[ALSA] ac97 - Fix vt1617a build ops
[deliverable/linux.git] / Documentation / sound / alsa / DocBook / writing-an-alsa-driver.tmpl
CommitLineData
1da177e4
LT
1<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook V4.1//EN">
2
3<book>
4<?dbhtml filename="index.html">
5
6<!-- ****************************************************** -->
7<!-- Header -->
8<!-- ****************************************************** -->
9 <bookinfo>
10 <title>Writing an ALSA Driver</title>
11 <author>
12 <firstname>Takashi</firstname>
13 <surname>Iwai</surname>
14 <affiliation>
15 <address>
16 <email>tiwai@suse.de</email>
17 </address>
18 </affiliation>
19 </author>
20
5fe76e4d
TI
21 <date>November 17, 2005</date>
22 <edition>0.3.6</edition>
1da177e4
LT
23
24 <abstract>
25 <para>
26 This document describes how to write an ALSA (Advanced Linux
27 Sound Architecture) driver.
28 </para>
29 </abstract>
30
31 <legalnotice>
32 <para>
7c22f1aa 33 Copyright (c) 2002-2005 Takashi Iwai <email>tiwai@suse.de</email>
1da177e4
LT
34 </para>
35
36 <para>
37 This document is free; you can redistribute it and/or modify it
38 under the terms of the GNU General Public License as published by
39 the Free Software Foundation; either version 2 of the License, or
40 (at your option) any later version.
41 </para>
42
43 <para>
44 This document is distributed in the hope that it will be useful,
45 but <emphasis>WITHOUT ANY WARRANTY</emphasis>; without even the
46 implied warranty of <emphasis>MERCHANTABILITY or FITNESS FOR A
47 PARTICULAR PURPOSE</emphasis>. See the GNU General Public License
48 for more details.
49 </para>
50
51 <para>
52 You should have received a copy of the GNU General Public
53 License along with this program; if not, write to the Free
54 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
55 MA 02111-1307 USA
56 </para>
57 </legalnotice>
58
59 </bookinfo>
60
61<!-- ****************************************************** -->
62<!-- Preface -->
63<!-- ****************************************************** -->
64 <preface id="preface">
65 <title>Preface</title>
66 <para>
67 This document describes how to write an
68 <ulink url="http://www.alsa-project.org/"><citetitle>
69 ALSA (Advanced Linux Sound Architecture)</citetitle></ulink>
70 driver. The document focuses mainly on the PCI soundcard.
71 In the case of other device types, the API might
72 be different, too. However, at least the ALSA kernel API is
73 consistent, and therefore it would be still a bit help for
74 writing them.
75 </para>
76
77 <para>
78 The target of this document is ones who already have enough
79 skill of C language and have the basic knowledge of linux
80 kernel programming. This document doesn't explain the general
81 topics of linux kernel codes and doesn't cover the detail of
82 implementation of each low-level driver. It describes only how is
83 the standard way to write a PCI sound driver on ALSA.
84 </para>
85
86 <para>
87 If you are already familiar with the older ALSA ver.0.5.x, you
88 can check the drivers such as <filename>es1938.c</filename> or
89 <filename>maestro3.c</filename> which have also almost the same
90 code-base in the ALSA 0.5.x tree, so you can compare the differences.
91 </para>
92
93 <para>
94 This document is still a draft version. Any feedbacks and
95 corrections, please!!
96 </para>
97 </preface>
98
99
100<!-- ****************************************************** -->
101<!-- File Tree Structure -->
102<!-- ****************************************************** -->
103 <chapter id="file-tree">
104 <title>File Tree Structure</title>
105
106 <section id="file-tree-general">
107 <title>General</title>
108 <para>
109 The ALSA drivers are provided in the two ways.
110 </para>
111
112 <para>
113 One is the trees provided as a tarball or via cvs from the
114 ALSA's ftp site, and another is the 2.6 (or later) Linux kernel
115 tree. To synchronize both, the ALSA driver tree is split into
116 two different trees: alsa-kernel and alsa-driver. The former
117 contains purely the source codes for the Linux 2.6 (or later)
118 tree. This tree is designed only for compilation on 2.6 or
119 later environment. The latter, alsa-driver, contains many subtle
120 files for compiling the ALSA driver on the outside of Linux
121 kernel like configure script, the wrapper functions for older,
122 2.2 and 2.4 kernels, to adapt the latest kernel API,
123 and additional drivers which are still in development or in
124 tests. The drivers in alsa-driver tree will be moved to
125 alsa-kernel (eventually 2.6 kernel tree) once when they are
126 finished and confirmed to work fine.
127 </para>
128
129 <para>
130 The file tree structure of ALSA driver is depicted below. Both
131 alsa-kernel and alsa-driver have almost the same file
132 structure, except for <quote>core</quote> directory. It's
133 named as <quote>acore</quote> in alsa-driver tree.
134
135 <example>
136 <title>ALSA File Tree Structure</title>
137 <literallayout>
138 sound
139 /core
140 /oss
141 /seq
142 /oss
143 /instr
144 /ioctl32
145 /include
146 /drivers
147 /mpu401
148 /opl3
149 /i2c
150 /l3
151 /synth
152 /emux
153 /pci
154 /(cards)
155 /isa
156 /(cards)
157 /arm
158 /ppc
159 /sparc
160 /usb
161 /pcmcia /(cards)
162 /oss
163 </literallayout>
164 </example>
165 </para>
166 </section>
167
168 <section id="file-tree-core-directory">
169 <title>core directory</title>
170 <para>
171 This directory contains the middle layer, that is, the heart
172 of ALSA drivers. In this directory, the native ALSA modules are
173 stored. The sub-directories contain different modules and are
174 dependent upon the kernel config.
175 </para>
176
177 <section id="file-tree-core-directory-oss">
178 <title>core/oss</title>
179
180 <para>
181 The codes for PCM and mixer OSS emulation modules are stored
182 in this directory. The rawmidi OSS emulation is included in
183 the ALSA rawmidi code since it's quite small. The sequencer
184 code is stored in core/seq/oss directory (see
185 <link linkend="file-tree-core-directory-seq-oss"><citetitle>
186 below</citetitle></link>).
187 </para>
188 </section>
189
190 <section id="file-tree-core-directory-ioctl32">
191 <title>core/ioctl32</title>
192
193 <para>
194 This directory contains the 32bit-ioctl wrappers for 64bit
195 architectures such like x86-64, ppc64 and sparc64. For 32bit
196 and alpha architectures, these are not compiled.
197 </para>
198 </section>
199
200 <section id="file-tree-core-directory-seq">
201 <title>core/seq</title>
202 <para>
203 This and its sub-directories are for the ALSA
204 sequencer. This directory contains the sequencer core and
205 primary sequencer modules such like snd-seq-midi,
206 snd-seq-virmidi, etc. They are compiled only when
207 <constant>CONFIG_SND_SEQUENCER</constant> is set in the kernel
208 config.
209 </para>
210 </section>
211
212 <section id="file-tree-core-directory-seq-oss">
213 <title>core/seq/oss</title>
214 <para>
215 This contains the OSS sequencer emulation codes.
216 </para>
217 </section>
218
219 <section id="file-tree-core-directory-deq-instr">
220 <title>core/seq/instr</title>
221 <para>
222 This directory contains the modules for the sequencer
223 instrument layer.
224 </para>
225 </section>
226 </section>
227
228 <section id="file-tree-include-directory">
229 <title>include directory</title>
230 <para>
231 This is the place for the public header files of ALSA drivers,
232 which are to be exported to the user-space, or included by
233 several files at different directories. Basically, the private
234 header files should not be placed in this directory, but you may
235 still find files there, due to historical reason :)
236 </para>
237 </section>
238
239 <section id="file-tree-drivers-directory">
240 <title>drivers directory</title>
241 <para>
242 This directory contains the codes shared among different drivers
243 on the different architectures. They are hence supposed not to be
244 architecture-specific.
245 For example, the dummy pcm driver and the serial MIDI
246 driver are found in this directory. In the sub-directories,
247 there are the codes for components which are independent from
248 bus and cpu architectures.
249 </para>
250
251 <section id="file-tree-drivers-directory-mpu401">
252 <title>drivers/mpu401</title>
253 <para>
254 The MPU401 and MPU401-UART modules are stored here.
255 </para>
256 </section>
257
258 <section id="file-tree-drivers-directory-opl3">
259 <title>drivers/opl3 and opl4</title>
260 <para>
261 The OPL3 and OPL4 FM-synth stuff is found here.
262 </para>
263 </section>
264 </section>
265
266 <section id="file-tree-i2c-directory">
267 <title>i2c directory</title>
268 <para>
269 This contains the ALSA i2c components.
270 </para>
271
272 <para>
273 Although there is a standard i2c layer on Linux, ALSA has its
274 own i2c codes for some cards, because the soundcard needs only a
275 simple operation and the standard i2c API is too complicated for
276 such a purpose.
277 </para>
278
279 <section id="file-tree-i2c-directory-l3">
280 <title>i2c/l3</title>
281 <para>
282 This is a sub-directory for ARM L3 i2c.
283 </para>
284 </section>
285 </section>
286
287 <section id="file-tree-synth-directory">
288 <title>synth directory</title>
289 <para>
290 This contains the synth middle-level modules.
291 </para>
292
293 <para>
294 So far, there is only Emu8000/Emu10k1 synth driver under
295 synth/emux sub-directory.
296 </para>
297 </section>
298
299 <section id="file-tree-pci-directory">
300 <title>pci directory</title>
301 <para>
302 This and its sub-directories hold the top-level card modules
303 for PCI soundcards and the codes specific to the PCI BUS.
304 </para>
305
306 <para>
307 The drivers compiled from a single file is stored directly on
308 pci directory, while the drivers with several source files are
309 stored on its own sub-directory (e.g. emu10k1, ice1712).
310 </para>
311 </section>
312
313 <section id="file-tree-isa-directory">
314 <title>isa directory</title>
315 <para>
316 This and its sub-directories hold the top-level card modules
317 for ISA soundcards.
318 </para>
319 </section>
320
321 <section id="file-tree-arm-ppc-sparc-directories">
322 <title>arm, ppc, and sparc directories</title>
323 <para>
324 These are for the top-level card modules which are
325 specific to each given architecture.
326 </para>
327 </section>
328
329 <section id="file-tree-usb-directory">
330 <title>usb directory</title>
331 <para>
332 This contains the USB-audio driver. On the latest version, the
333 USB MIDI driver is integrated together with usb-audio driver.
334 </para>
335 </section>
336
337 <section id="file-tree-pcmcia-directory">
338 <title>pcmcia directory</title>
339 <para>
340 The PCMCIA, especially PCCard drivers will go here. CardBus
341 drivers will be on pci directory, because its API is identical
342 with the standard PCI cards.
343 </para>
344 </section>
345
346 <section id="file-tree-oss-directory">
347 <title>oss directory</title>
348 <para>
349 The OSS/Lite source files are stored here on Linux 2.6 (or
350 later) tree. (In the ALSA driver tarball, it's empty, of course :)
351 </para>
352 </section>
353 </chapter>
354
355
356<!-- ****************************************************** -->
357<!-- Basic Flow for PCI Drivers -->
358<!-- ****************************************************** -->
359 <chapter id="basic-flow">
360 <title>Basic Flow for PCI Drivers</title>
361
362 <section id="basic-flow-outline">
363 <title>Outline</title>
364 <para>
365 The minimum flow of PCI soundcard is like the following:
366
367 <itemizedlist>
368 <listitem><para>define the PCI ID table (see the section
369 <link linkend="pci-resource-entries"><citetitle>PCI Entries
370 </citetitle></link>).</para></listitem>
371 <listitem><para>create <function>probe()</function> callback.</para></listitem>
372 <listitem><para>create <function>remove()</function> callback.</para></listitem>
373 <listitem><para>create pci_driver table which contains the three pointers above.</para></listitem>
01d25d46 374 <listitem><para>create <function>init()</function> function just calling <function>pci_register_driver()</function> to register the pci_driver table defined above.</para></listitem>
1da177e4
LT
375 <listitem><para>create <function>exit()</function> function to call <function>pci_unregister_driver()</function> function.</para></listitem>
376 </itemizedlist>
377 </para>
378 </section>
379
380 <section id="basic-flow-example">
381 <title>Full Code Example</title>
382 <para>
383 The code example is shown below. Some parts are kept
384 unimplemented at this moment but will be filled in the
385 succeeding sections. The numbers in comment lines of
386 <function>snd_mychip_probe()</function> function are the
387 markers.
388
389 <example>
390 <title>Basic Flow for PCI Drivers Example</title>
391 <programlisting>
392<![CDATA[
393 #include <sound/driver.h>
394 #include <linux/init.h>
395 #include <linux/pci.h>
396 #include <linux/slab.h>
397 #include <sound/core.h>
398 #include <sound/initval.h>
399
400 /* module parameters (see "Module Parameters") */
401 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
402 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
403 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
404
405 /* definition of the chip-specific record */
446ab5f5
TI
406 struct mychip {
407 struct snd_card *card;
1da177e4
LT
408 // rest of implementation will be in the section
409 // "PCI Resource Managements"
410 };
411
412 /* chip-specific destructor
413 * (see "PCI Resource Managements")
414 */
446ab5f5 415 static int snd_mychip_free(struct mychip *chip)
1da177e4
LT
416 {
417 .... // will be implemented later...
418 }
419
420 /* component-destructor
421 * (see "Management of Cards and Components")
422 */
446ab5f5 423 static int snd_mychip_dev_free(struct snd_device *device)
1da177e4 424 {
446ab5f5 425 return snd_mychip_free(device->device_data);
1da177e4
LT
426 }
427
428 /* chip-specific constructor
429 * (see "Management of Cards and Components")
430 */
446ab5f5 431 static int __devinit snd_mychip_create(struct snd_card *card,
1da177e4 432 struct pci_dev *pci,
446ab5f5 433 struct mychip **rchip)
1da177e4 434 {
446ab5f5 435 struct mychip *chip;
1da177e4 436 int err;
446ab5f5 437 static struct snd_device_ops ops = {
1da177e4
LT
438 .dev_free = snd_mychip_dev_free,
439 };
440
441 *rchip = NULL;
442
443 // check PCI availability here
444 // (see "PCI Resource Managements")
445 ....
446
447 /* allocate a chip-specific data with zero filled */
561b220a 448 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1da177e4
LT
449 if (chip == NULL)
450 return -ENOMEM;
451
452 chip->card = card;
453
454 // rest of initialization here; will be implemented
455 // later, see "PCI Resource Managements"
456 ....
457
458 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL,
459 chip, &ops)) < 0) {
460 snd_mychip_free(chip);
461 return err;
462 }
463
464 snd_card_set_dev(card, &pci->dev);
465
466 *rchip = chip;
467 return 0;
468 }
469
470 /* constructor -- see "Constructor" sub-section */
471 static int __devinit snd_mychip_probe(struct pci_dev *pci,
472 const struct pci_device_id *pci_id)
473 {
474 static int dev;
446ab5f5
TI
475 struct snd_card *card;
476 struct mychip *chip;
1da177e4
LT
477 int err;
478
479 /* (1) */
480 if (dev >= SNDRV_CARDS)
481 return -ENODEV;
482 if (!enable[dev]) {
483 dev++;
484 return -ENOENT;
485 }
486
487 /* (2) */
488 card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0);
489 if (card == NULL)
490 return -ENOMEM;
491
492 /* (3) */
493 if ((err = snd_mychip_create(card, pci, &chip)) < 0) {
494 snd_card_free(card);
495 return err;
496 }
497
498 /* (4) */
499 strcpy(card->driver, "My Chip");
500 strcpy(card->shortname, "My Own Chip 123");
501 sprintf(card->longname, "%s at 0x%lx irq %i",
502 card->shortname, chip->ioport, chip->irq);
503
504 /* (5) */
505 .... // implemented later
506
507 /* (6) */
508 if ((err = snd_card_register(card)) < 0) {
509 snd_card_free(card);
510 return err;
511 }
512
513 /* (7) */
514 pci_set_drvdata(pci, card);
515 dev++;
516 return 0;
517 }
518
519 /* destructor -- see "Destructor" sub-section */
520 static void __devexit snd_mychip_remove(struct pci_dev *pci)
521 {
522 snd_card_free(pci_get_drvdata(pci));
523 pci_set_drvdata(pci, NULL);
524 }
525]]>
526 </programlisting>
527 </example>
528 </para>
529 </section>
530
531 <section id="basic-flow-constructor">
532 <title>Constructor</title>
533 <para>
534 The real constructor of PCI drivers is probe callback. The
535 probe callback and other component-constructors which are called
536 from probe callback should be defined with
537 <parameter>__devinit</parameter> prefix. You
538 cannot use <parameter>__init</parameter> prefix for them,
539 because any PCI device could be a hotplug device.
540 </para>
541
542 <para>
543 In the probe callback, the following scheme is often used.
544 </para>
545
546 <section id="basic-flow-constructor-device-index">
547 <title>1) Check and increment the device index.</title>
548 <para>
549 <informalexample>
550 <programlisting>
551<![CDATA[
552 static int dev;
553 ....
554 if (dev >= SNDRV_CARDS)
555 return -ENODEV;
556 if (!enable[dev]) {
557 dev++;
558 return -ENOENT;
559 }
560]]>
561 </programlisting>
562 </informalexample>
563
564 where enable[dev] is the module option.
