to the Guest. */
8ca47e00
RR
1105 term.c_lflag &= ~(ISIG|ICANON|ECHO);
1106 tcsetattr(STDIN_FILENO, TCSANOW, &term);
8ca47e00
RR
1107 }
1108
659a0e66
RR
1109 dev = new_device("console", VIRTIO_ID_CONSOLE);
1110
dde79789 1111 /* We store the console state in dev->priv, and initialize it. */
8ca47e00
RR
1112 dev->priv = malloc(sizeof(struct console_abort));
1113 ((struct console_abort *)dev->priv)->count = 0;
8ca47e00 1114
56ae43df
RR
1115 /* The console needs two virtqueues: the input then the output. When
1116 * they put something the input queue, we make sure we're listening to
1117 * stdin. When they put something in the output queue, we write it to
e1e72965 1118 * stdout. */
659a0e66
RR
1119 add_virtqueue(dev, VIRTQUEUE_NUM, console_input);
1120 add_virtqueue(dev, VIRTQUEUE_NUM, console_output);
17cbca2b 1121
659a0e66 1122 verbose("device %u: console\n", ++devices.device_num);
8ca47e00 1123}
17cbca2b 1124/*:*/
8ca47e00 1125
17cbca2b
RR
1126/*M:010 Inter-guest networking is an interesting area. Simplest is to have a
1127 * --sharenet=<name> option which opens or creates a named pipe. This can be
1128 * used to send packets to another guest in a 1:1 manner.
dde79789 1129 *
17cbca2b
RR
1130 * More sopisticated is to use one of the tools developed for project like UML
1131 * to do networking.
dde79789 1132 *
17cbca2b
RR
1133 * Faster is to do virtio bonding in kernel. Doing this 1:1 would be
1134 * completely generic ("here's my vring, attach to your vring") and would work
1135 * for any traffic. Of course, namespace and permissions issues need to be
1136 * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide
1137 * multiple inter-guest channels behind one interface, although it would
1138 * require some manner of hotplugging new virtio channels.
1139 *
1140 * Finally, we could implement a virtio network switch in the kernel. :*/
8ca47e00
RR
1141
1142static u32 str2ip(const char *ipaddr)
1143{
dec6a2be 1144 unsigned int b[4];
8ca47e00 1145
dec6a2be
MM
1146 if (sscanf(ipaddr, "%u.%u.%u.%u", &b[0], &b[1], &b[2], &b[3]) != 4)
1147 errx(1, "Failed to parse IP address '%s'", ipaddr);
1148 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
1149}
1150
1151static void str2mac(const char *macaddr, unsigned char mac[6])
1152{
1153 unsigned int m[6];
1154 if (sscanf(macaddr, "%02x:%02x:%02x:%02x:%02x:%02x",
1155 &m[0], &m[1], &m[2], &m[3], &m[4], &m[5]) != 6)
1156 errx(1, "Failed to parse mac address '%s'", macaddr);
1157 mac[0] = m[0];
1158 mac[1] = m[1];
1159 mac[2] = m[2];
1160 mac[3] = m[3];
1161 mac[4] = m[4];
1162 mac[5] = m[5];
8ca47e00
RR
1163}
1164
dde79789
RR
1165/* This code is "adapted" from libbridge: it attaches the Host end of the
1166 * network device to the bridge device specified by the command line.