565 </para>
566
567 <para>
568 At each time probe callback is called, check the
569 availability of the device. If not available, simply increment
570 the device index and returns. dev will be incremented also
571 later (<link
572 linkend="basic-flow-constructor-set-pci"><citetitle>step
573 7</citetitle></link>).
574 </para>
575 </section>
576
577 <section id="basic-flow-constructor-create-card">
578 <title>2) Create a card instance</title>
579 <para>
580 <informalexample>
581 <programlisting>
582<![CDATA[
446ab5f5 583 struct snd_card *card;
1da177e4
LT
584 ....
585 card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0);
586]]>
587 </programlisting>
588 </informalexample>
589 </para>
590
591 <para>
592 The detail will be explained in the section
593 <link linkend="card-management-card-instance"><citetitle>
594 Management of Cards and Components</citetitle></link>.
595 </para>
596 </section>
597
598 <section id="basic-flow-constructor-create-main">
599 <title>3) Create a main component</title>
600 <para>
601 In this part, the PCI resources are allocated.
602
603 <informalexample>
604 <programlisting>
605<![CDATA[
446ab5f5 606 struct mychip *chip;
1da177e4
LT
607 ....
608 if ((err = snd_mychip_create(card, pci, &chip)) < 0) {
609 snd_card_free(card);
610 return err;
611 }
612]]>
613 </programlisting>
614 </informalexample>
615
616 The detail will be explained in the section <link
617 linkend="pci-resource"><citetitle>PCI Resource
618 Managements</citetitle></link>.
619 </para>
620 </section>
621
622 <section id="basic-flow-constructor-main-component">
623 <title>4) Set the driver ID and name strings.</title>
624 <para>
625 <informalexample>
626 <programlisting>
627<![CDATA[
628 strcpy(card->driver, "My Chip");
629 strcpy(card->shortname, "My Own Chip 123");
630 sprintf(card->longname, "%s at 0x%lx irq %i",
631 card->shortname, chip->ioport, chip->irq);
632]]>
633 </programlisting>
634 </informalexample>
635
636 The driver field holds the minimal ID string of the
637 chip. This is referred by alsa-lib's configurator, so keep it
638 simple but unique.
639 Even the same driver can have different driver IDs to
640 distinguish the functionality of each chip type.
641 </para>
642
643 <para>
644 The shortname field is a string shown as more verbose
645 name. The longname field contains the information which is
646 shown in <filename>/proc/asound/cards</filename>.
647 </para>
648 </section>
649
650 <section id="basic-flow-constructor-create-other">
651 <title>5) Create other components, such as mixer, MIDI, etc.</title>
652 <para>
653 Here you define the basic components such as
654 <link linkend="pcm-interface"><citetitle>PCM</citetitle></link>,
655 mixer (e.g. <link linkend="api-ac97"><citetitle>AC97</citetitle></link>),
656 MIDI (e.g. <link linkend="midi-interface"><citetitle>MPU-401</citetitle></link>),
657 and other interfaces.
658 Also, if you want a <link linkend="proc-interface"><citetitle>proc
659 file</citetitle></link>, define it here, too.
660 </para>
661 </section>
662
663 <section id="basic-flow-constructor-register-card">
664 <title>6) Register the card instance.</title>
665 <para>
666 <informalexample>
667 <programlisting>
668<![CDATA[
669 if ((err = snd_card_register(card)) < 0) {
670 snd_card_free(card);
671 return err;
672 }
673]]>
674 </programlisting>
675 </informalexample>
676 </para>
677
678 <para>
679 Will be explained in the section <link
680 linkend="card-management-registration"><citetitle>Management
681 of Cards and Components</citetitle></link>, too.
682 </para>
683 </section>
684
685 <section id="basic-flow-constructor-set-pci">
686 <title>7) Set the PCI driver data and return zero.</title>
687 <para>
688 <informalexample>
689 <programlisting>
690<![CDATA[
691 pci_set_drvdata(pci, card);
692 dev++;
693 return 0;
694]]>
695 </programlisting>
696 </informalexample>
697
698 In the above, the card record is stored. This pointer is
699 referred in the remove callback and power-management
700 callbacks, too.
701 </para>
702 </section>
703 </section>
704
705 <section id="basic-flow-destructor">
706 <title>Destructor</title>
707 <para>
708 The destructor, remove callback, simply releases the card
709 instance. Then the ALSA middle layer will release all the
710 attached components automatically.
711 </para>
712
713 <para>
714 It would be typically like the following:
715
716 <informalexample>
717 <programlisting>
718<![CDATA[
719 static void __devexit snd_mychip_remove(struct pci_dev *pci)
720 {
721 snd_card_free(pci_get_drvdata(pci));
722 pci_set_drvdata(pci, NULL);
723 }
724]]>
725 </programlisting>
726 </informalexample>
727
728 The above code assumes that the card pointer is set to the PCI
729 driver data.
730 </para>
731 </section>
732
733 <section id="basic-flow-header-files">
734 <title>Header Files</title>
735 <para>
736 For the above example, at least the following include files
737 are necessary.
738
739 <informalexample>
740 <programlisting>
741<![CDATA[
742 #include <sound/driver.h>
743 #include <linux/init.h>
744 #include <linux/pci.h>
745 #include <linux/slab.h>
746 #include <sound/core.h>
747 #include <sound/initval.h>
748]]>
749 </programlisting>
750 </informalexample>
751
752 where the last one is necessary only when module options are
753 defined in the source file. If the codes are split to several
754 files, the file without module options don't need them.
755 </para>
756
757 <para>
758 In addition to them, you'll need
759 <filename>&lt;linux/interrupt.h&gt;</filename> for the interrupt
760 handling, and <filename>&lt;asm/io.h&gt;</filename> for the i/o
761 access. If you use <function>mdelay()</function> or
762 <function>udelay()</function> functions, you'll need to include
763 <filename>&lt;linux/delay.h&gt;</filename>, too.
764 </para>
765
766 <para>
767 The ALSA interfaces like PCM or control API are defined in other
768 header files as <filename>&lt;sound/xxx.h&gt;</filename>.
769 They have to be included after
770 <filename>&lt;sound/core.h&gt;</filename>.
771 </para>
772
773 </section>
774 </chapter>
775
776
777<!-- ****************************************************** -->
778<!-- Management of Cards and Components -->
779<!-- ****************************************************** -->
780 <chapter id="card-management">
781 <title>Management of Cards and Components</title>
782
783 <section id="card-management-card-instance">
784 <title>Card Instance</title>
785 <para>
786 For each soundcard, a <quote>card</quote> record must be allocated.
787 </para>
788
789 <para>
790 A card record is the headquarters of the soundcard. It manages
791 the list of whole devices (components) on the soundcard, such as
792 PCM, mixers, MIDI, synthesizer, and so on. Also, the card
793 record holds the ID and the name strings of the card, manages
794 the root of proc files, and controls the power-management states
795 and hotplug disconnections. The component list on the card
796 record is used to manage the proper releases of resources at
797 destruction.
798 </para>
799
800 <para>
801 As mentioned above, to create a card instance, call
802 <function>snd_card_new()</function>.
803
804 <informalexample>
805 <programlisting>
806<![CDATA[
446ab5f5 807 struct snd_card *card;
1da177e4
LT
808 card = snd_card_new(index, id, module, extra_size);
809]]>
810 </programlisting>
811 </informalexample>
812 </para>
813
814 <para>
815 The function takes four arguments, the card-index number, the
816 id string, the module pointer (usually
817 <constant>THIS_MODULE</constant>),
818 and the size of extra-data space. The last argument is used to
819 allocate card-&gt;private_data for the
820 chip-specific data. Note that this data
821 <emphasis>is</emphasis> allocated by
822 <function>snd_card_new()</function>.
823 </para>
824 </section>
825
826 <section id="card-management-component">
827 <title>Components</title>
828 <para>
829 After the card is created, you can attach the components
830 (devices) to the card instance. On ALSA driver, a component is
446ab5f5 831 represented as a struct <structname>snd_device</structname> object.
1da177e4
LT
832 A component can be a PCM instance, a control interface, a raw
833 MIDI interface, etc. Each of such instances has one component
834 entry.
835 </para>
836
837 <para>
838 A component can be created via
839 <function>snd_device_new()</function> function.
840
841 <informalexample>
842 <programlisting>
843<![CDATA[
844 snd_device_new(card, SNDRV_DEV_XXX, chip, &ops);
845]]>
846 </programlisting>
847 </informalexample>
848 </para>
849
850 <para>
851 This takes the card pointer, the device-level
852 (<constant>SNDRV_DEV_XXX</constant>), the data pointer, and the
853 callback pointers (<parameter>&amp;ops</parameter>). The
854 device-level defines the type of components and the order of
855 registration and de-registration. For most of components, the
856 device-level is already defined. For a user-defined component,
857 you can use <constant>SNDRV_DEV_LOWLEVEL</constant>.
858 </para>
859
860 <para>
861 This function itself doesn't allocate the data space. The data
862 must be allocated manually beforehand, and its pointer is passed
863 as the argument. This pointer is used as the identifier
864 (<parameter>chip</parameter> in the above example) for the
865 instance.
866 </para>
867
868 <para>
869 Each ALSA pre-defined component such as ac97 or pcm calls
870 <function>snd_device_new()</function> inside its
871 constructor. The destructor for each component is defined in the
872 callback pointers. Hence, you don't need to take care of
873 calling a destructor for such a component.
874 </para>
875
876 <para>
877 If you would like to create your own component, you need to
878 set the destructor function to dev_free callback in
879 <parameter>ops</parameter>, so that it can be released
880 automatically via <function>snd_card_free()</function>. The
881 example will be shown later as an implementation of a
882 chip-specific data.
883 </para>
884 </section>
885
886 <section id="card-management-chip-specific">
887 <title>Chip-Specific Data</title>
888 <para>
889 The chip-specific information, e.g. the i/o port address, its
890 resource pointer, or the irq number, is stored in the
891 chip-specific record.
1da177e4
LT
892
893 <informalexample>
894 <programlisting>
895<![CDATA[
446ab5f5 896 struct mychip {
1da177e4
LT
897 ....
898 };
899]]>
900 </programlisting>
901 </informalexample>
902 </para>
903
904 <para>
905 In general, there are two ways to allocate the chip record.
906 </para>
907
908 <section id="card-management-chip-specific-snd-card-new">
909 <title>1. Allocating via <function>snd_card_new()</function>.</title>
910 <para>
911 As mentioned above, you can pass the extra-data-length to the 4th argument of <function>snd_card_new()</function>, i.e.
912
913 <informalexample>
914 <programlisting>
915<![CDATA[
446ab5f5 916 card = snd_card_new(index[dev], id[dev], THIS_MODULE, sizeof(struct mychip));
1da177e4
LT
917]]>
918 </programlisting>
919 </informalexample>
920
446ab5f5 921 whether struct <structname>mychip</structname> is the type of the chip record.
1da177e4
LT
922 </para>
923
924 <para>
925 In return, the allocated record can be accessed as
926
927 <informalexample>
928 <programlisting>
929<![CDATA[
437a5a46 930 struct mychip *chip = card->private_data;
1da177e4
LT
931]]>
932 </programlisting>
933 </informalexample>
934
935 With this method, you don't have to allocate twice.
936 The record is released together with the card instance.
937 </para>
938 </section>
939
940 <section id="card-management-chip-specific-allocate-extra">
941 <title>2. Allocating an extra device.</title>
942
943 <para>
944 After allocating a card instance via
945 <function>snd_card_new()</function> (with
946 <constant>NULL</constant> on the 4th arg), call
561b220a 947 <function>kzalloc()</function>.
1da177e4
LT
948
949 <informalexample>
950 <programlisting>
951<![CDATA[
446ab5f5
TI
952 struct snd_card *card;
953 struct mychip *chip;
1da177e4
LT
954 card = snd_card_new(index[dev], id[dev], THIS_MODULE, NULL);
955 .....
561b220a 956 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1da177e4
LT
957]]>
958 </programlisting>
959 </informalexample>
960 </para>
961
962 <para>
963 The chip record should have the field to hold the card
964 pointer at least,
965
966 <informalexample>
967 <programlisting>
968<![CDATA[
446ab5f5
TI
969 struct mychip {
970 struct snd_card *card;
1da177e4
LT
971 ....
972 };
973]]>
974 </programlisting>
975 </informalexample>
976 </para>
977
978 <para>
979 Then, set the card pointer in the returned chip instance.
980
981 <informalexample>
982 <programlisting>
983<![CDATA[
984 chip->card = card;
985]]>
986 </programlisting>
987 </informalexample>
988 </para>
989
990 <para>
991 Next, initialize the fields, and register this chip
992 record as a low-level device with a specified
993 <parameter>ops</parameter>,
994
995 <informalexample>
996 <programlisting>
997<![CDATA[
446ab5f5 998 static struct snd_device_ops ops = {
1da177e4
LT
999 .dev_free = snd_mychip_dev_free,
1000 };
1001 ....
1002 snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
1003]]>
1004 </programlisting>
1005 </informalexample>
1006
1007 <function>snd_mychip_dev_free()</function> is the
1008 device-destructor function, which will call the real
1009 destructor.
1010 </para>
1011
1012 <para>
1013 <informalexample>
1014 <programlisting>
1015<![CDATA[
446ab5f5 1016 static int snd_mychip_dev_free(struct snd_device *device)
1da177e4 1017 {
446ab5f5 1018 return snd_mychip_free(device->device_data);
1da177e4
LT
1019 }
1020]]>
1021 </programlisting>
1022 </informalexample>
1023
1024 where <function>snd_mychip_free()</function> is the real destructor.
1025 </para>
1026 </section>
1027 </section>
1028
1029 <section id="card-management-registration">
1030 <title>Registration and Release</title>
1031 <para>
1032 After all components are assigned, register the card instance
1033 by calling <function>snd_card_register()</function>. The access
1034 to the device files are enabled at this point. That is, before
1035 <function>snd_card_register()</function> is called, the
1036 components are safely inaccessible from external side. If this
1037 call fails, exit the probe function after releasing the card via
1038 <function>snd_card_free()</function>.
1039 </para>
1040
1041 <para>
1042 For releasing the card instance, you can call simply
1043 <function>snd_card_free()</function>. As already mentioned, all
1044 components are released automatically by this call.
1045 </para>
1046
1047 <para>
1048 As further notes, the destructors (both
1049 <function>snd_mychip_dev_free</function> and
1050 <function>snd_mychip_free</function>) cannot be defined with
1051 <parameter>__devexit</parameter> prefix, because they may be
1052 called from the constructor, too, at the false path.
1053 </para>
1054
1055 <para>
1056 For a device which allows hotplugging, you can use
2b29b13c
TI
1057 <function>snd_card_free_when_closed</function>. This one will
1058 postpone the destruction until all devices are closed.
1da177e4
LT
1059 </para>
1060
1061 </section>
1062
1063 </chapter>
1064
1065
1066<!-- ****************************************************** -->
1067<!-- PCI Resource Managements -->
1068<!-- ****************************************************** -->
1069 <chapter id="pci-resource">
1070 <title>PCI Resource Managements</title>
1071
1072 <section id="pci-resource-example">
1073 <title>Full Code Example</title>
1074 <para>
1075 In this section, we'll finish the chip-specific constructor,
1076 destructor and PCI entries. The example code is shown first,
1077 below.
1078
1079 <example>
1080 <title>PCI Resource Managements Example</title>
1081 <programlisting>
1082<![CDATA[
446ab5f5
TI
1083 struct mychip {
1084 struct snd_card *card;
1da177e4
LT
1085 struct pci_dev *pci;
1086
1087 unsigned long port;
1088 int irq;
1089 };
1090
446ab5f5 1091 static int snd_mychip_free(struct mychip *chip)
1da177e4
LT
1092 {
1093 /* disable hardware here if any */
1094 .... // (not implemented in this document)
1095
1096 /* release the irq */
1097 if (chip->irq >= 0)
437a5a46 1098 free_irq(chip->irq, chip);
1da177e4
LT
1099 /* release the i/o ports & memory */
1100 pci_release_regions(chip->pci);
1101 /* disable the PCI entry */
1102 pci_disable_device(chip->pci);
1103 /* release the data */
1104 kfree(chip);
1105 return 0;
1106 }
1107
1108 /* chip-specific constructor */
446ab5f5 1109 static int __devinit snd_mychip_create(struct snd_card *card,
1da177e4 1110 struct pci_dev *pci,
446ab5f5 1111 struct mychip **rchip)
1da177e4 1112 {
446ab5f5 1113 struct mychip *chip;
1da177e4 1114 int err;
446ab5f5 1115 static struct snd_device_ops ops = {
1da177e4
LT
1116 .dev_free = snd_mychip_dev_free,
1117 };
1118
1119 *rchip = NULL;
1120
1121 /* initialize the PCI entry */
1122 if ((err = pci_enable_device(pci)) < 0)
1123 return err;
1124 /* check PCI availability (28bit DMA) */
56b146d3
TK
1125 if (pci_set_dma_mask(pci, DMA_28BIT_MASK) < 0 ||
1126 pci_set_consistent_dma_mask(pci, DMA_28BIT_MASK) < 0) {
1da177e4
LT
1127 printk(KERN_ERR "error to set 28bit mask DMA\n");
1128 pci_disable_device(pci);
1129 return -ENXIO;
1130 }
1131
561b220a 1132 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1da177e4
LT
1133 if (chip == NULL) {
1134 pci_disable_device(pci);
1135 return -ENOMEM;
1136 }
1137
1138 /* initialize the stuff */
1139 chip->card = card;
1140 chip->pci = pci;
1141 chip->irq = -1;
1142
1143 /* (1) PCI resource allocation */
1144 if ((err = pci_request_regions(pci, "My Chip")) < 0) {
1145 kfree(chip);
1146 pci_disable_device(pci);
1147 return err;
1148 }
1149 chip->port = pci_resource_start(pci, 0);
1150 if (request_irq(pci->irq, snd_mychip_interrupt,
437a5a46 1151 IRQF_SHARED, "My Chip", chip)) {
1da177e4
LT
1152 printk(KERN_ERR "cannot grab irq %d\n", pci->irq);
1153 snd_mychip_free(chip);
1154 return -EBUSY;
1155 }
1156 chip->irq = pci->irq;
1157
1158 /* (2) initialization of the chip hardware */
1159 .... // (not implemented in this document)
1160
1161 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL,
1162 chip, &ops)) < 0) {
1163 snd_mychip_free(chip);
1164 return err;
1165 }
1166
1167 snd_card_set_dev(card, &pci->dev);
1168
1169 *rchip = chip;
1170 return 0;
1171 }
1172
1173 /* PCI IDs */
f40b6890 1174 static struct pci_device_id snd_mychip_ids[] = {
1da177e4
LT
1175 { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR,
1176 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, },
1177 ....
1178 { 0, }
1179 };
1180 MODULE_DEVICE_TABLE(pci, snd_mychip_ids);
1181
1182 /* pci_driver definition */
1183 static struct pci_driver driver = {
1184 .name = "My Own Chip",
1185 .id_table = snd_mychip_ids,
1186 .probe = snd_mychip_probe,
1187 .remove = __devexit_p(snd_mychip_remove),
1188 };
1189
1190 /* initialization of the module */
1191 static int __init alsa_card_mychip_init(void)
1192 {
01d25d46 1193 return pci_register_driver(&driver);
1da177e4
LT
1194 }
1195
1196 /* clean up the module */
1197 static void __exit alsa_card_mychip_exit(void)
1198 {
1199 pci_unregister_driver(&driver);
1200 }
1201
1202 module_init(alsa_card_mychip_init)
1203 module_exit(alsa_card_mychip_exit)
1204
1205 EXPORT_NO_SYMBOLS; /* for old kernels only */
1206]]>
1207 </programlisting>
1208 </example>
1209 </para>
1210 </section>
1211
1212 <section id="pci-resource-some-haftas">
1213 <title>Some Hafta's</title>
1214 <para>
1215 The allocation of PCI resources is done in the
1216 <function>probe()</function> function, and usually an extra
1217 <function>xxx_create()</function> function is written for this
56b146d3 1218 purpose.
1da177e4
LT
1219 </para>
1220
1221 <para>
1222 In the case of PCI devices, you have to call at first
1223 <function>pci_enable_device()</function> function before
1224 allocating resources. Also, you need to set the proper PCI DMA
1225 mask to limit the accessed i/o range. In some cases, you might
1226 need to call <function>pci_set_master()</function> function,
56b146d3 1227 too.
1da177e4
LT
1228 </para>
1229
1230 <para>
1231 Suppose the 28bit mask, and the code to be added would be like:
1232
1233 <informalexample>
1234 <programlisting>
1235<![CDATA[
1236 if ((err = pci_enable_device(pci)) < 0)
1237 return err;
56b146d3
TK
1238 if (pci_set_dma_mask(pci, DMA_28BIT_MASK) < 0 ||
1239 pci_set_consistent_dma_mask(pci, DMA_28BIT_MASK) < 0) {
1da177e4
LT
1240 printk(KERN_ERR "error to set 28bit mask DMA\n");
1241 pci_disable_device(pci);
1242 return -ENXIO;
1243 }
1244
1245]]>
1246 </programlisting>
1247 </informalexample>
1248 </para>
1249 </section>
1250
1251 <section id="pci-resource-resource-allocation">
1252 <title>Resource Allocation</title>
1253 <para>
1254 The allocation of I/O ports and irqs are done via standard kernel
1255 functions. Unlike ALSA ver.0.5.x., there are no helpers for
1256 that. And these resources must be released in the destructor
1257 function (see below). Also, on ALSA 0.9.x, you don't need to
56b146d3 1258 allocate (pseudo-)DMA for PCI like ALSA 0.5.x.
1da177e4
LT
1259 </para>
1260
1261 <para>
1262 Now assume that this PCI device has an I/O port with 8 bytes
446ab5f5 1263 and an interrupt. Then struct <structname>mychip</structname> will have the
56b146d3 1264 following fields:
1da177e4
LT
1265
1266 <informalexample>
1267 <programlisting>
1268<![CDATA[
446ab5f5
TI
1269 struct mychip {
1270 struct snd_card *card;
1da177e4
LT
1271
1272 unsigned long port;
1273 int irq;
1274 };
1275]]>
1276 </programlisting>
1277 </informalexample>
1278 </para>
1279
1280 <para>
1281 For an i/o port (and also a memory region), you need to have
1282 the resource pointer for the standard resource management. For
1283 an irq, you have to keep only the irq number (integer). But you
1284 need to initialize this number as -1 before actual allocation,
1285 since irq 0 is valid. The port address and its resource pointer
1286 can be initialized as null by
561b220a 1287 <function>kzalloc()</function> automatically, so you
1da177e4
LT
1288 don't have to take care of resetting them.
1289 </para>
1290
1291 <para>
1292 The allocation of an i/o port is done like this:
1293
1294 <informalexample>
1295 <programlisting>
1296<![CDATA[
1297 if ((err = pci_request_regions(pci, "My Chip")) < 0) {
1298 kfree(chip);
1299 pci_disable_device(pci);
1300 return err;
1301 }
1302 chip->port = pci_resource_start(pci, 0);
1303]]>
1304 </programlisting>
1305 </informalexample>
1306 </para>
1307
1308 <para>
1309 <!-- obsolete -->
1310 It will reserve the i/o port region of 8 bytes of the given
1311 PCI device. The returned value, chip-&gt;res_port, is allocated
1312 via <function>kmalloc()</function> by
1313 <function>request_region()</function>. The pointer must be
1314 released via <function>kfree()</function>, but there is some
1315 problem regarding this. This issue will be explained more below.
1316 </para>
1317
1318 <para>
1319 The allocation of an interrupt source is done like this:
1320
1321 <informalexample>
1322 <programlisting>
1323<![CDATA[
1324 if (request_irq(pci->irq, snd_mychip_interrupt,
6ce6c7fa 1325 IRQF_DISABLED|IRQF_SHARED, "My Chip", chip)) {
1da177e4
LT
1326 printk(KERN_ERR "cannot grab irq %d\n", pci->irq);
1327 snd_mychip_free(chip);
1328 return -EBUSY;
1329 }
1330 chip->irq = pci->irq;
1331]]>
1332 </programlisting>
1333 </informalexample>
1334
1335 where <function>snd_mychip_interrupt()</function> is the
1336 interrupt handler defined <link
1337 linkend="pcm-interface-interrupt-handler"><citetitle>later</citetitle></link>.
1338 Note that chip-&gt;irq should be defined
1339 only when <function>request_irq()</function> succeeded.
1340 </para>
1341
1342 <para>
1343 On the PCI bus, the interrupts can be shared. Thus,
6ce6c7fa 1344 <constant>IRQF_SHARED</constant> is given as the interrupt flag of
1da177e4
LT
1345 <function>request_irq()</function>.
1346 </para>
1347
1348 <para>
1349 The last argument of <function>request_irq()</function> is the
1350 data pointer passed to the interrupt handler. Usually, the
1351 chip-specific record is used for that, but you can use what you
1352 like, too.
1353 </para>
1354
1355 <para>
1356 I won't define the detail of the interrupt handler at this
1357 point, but at least its appearance can be explained now. The
1358 interrupt handler looks usually like the following:
1359
1360 <informalexample>
1361 <programlisting>
1362<![CDATA[
1363 static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id,
1364 struct pt_regs *regs)
1365 {
446ab5f5 1366 struct mychip *chip = dev_id;
1da177e4
LT
1367 ....
1368 return IRQ_HANDLED;
1369 }
1370]]>
1371 </programlisting>
1372 </informalexample>
1373 </para>
1374
1375 <para>
1376 Now let's write the corresponding destructor for the resources
1377 above. The role of destructor is simple: disable the hardware
1378 (if already activated) and release the resources. So far, we
1379 have no hardware part, so the disabling is not written here.
1380 </para>
1381
1382 <para>
1383 For releasing the resources, <quote>check-and-release</quote>
1384 method is a safer way. For the interrupt, do like this:
1385
1386 <informalexample>
1387 <programlisting>
1388<![CDATA[
1389 if (chip->irq >= 0)
437a5a46 1390 free_irq(chip->irq, chip);
1da177e4
LT
1391]]>
1392 </programlisting>
1393 </informalexample>
1394
1395 Since the irq number can start from 0, you should initialize
1396 chip-&gt;irq with a negative value (e.g. -1), so that you can
1397 check the validity of the irq number as above.
1398 </para>
1399
1400 <para>
1401 When you requested I/O ports or memory regions via
1402 <function>pci_request_region()</function> or
1403 <function>pci_request_regions()</function> like this example,
1404 release the resource(s) using the corresponding function,
1405 <function>pci_release_region()</function> or
1406 <function>pci_release_regions()</function>.
1407
1408 <informalexample>
1409 <programlisting>
1410<![CDATA[
1411 pci_release_regions(chip->pci);
1412]]>
1413 </programlisting>
1414 </informalexample>
1415 </para>
1416
1417 <para>
1418 When you requested manually via <function>request_region()</function>
1419 or <function>request_mem_region</function>, you can release it via
1420 <function>release_resource()</function>. Suppose that you keep
1421 the resource pointer returned from <function>request_region()</function>
1422 in chip-&gt;res_port, the release procedure looks like below:
1423
1424 <informalexample>
1425 <programlisting>
1426<![CDATA[
b1d5776d 1427 release_and_free_resource(chip->res_port);
1da177e4
LT
1428]]>
1429 </programlisting>
1430 </informalexample>
1da177e4
LT
1431 </para>
1432
1433 <para>
1434 Don't forget to call <function>pci_disable_device()</function>
1435 before all finished.
1436 </para>
1437
1438 <para>
1439 And finally, release the chip-specific record.
1440
1441 <informalexample>
1442 <programlisting>
1443<![CDATA[
1444 kfree(chip);
1445]]>
1446 </programlisting>
1447 </informalexample>
1448 </para>
1449
1450 <para>
1451 Again, remember that you cannot
1452 set <parameter>__devexit</parameter> prefix for this destructor.
1453 </para>
1454
1455 <para>
1456 We didn't implement the hardware-disabling part in the above.
1457 If you need to do this, please note that the destructor may be
1458 called even before the initialization of the chip is completed.
1459 It would be better to have a flag to skip the hardware-disabling
1460 if the hardware was not initialized yet.
1461 </para>
1462
1463 <para>
1464 When the chip-data is assigned to the card using
1465 <function>snd_device_new()</function> with
1466 <constant>SNDRV_DEV_LOWLELVEL</constant> , its destructor is
1467 called at the last. That is, it is assured that all other
1468 components like PCMs and controls have been already released.
1469 You don't have to call stopping PCMs, etc. explicitly, but just
1470 stop the hardware in the low-level.
1471 </para>
1472
1473 <para>
1474 The management of a memory-mapped region is almost as same as
1475 the management of an i/o port. You'll need three fields like
1476 the following:
1477
1478 <informalexample>
1479 <programlisting>
1480<![CDATA[
446ab5f5 1481 struct mychip {
1da177e4
LT
1482 ....
1483 unsigned long iobase_phys;
1484 void __iomem *iobase_virt;
1485 };
1486]]>
1487 </programlisting>
1488 </informalexample>
1489
1490 and the allocation would be like below:
1491
1492 <informalexample>
1493 <programlisting>
1494<![CDATA[
1495 if ((err = pci_request_regions(pci, "My Chip")) < 0) {
1496 kfree(chip);
1497 return err;
1498 }
1499 chip->iobase_phys = pci_resource_start(pci, 0);
1500 chip->iobase_virt = ioremap_nocache(chip->iobase_phys,
1501 pci_resource_len(pci, 0));
1502]]>
1503 </programlisting>
1504 </informalexample>
1505
1506 and the corresponding destructor would be:
1507
1508 <informalexample>
1509 <programlisting>
1510<![CDATA[
446ab5f5 1511 static int snd_mychip_free(struct mychip *chip)
1da177e4
LT
1512 {
1513 ....
1514 if (chip->iobase_virt)
1515 iounmap(chip->iobase_virt);
1516 ....
1517 pci_release_regions(chip->pci);
1518 ....
1519 }
1520]]>
1521 </programlisting>
1522 </informalexample>
1523 </para>
1524
1525 </section>
1526
1527 <section id="pci-resource-device-struct">
1528 <title>Registration of Device Struct</title>
1529 <para>
1530 At some point, typically after calling <function>snd_device_new()</function>,
446ab5f5 1531 you need to register the struct <structname>device</structname> of the chip
1da177e4
LT
1532 you're handling for udev and co. ALSA provides a macro for compatibility with
1533 older kernels. Simply call like the following:
1534 <informalexample>
1535 <programlisting>
1536<![CDATA[
1537 snd_card_set_dev(card, &pci->dev);
1538]]>
1539 </programlisting>
1540 </informalexample>
1541 so that it stores the PCI's device pointer to the card. This will be
1542 referred by ALSA core functions later when the devices are registered.
1543 </para>
1544 <para>
1545 In the case of non-PCI, pass the proper device struct pointer of the BUS
1546 instead. (In the case of legacy ISA without PnP, you don't have to do
1547 anything.)
1548 </para>
1549 </section>
1550
1551 <section id="pci-resource-entries">
1552 <title>PCI Entries</title>
1553 <para>
1554 So far, so good. Let's finish the rest of missing PCI
1555 stuffs. At first, we need a
1556 <structname>pci_device_id</structname> table for this
1557 chipset. It's a table of PCI vendor/device ID number, and some
1558 masks.
1559 </para>
1560
1561 <para>
1562 For example,
1563
1564 <informalexample>
1565 <programlisting>
1566<![CDATA[
f40b6890 1567 static struct pci_device_id snd_mychip_ids[] = {
1da177e4
LT
1568 { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR,
1569 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, },
1570 ....
1571 { 0, }
1572 };
1573 MODULE_DEVICE_TABLE(pci, snd_mychip_ids);
1574]]>
1575 </programlisting>
1576 </informalexample>
1577 </para>
1578
1579 <para>
1580 The first and second fields of
1581 <structname>pci_device_id</structname> struct are the vendor and
1582 device IDs. If you have nothing special to filter the matching
1583 devices, you can use the rest of fields like above. The last
1584 field of <structname>pci_device_id</structname> struct is a
1585 private data for this entry. You can specify any value here, for
1586 example, to tell the type of different operations per each
1587 device IDs. Such an example is found in intel8x0 driver.
1588 </para>
1589
1590 <para>
1591 The last entry of this list is the terminator. You must
1592 specify this all-zero entry.
1593 </para>
1594
1595 <para>
1596 Then, prepare the <structname>pci_driver</structname> record:
1597
1598 <informalexample>
1599 <programlisting>
1600<![CDATA[
1601 static struct pci_driver driver = {
1602 .name = "My Own Chip",
1603 .id_table = snd_mychip_ids,
1604 .probe = snd_mychip_probe,
1605 .remove = __devexit_p(snd_mychip_remove),
1606 };
1607]]>
1608 </programlisting>
1609 </informalexample>
1610 </para>
1611
1612 <para>
1613 The <structfield>probe</structfield> and
1614 <structfield>remove</structfield> functions are what we already
1615 defined in
1616 the previous sections. The <structfield>remove</structfield> should
1617 be defined with
1618 <function>__devexit_p()</function> macro, so that it's not
1619 defined for built-in (and non-hot-pluggable) case. The
1620 <structfield>name</structfield>
1621 field is the name string of this device. Note that you must not
1622 use a slash <quote>/</quote> in this string.
1623 </para>
1624
1625 <para>
1626 And at last, the module entries:
1627
1628 <informalexample>
1629 <programlisting>
1630<![CDATA[
1631 static int __init alsa_card_mychip_init(void)
1632 {
01d25d46 1633 return pci_register_driver(&driver);
1da177e4
LT
1634 }
1635
1636 static void __exit alsa_card_mychip_exit(void)
1637 {
1638 pci_unregister_driver(&driver);
1639 }
1640
1641 module_init(alsa_card_mychip_init)
1642 module_exit(alsa_card_mychip_exit)
1643]]>
1644 </programlisting>
1645 </informalexample>
1646 </para>
1647
1648 <para>
1649 Note that these module entries are tagged with
1650 <parameter>__init</parameter> and
1651 <parameter>__exit</parameter> prefixes, not
1652 <parameter>__devinit</parameter> nor
1653 <parameter>__devexit</parameter>.