1167 *
1168 * This is yet another James Morris contribution (I'm an IP-level guy, so I
1169 * dislike bridging), and I just try not to break it. */
8ca47e00
RR
1170static void add_to_bridge(int fd, const char *if_name, const char *br_name)
1171{
1172 int ifidx;
1173 struct ifreq ifr;
1174
1175 if (!*br_name)
1176 errx(1, "must specify bridge name");
1177
1178 ifidx = if_nametoindex(if_name);
1179 if (!ifidx)
1180 errx(1, "interface %s does not exist!", if_name);
1181
1182 strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
dec6a2be 1183 ifr.ifr_name[IFNAMSIZ-1] = '\0';
8ca47e00
RR
1184 ifr.ifr_ifindex = ifidx;
1185 if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
1186 err(1, "can't add %s to bridge %s", if_name, br_name);
1187}
1188
dde79789
RR
1189/* This sets up the Host end of the network device with an IP address, brings
1190 * it up so packets will flow, the copies the MAC address into the hwaddr
17cbca2b 1191 * pointer. */
dec6a2be 1192static void configure_device(int fd, const char *tapif, u32 ipaddr)
8ca47e00
RR
1193{
1194 struct ifreq ifr;
1195 struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr;
1196
1197 memset(&ifr, 0, sizeof(ifr));
dec6a2be
MM
1198 strcpy(ifr.ifr_name, tapif);
1199
1200 /* Don't read these incantations. Just cut & paste them like I did! */
8ca47e00
RR
1201 sin->sin_family = AF_INET;
1202 sin->sin_addr.s_addr = htonl(ipaddr);
1203 if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
dec6a2be 1204 err(1, "Setting %s interface address", tapif);
8ca47e00
RR
1205 ifr.ifr_flags = IFF_UP;
1206 if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
dec6a2be
MM
1207 err(1, "Bringing interface %s up", tapif);
1208}
1209
dec6a2be 1210static int get_tun_device(char tapif[IFNAMSIZ])
8ca47e00 1211{
8ca47e00 1212 struct ifreq ifr;
dec6a2be
MM
1213 int netfd;
1214
1215 /* Start with this zeroed. Messy but sure. */
1216 memset(&ifr, 0, sizeof(ifr));
8ca47e00 1217
dde79789
RR
1218 /* We open the /dev/net/tun device and tell it we want a tap device. A
1219 * tap device is like a tun device, only somehow different. To tell
1220 * the truth, I completely blundered my way through this code, but it
1221 * works now! */
8ca47e00 1222 netfd = open_or_die("/dev/net/tun", O_RDWR);
398f187d 1223 ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_VNET_HDR;
8ca47e00
RR
1224 strcpy(ifr.ifr_name, "tap%d");
1225 if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
1226 err(1, "configuring /dev/net/tun");
dec6a2be 1227
398f187d
RR
1228 if (ioctl(netfd, TUNSETOFFLOAD,
1229 TUN_F_CSUM|TUN_F_TSO4|TUN_F_TSO6|TUN_F_TSO_ECN) != 0)
1230 err(1, "Could not set features for tun device");
1231
dde79789
RR
1232 /* We don't need checksums calculated for packets coming in this
1233 * device: trust us! */
8ca47e00
RR
1234 ioctl(netfd, TUNSETNOCSUM, 1);
1235
dec6a2be
MM
1236 memcpy(tapif, ifr.ifr_name, IFNAMSIZ);
1237 return netfd;
1238}
1239
1240/*L:195 Our network is a Host<->Guest network. This can either use bridging or
1241 * routing, but the principle is the same: it uses the "tun" device to inject
1242 * packets into the Host as if they came in from a normal network card. We
1243 * just shunt packets between the Guest and the tun device. */
1244static void setup_tun_net(char *arg)
1245{
1246 struct device *dev;
659a0e66
RR
1247 struct net_info *net_info = malloc(sizeof(*net_info));
1248 int ipfd;
dec6a2be
MM
1249 u32 ip = INADDR_ANY;
1250 bool bridging = false;
1251 char tapif[IFNAMSIZ], *p;
1252 struct virtio_net_config conf;
1253
659a0e66 1254 net_info->tunfd = get_tun_device(tapif);
dec6a2be 1255
17cbca2b 1256 /* First we create a new network device. */
659a0e66
RR
1257 dev = new_device("net", VIRTIO_ID_NET);
1258 dev->priv = net_info;
dde79789 1259
56ae43df
RR
1260 /* Network devices need a receive and a send queue, just like
1261 * console. */
659a0e66
RR
1262 add_virtqueue(dev, VIRTQUEUE_NUM, net_input);
1263 add_virtqueue(dev, VIRTQUEUE_NUM, net_output);
8ca47e00 1264
dde79789
RR
1265 /* We need a socket to perform the magic network ioctls to bring up the
1266 * tap interface, connect to the bridge etc. Any socket will do! */
8ca47e00
RR
1267 ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
1268 if (ipfd < 0)
1269 err(1, "opening IP socket");
1270
dde79789 1271 /* If the command line was --tunnet=bridge:<name> do bridging. */