1654 </para>
1655
1656 <para>
1657 Oh, one thing was forgotten. If you have no exported symbols,
1658 you need to declare it on 2.2 or 2.4 kernels (on 2.6 kernels
1659 it's not necessary, though).
1660
1661 <informalexample>
1662 <programlisting>
1663<![CDATA[
1664 EXPORT_NO_SYMBOLS;
1665]]>
1666 </programlisting>
1667 </informalexample>
1668
1669 That's all!
1670 </para>
1671 </section>
1672 </chapter>
1673
1674
1675<!-- ****************************************************** -->
1676<!-- PCM Interface -->
1677<!-- ****************************************************** -->
1678 <chapter id="pcm-interface">
1679 <title>PCM Interface</title>
1680
1681 <section id="pcm-interface-general">
1682 <title>General</title>
1683 <para>
1684 The PCM middle layer of ALSA is quite powerful and it is only
1685 necessary for each driver to implement the low-level functions
1686 to access its hardware.
1687 </para>
1688
1689 <para>
1690 For accessing to the PCM layer, you need to include
1691 <filename>&lt;sound/pcm.h&gt;</filename> above all. In addition,
1692 <filename>&lt;sound/pcm_params.h&gt;</filename> might be needed
1693 if you access to some functions related with hw_param.
1694 </para>
1695
1696 <para>
1697 Each card device can have up to four pcm instances. A pcm
1698 instance corresponds to a pcm device file. The limitation of
1699 number of instances comes only from the available bit size of
1700 the linux's device number. Once when 64bit device number is
1701 used, we'll have more available pcm instances.
1702 </para>
1703
1704 <para>
1705 A pcm instance consists of pcm playback and capture streams,
1706 and each pcm stream consists of one or more pcm substreams. Some
1707 soundcard supports the multiple-playback function. For example,
1708 emu10k1 has a PCM playback of 32 stereo substreams. In this case, at
1709 each open, a free substream is (usually) automatically chosen
1710 and opened. Meanwhile, when only one substream exists and it was
1711 already opened, the succeeding open will result in the blocking
1712 or the error with <constant>EAGAIN</constant> according to the
1713 file open mode. But you don't have to know the detail in your
1714 driver. The PCM middle layer will take all such jobs.
1715 </para>
1716 </section>
1717
1718 <section id="pcm-interface-example">
1719 <title>Full Code Example</title>
1720 <para>
1721 The example code below does not include any hardware access
1722 routines but shows only the skeleton, how to build up the PCM
1723 interfaces.
1724
1725 <example>
1726 <title>PCM Example Code</title>
1727 <programlisting>
1728<![CDATA[
1729 #include <sound/pcm.h>
1730 ....
1731
1732 /* hardware definition */
446ab5f5 1733 static struct snd_pcm_hardware snd_mychip_playback_hw = {
1da177e4
LT
1734 .info = (SNDRV_PCM_INFO_MMAP |
1735 SNDRV_PCM_INFO_INTERLEAVED |
1736 SNDRV_PCM_INFO_BLOCK_TRANSFER |
1737 SNDRV_PCM_INFO_MMAP_VALID),
1738 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1739 .rates = SNDRV_PCM_RATE_8000_48000,
1740 .rate_min = 8000,
1741 .rate_max = 48000,
1742 .channels_min = 2,
1743 .channels_max = 2,
1744 .buffer_bytes_max = 32768,
1745 .period_bytes_min = 4096,
1746 .period_bytes_max = 32768,
1747 .periods_min = 1,
1748 .periods_max = 1024,
1749 };
1750
1751 /* hardware definition */
446ab5f5 1752 static struct snd_pcm_hardware snd_mychip_capture_hw = {
1da177e4
LT
1753 .info = (SNDRV_PCM_INFO_MMAP |
1754 SNDRV_PCM_INFO_INTERLEAVED |
1755 SNDRV_PCM_INFO_BLOCK_TRANSFER |
1756 SNDRV_PCM_INFO_MMAP_VALID),
1757 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1758 .rates = SNDRV_PCM_RATE_8000_48000,
1759 .rate_min = 8000,
1760 .rate_max = 48000,
1761 .channels_min = 2,
1762 .channels_max = 2,
1763 .buffer_bytes_max = 32768,
1764 .period_bytes_min = 4096,
1765 .period_bytes_max = 32768,
1766 .periods_min = 1,
1767 .periods_max = 1024,
1768 };
1769
1770 /* open callback */
446ab5f5 1771 static int snd_mychip_playback_open(struct snd_pcm_substream *substream)
1da177e4 1772 {
446ab5f5
TI
1773 struct mychip *chip = snd_pcm_substream_chip(substream);
1774 struct snd_pcm_runtime *runtime = substream->runtime;
1da177e4
LT
1775
1776 runtime->hw = snd_mychip_playback_hw;
1777 // more hardware-initialization will be done here
1778 return 0;
1779 }
1780
1781 /* close callback */
446ab5f5 1782 static int snd_mychip_playback_close(struct snd_pcm_substream *substream)
1da177e4 1783 {
446ab5f5 1784 struct mychip *chip = snd_pcm_substream_chip(substream);
1da177e4
LT
1785 // the hardware-specific codes will be here
1786 return 0;
1787
1788 }
1789
1790 /* open callback */
446ab5f5 1791 static int snd_mychip_capture_open(struct snd_pcm_substream *substream)
1da177e4 1792 {
446ab5f5
TI
1793 struct mychip *chip = snd_pcm_substream_chip(substream);
1794 struct snd_pcm_runtime *runtime = substream->runtime;
1da177e4
LT
1795
1796 runtime->hw = snd_mychip_capture_hw;
1797 // more hardware-initialization will be done here
1798 return 0;
1799 }
1800
1801 /* close callback */
446ab5f5 1802 static int snd_mychip_capture_close(struct snd_pcm_substream *substream)
1da177e4 1803 {
446ab5f5 1804 struct mychip *chip = snd_pcm_substream_chip(substream);
1da177e4
LT
1805 // the hardware-specific codes will be here
1806 return 0;
1807
1808 }
1809
1810 /* hw_params callback */
446ab5f5
TI
1811 static int snd_mychip_pcm_hw_params(struct snd_pcm_substream *substream,
1812 struct snd_pcm_hw_params *hw_params)
1da177e4
LT
1813 {
1814 return snd_pcm_lib_malloc_pages(substream,
1815 params_buffer_bytes(hw_params));
1816 }
1817
1818 /* hw_free callback */
446ab5f5 1819 static int snd_mychip_pcm_hw_free(struct snd_pcm_substream *substream)
1da177e4
LT
1820 {
1821 return snd_pcm_lib_free_pages(substream);
1822 }
1823
1824 /* prepare callback */
446ab5f5 1825 static int snd_mychip_pcm_prepare(struct snd_pcm_substream *substream)
1da177e4 1826 {
446ab5f5
TI
1827 struct mychip *chip = snd_pcm_substream_chip(substream);
1828 struct snd_pcm_runtime *runtime = substream->runtime;
1da177e4
LT
1829
1830 /* set up the hardware with the current configuration
1831 * for example...
1832 */
1833 mychip_set_sample_format(chip, runtime->format);
1834 mychip_set_sample_rate(chip, runtime->rate);
1835 mychip_set_channels(chip, runtime->channels);
0b7bed4e 1836 mychip_set_dma_setup(chip, runtime->dma_addr,
1da177e4
LT
1837 chip->buffer_size,
1838 chip->period_size);
1839 return 0;
1840 }
1841
1842 /* trigger callback */
446ab5f5 1843 static int snd_mychip_pcm_trigger(struct snd_pcm_substream *substream,
1da177e4
LT
1844 int cmd)
1845 {
1846 switch (cmd) {
1847 case SNDRV_PCM_TRIGGER_START:
1848 // do something to start the PCM engine
1849 break;
1850 case SNDRV_PCM_TRIGGER_STOP:
1851 // do something to stop the PCM engine
1852 break;
1853 default:
1854 return -EINVAL;
1855 }
1856 }
1857
1858 /* pointer callback */
1859 static snd_pcm_uframes_t
446ab5f5 1860 snd_mychip_pcm_pointer(struct snd_pcm_substream *substream)
1da177e4 1861 {
446ab5f5 1862 struct mychip *chip = snd_pcm_substream_chip(substream);
1da177e4
LT
1863 unsigned int current_ptr;
1864
1865 /* get the current hardware pointer */
1866 current_ptr = mychip_get_hw_pointer(chip);
1867 return current_ptr;
1868 }
1869
1870 /* operators */
446ab5f5 1871 static struct snd_pcm_ops snd_mychip_playback_ops = {
1da177e4
LT
1872 .open = snd_mychip_playback_open,
1873 .close = snd_mychip_playback_close,
1874 .ioctl = snd_pcm_lib_ioctl,
1875 .hw_params = snd_mychip_pcm_hw_params,
1876 .hw_free = snd_mychip_pcm_hw_free,
1877 .prepare = snd_mychip_pcm_prepare,
1878 .trigger = snd_mychip_pcm_trigger,
1879 .pointer = snd_mychip_pcm_pointer,
1880 };
1881
1882 /* operators */
446ab5f5 1883 static struct snd_pcm_ops snd_mychip_capture_ops = {
1da177e4
LT
1884 .open = snd_mychip_capture_open,
1885 .close = snd_mychip_capture_close,
1886 .ioctl = snd_pcm_lib_ioctl,
1887 .hw_params = snd_mychip_pcm_hw_params,
1888 .hw_free = snd_mychip_pcm_hw_free,
1889 .prepare = snd_mychip_pcm_prepare,
1890 .trigger = snd_mychip_pcm_trigger,
1891 .pointer = snd_mychip_pcm_pointer,
1892 };
1893
1894 /*
1895 * definitions of capture are omitted here...
1896 */
1897
1898 /* create a pcm device */
446ab5f5 1899 static int __devinit snd_mychip_new_pcm(struct mychip *chip)
1da177e4 1900 {
446ab5f5 1901 struct snd_pcm *pcm;
1da177e4
LT
1902 int err;
1903
1904 if ((err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1,
1905 &pcm)) < 0)
1906 return err;
1907 pcm->private_data = chip;
1908 strcpy(pcm->name, "My Chip");
1909 chip->pcm = pcm;
1910 /* set operators */
1911 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1912 &snd_mychip_playback_ops);
1913 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
1914 &snd_mychip_capture_ops);
1915 /* pre-allocation of buffers */
1916 /* NOTE: this may fail */
1917 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1918 snd_dma_pci_data(chip->pci),
1919 64*1024, 64*1024);
1920 return 0;
1921 }
1922]]>
1923 </programlisting>
1924 </example>
1925 </para>
1926 </section>
1927
1928 <section id="pcm-interface-constructor">
1929 <title>Constructor</title>
1930 <para>
1931 A pcm instance is allocated by <function>snd_pcm_new()</function>
1932 function. It would be better to create a constructor for pcm,
1933 namely,
1934
1935 <informalexample>
1936 <programlisting>
1937<![CDATA[
446ab5f5 1938 static int __devinit snd_mychip_new_pcm(struct mychip *chip)
1da177e4 1939 {
446ab5f5 1940 struct snd_pcm *pcm;
1da177e4
LT
1941 int err;
1942
1943 if ((err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1,
1944 &pcm)) < 0)
1945 return err;
1946 pcm->private_data = chip;
1947 strcpy(pcm->name, "My Chip");
1948 chip->pcm = pcm;
1949 ....
1950 return 0;
1951 }
1952]]>
1953 </programlisting>
1954 </informalexample>
1955 </para>
1956
1957 <para>
1958 The <function>snd_pcm_new()</function> function takes the four
1959 arguments. The first argument is the card pointer to which this
1960 pcm is assigned, and the second is the ID string.
1961 </para>
1962
1963 <para>
1964 The third argument (<parameter>index</parameter>, 0 in the
1965 above) is the index of this new pcm. It begins from zero. When
1966 you will create more than one pcm instances, specify the
1967 different numbers in this argument. For example,
1968 <parameter>index</parameter> = 1 for the second PCM device.
1969 </para>
1970
1971 <para>
1972 The fourth and fifth arguments are the number of substreams
1973 for playback and capture, respectively. Here both 1 are given in
1974 the above example. When no playback or no capture is available,
1975 pass 0 to the corresponding argument.
1976 </para>
1977
1978 <para>
1979 If a chip supports multiple playbacks or captures, you can
1980 specify more numbers, but they must be handled properly in
1981 open/close, etc. callbacks. When you need to know which
1982 substream you are referring to, then it can be obtained from
446ab5f5 1983 struct <structname>snd_pcm_substream</structname> data passed to each callback
1da177e4
LT
1984 as follows:
1985
1986 <informalexample>
1987 <programlisting>
1988<![CDATA[
446ab5f5 1989 struct snd_pcm_substream *substream;
1da177e4
LT
1990 int index = substream->number;
1991]]>
1992 </programlisting>
1993 </informalexample>
1994 </para>
1995
1996 <para>
1997 After the pcm is created, you need to set operators for each
1998 pcm stream.
1999
2000 <informalexample>
2001 <programlisting>
2002<![CDATA[
2003 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
2004 &snd_mychip_playback_ops);
2005 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
2006 &snd_mychip_capture_ops);
2007]]>
2008 </programlisting>
2009 </informalexample>
2010 </para>
2011
2012 <para>
2013 The operators are defined typically like this:
2014
2015 <informalexample>
2016 <programlisting>
2017<![CDATA[
446ab5f5 2018 static struct snd_pcm_ops snd_mychip_playback_ops = {
1da177e4
LT
2019 .open = snd_mychip_pcm_open,
2020 .close = snd_mychip_pcm_close,
2021 .ioctl = snd_pcm_lib_ioctl,
2022 .hw_params = snd_mychip_pcm_hw_params,
2023 .hw_free = snd_mychip_pcm_hw_free,
2024 .prepare = snd_mychip_pcm_prepare,
2025 .trigger = snd_mychip_pcm_trigger,
2026 .pointer = snd_mychip_pcm_pointer,
2027 };
2028]]>
2029 </programlisting>
2030 </informalexample>
2031
2032 Each of callbacks is explained in the subsection
2033 <link linkend="pcm-interface-operators"><citetitle>
2034 Operators</citetitle></link>.
2035 </para>
2036
2037 <para>
2038 After setting the operators, most likely you'd like to
2039 pre-allocate the buffer. For the pre-allocation, simply call
2040 the following:
2041
2042 <informalexample>
2043 <programlisting>
2044<![CDATA[
2045 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
2046 snd_dma_pci_data(chip->pci),
2047 64*1024, 64*1024);
2048]]>
2049 </programlisting>
2050 </informalexample>
2051
2052 It will allocate up to 64kB buffer as default. The details of
2053 buffer management will be described in the later section <link
2054 linkend="buffer-and-memory"><citetitle>Buffer and Memory
2055 Management</citetitle></link>.
2056 </para>
2057
2058 <para>
2059 Additionally, you can set some extra information for this pcm
2060 in pcm-&gt;info_flags.
2061 The available values are defined as
2062 <constant>SNDRV_PCM_INFO_XXX</constant> in
2063 <filename>&lt;sound/asound.h&gt;</filename>, which is used for
2064 the hardware definition (described later). When your soundchip
2065 supports only half-duplex, specify like this:
2066
2067 <informalexample>
2068 <programlisting>
2069<![CDATA[
2070 pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX;
2071]]>
2072 </programlisting>
2073 </informalexample>
2074 </para>
2075 </section>
2076
2077 <section id="pcm-interface-destructor">
2078 <title>... And the Destructor?</title>
2079 <para>
2080 The destructor for a pcm instance is not always
2081 necessary. Since the pcm device will be released by the middle
2082 layer code automatically, you don't have to call destructor
2083 explicitly.
2084 </para>
2085
2086 <para>
2087 The destructor would be necessary when you created some
2088 special records internally and need to release them. In such a
2089 case, set the destructor function to
2090 pcm-&gt;private_free:
2091
2092 <example>
2093 <title>PCM Instance with a Destructor</title>
2094 <programlisting>
2095<![CDATA[
446ab5f5 2096 static void mychip_pcm_free(struct snd_pcm *pcm)
1da177e4 2097 {
446ab5f5 2098 struct mychip *chip = snd_pcm_chip(pcm);
1da177e4
LT
2099 /* free your own data */
2100 kfree(chip->my_private_pcm_data);
2101 // do what you like else
2102 ....
2103 }
2104
446ab5f5 2105 static int __devinit snd_mychip_new_pcm(struct mychip *chip)
1da177e4 2106 {
446ab5f5 2107 struct snd_pcm *pcm;
1da177e4
LT
2108 ....
2109 /* allocate your own data */
2110 chip->my_private_pcm_data = kmalloc(...);
2111 /* set the destructor */
2112 pcm->private_data = chip;
2113 pcm->private_free = mychip_pcm_free;
2114 ....
2115 }
2116]]>
2117 </programlisting>
2118 </example>
2119 </para>
2120 </section>
2121
2122 <section id="pcm-interface-runtime">
2123 <title>Runtime Pointer - The Chest of PCM Information</title>
2124 <para>
2125 When the PCM substream is opened, a PCM runtime instance is
2126 allocated and assigned to the substream. This pointer is
2127 accessible via <constant>substream-&gt;runtime</constant>.