8ca47e00 1272 if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
dec6a2be
MM
1273 arg += strlen(BRIDGE_PFX);
1274 bridging = true;
1275 }
1276
1277 /* A mac address may follow the bridge name or IP address */
1278 p = strchr(arg, ':');
1279 if (p) {
1280 str2mac(p+1, conf.mac);
40c42076 1281 add_feature(dev, VIRTIO_NET_F_MAC);
dec6a2be 1282 *p = '\0';
dec6a2be
MM
1283 }
1284
1285 /* arg is now either an IP address or a bridge name */
1286 if (bridging)
1287 add_to_bridge(ipfd, tapif, arg);
1288 else
8ca47e00
RR
1289 ip = str2ip(arg);
1290
dec6a2be
MM
1291 /* Set up the tun device. */
1292 configure_device(ipfd, tapif, ip);
8ca47e00 1293
20887611 1294 add_feature(dev, VIRTIO_F_NOTIFY_ON_EMPTY);
398f187d
RR
1295 /* Expect Guest to handle everything except UFO */
1296 add_feature(dev, VIRTIO_NET_F_CSUM);
1297 add_feature(dev, VIRTIO_NET_F_GUEST_CSUM);
398f187d
RR
1298 add_feature(dev, VIRTIO_NET_F_GUEST_TSO4);
1299 add_feature(dev, VIRTIO_NET_F_GUEST_TSO6);
1300 add_feature(dev, VIRTIO_NET_F_GUEST_ECN);
1301 add_feature(dev, VIRTIO_NET_F_HOST_TSO4);
1302 add_feature(dev, VIRTIO_NET_F_HOST_TSO6);
1303 add_feature(dev, VIRTIO_NET_F_HOST_ECN);
a586d4f6 1304 set_config(dev, sizeof(conf), &conf);
8ca47e00 1305
a586d4f6 1306 /* We don't need the socket any more; setup is done. */
8ca47e00
RR
1307 close(ipfd);
1308
dec6a2be
MM
1309 devices.device_num++;
1310
1311 if (bridging)
1312 verbose("device %u: tun %s attached to bridge: %s\n",
1313 devices.device_num, tapif, arg);
1314 else
1315 verbose("device %u: tun %s: %s\n",
1316 devices.device_num, tapif, arg);
8ca47e00 1317}
17cbca2b 1318
e1e72965
RR
1319/* Our block (disk) device should be really simple: the Guest asks for a block
1320 * number and we read or write that position in the file. Unfortunately, that
1321 * was amazingly slow: the Guest waits until the read is finished before
1322 * running anything else, even if it could have been doing useful work.
17cbca2b 1323 *
e1e72965
RR
1324 * We could use async I/O, except it's reputed to suck so hard that characters
1325 * actually go missing from your code when you try to use it.
17cbca2b
RR
1326 *
1327 * So we farm the I/O out to thread, and communicate with it via a pipe. */
1328
e1e72965 1329/* This hangs off device->priv. */
17cbca2b
RR
1330struct vblk_info
1331{
1332 /* The size of the file. */
1333 off64_t len;
1334
1335 /* The file descriptor for the file. */
1336 int fd;
1337
1338 /* IO thread listens on this file descriptor [0]. */
1339 int workpipe[2];
1340
1341 /* IO thread writes to this file descriptor to mark it done, then
1342 * Launcher triggers interrupt to Guest. */
1343 int done_fd;
1344};
1345
e1e72965
RR
1346/*L:210
1347 * The Disk
1348 *
1349 * Remember that the block device is handled by a separate I/O thread. We head
1350 * straight into the core of that thread here:
1351 */
659a0e66 1352static void blk_request(struct virtqueue *vq)
17cbca2b 1353{
659a0e66 1354 struct vblk_info *vblk = vq->dev->priv;
17cbca2b
RR
1355 unsigned int head, out_num, in_num, wlen;
1356 int ret;
cb38fa23 1357 u8 *in;
17cbca2b 1358 struct virtio_blk_outhdr *out;
659a0e66 1359 struct iovec iov[vq->vring.num];
17cbca2b
RR
1360 off64_t off;
1361
659a0e66
RR
1362 /* Get the next request. */
1363 head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
17cbca2b 1364
e1e72965
RR
1365 /* Every block request should contain at least one output buffer
1366 * (detailing the location on disk and the type of request) and one
1367 * input buffer (to hold the result). */
17cbca2b
RR
1368 if (out_num == 0 || in_num == 0)
1369 errx(1, "Bad virtblk cmd %u out=%u in=%u",
1370 head, out_num, in_num);
1371
1372 out = convert(&iov[0], struct virtio_blk_outhdr);
cb38fa23 1373 in = convert(&iov[out_num+in_num-1], u8);
17cbca2b
RR
1374 off = out->sector * 512;
1375
e1e72965
RR
1376 /* The block device implements "barriers", where the Guest indicates
1377 * that it wants all previous writes to occur before this write. We
1378 * don't have a way of asking our kernel to do a barrier, so we just
1379 * synchronize all the data in the file. Pretty poor, no? */
17cbca2b
RR
1380 if (out->type & VIRTIO_BLK_T_BARRIER)
1381 fdatasync(vblk->fd);
1382
e1e72965
RR
1383 /* In general the virtio block driver is allowed to try SCSI commands.
1384 * It'd be nice if we supported eject, for example, but we don't. */
17cbca2b
RR
1385 if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
1386 fprintf(stderr, "Scsi commands unsupported\n");
cb38fa23 1387 *in = VIRTIO_BLK_S_UNSUPP;
1200e646 1388 wlen = sizeof(*in);
17cbca2b
RR
1389 } else if (out->type & VIRTIO_BLK_T_OUT) {
1390 /* Write */
1391
1392 /* Move to the right location in the block file. This can fail
1393 * if they try to write past end. */
1394 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1395 err(1, "Bad seek to sector %llu", out->sector);
1396
1397 ret = writev(vblk->fd, iov+1, out_num-1);
1398 verbose("WRITE to sector %llu: %i\n", out->sector, ret);
1399
1400 /* Grr... Now we know how long the descriptor they sent was, we
1401 * make sure they didn't try to write over the end of the block
1402 * file (possibly extending it). */
1403 if (ret > 0 && off + ret > vblk->len) {
1404 /* Trim it back to the correct length */
1405 ftruncate64(vblk->fd, vblk->len);
1406 /* Die, bad Guest, die. */
1407 errx(1, "Write past end %llu+%u", off, ret);
1408 }
1200e646 1409 wlen = sizeof(*in);
cb38fa23 1410 *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
17cbca2b
RR
1411 } else {
1412 /* Read */
1413
1414 /* Move to the right location in the block file. This can fail
1415 * if they try to read past end. */
1416 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1417 err(1, "Bad seek to sector %llu", out->sector);
1418
1419 ret = readv(vblk->fd, iov+1, in_num-1);
1420 verbose("READ from sector %llu: %i\n", out->sector, ret);
1421 if (ret >= 0) {
1200e646 1422 wlen = sizeof(*in) + ret;
cb38fa23 1423 *in = VIRTIO_BLK_S_OK;
17cbca2b 1424 } else {
1200e646 1425 wlen = sizeof(*in);
cb38fa23 1426 *in = VIRTIO_BLK_S_IOERR;
17cbca2b
RR
1427 }
1428 }
1429
d1881d31
RR
1430 /* OK, so we noted that it was pretty poor to use an fdatasync as a
1431 * barrier. But Christoph Hellwig points out that we need a sync
1432 * *afterwards* as well: "Barriers specify no reordering to the front
1433 * or the back." And Jens Axboe confirmed it, so here we are: */
1434 if (out->type & VIRTIO_BLK_T_BARRIER)
1435 fdatasync(vblk->fd);
1436
38bc2b8c 1437 add_used(vq, head, wlen);
17cbca2b
RR
1438}
1439
e1e72965 1440/*L:198 This actually sets up a virtual block device. */
17cbca2b
RR
1441static void setup_block_file(const char *filename)
1442{
17cbca2b
RR
1443 struct device *dev;
1444 struct vblk_info *vblk;
a586d4f6 1445 struct virtio_blk_config conf;
17cbca2b 1446
17cbca2b 1447 /* The device responds to return from I/O thread. */
659a0e66 1448 dev = new_device("block", VIRTIO_ID_BLOCK);
17cbca2b 1449
e1e72965 1450 /* The device has one virtqueue, where the Guest places requests. */
659a0e66 1451 add_virtqueue(dev, VIRTQUEUE_NUM, blk_request);
17cbca2b
RR
1452
1453 /* Allocate the room for our own bookkeeping */
1454 vblk = dev->priv = malloc(sizeof(*vblk));
1455
1456 /* First we open the file and store the length. */
1457 vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
1458 vblk->len = lseek64(vblk->fd, 0, SEEK_END);
1459
a586d4f6
RR
1460 /* We support barriers. */
1461 add_feature(dev, VIRTIO_BLK_F_BARRIER);
1462
17cbca2b 1463 /* Tell Guest how many sectors this device has. */
a586d4f6 1464 conf.capacity = cpu_to_le64(vblk->len / 512);
17cbca2b
RR
1465
1466 /* Tell Guest not to put in too many descriptors at once: two are used
1467 * for the in and out elements. */
a586d4f6
RR
1468 add_feature(dev, VIRTIO_BLK_F_SEG_MAX);
1469 conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
1470
1471 set_config(dev, sizeof(conf), &conf);
17cbca2b 1472
17cbca2b 1473 verbose("device %u: virtblock %llu sectors\n",
659a0e66 1474 ++devices.device_num, le64_to_cpu(conf.capacity));
17cbca2b 1475}
28fd6d7f 1476
659a0e66
RR
1477struct rng_info {
1478 int rfd;
1479};
1480
28fd6d7f
RR
1481/* Our random number generator device reads from /dev/random into the Guest's
1482 * input buffers. The usual case is that the Guest doesn't want random numbers
1483 * and so has no buffers although /dev/random is still readable, whereas
1484 * console is the reverse.