2128 This runtime pointer holds the various information; it holds
2129 the copy of hw_params and sw_params configurations, the buffer
2130 pointers, mmap records, spinlocks, etc. Almost everyhing you
2131 need for controlling the PCM can be found there.
2132 </para>
2133
2134 <para>
2135 The definition of runtime instance is found in
2136 <filename>&lt;sound/pcm.h&gt;</filename>. Here is the
2137 copy from the file.
2138 <informalexample>
2139 <programlisting>
2140<![CDATA[
2141struct _snd_pcm_runtime {
2142 /* -- Status -- */
446ab5f5 2143 struct snd_pcm_substream *trigger_master;
1da177e4
LT
2144 snd_timestamp_t trigger_tstamp; /* trigger timestamp */
2145 int overrange;
2146 snd_pcm_uframes_t avail_max;
2147 snd_pcm_uframes_t hw_ptr_base; /* Position at buffer restart */
2148 snd_pcm_uframes_t hw_ptr_interrupt; /* Position at interrupt time*/
2149
2150 /* -- HW params -- */
2151 snd_pcm_access_t access; /* access mode */
2152 snd_pcm_format_t format; /* SNDRV_PCM_FORMAT_* */
2153 snd_pcm_subformat_t subformat; /* subformat */
2154 unsigned int rate; /* rate in Hz */
2155 unsigned int channels; /* channels */
2156 snd_pcm_uframes_t period_size; /* period size */
2157 unsigned int periods; /* periods */
2158 snd_pcm_uframes_t buffer_size; /* buffer size */
2159 unsigned int tick_time; /* tick time */
2160 snd_pcm_uframes_t min_align; /* Min alignment for the format */
2161 size_t byte_align;
2162 unsigned int frame_bits;
2163 unsigned int sample_bits;
2164 unsigned int info;
2165 unsigned int rate_num;
2166 unsigned int rate_den;
2167
2168 /* -- SW params -- */
07799e75 2169 struct timespec tstamp_mode; /* mmap timestamp is updated */
1da177e4
LT
2170 unsigned int period_step;
2171 unsigned int sleep_min; /* min ticks to sleep */
2172 snd_pcm_uframes_t xfer_align; /* xfer size need to be a multiple */
2173 snd_pcm_uframes_t start_threshold;
2174 snd_pcm_uframes_t stop_threshold;
2175 snd_pcm_uframes_t silence_threshold; /* Silence filling happens when
2176 noise is nearest than this */
2177 snd_pcm_uframes_t silence_size; /* Silence filling size */
2178 snd_pcm_uframes_t boundary; /* pointers wrap point */
2179
2180 snd_pcm_uframes_t silenced_start;
2181 snd_pcm_uframes_t silenced_size;
2182
2183 snd_pcm_sync_id_t sync; /* hardware synchronization ID */
2184
2185 /* -- mmap -- */
446ab5f5
TI
2186 volatile struct snd_pcm_mmap_status *status;
2187 volatile struct snd_pcm_mmap_control *control;
1da177e4
LT
2188 atomic_t mmap_count;
2189
2190 /* -- locking / scheduling -- */
2191 spinlock_t lock;
2192 wait_queue_head_t sleep;
2193 struct timer_list tick_timer;
2194 struct fasync_struct *fasync;
2195
2196 /* -- private section -- */
2197 void *private_data;
446ab5f5 2198 void (*private_free)(struct snd_pcm_runtime *runtime);
1da177e4
LT
2199
2200 /* -- hardware description -- */
446ab5f5
TI
2201 struct snd_pcm_hardware hw;
2202 struct snd_pcm_hw_constraints hw_constraints;
1da177e4
LT
2203
2204 /* -- interrupt callbacks -- */
446ab5f5
TI
2205 void (*transfer_ack_begin)(struct snd_pcm_substream *substream);
2206 void (*transfer_ack_end)(struct snd_pcm_substream *substream);
1da177e4
LT
2207
2208 /* -- timer -- */
2209 unsigned int timer_resolution; /* timer resolution */
2210
2211 /* -- DMA -- */
2212 unsigned char *dma_area; /* DMA area */
2213 dma_addr_t dma_addr; /* physical bus address (not accessible from main CPU) */
2214 size_t dma_bytes; /* size of DMA area */
2215
2216 struct snd_dma_buffer *dma_buffer_p; /* allocated buffer */
2217
2218#if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
2219 /* -- OSS things -- */
446ab5f5 2220 struct snd_pcm_oss_runtime oss;
1da177e4
LT
2221#endif
2222};
2223]]>
2224 </programlisting>
2225 </informalexample>
2226 </para>
2227
2228 <para>
2229 For the operators (callbacks) of each sound driver, most of
2230 these records are supposed to be read-only. Only the PCM
2231 middle-layer changes / updates these info. The exceptions are
2232 the hardware description (hw), interrupt callbacks
2233 (transfer_ack_xxx), DMA buffer information, and the private
2234 data. Besides, if you use the standard buffer allocation
2235 method via <function>snd_pcm_lib_malloc_pages()</function>,
2236 you don't need to set the DMA buffer information by yourself.
2237 </para>
2238
2239 <para>
2240 In the sections below, important records are explained.
2241 </para>
2242
2243 <section id="pcm-interface-runtime-hw">
2244 <title>Hardware Description</title>
2245 <para>
446ab5f5 2246 The hardware descriptor (struct <structname>snd_pcm_hardware</structname>)
1da177e4
LT
2247 contains the definitions of the fundamental hardware
2248 configuration. Above all, you'll need to define this in
2249 <link linkend="pcm-interface-operators-open-callback"><citetitle>
2250 the open callback</citetitle></link>.
2251 Note that the runtime instance holds the copy of the
2252 descriptor, not the pointer to the existing descriptor. That
2253 is, in the open callback, you can modify the copied descriptor
2254 (<constant>runtime-&gt;hw</constant>) as you need. For example, if the maximum
2255 number of channels is 1 only on some chip models, you can
2256 still use the same hardware descriptor and change the
2257 channels_max later:
2258 <informalexample>
2259 <programlisting>
2260<![CDATA[
446ab5f5 2261 struct snd_pcm_runtime *runtime = substream->runtime;
1da177e4
LT
2262 ...
2263 runtime->hw = snd_mychip_playback_hw; /* common definition */
2264 if (chip->model == VERY_OLD_ONE)
2265 runtime->hw.channels_max = 1;
2266]]>
2267 </programlisting>
2268 </informalexample>
2269 </para>
2270
2271 <para>
2272 Typically, you'll have a hardware descriptor like below:
2273 <informalexample>
2274 <programlisting>
2275<![CDATA[
446ab5f5 2276 static struct snd_pcm_hardware snd_mychip_playback_hw = {
1da177e4
LT
2277 .info = (SNDRV_PCM_INFO_MMAP |
2278 SNDRV_PCM_INFO_INTERLEAVED |
2279 SNDRV_PCM_INFO_BLOCK_TRANSFER |
2280 SNDRV_PCM_INFO_MMAP_VALID),
2281 .formats = SNDRV_PCM_FMTBIT_S16_LE,
2282 .rates = SNDRV_PCM_RATE_8000_48000,
2283 .rate_min = 8000,
2284 .rate_max = 48000,
2285 .channels_min = 2,
2286 .channels_max = 2,
2287 .buffer_bytes_max = 32768,
2288 .period_bytes_min = 4096,
2289 .period_bytes_max = 32768,
2290 .periods_min = 1,
2291 .periods_max = 1024,
2292 };
2293]]>
2294 </programlisting>
2295 </informalexample>
2296 </para>
2297
2298 <para>
2299 <itemizedlist>
2300 <listitem><para>
2301 The <structfield>info</structfield> field contains the type and
2302 capabilities of this pcm. The bit flags are defined in
2303 <filename>&lt;sound/asound.h&gt;</filename> as
2304 <constant>SNDRV_PCM_INFO_XXX</constant>. Here, at least, you
2305 have to specify whether the mmap is supported and which
2306 interleaved format is supported.
2307 When the mmap is supported, add
2308 <constant>SNDRV_PCM_INFO_MMAP</constant> flag here. When the
2309 hardware supports the interleaved or the non-interleaved
2310 format, <constant>SNDRV_PCM_INFO_INTERLEAVED</constant> or
2311 <constant>SNDRV_PCM_INFO_NONINTERLEAVED</constant> flag must
2312 be set, respectively. If both are supported, you can set both,
2313 too.
2314 </para>
2315
2316 <para>
2317 In the above example, <constant>MMAP_VALID</constant> and
2318 <constant>BLOCK_TRANSFER</constant> are specified for OSS mmap
2319 mode. Usually both are set. Of course,
2320 <constant>MMAP_VALID</constant> is set only if the mmap is
2321 really supported.
2322 </para>
2323
2324 <para>
2325 The other possible flags are
2326 <constant>SNDRV_PCM_INFO_PAUSE</constant> and
2327 <constant>SNDRV_PCM_INFO_RESUME</constant>. The
2328 <constant>PAUSE</constant> bit means that the pcm supports the
2329 <quote>pause</quote> operation, while the
2330 <constant>RESUME</constant> bit means that the pcm supports
5fe76e4d
TI
2331 the full <quote>suspend/resume</quote> operation.
2332 If <constant>PAUSE</constant> flag is set,
2333 the <structfield>trigger</structfield> callback below
2334 must handle the corresponding (pause push/release) commands.
2335 The suspend/resume trigger commands can be defined even without
2336 <constant>RESUME</constant> flag. See <link
2337 linkend="power-management"><citetitle>
2338 Power Management</citetitle></link> section for details.
1da177e4
LT
2339 </para>
2340
2341 <para>
2342 When the PCM substreams can be synchronized (typically,
2343 synchorinized start/stop of a playback and a capture streams),
2344 you can give <constant>SNDRV_PCM_INFO_SYNC_START</constant>,
2345 too. In this case, you'll need to check the linked-list of
2346 PCM substreams in the trigger callback. This will be
2347 described in the later section.
2348 </para>
2349 </listitem>
2350
2351 <listitem>
2352 <para>
2353 <structfield>formats</structfield> field contains the bit-flags
2354 of supported formats (<constant>SNDRV_PCM_FMTBIT_XXX</constant>).
2355 If the hardware supports more than one format, give all or'ed
2356 bits. In the example above, the signed 16bit little-endian
2357 format is specified.
2358 </para>
2359 </listitem>
2360
2361 <listitem>
2362 <para>
2363 <structfield>rates</structfield> field contains the bit-flags of
2364 supported rates (<constant>SNDRV_PCM_RATE_XXX</constant>).
2365 When the chip supports continuous rates, pass
2366 <constant>CONTINUOUS</constant> bit additionally.
2367 The pre-defined rate bits are provided only for typical
2368 rates. If your chip supports unconventional rates, you need to add
2369 <constant>KNOT</constant> bit and set up the hardware
2370 constraint manually (explained later).
2371 </para>
2372 </listitem>
2373
2374 <listitem>
2375 <para>
2376 <structfield>rate_min</structfield> and
2377 <structfield>rate_max</structfield> define the minimal and
2378 maximal sample rate. This should correspond somehow to
2379 <structfield>rates</structfield> bits.
2380 </para>
2381 </listitem>
2382
2383 <listitem>
2384 <para>
2385 <structfield>channel_min</structfield> and
2386 <structfield>channel_max</structfield>
2387 define, as you might already expected, the minimal and maximal
2388 number of channels.
2389 </para>
2390 </listitem>
2391
2392 <listitem>
2393 <para>
2394 <structfield>buffer_bytes_max</structfield> defines the
2395 maximal buffer size in bytes. There is no
2396 <structfield>buffer_bytes_min</structfield> field, since
2397 it can be calculated from the minimal period size and the
2398 minimal number of periods.
2399 Meanwhile, <structfield>period_bytes_min</structfield> and
2400 define the minimal and maximal size of the period in bytes.
2401 <structfield>periods_max</structfield> and
2402 <structfield>periods_min</structfield> define the maximal and
2403 minimal number of periods in the buffer.
2404 </para>
2405
2406 <para>
2407 The <quote>period</quote> is a term, that corresponds to
2408 fragment in the OSS world. The period defines the size at
2409 which the PCM interrupt is generated. This size strongly
2410 depends on the hardware.
2411 Generally, the smaller period size will give you more
2412 interrupts, that is, more controls.
2413 In the case of capture, this size defines the input latency.
2414 On the other hand, the whole buffer size defines the
2415 output latency for the playback direction.
2416 </para>
2417 </listitem>
2418
2419 <listitem>
2420 <para>
2421 There is also a field <structfield>fifo_size</structfield>.
2422 This specifies the size of the hardware FIFO, but it's not
2423 used currently in the driver nor in the alsa-lib. So, you
2424 can ignore this field.
2425 </para>
2426 </listitem>
2427 </itemizedlist>
2428 </para>
2429 </section>
2430
2431 <section id="pcm-interface-runtime-config">
2432 <title>PCM Configurations</title>
2433 <para>
2434 Ok, let's go back again to the PCM runtime records.
2435 The most frequently referred records in the runtime instance are
2436 the PCM configurations.
2437 The PCM configurations are stored on runtime instance
2438 after the application sends <type>hw_params</type> data via
2439 alsa-lib. There are many fields copied from hw_params and
2440 sw_params structs. For example,
2441 <structfield>format</structfield> holds the format type
2442 chosen by the application. This field contains the enum value
2443 <constant>SNDRV_PCM_FORMAT_XXX</constant>.
2444 </para>
2445
2446 <para>
2447 One thing to be noted is that the configured buffer and period
2448 sizes are stored in <quote>frames</quote> in the runtime
2449 In the ALSA world, 1 frame = channels * samples-size.
2450 For conversion between frames and bytes, you can use the
2451 helper functions, <function>frames_to_bytes()</function> and
2452 <function>bytes_to_frames()</function>.
2453 <informalexample>
2454 <programlisting>
2455<![CDATA[
2456 period_bytes = frames_to_bytes(runtime, runtime->period_size);
2457]]>
2458 </programlisting>
2459 </informalexample>
2460 </para>
2461
2462 <para>
2463 Also, many software parameters (sw_params) are
2464 stored in frames, too. Please check the type of the field.
2465 <type>snd_pcm_uframes_t</type> is for the frames as unsigned
2466 integer while <type>snd_pcm_sframes_t</type> is for the frames
2467 as signed integer.
2468 </para>
2469 </section>
2470
2471 <section id="pcm-interface-runtime-dma">
2472 <title>DMA Buffer Information</title>
2473 <para>
2474 The DMA buffer is defined by the following four fields,
2475 <structfield>dma_area</structfield>,
2476 <structfield>dma_addr</structfield>,
2477 <structfield>dma_bytes</structfield> and
2478 <structfield>dma_private</structfield>.
2479 The <structfield>dma_area</structfield> holds the buffer
2480 pointer (the logical address). You can call
2481 <function>memcpy</function> from/to
2482 this pointer. Meanwhile, <structfield>dma_addr</structfield>
2483 holds the physical address of the buffer. This field is
2484 specified only when the buffer is a linear buffer.
2485 <structfield>dma_bytes</structfield> holds the size of buffer
2486 in bytes. <structfield>dma_private</structfield> is used for
2487 the ALSA DMA allocator.
2488 </para>
2489
2490 <para>
2491 If you use a standard ALSA function,
2492 <function>snd_pcm_lib_malloc_pages()</function>, for
2493 allocating the buffer, these fields are set by the ALSA middle
2494 layer, and you should <emphasis>not</emphasis> change them by
2495 yourself. You can read them but not write them.
2496 On the other hand, if you want to allocate the buffer by
2497 yourself, you'll need to manage it in hw_params callback.
2498 At least, <structfield>dma_bytes</structfield> is mandatory.
2499 <structfield>dma_area</structfield> is necessary when the
2500 buffer is mmapped. If your driver doesn't support mmap, this
2501 field is not necessary. <structfield>dma_addr</structfield>
2502 is also not mandatory. You can use
2503 <structfield>dma_private</structfield> as you like, too.
2504 </para>
2505 </section>
2506
2507 <section id="pcm-interface-runtime-status">
2508 <title>Running Status</title>
2509 <para>
2510 The running status can be referred via <constant>runtime-&gt;status</constant>.
446ab5f5 2511 This is the pointer to struct <structname>snd_pcm_mmap_status</structname>
1da177e4
LT
2512 record. For example, you can get the current DMA hardware
2513 pointer via <constant>runtime-&gt;status-&gt;hw_ptr</constant>.
2514 </para>
2515
2516 <para>
2517 The DMA application pointer can be referred via
2518 <constant>runtime-&gt;control</constant>, which points
446ab5f5 2519 struct <structname>snd_pcm_mmap_control</structname> record.
1da177e4
LT
2520 However, accessing directly to this value is not recommended.
2521 </para>
2522 </section>
2523
2524 <section id="pcm-interface-runtime-private">
2525 <title>Private Data</title>
2526 <para>
2527 You can allocate a record for the substream and store it in
2528 <constant>runtime-&gt;private_data</constant>. Usually, this
2529 done in
2530 <link linkend="pcm-interface-operators-open-callback"><citetitle>
2531 the open callback</citetitle></link>.
2532 Don't mix this with <constant>pcm-&gt;private_data</constant>.
2533 The <constant>pcm-&gt;private_data</constant> usually points the
2534 chip instance assigned statically at the creation of PCM, while the
2535 <constant>runtime-&gt;private_data</constant> points a dynamic
2536 data created at the PCM open callback.
2537
2538 <informalexample>
2539 <programlisting>
2540<![CDATA[
446ab5f5 2541 static int snd_xxx_open(struct snd_pcm_substream *substream)
1da177e4 2542 {
446ab5f5 2543 struct my_pcm_data *data;
1da177e4
LT
2544 ....
2545 data = kmalloc(sizeof(*data), GFP_KERNEL);
2546 substream->runtime->private_data = data;
2547 ....
2548 }
2549]]>
2550 </programlisting>
2551 </informalexample>
2552 </para>
2553
2554 <para>
2555 The allocated object must be released in
2556 <link linkend="pcm-interface-operators-open-callback"><citetitle>
2557 the close callback</citetitle></link>.
2558 </para>
2559 </section>
2560
2561 <section id="pcm-interface-runtime-intr">
2562 <title>Interrupt Callbacks</title>
2563 <para>
2564 The field <structfield>transfer_ack_begin</structfield> and
2565 <structfield>transfer_ack_end</structfield> are called at
2566 the beginning and the end of
2567 <function>snd_pcm_period_elapsed()</function>, respectively.
2568 </para>
2569 </section>
2570
2571 </section>
2572
2573 <section id="pcm-interface-operators">
2574 <title>Operators</title>
2575 <para>
2576 OK, now let me explain the detail of each pcm callback
2577 (<parameter>ops</parameter>). In general, every callback must
2578 return 0 if successful, or a negative number with the error
2579 number such as <constant>-EINVAL</constant> at any
2580 error.
2581 </para>
2582
2583 <para>
2584 The callback function takes at least the argument with
446ab5f5 2585 <structname>snd_pcm_substream</structname> pointer. For retrieving the
1da177e4
LT
2586 chip record from the given substream instance, you can use the
2587 following macro.
2588
2589 <informalexample>
2590 <programlisting>
2591<![CDATA[
2592 int xxx() {
446ab5f5 2593 struct mychip *chip = snd_pcm_substream_chip(substream);
1da177e4
LT
2594 ....
2595 }
2596]]>
2597 </programlisting>
2598 </informalexample>
2599
2600 The macro reads <constant>substream-&gt;private_data</constant>,
2601 which is a copy of <constant>pcm-&gt;private_data</constant>.
2602 You can override the former if you need to assign different data
2603 records per PCM substream. For example, cmi8330 driver assigns
2604 different private_data for playback and capture directions,
2605 because it uses two different codecs (SB- and AD-compatible) for
2606 different directions.
2607 </para>
2608
2609 <section id="pcm-interface-operators-open-callback">
2610 <title>open callback</title>
2611 <para>
2612 <informalexample>
2613 <programlisting>
2614<![CDATA[
446ab5f5 2615 static int snd_xxx_open(struct snd_pcm_substream *substream);
1da177e4
LT
2616]]>
2617 </programlisting>
2618 </informalexample>
2619
2620 This is called when a pcm substream is opened.
2621 </para>
2622
2623 <para>
2624 At least, here you have to initialize the runtime-&gt;hw
2625 record. Typically, this is done by like this:
2626
2627 <informalexample>
2628 <programlisting>
2629<![CDATA[
446ab5f5 2630 static int snd_xxx_open(struct snd_pcm_substream *substream)
1da177e4 2631 {
446ab5f5
TI
2632 struct mychip *chip = snd_pcm_substream_chip(substream);
2633 struct snd_pcm_runtime *runtime = substream->runtime;
1da177e4
LT
2634
2635 runtime->hw = snd_mychip_playback_hw;
2636 return 0;
2637 }
2638]]>
2639 </programlisting>
2640 </informalexample>
2641
2642 where <parameter>snd_mychip_playback_hw</parameter> is the
2643 pre-defined hardware description.
2644 </para>
2645
2646 <para>
2647 You can allocate a private data in this callback, as described
2648 in <link linkend="pcm-interface-runtime-private"><citetitle>
2649 Private Data</citetitle></link> section.
2650 </para>
2651
2652 <para>
2653 If the hardware configuration needs more constraints, set the
2654 hardware constraints here, too.
2655 See <link linkend="pcm-interface-constraints"><citetitle>
2656 Constraints</citetitle></link> for more details.
2657 </para>
2658 </section>
2659
2660 <section id="pcm-interface-operators-close-callback">
2661 <title>close callback</title>
2662 <para>
2663 <informalexample>
2664 <programlisting>
2665<![CDATA[
446ab5f5 2666 static int snd_xxx_close(struct snd_pcm_substream *substream);
1da177e4
LT
2667]]>
2668 </programlisting>
2669 </informalexample>
2670
2671 Obviously, this is called when a pcm substream is closed.
2672 </para>
2673
2674 <para>
2675 Any private instance for a pcm substream allocated in the
2676 open callback will be released here.
2677
2678 <informalexample>
2679 <programlisting>
2680<![CDATA[
446ab5f5 2681 static int snd_xxx_close(struct snd_pcm_substream *substream)
1da177e4
LT
2682 {
2683 ....
2684 kfree(substream->runtime->private_data);
2685 ....
2686 }
2687]]>
2688 </programlisting>
2689 </informalexample>
2690 </para>
2691 </section>
2692
2693 <section id="pcm-interface-operators-ioctl-callback">
2694 <title>ioctl callback</title>
2695 <para>
2696 This is used for any special action to pcm ioctls. But
2697 usually you can pass a generic ioctl callback,
2698 <function>snd_pcm_lib_ioctl</function>.
2699 </para>
2700 </section>
2701
2702 <section id="pcm-interface-operators-hw-params-callback">
2703 <title>hw_params callback</title>
2704 <para>
2705 <informalexample>
2706 <programlisting>
2707<![CDATA[
446ab5f5
TI
2708 static int snd_xxx_hw_params(struct snd_pcm_substream *substream,
2709 struct snd_pcm_hw_params *hw_params);
1da177e4
LT
2710]]>
2711 </programlisting>
2712 </informalexample>
2713
2714 This and <structfield>hw_free</structfield> callbacks exist
2715 only on ALSA 0.9.x.
2716 </para>
2717
2718 <para>
2719 This is called when the hardware parameter
2720 (<structfield>hw_params</structfield>) is set
2721 up by the application,
2722 that is, once when the buffer size, the period size, the
2723 format, etc. are defined for the pcm substream.
2724 </para>
2725
2726 <para>
2727 Many hardware set-up should be done in this callback,
2728 including the allocation of buffers.
2729 </para>
2730
2731 <para>
2732 Parameters to be initialized are retrieved by
2733 <function>params_xxx()</function> macros. For allocating a
2734 buffer, you can call a helper function,
2735
2736 <informalexample>
2737 <programlisting>
2738<![CDATA[
2739 snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
2740]]>
2741 </programlisting>
2742 </informalexample>
2743
2744 <function>snd_pcm_lib_malloc_pages()</function> is available
2745 only when the DMA buffers have been pre-allocated.
2746 See the section <link
2747 linkend="buffer-and-memory-buffer-types"><citetitle>
2748 Buffer Types</citetitle></link> for more details.
2749 </para>
2750
2751 <para>
2752 Note that this and <structfield>prepare</structfield> callbacks
2753 may be called multiple times per initialization.
2754 For example, the OSS emulation may
2755 call these callbacks at each change via its ioctl.
2756 </para>
2757
2758 <para>
2759 Thus, you need to take care not to allocate the same buffers
2760 many times, which will lead to memory leak! Calling the
2761 helper function above many times is OK. It will release the
2762 previous buffer automatically when it was already allocated.
2763 </para>
2764
2765 <para>
2766 Another note is that this callback is non-atomic
2767 (schedulable). This is important, because the
2768 <structfield>trigger</structfield> callback
2769 is atomic (non-schedulable). That is, mutex or any
2770 schedule-related functions are not available in
2771 <structfield>trigger</structfield> callback.
2772 Please see the subsection
2773 <link linkend="pcm-interface-atomicity"><citetitle>
2774 Atomicity</citetitle></link> for details.
2775 </para>
2776 </section>
2777
2778 <section id="pcm-interface-operators-hw-free-callback">
2779 <title>hw_free callback</title>
2780 <para>
2781 <informalexample>
2782 <programlisting>
2783<![CDATA[
446ab5f5 2784 static int snd_xxx_hw_free(struct snd_pcm_substream *substream);
1da177e4
LT
2785]]>
2786 </programlisting>
2787 </informalexample>
2788 </para>
2789
2790 <para>
2791 This is called to release the resources allocated via
2792 <structfield>hw_params</structfield>. For example, releasing the
2793 buffer via
2794 <function>snd_pcm_lib_malloc_pages()</function> is done by
2795 calling the following:
2796
2797 <informalexample>
2798 <programlisting>
2799<![CDATA[
2800 snd_pcm_lib_free_pages(substream);
2801]]>
2802 </programlisting>
2803 </informalexample>
2804 </para>
2805
2806 <para>
2807 This function is always called before the close callback is called.
2808 Also, the callback may be called multiple times, too.
2809 Keep track whether the resource was already released.
2810 </para>
2811 </section>
2812
2813 <section id="pcm-interface-operators-prepare-callback">
2814 <title>prepare callback</title>
2815 <para>
2816 <informalexample>
2817 <programlisting>
2818<![CDATA[
446ab5f5 2819 static int snd_xxx_prepare(struct snd_pcm_substream *substream);
1da177e4
LT
2820]]>
2821 </programlisting>
2822 </informalexample>
2823 </para>
2824
2825 <para>
2826 This callback is called when the pcm is
2827 <quote>prepared</quote>. You can set the format type, sample
2828 rate, etc. here. The difference from
2829 <structfield>hw_params</structfield> is that the
2830 <structfield>prepare</structfield> callback will be called at each
2831 time
2832 <function>snd_pcm_prepare()</function> is called, i.e. when
2833 recovered after underruns, etc.
2834 </para>
2835
2836 <para>
2837 Note that this callback became non-atomic since the recent version.
0b28002f 2838 You can use schedule-related functions safely in this callback now.
1da177e4
LT
2839 </para>
2840
2841 <para>
2842 In this and the following callbacks, you can refer to the
2843 values via the runtime record,
2844 substream-&gt;runtime.
2845 For example, to get the current
2846 rate, format or channels, access to
2847 runtime-&gt;rate,
2848 runtime-&gt;format or
2849 runtime-&gt;channels, respectively.
2850 The physical address of the allocated buffer is set to
2851 runtime-&gt;dma_area. The buffer and period sizes are
2852 in runtime-&gt;buffer_size and runtime-&gt;period_size,
2853 respectively.
2854 </para>
2855
2856 <para>
2857 Be careful that this callback will be called many times at
2858 each set up, too.
2859 </para>
2860 </section>
2861
2862 <section id="pcm-interface-operators-trigger-callback">
2863 <title>trigger callback</title>
2864 <para>
2865 <informalexample>
2866 <programlisting>
2867<![CDATA[
446ab5f5 2868 static int snd_xxx_trigger(struct snd_pcm_substream *substream, int cmd);
1da177e4
LT
2869]]>
2870 </programlisting>
2871 </informalexample>
2872
2873 This is called when the pcm is started, stopped or paused.
2874 </para>
2875
2876 <para>
2877 Which action is specified in the second argument,
2878 <constant>SNDRV_PCM_TRIGGER_XXX</constant> in
2879 <filename>&lt;sound/pcm.h&gt;</filename>. At least,
2880 <constant>START</constant> and <constant>STOP</constant>
2881 commands must be defined in this callback.
2882
2883 <informalexample>
2884 <programlisting>
2885<![CDATA[
2886 switch (cmd) {
2887 case SNDRV_PCM_TRIGGER_START:
2888 // do something to start the PCM engine
2889 break;
2890 case SNDRV_PCM_TRIGGER_STOP:
2891 // do something to stop the PCM engine
2892 break;
2893 default:
2894 return -EINVAL;
2895 }
2896]]>
2897 </programlisting>
2898 </informalexample>
2899 </para>
2900
2901 <para>
2902 When the pcm supports the pause operation (given in info
2903 field of the hardware table), <constant>PAUSE_PUSE</constant>
2904 and <constant>PAUSE_RELEASE</constant> commands must be
2905 handled here, too. The former is the command to pause the pcm,
2906 and the latter to restart the pcm again.
2907 </para>
2908
2909 <para>
5fe76e4d
TI
2910 When the pcm supports the suspend/resume operation,
2911 regardless of full or partial suspend/resume support,
1da177e4
LT
2912 <constant>SUSPEND</constant> and <constant>RESUME</constant>
2913 commands must be handled, too.
2914 These commands are issued when the power-management status is
2915 changed. Obviously, the <constant>SUSPEND</constant> and
2916 <constant>RESUME</constant>
2917 do suspend and resume of the pcm substream, and usually, they
2918 are identical with <constant>STOP</constant> and
2919 <constant>START</constant> commands, respectively.
5fe76e4d
TI
2920 See <link linkend="power-management"><citetitle>
2921 Power Management</citetitle></link> section for details.
1da177e4
LT
2922 </para>
2923
2924 <para>
2925 As mentioned, this callback is atomic. You cannot call
2926 the function going to sleep.
2927 The trigger callback should be as minimal as possible,
2928 just really triggering the DMA. The other stuff should be
2929 initialized hw_params and prepare callbacks properly
2930 beforehand.
2931 </para>
2932 </section>
2933
2934 <section id="pcm-interface-operators-pointer-callback">
2935 <title>pointer callback</title>
2936 <para>
2937 <informalexample>
2938 <programlisting>
2939<![CDATA[
446ab5f5 2940 static snd_pcm_uframes_t snd_xxx_pointer(struct snd_pcm_substream *substream)
1da177e4
LT
2941]]>
2942 </programlisting>
2943 </informalexample>
2944
2945 This callback is called when the PCM middle layer inquires
2946 the current hardware position on the buffer. The position must
2947 be returned in frames (which was in bytes on ALSA 0.5.x),
2948 ranged from 0 to buffer_size - 1.
2949 </para>
2950
2951 <para>
2952 This is called usually from the buffer-update routine in the
2953 pcm middle layer, which is invoked when
2954 <function>snd_pcm_period_elapsed()</function> is called in the
2955 interrupt routine. Then the pcm middle layer updates the
2956 position and calculates the available space, and wakes up the
2957 sleeping poll threads, etc.
2958 </para>
2959
2960 <para>
2961 This callback is also atomic.
2962 </para>
2963 </section>
2964
2965 <section id="pcm-interface-operators-copy-silence">
2966 <title>copy and silence callbacks</title>
2967 <para>
2968 These callbacks are not mandatory, and can be omitted in
2969 most cases. These callbacks are used when the hardware buffer
2970 cannot be on the normal memory space. Some chips have their
2971 own buffer on the hardware which is not mappable. In such a
2972 case, you have to transfer the data manually from the memory
2973 buffer to the hardware buffer. Or, if the buffer is
2974 non-contiguous on both physical and virtual memory spaces,
2975 these callbacks must be defined, too.
2976 </para>
2977
2978 <para>
2979 If these two callbacks are defined, copy and set-silence
2980 operations are done by them. The detailed will be described in
2981 the later section <link
2982 linkend="buffer-and-memory"><citetitle>Buffer and Memory
2983 Management</citetitle></link>.
2984 </para>
2985 </section>
2986
2987 <section id="pcm-interface-operators-ack">
2988 <title>ack callback</title>
2989 <para>
2990 This callback is also not mandatory. This callback is called
2991 when the appl_ptr is updated in read or write operations.
2992 Some drivers like emu10k1-fx and cs46xx need to track the
2993 current appl_ptr for the internal buffer, and this callback
2994 is useful only for such a purpose.
2995 </para>
2996 <para>
2997 This callback is atomic.
2998 </para>
2999 </section>
3000
3001 <section id="pcm-interface-operators-page-callback">
3002 <title>page callback</title>
3003
3004 <para>
3005 This callback is also not mandatory. This callback is used
3006 mainly for the non-contiguous buffer. The mmap calls this
3007 callback to get the page address. Some examples will be
3008 explained in the later section <link
3009 linkend="buffer-and-memory"><citetitle>Buffer and Memory
3010 Management</citetitle></link>, too.
3011 </para>
3012 </section>
3013 </section>
3014
3015 <section id="pcm-interface-interrupt-handler">
3016 <title>Interrupt Handler</title>
3017 <para>
3018 The rest of pcm stuff is the PCM interrupt handler. The
3019 role of PCM interrupt handler in the sound driver is to update
3020 the buffer position and to tell the PCM middle layer when the
3021 buffer position goes across the prescribed period size. To
3022 inform this, call <function>snd_pcm_period_elapsed()</function>
3023 function.
3024 </para>
3025
3026 <para>
3027 There are several types of sound chips to generate the interrupts.
3028 </para>
3029
3030 <section id="pcm-interface-interrupt-handler-boundary">
3031 <title>Interrupts at the period (fragment) boundary</title>
3032 <para>
3033 This is the most frequently found type: the hardware
3034 generates an interrupt at each period boundary.