1485 *
1486 * The same logic applies, however. */
659a0e66 1487static void rng_input(struct virtqueue *vq)
28fd6d7f
RR
1488{
1489 int len;
1490 unsigned int head, in_num, out_num, totlen = 0;
659a0e66
RR
1491 struct rng_info *rng_info = vq->dev->priv;
1492 struct iovec iov[vq->vring.num];
28fd6d7f
RR
1493
1494 /* First we need a buffer from the Guests's virtqueue. */
659a0e66 1495 head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
28fd6d7f
RR
1496 if (out_num)
1497 errx(1, "Output buffers in rng?");
1498
1499 /* This is why we convert to iovecs: the readv() call uses them, and so
1500 * it reads straight into the Guest's buffer. We loop to make sure we
1501 * fill it. */
1502 while (!iov_empty(iov, in_num)) {
659a0e66 1503 len = readv(rng_info->rfd, iov, in_num);
28fd6d7f
RR
1504 if (len <= 0)
1505 err(1, "Read from /dev/random gave %i", len);
1506 iov_consume(iov, in_num, len);
1507 totlen += len;
1508 }
1509
1510 /* Tell the Guest about the new input. */
38bc2b8c 1511 add_used(vq, head, totlen);
28fd6d7f
RR
1512}
1513
1514/* And this creates a "hardware" random number device for the Guest. */
1515static void setup_rng(void)
1516{
1517 struct device *dev;
659a0e66 1518 struct rng_info *rng_info = malloc(sizeof(*rng_info));
28fd6d7f 1519
659a0e66 1520 rng_info->rfd = open_or_die("/dev/random", O_RDONLY);
28fd6d7f
RR
1521
1522 /* The device responds to return from I/O thread. */
659a0e66
RR
1523 dev = new_device("rng", VIRTIO_ID_RNG);
1524 dev->priv = rng_info;
28fd6d7f
RR
1525
1526 /* The device has one virtqueue, where the Guest places inbufs. */
659a0e66 1527 add_virtqueue(dev, VIRTQUEUE_NUM, rng_input);
28fd6d7f
RR
1528
1529 verbose("device %u: rng\n", devices.device_num++);
1530}
a6bd8e13 1531/* That's the end of device setup. */
ec04b13f 1532
a6bd8e13 1533/*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
ec04b13f
BR
1534static void __attribute__((noreturn)) restart_guest(void)
1535{
1536 unsigned int i;
1537
8c79873d
RR
1538 /* Since we don't track all open fds, we simply close everything beyond
1539 * stderr. */
ec04b13f
BR
1540 for (i = 3; i < FD_SETSIZE; i++)
1541 close(i);
8c79873d 1542
659a0e66
RR
1543 /* Reset all the devices (kills all threads). */
1544 cleanup_devices();
1545
ec04b13f
BR
1546 execv(main_args[0], main_args);
1547 err(1, "Could not exec %s", main_args[0]);
1548}
8ca47e00 1549
a6bd8e13 1550/*L:220 Finally we reach the core of the Launcher which runs the Guest, serves
dde79789 1551 * its input and output, and finally, lays it to rest. */
56739c80 1552static void __attribute__((noreturn)) run_guest(void)
8ca47e00
RR
1553{
1554 for (;;) {
17cbca2b 1555 unsigned long notify_addr;
8ca47e00
RR
1556 int readval;
1557
1558 /* We read from the /dev/lguest device to run the Guest. */
e3283fa0
GOC
1559 readval = pread(lguest_fd, &notify_addr,
1560 sizeof(notify_addr), cpu_id);
8ca47e00 1561
17cbca2b
RR
1562 /* One unsigned long means the Guest did HCALL_NOTIFY */
1563 if (readval == sizeof(notify_addr)) {
1564 verbose("Notify on address %#lx\n", notify_addr);
56739c80 1565 handle_output(notify_addr);
dde79789 1566 /* ENOENT means the Guest died. Reading tells us why. */
8ca47e00
RR
1567 } else if (errno == ENOENT) {
1568 char reason[1024] = { 0 };
e3283fa0 1569 pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
8ca47e00 1570 errx(1, "%s", reason);
ec04b13f
BR
1571 /* ERESTART means that we need to reboot the guest */
1572 } else if (errno == ERESTART) {
1573 restart_guest();
659a0e66
RR
1574 /* Anything else means a bug or incompatible change. */
1575 } else
8ca47e00 1576 err(1, "Running guest failed");
8ca47e00
RR
1577 }
1578}
a6bd8e13 1579/*L:240
e1e72965
RR
1580 * This is the end of the Launcher. The good news: we are over halfway
1581 * through! The bad news: the most fiendish part of the code still lies ahead
1582 * of us.
dde79789 1583 *
e1e72965
RR
1584 * Are you ready? Take a deep breath and join me in the core of the Host, in
1585 * "make Host".
1586 :*/
8ca47e00
RR
1587
1588static struct option opts[] = {
1589 { "verbose", 0, NULL, 'v' },
8ca47e00
RR
1590 { "tunnet", 1, NULL, 't' },
1591 { "block", 1, NULL, 'b' },
28fd6d7f 1592 { "rng", 0, NULL, 'r' },
8ca47e00
RR
1593 { "initrd", 1, NULL, 'i' },
1594 { NULL },
1595};
1596static void usage(void)
1597{
1598 errx(1, "Usage: lguest [--verbose] "
dec6a2be 1599 "[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n"
8ca47e00
RR
1600 "|--block=<filename>|--initrd=<filename>]...\n"
1601 "<mem-in-mb> vmlinux [args...]");
1602}
1603
3c6b5bfa 1604/*L:105 The main routine is where the real work begins: */
8ca47e00
RR
1605int main(int argc, char *argv[])
1606{
47436aa4
RR
1607 /* Memory, top-level pagetable, code startpoint and size of the
1608 * (optional) initrd. */
58a24566 1609 unsigned long mem = 0, start, initrd_size = 0;
56739c80
RR
1610 /* Two temporaries. */
1611 int i, c;
3c6b5bfa 1612 /* The boot information for the Guest. */
43d33b21 1613 struct boot_params *boot;
dde79789 1614 /* If they specify an initrd file to load. */
8ca47e00
RR
1615 const char *initrd_name = NULL;
1616
ec04b13f
BR
1617 /* Save the args: we "reboot" by execing ourselves again. */
1618 main_args = argv;
ec04b13f 1619
659a0e66
RR
1620 /* First we initialize the device list. We keep a pointer to the last
1621 * device, and the next interrupt number to use for devices (1:
1622 * remember that 0 is used by the timer). */
a586d4f6 1623 devices.lastdev = NULL;
17cbca2b 1624 devices.next_irq = 1;
8ca47e00 1625
e3283fa0 1626 cpu_id = 0;
dde79789
RR
1627 /* We need to know how much memory so we can set up the device
1628 * descriptor and memory pages for the devices as we parse the command
1629 * line. So we quickly look through the arguments to find the amount
1630 * of memory now. */
6570c459
RR
1631 for (i = 1; i < argc; i++) {
1632 if (argv[i][0] != '-') {
3c6b5bfa
RR
1633 mem = atoi(argv[i]) * 1024 * 1024;
1634 /* We start by mapping anonymous pages over all of
1635 * guest-physical memory range. This fills it with 0,
1636 * and ensures that the Guest won't be killed when it
1637 * tries to access it. */
1638 guest_base = map_zeroed_pages(mem / getpagesize()
1639 + DEVICE_PAGES);
1640 guest_limit = mem;
1641 guest_max = mem + DEVICE_PAGES*getpagesize();
17cbca2b 1642 devices.descpage = get_pages(1);
6570c459
RR
1643 break;
1644 }
1645 }
dde79789
RR
1646
1647 /* The options are fairly straight-forward */
8ca47e00
RR
1648 while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
1649 switch (c) {
1650 case 'v':
1651 verbose = true;
1652 break;
8ca47e00 1653 case 't':
17cbca2b 1654 setup_tun_net(optarg);
8ca47e00
RR
1655 break;
1656 case 'b':
17cbca2b 1657 setup_block_file(optarg);