3035 In this case, you can call
3036 <function>snd_pcm_period_elapsed()</function> at each
3037 interrupt.
3038 </para>
3039
3040 <para>
3041 <function>snd_pcm_period_elapsed()</function> takes the
3042 substream pointer as its argument. Thus, you need to keep the
3043 substream pointer accessible from the chip instance. For
3044 example, define substream field in the chip record to hold the
3045 current running substream pointer, and set the pointer value
3046 at open callback (and reset at close callback).
3047 </para>
3048
3049 <para>
0418726b 3050 If you acquire a spinlock in the interrupt handler, and the
1da177e4
LT
3051 lock is used in other pcm callbacks, too, then you have to
3052 release the lock before calling
3053 <function>snd_pcm_period_elapsed()</function>, because
3054 <function>snd_pcm_period_elapsed()</function> calls other pcm
3055 callbacks inside.
3056 </para>
3057
3058 <para>
3059 A typical coding would be like:
3060
3061 <example>
3062 <title>Interrupt Handler Case #1</title>
3063 <programlisting>
3064<![CDATA[
3065 static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id,
3066 struct pt_regs *regs)
3067 {
446ab5f5 3068 struct mychip *chip = dev_id;
1da177e4
LT
3069 spin_lock(&chip->lock);
3070 ....
3071 if (pcm_irq_invoked(chip)) {
3072 /* call updater, unlock before it */
3073 spin_unlock(&chip->lock);
3074 snd_pcm_period_elapsed(chip->substream);
3075 spin_lock(&chip->lock);
3076 // acknowledge the interrupt if necessary
3077 }
3078 ....
3079 spin_unlock(&chip->lock);
3080 return IRQ_HANDLED;
3081 }
3082]]>
3083 </programlisting>
3084 </example>
3085 </para>
3086 </section>
3087
3088 <section id="pcm-interface-interrupt-handler-timer">
3089 <title>High-frequent timer interrupts</title>
3090 <para>
3091 This is the case when the hardware doesn't generate interrupts
3092 at the period boundary but do timer-interrupts at the fixed
3093 timer rate (e.g. es1968 or ymfpci drivers).
3094 In this case, you need to check the current hardware
3095 position and accumulates the processed sample length at each
3096 interrupt. When the accumulated size overcomes the period
3097 size, call
3098 <function>snd_pcm_period_elapsed()</function> and reset the
3099 accumulator.
3100 </para>
3101
3102 <para>
3103 A typical coding would be like the following.
3104
3105 <example>
3106 <title>Interrupt Handler Case #2</title>
3107 <programlisting>
3108<![CDATA[
3109 static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id,
3110 struct pt_regs *regs)
3111 {
446ab5f5 3112 struct mychip *chip = dev_id;
1da177e4
LT
3113 spin_lock(&chip->lock);
3114 ....
3115 if (pcm_irq_invoked(chip)) {
3116 unsigned int last_ptr, size;
3117 /* get the current hardware pointer (in frames) */
3118 last_ptr = get_hw_ptr(chip);
3119 /* calculate the processed frames since the
3120 * last update
3121 */
3122 if (last_ptr < chip->last_ptr)
3123 size = runtime->buffer_size + last_ptr
3124 - chip->last_ptr;
3125 else
3126 size = last_ptr - chip->last_ptr;
3127 /* remember the last updated point */
3128 chip->last_ptr = last_ptr;
3129 /* accumulate the size */
3130 chip->size += size;
3131 /* over the period boundary? */
3132 if (chip->size >= runtime->period_size) {
3133 /* reset the accumulator */
3134 chip->size %= runtime->period_size;
3135 /* call updater */
3136 spin_unlock(&chip->lock);
3137 snd_pcm_period_elapsed(substream);
3138 spin_lock(&chip->lock);
3139 }
3140 // acknowledge the interrupt if necessary
3141 }
3142 ....
3143 spin_unlock(&chip->lock);
3144 return IRQ_HANDLED;
3145 }
3146]]>
3147 </programlisting>
3148 </example>
3149 </para>
3150 </section>
3151
3152 <section id="pcm-interface-interrupt-handler-both">
3153 <title>On calling <function>snd_pcm_period_elapsed()</function></title>
3154 <para>
3155 In both cases, even if more than one period are elapsed, you
3156 don't have to call
3157 <function>snd_pcm_period_elapsed()</function> many times. Call
3158 only once. And the pcm layer will check the current hardware
3159 pointer and update to the latest status.
3160 </para>
3161 </section>
3162 </section>
3163
3164 <section id="pcm-interface-atomicity">
3165 <title>Atomicity</title>
3166 <para>
3167 One of the most important (and thus difficult to debug) problem
3168 on the kernel programming is the race condition.
3169 On linux kernel, usually it's solved via spin-locks or
3170 semaphores. In general, if the race condition may
3171 happen in the interrupt handler, it's handled as atomic, and you
3172 have to use spinlock for protecting the critical session. If it
3173 never happens in the interrupt and it may take relatively long
3174 time, you should use semaphore.
3175 </para>
3176
3177 <para>
3178 As already seen, some pcm callbacks are atomic and some are
3179 not. For example, <parameter>hw_params</parameter> callback is
3180 non-atomic, while <parameter>trigger</parameter> callback is
3181 atomic. This means, the latter is called already in a spinlock
3182 held by the PCM middle layer. Please take this atomicity into
3183 account when you use a spinlock or a semaphore in the callbacks.
3184 </para>
3185
3186 <para>
3187 In the atomic callbacks, you cannot use functions which may call
3188 <function>schedule</function> or go to
3189 <function>sleep</function>. The semaphore and mutex do sleep,
3190 and hence they cannot be used inside the atomic callbacks
3191 (e.g. <parameter>trigger</parameter> callback).
3192 For taking a certain delay in such a callback, please use
3193 <function>udelay()</function> or <function>mdelay()</function>.
3194 </para>
3195
3196 <para>
3197 All three atomic callbacks (trigger, pointer, and ack) are
3198 called with local interrupts disabled.
3199 </para>
3200
3201 </section>
3202 <section id="pcm-interface-constraints">
3203 <title>Constraints</title>
3204 <para>
3205 If your chip supports unconventional sample rates, or only the
3206 limited samples, you need to set a constraint for the
3207 condition.
3208 </para>
3209
3210 <para>
3211 For example, in order to restrict the sample rates in the some
3212 supported values, use
3213 <function>snd_pcm_hw_constraint_list()</function>.
3214 You need to call this function in the open callback.
3215
3216 <example>
3217 <title>Example of Hardware Constraints</title>
3218 <programlisting>
3219<![CDATA[
3220 static unsigned int rates[] =
3221 {4000, 10000, 22050, 44100};
446ab5f5 3222 static struct snd_pcm_hw_constraint_list constraints_rates = {
1da177e4
LT
3223 .count = ARRAY_SIZE(rates),
3224 .list = rates,
3225 .mask = 0,
3226 };
3227
446ab5f5 3228 static int snd_mychip_pcm_open(struct snd_pcm_substream *substream)
1da177e4
LT
3229 {
3230 int err;
3231 ....
3232 err = snd_pcm_hw_constraint_list(substream->runtime, 0,
3233 SNDRV_PCM_HW_PARAM_RATE,
3234 &constraints_rates);
3235 if (err < 0)
3236 return err;
3237 ....
3238 }
3239]]>
3240 </programlisting>
3241 </example>
3242 </para>
3243
3244 <para>
3245 There are many different constraints.
3246 Look in <filename>sound/pcm.h</filename> for a complete list.
3247 You can even define your own constraint rules.
3248 For example, let's suppose my_chip can manage a substream of 1 channel
3249 if and only if the format is S16_LE, otherwise it supports any format
446ab5f5 3250 specified in the <structname>snd_pcm_hardware</structname> stucture (or in any
1da177e4
LT
3251 other constraint_list). You can build a rule like this:
3252
3253 <example>
3254 <title>Example of Hardware Constraints for Channels</title>
3255 <programlisting>
3256<![CDATA[
446ab5f5
TI
3257 static int hw_rule_format_by_channels(struct snd_pcm_hw_params *params,
3258 struct snd_pcm_hw_rule *rule)
1da177e4 3259 {
446ab5f5
TI
3260 struct snd_interval *c = hw_param_interval(params,
3261 SNDRV_PCM_HW_PARAM_CHANNELS);
3262 struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
3263 struct snd_mask fmt;
1da177e4
LT
3264
3265 snd_mask_any(&fmt); /* Init the struct */
3266 if (c->min < 2) {
3267 fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_LE;
3268 return snd_mask_refine(f, &fmt);
3269 }
3270 return 0;
3271 }
3272]]>
3273 </programlisting>
3274 </example>
3275 </para>
3276
3277 <para>
3278 Then you need to call this function to add your rule:
3279
3280 <informalexample>
3281 <programlisting>
3282<![CDATA[
3283 snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
3284 hw_rule_channels_by_format, 0, SNDRV_PCM_HW_PARAM_FORMAT,
3285 -1);
3286]]>
3287 </programlisting>
3288 </informalexample>
3289 </para>
3290
3291 <para>
3292 The rule function is called when an application sets the number of
3293 channels. But an application can set the format before the number of
3294 channels. Thus you also need to define the inverse rule:
3295
3296 <example>
3297 <title>Example of Hardware Constraints for Channels</title>
3298 <programlisting>
3299<![CDATA[
446ab5f5
TI
3300 static int hw_rule_channels_by_format(struct snd_pcm_hw_params *params,
3301 struct snd_pcm_hw_rule *rule)
1da177e4 3302 {
446ab5f5
TI
3303 struct snd_interval *c = hw_param_interval(params,
3304 SNDRV_PCM_HW_PARAM_CHANNELS);
3305 struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
3306 struct snd_interval ch;
1da177e4
LT
3307
3308 snd_interval_any(&ch);
3309 if (f->bits[0] == SNDRV_PCM_FMTBIT_S16_LE) {
3310 ch.min = ch.max = 1;
3311 ch.integer = 1;
3312 return snd_interval_refine(c, &ch);
3313 }
3314 return 0;
3315 }
3316]]>
3317 </programlisting>
3318 </example>
3319 </para>
3320
3321 <para>
3322 ...and in the open callback:
3323 <informalexample>
3324 <programlisting>
3325<![CDATA[
3326 snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
3327 hw_rule_format_by_channels, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
3328 -1);
3329]]>
3330 </programlisting>
3331 </informalexample>
3332 </para>
3333
3334 <para>
3335 I won't explain more details here, rather I
3336 would like to say, <quote>Luke, use the source.</quote>
3337 </para>
3338 </section>
3339
3340 </chapter>
3341
3342
3343<!-- ****************************************************** -->
3344<!-- Control Interface -->
3345<!-- ****************************************************** -->
3346 <chapter id="control-interface">
3347 <title>Control Interface</title>
3348
3349 <section id="control-interface-general">
3350 <title>General</title>
3351 <para>
3352 The control interface is used widely for many switches,
3353 sliders, etc. which are accessed from the user-space. Its most
3354 important use is the mixer interface. In other words, on ALSA
3355 0.9.x, all the mixer stuff is implemented on the control kernel
3356 API (while there was an independent mixer kernel API on 0.5.x).
3357 </para>
3358
3359 <para>
3360 ALSA has a well-defined AC97 control module. If your chip
3361 supports only the AC97 and nothing else, you can skip this
3362 section.
3363 </para>
3364
3365 <para>
3366 The control API is defined in
3367 <filename>&lt;sound/control.h&gt;</filename>.
3368 Include this file if you add your own controls.
3369 </para>
3370 </section>
3371
3372 <section id="control-interface-definition">
3373 <title>Definition of Controls</title>
3374 <para>
3375 For creating a new control, you need to define the three
3376 callbacks: <structfield>info</structfield>,
3377 <structfield>get</structfield> and
3378 <structfield>put</structfield>. Then, define a
446ab5f5 3379 struct <structname>snd_kcontrol_new</structname> record, such as:
1da177e4
LT
3380
3381 <example>
3382 <title>Definition of a Control</title>
3383 <programlisting>
3384<![CDATA[
446ab5f5 3385 static struct snd_kcontrol_new my_control __devinitdata = {
1da177e4
LT
3386 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3387 .name = "PCM Playback Switch",
3388 .index = 0,
3389 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
0b7bed4e 3390 .private_value = 0xffff,
1da177e4
LT
3391 .info = my_control_info,
3392 .get = my_control_get,
3393 .put = my_control_put
3394 };
3395]]>
3396 </programlisting>
3397 </example>
3398 </para>
3399
3400 <para>
3401 Most likely the control is created via
3402 <function>snd_ctl_new1()</function>, and in such a case, you can
3403 add <parameter>__devinitdata</parameter> prefix to the
3404 definition like above.
3405 </para>
3406
3407 <para>
3408 The <structfield>iface</structfield> field specifies the type of
67ed4161
CL
3409 the control, <constant>SNDRV_CTL_ELEM_IFACE_XXX</constant>, which
3410 is usually <constant>MIXER</constant>.
3411 Use <constant>CARD</constant> for global controls that are not
3412 logically part of the mixer.
3413 If the control is closely associated with some specific device on
3414 the sound card, use <constant>HWDEP</constant>,
3415 <constant>PCM</constant>, <constant>RAWMIDI</constant>,
3416 <constant>TIMER</constant>, or <constant>SEQUENCER</constant>, and
3417 specify the device number with the
3418 <structfield>device</structfield> and
3419 <structfield>subdevice</structfield> fields.
1da177e4
LT
3420 </para>
3421
3422 <para>
3423 The <structfield>name</structfield> is the name identifier
3424 string. On ALSA 0.9.x, the control name is very important,
3425 because its role is classified from its name. There are
3426 pre-defined standard control names. The details are described in
3427 the subsection
3428 <link linkend="control-interface-control-names"><citetitle>
3429 Control Names</citetitle></link>.
3430 </para>
3431
3432 <para>
3433 The <structfield>index</structfield> field holds the index number
3434 of this control. If there are several different controls with
3435 the same name, they can be distinguished by the index
3436 number. This is the case when
3437 several codecs exist on the card. If the index is zero, you can
3438 omit the definition above.
3439 </para>
3440
3441 <para>
3442 The <structfield>access</structfield> field contains the access
3443 type of this control. Give the combination of bit masks,
3444 <constant>SNDRV_CTL_ELEM_ACCESS_XXX</constant>, there.
3445 The detailed will be explained in the subsection
3446 <link linkend="control-interface-access-flags"><citetitle>
3447 Access Flags</citetitle></link>.
3448 </para>
3449
3450 <para>
0b7bed4e 3451 The <structfield>private_value</structfield> field contains
1da177e4
LT
3452 an arbitrary long integer value for this record. When using
3453 generic <structfield>info</structfield>,
3454 <structfield>get</structfield> and
3455 <structfield>put</structfield> callbacks, you can pass a value
3456 through this field. If several small numbers are necessary, you can
3457 combine them in bitwise. Or, it's possible to give a pointer
3458 (casted to unsigned long) of some record to this field, too.
3459 </para>
3460
3461 <para>
3462 The other three are
3463 <link linkend="control-interface-callbacks"><citetitle>
3464 callback functions</citetitle></link>.
3465 </para>
3466 </section>
3467
3468 <section id="control-interface-control-names">
3469 <title>Control Names</title>
3470 <para>
3471 There are some standards for defining the control names. A
3472 control is usually defined from the three parts as
3473 <quote>SOURCE DIRECTION FUNCTION</quote>.
3474 </para>
3475
3476 <para>
3477 The first, <constant>SOURCE</constant>, specifies the source
3478 of the control, and is a string such as <quote>Master</quote>,
3479 <quote>PCM</quote>, <quote>CD</quote> or
3480 <quote>Line</quote>. There are many pre-defined sources.
3481 </para>
3482
3483 <para>
3484 The second, <constant>DIRECTION</constant>, is one of the
3485 following strings according to the direction of the control:
3486 <quote>Playback</quote>, <quote>Capture</quote>, <quote>Bypass
3487 Playback</quote> and <quote>Bypass Capture</quote>. Or, it can
3488 be omitted, meaning both playback and capture directions.
3489 </para>
3490
3491 <para>
3492 The third, <constant>FUNCTION</constant>, is one of the
3493 following strings according to the function of the control:
3494 <quote>Switch</quote>, <quote>Volume</quote> and
3495 <quote>Route</quote>.
3496 </para>
3497
3498 <para>
3499 The example of control names are, thus, <quote>Master Capture
3500 Switch</quote> or <quote>PCM Playback Volume</quote>.
3501 </para>
3502
3503 <para>
3504 There are some exceptions:
3505 </para>
3506
3507 <section id="control-interface-control-names-global">
3508 <title>Global capture and playback</title>
3509 <para>
3510 <quote>Capture Source</quote>, <quote>Capture Switch</quote>
3511 and <quote>Capture Volume</quote> are used for the global
3512 capture (input) source, switch and volume. Similarly,
3513 <quote>Playback Switch</quote> and <quote>Playback
3514 Volume</quote> are used for the global output gain switch and
3515 volume.