8ca47e00 1658 break;
28fd6d7f
RR
1659 case 'r':
1660 setup_rng();
1661 break;
8ca47e00
RR
1662 case 'i':
1663 initrd_name = optarg;
1664 break;
1665 default:
1666 warnx("Unknown argument %s", argv[optind]);
1667 usage();
1668 }
1669 }
dde79789
RR
1670 /* After the other arguments we expect memory and kernel image name,
1671 * followed by command line arguments for the kernel. */
8ca47e00
RR
1672 if (optind + 2 > argc)
1673 usage();
1674
3c6b5bfa
RR
1675 verbose("Guest base is at %p\n", guest_base);
1676
dde79789 1677 /* We always have a console device */
17cbca2b 1678 setup_console();
8ca47e00 1679
8ca47e00 1680 /* Now we load the kernel */
47436aa4 1681 start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
8ca47e00 1682
3c6b5bfa
RR
1683 /* Boot information is stashed at physical address 0 */
1684 boot = from_guest_phys(0);
1685
dde79789 1686 /* Map the initrd image if requested (at top of physical memory) */
8ca47e00
RR
1687 if (initrd_name) {
1688 initrd_size = load_initrd(initrd_name, mem);
dde79789
RR
1689 /* These are the location in the Linux boot header where the
1690 * start and size of the initrd are expected to be found. */
43d33b21
RR
1691 boot->hdr.ramdisk_image = mem - initrd_size;
1692 boot->hdr.ramdisk_size = initrd_size;
dde79789 1693 /* The bootloader type 0xFF means "unknown"; that's OK. */
43d33b21 1694 boot->hdr.type_of_loader = 0xFF;
8ca47e00
RR
1695 }
1696
dde79789
RR
1697 /* The Linux boot header contains an "E820" memory map: ours is a
1698 * simple, single region. */
43d33b21
RR
1699 boot->e820_entries = 1;
1700 boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
dde79789 1701 /* The boot header contains a command line pointer: we put the command
43d33b21
RR
1702 * line after the boot header. */
1703 boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
e1e72965 1704 /* We use a simple helper to copy the arguments separated by spaces. */
43d33b21 1705 concat((char *)(boot + 1), argv+optind+2);
dde79789 1706
814a0e5c 1707 /* Boot protocol version: 2.07 supports the fields for lguest. */
43d33b21 1708 boot->hdr.version = 0x207;
814a0e5c
RR
1709
1710 /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
43d33b21 1711 boot->hdr.hardware_subarch = 1;
814a0e5c 1712
43d33b21
RR
1713 /* Tell the entry path not to try to reload segment registers. */
1714 boot->hdr.loadflags |= KEEP_SEGMENTS;
8ca47e00 1715
dde79789
RR
1716 /* We tell the kernel to initialize the Guest: this returns the open
1717 * /dev/lguest file descriptor. */
56739c80 1718 tell_kernel(start);
dde79789 1719
659a0e66
RR
1720 /* Ensure that we terminate if a child dies. */
1721 signal(SIGCHLD, kill_launcher);
1722
1723 /* If we exit via err(), this kills all the threads, restores tty. */
1724 atexit(cleanup_devices);
8ca47e00 1725
dde79789 1726 /* Finally, run the Guest. This doesn't return. */
56739c80 1727 run_guest();
8ca47e00 1728}
f56a384e
RR
1729/*:*/
1730
1731/*M:999
1732 * Mastery is done: you now know everything I do.
1733 *
1734 * But surely you have seen code, features and bugs in your wanderings which
1735 * you now yearn to attack? That is the real game, and I look forward to you
1736 * patching and forking lguest into the Your-Name-Here-visor.
1737 *
1738 * Farewell, and good coding!
1739 * Rusty Russell.
1740 */
This page took 0.307154 seconds and 5 git commands to generate.