3516 </para>
3517 </section>
3518
3519 <section id="control-interface-control-names-tone">
3520 <title>Tone-controls</title>
3521 <para>
3522 tone-control switch and volumes are specified like
3523 <quote>Tone Control - XXX</quote>, e.g. <quote>Tone Control -
3524 Switch</quote>, <quote>Tone Control - Bass</quote>,
3525 <quote>Tone Control - Center</quote>.
3526 </para>
3527 </section>
3528
3529 <section id="control-interface-control-names-3d">
3530 <title>3D controls</title>
3531 <para>
3532 3D-control switches and volumes are specified like <quote>3D
3533 Control - XXX</quote>, e.g. <quote>3D Control -
3534 Switch</quote>, <quote>3D Control - Center</quote>, <quote>3D
3535 Control - Space</quote>.
3536 </para>
3537 </section>
3538
3539 <section id="control-interface-control-names-mic">
3540 <title>Mic boost</title>
3541 <para>
3542 Mic-boost switch is set as <quote>Mic Boost</quote> or
3543 <quote>Mic Boost (6dB)</quote>.
3544 </para>
3545
3546 <para>
3547 More precise information can be found in
3548 <filename>Documentation/sound/alsa/ControlNames.txt</filename>.
3549 </para>
3550 </section>
3551 </section>
3552
3553 <section id="control-interface-access-flags">
3554 <title>Access Flags</title>
3555
3556 <para>
3557 The access flag is the bit-flags which specifies the access type
3558 of the given control. The default access type is
3559 <constant>SNDRV_CTL_ELEM_ACCESS_READWRITE</constant>,
3560 which means both read and write are allowed to this control.
3561 When the access flag is omitted (i.e. = 0), it is
3562 regarded as <constant>READWRITE</constant> access as default.
3563 </para>
3564
3565 <para>
3566 When the control is read-only, pass
3567 <constant>SNDRV_CTL_ELEM_ACCESS_READ</constant> instead.
3568 In this case, you don't have to define
3569 <structfield>put</structfield> callback.
3570 Similarly, when the control is write-only (although it's a rare
3571 case), you can use <constant>WRITE</constant> flag instead, and
3572 you don't need <structfield>get</structfield> callback.
3573 </para>
3574
3575 <para>
3576 If the control value changes frequently (e.g. the VU meter),
3577 <constant>VOLATILE</constant> flag should be given. This means
3578 that the control may be changed without
3579 <link linkend="control-interface-change-notification"><citetitle>
3580 notification</citetitle></link>. Applications should poll such
3581 a control constantly.
3582 </para>
3583
3584 <para>
3585 When the control is inactive, set
3586 <constant>INACTIVE</constant> flag, too.
3587 There are <constant>LOCK</constant> and
3588 <constant>OWNER</constant> flags for changing the write
3589 permissions.
3590 </para>
3591
3592 </section>
3593
3594 <section id="control-interface-callbacks">
3595 <title>Callbacks</title>
3596
3597 <section id="control-interface-callbacks-info">
3598 <title>info callback</title>
3599 <para>
3600 The <structfield>info</structfield> callback is used to get
3601 the detailed information of this control. This must store the
446ab5f5 3602 values of the given struct <structname>snd_ctl_elem_info</structname>
1da177e4
LT
3603 object. For example, for a boolean control with a single
3604 element will be:
3605
3606 <example>
3607 <title>Example of info callback</title>
3608 <programlisting>
3609<![CDATA[
446ab5f5
TI
3610 static int snd_myctl_info(struct snd_kcontrol *kcontrol,
3611 struct snd_ctl_elem_info *uinfo)
1da177e4
LT
3612 {
3613 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
3614 uinfo->count = 1;
3615 uinfo->value.integer.min = 0;
3616 uinfo->value.integer.max = 1;
3617 return 0;
3618 }
3619]]>
3620 </programlisting>
3621 </example>
3622 </para>
3623
3624 <para>
3625 The <structfield>type</structfield> field specifies the type
3626 of the control. There are <constant>BOOLEAN</constant>,
3627 <constant>INTEGER</constant>, <constant>ENUMERATED</constant>,
3628 <constant>BYTES</constant>, <constant>IEC958</constant> and
3629 <constant>INTEGER64</constant>. The
3630 <structfield>count</structfield> field specifies the
3631 number of elements in this control. For example, a stereo
3632 volume would have count = 2. The
3633 <structfield>value</structfield> field is a union, and
3634 the values stored are depending on the type. The boolean and
3635 integer are identical.
3636 </para>
3637
3638 <para>
3639 The enumerated type is a bit different from others. You'll
3640 need to set the string for the currently given item index.
3641
3642 <informalexample>
3643 <programlisting>
3644<![CDATA[
446ab5f5
TI
3645 static int snd_myctl_info(struct snd_kcontrol *kcontrol,
3646 struct snd_ctl_elem_info *uinfo)
1da177e4
LT
3647 {
3648 static char *texts[4] = {
3649 "First", "Second", "Third", "Fourth"
3650 };
3651 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
3652 uinfo->count = 1;
3653 uinfo->value.enumerated.items = 4;
3654 if (uinfo->value.enumerated.item > 3)
3655 uinfo->value.enumerated.item = 3;
3656 strcpy(uinfo->value.enumerated.name,
3657 texts[uinfo->value.enumerated.item]);
3658 return 0;
3659 }
3660]]>
3661 </programlisting>
3662 </informalexample>
3663 </para>
3664 </section>
3665
3666 <section id="control-interface-callbacks-get">
3667 <title>get callback</title>
3668
3669 <para>
3670 This callback is used to read the current value of the
3671 control and to return to the user-space.
3672 </para>
3673
3674 <para>
3675 For example,
3676
3677 <example>
3678 <title>Example of get callback</title>
3679 <programlisting>
3680<![CDATA[
446ab5f5
TI
3681 static int snd_myctl_get(struct snd_kcontrol *kcontrol,
3682 struct snd_ctl_elem_value *ucontrol)
1da177e4 3683 {
446ab5f5 3684 struct mychip *chip = snd_kcontrol_chip(kcontrol);
1da177e4
LT
3685 ucontrol->value.integer.value[0] = get_some_value(chip);
3686 return 0;
3687 }
3688]]>
3689 </programlisting>
3690 </example>
3691 </para>
3692
1da177e4
LT
3693 <para>
3694 The <structfield>value</structfield> field is depending on
3695 the type of control as well as on info callback. For example,
3696 the sb driver uses this field to store the register offset,
3697 the bit-shift and the bit-mask. The
3698 <structfield>private_value</structfield> is set like
3699 <informalexample>
3700 <programlisting>
3701<![CDATA[
3702 .private_value = reg | (shift << 16) | (mask << 24)
3703]]>
3704 </programlisting>
3705 </informalexample>
3706 and is retrieved in callbacks like
3707 <informalexample>
3708 <programlisting>
3709<![CDATA[
446ab5f5
TI
3710 static int snd_sbmixer_get_single(struct snd_kcontrol *kcontrol,
3711 struct snd_ctl_elem_value *ucontrol)
1da177e4
LT
3712 {
3713 int reg = kcontrol->private_value & 0xff;
3714 int shift = (kcontrol->private_value >> 16) & 0xff;
3715 int mask = (kcontrol->private_value >> 24) & 0xff;
3716 ....
3717 }
3718]]>
3719 </programlisting>
3720 </informalexample>
3721 </para>
3722
3723 <para>
3724 In <structfield>get</structfield> callback, you have to fill all the elements if the
3725 control has more than one elements,
3726 i.e. <structfield>count</structfield> &gt; 1.
3727 In the example above, we filled only one element
3728 (<structfield>value.integer.value[0]</structfield>) since it's
3729 assumed as <structfield>count</structfield> = 1.
3730 </para>
3731 </section>
3732
3733 <section id="control-interface-callbacks-put">
3734 <title>put callback</title>
3735
3736 <para>
3737 This callback is used to write a value from the user-space.
3738 </para>
3739
3740 <para>
3741 For example,
3742
3743 <example>
3744 <title>Example of put callback</title>
3745 <programlisting>
3746<![CDATA[
446ab5f5
TI
3747 static int snd_myctl_put(struct snd_kcontrol *kcontrol,
3748 struct snd_ctl_elem_value *ucontrol)
1da177e4 3749 {
446ab5f5 3750 struct mychip *chip = snd_kcontrol_chip(kcontrol);
1da177e4
LT
3751 int changed = 0;
3752 if (chip->current_value !=
3753 ucontrol->value.integer.value[0]) {
3754 change_current_value(chip,
3755 ucontrol->value.integer.value[0]);
3756 changed = 1;
3757 }
3758 return changed;
3759 }
3760]]>
3761 </programlisting>
3762 </example>
3763
3764 As seen above, you have to return 1 if the value is
3765 changed. If the value is not changed, return 0 instead.
3766 If any fatal error happens, return a negative error code as
3767 usual.
3768 </para>
3769
3770 <para>
3771 Like <structfield>get</structfield> callback,
3772 when the control has more than one elements,
3773 all elemehts must be evaluated in this callback, too.
3774 </para>
3775 </section>
3776
3777 <section id="control-interface-callbacks-all">
3778 <title>Callbacks are not atomic</title>
3779 <para>
3780 All these three callbacks are basically not atomic.
3781 </para>
3782 </section>
3783 </section>
3784
3785 <section id="control-interface-constructor">
3786 <title>Constructor</title>
3787 <para>
3788 When everything is ready, finally we can create a new
3789 control. For creating a control, there are two functions to be
3790 called, <function>snd_ctl_new1()</function> and
3791 <function>snd_ctl_add()</function>.
3792 </para>
3793
3794 <para>
3795 In the simplest way, you can do like this:
3796
3797 <informalexample>
3798 <programlisting>
3799<![CDATA[
3800 if ((err = snd_ctl_add(card, snd_ctl_new1(&my_control, chip))) < 0)
3801 return err;
3802]]>
3803 </programlisting>
3804 </informalexample>
3805
3806 where <parameter>my_control</parameter> is the
446ab5f5 3807 struct <structname>snd_kcontrol_new</structname> object defined above, and chip
1da177e4
LT
3808 is the object pointer to be passed to
3809 kcontrol-&gt;private_data
3810 which can be referred in callbacks.
3811 </para>
3812
3813 <para>
3814 <function>snd_ctl_new1()</function> allocates a new
446ab5f5 3815 <structname>snd_kcontrol</structname> instance (that's why the definition
1da177e4
LT
3816 of <parameter>my_control</parameter> can be with
3817 <parameter>__devinitdata</parameter>
3818 prefix), and <function>snd_ctl_add</function> assigns the given
3819 control component to the card.
3820 </para>
3821 </section>
3822
3823 <section id="control-interface-change-notification">
3824 <title>Change Notification</title>
3825 <para>
3826 If you need to change and update a control in the interrupt
3827 routine, you can call <function>snd_ctl_notify()</function>. For
3828 example,
3829
3830 <informalexample>
3831 <programlisting>
3832<![CDATA[
3833 snd_ctl_notify(card, SNDRV_CTL_EVENT_MASK_VALUE, id_pointer);
3834]]>
3835 </programlisting>
3836 </informalexample>
3837
3838 This function takes the card pointer, the event-mask, and the
3839 control id pointer for the notification. The event-mask
3840 specifies the types of notification, for example, in the above
3841 example, the change of control values is notified.
446ab5f5 3842 The id pointer is the pointer of struct <structname>snd_ctl_elem_id</structname>
1da177e4
LT
3843 to be notified.
3844 You can find some examples in <filename>es1938.c</filename> or
3845 <filename>es1968.c</filename> for hardware volume interrupts.
3846 </para>
3847 </section>
3848
3849 </chapter>
3850
3851
3852<!-- ****************************************************** -->
3853<!-- API for AC97 Codec -->
3854<!-- ****************************************************** -->
3855 <chapter id="api-ac97">
3856 <title>API for AC97 Codec</title>
3857
3858 <section>
3859 <title>General</title>
3860 <para>
3861 The ALSA AC97 codec layer is a well-defined one, and you don't
3862 have to write many codes to control it. Only low-level control
3863 routines are necessary. The AC97 codec API is defined in
3864 <filename>&lt;sound/ac97_codec.h&gt;</filename>.
3865 </para>
3866 </section>
3867
3868 <section id="api-ac97-example">
3869 <title>Full Code Example</title>
3870 <para>
3871 <example>
3872 <title>Example of AC97 Interface</title>
3873 <programlisting>
3874<![CDATA[
446ab5f5 3875 struct mychip {
1da177e4 3876 ....
446ab5f5 3877 struct snd_ac97 *ac97;
1da177e4
LT
3878 ....
3879 };
3880
446ab5f5 3881 static unsigned short snd_mychip_ac97_read(struct snd_ac97 *ac97,
1da177e4
LT
3882 unsigned short reg)
3883 {
446ab5f5 3884 struct mychip *chip = ac97->private_data;
1da177e4
LT
3885 ....
3886 // read a register value here from the codec
3887 return the_register_value;
3888 }
3889
446ab5f5 3890 static void snd_mychip_ac97_write(struct snd_ac97 *ac97,
1da177e4
LT
3891 unsigned short reg, unsigned short val)
3892 {
446ab5f5 3893 struct mychip *chip = ac97->private_data;
1da177e4
LT
3894 ....
3895 // write the given register value to the codec
3896 }
3897
446ab5f5 3898 static int snd_mychip_ac97(struct mychip *chip)
1da177e4 3899 {
446ab5f5
TI
3900 struct snd_ac97_bus *bus;
3901 struct snd_ac97_template ac97;
1da177e4 3902 int err;
446ab5f5 3903 static struct snd_ac97_bus_ops ops = {
1da177e4
LT
3904 .write = snd_mychip_ac97_write,
3905 .read = snd_mychip_ac97_read,
3906 };
3907
3908 if ((err = snd_ac97_bus(chip->card, 0, &ops, NULL, &bus)) < 0)
3909 return err;
3910 memset(&ac97, 0, sizeof(ac97));
3911 ac97.private_data = chip;
3912 return snd_ac97_mixer(bus, &ac97, &chip->ac97);
3913 }
3914
3915]]>
3916 </programlisting>
3917 </example>
3918 </para>
3919 </section>
3920
3921 <section id="api-ac97-constructor">
3922 <title>Constructor</title>
3923 <para>
3924 For creating an ac97 instance, first call <function>snd_ac97_bus</function>
3925 with an <type>ac97_bus_ops_t</type> record with callback functions.
3926
3927 <informalexample>
3928 <programlisting>
3929<![CDATA[
446ab5f5
TI
3930 struct snd_ac97_bus *bus;
3931 static struct snd_ac97_bus_ops ops = {
1da177e4
LT
3932 .write = snd_mychip_ac97_write,
3933 .read = snd_mychip_ac97_read,
3934 };
3935
3936 snd_ac97_bus(card, 0, &ops, NULL, &pbus);
3937]]>
3938 </programlisting>
3939 </informalexample>
3940
3941 The bus record is shared among all belonging ac97 instances.
3942 </para>
3943
3944 <para>
446ab5f5
TI
3945 And then call <function>snd_ac97_mixer()</function> with an
3946 struct <structname>snd_ac97_template</structname>
1da177e4
LT
3947 record together with the bus pointer created above.
3948
3949 <informalexample>
3950 <programlisting>
3951<![CDATA[
446ab5f5 3952 struct snd_ac97_template ac97;
1da177e4
LT
3953 int err;
3954
3955 memset(&ac97, 0, sizeof(ac97));
3956 ac97.private_data = chip;
3957 snd_ac97_mixer(bus, &ac97, &chip->ac97);
3958]]>
3959 </programlisting>
3960 </informalexample>
3961
3962 where chip-&gt;ac97 is the pointer of a newly created
3963 <type>ac97_t</type> instance.
3964 In this case, the chip pointer is set as the private data, so that
3965 the read/write callback functions can refer to this chip instance.
3966 This instance is not necessarily stored in the chip
3967 record. When you need to change the register values from the
3968 driver, or need the suspend/resume of ac97 codecs, keep this
3969 pointer to pass to the corresponding functions.
3970 </para>
3971 </section>
3972
3973 <section id="api-ac97-callbacks">
3974 <title>Callbacks</title>
3975 <para>
3976 The standard callbacks are <structfield>read</structfield> and
3977 <structfield>write</structfield>. Obviously they
3978 correspond to the functions for read and write accesses to the
3979 hardware low-level codes.
3980 </para>
3981
3982 <para>
3983 The <structfield>read</structfield> callback returns the
3984 register value specified in the argument.
3985
3986 <informalexample>
3987 <programlisting>
3988<![CDATA[
446ab5f5 3989 static unsigned short snd_mychip_ac97_read(struct snd_ac97 *ac97,
1da177e4
LT
3990 unsigned short reg)
3991 {
446ab5f5 3992 struct mychip *chip = ac97->private_data;
1da177e4
LT
3993 ....
3994 return the_register_value;
3995 }
3996]]>
3997 </programlisting>
3998 </informalexample>
3999
4000 Here, the chip can be cast from ac97-&gt;private_data.
4001 </para>
4002
4003 <para>
4004 Meanwhile, the <structfield>write</structfield> callback is
4005 used to set the register value.
4006
4007 <informalexample>
4008 <programlisting>
4009<![CDATA[
446ab5f5 4010 static void snd_mychip_ac97_write(struct snd_ac97 *ac97,
1da177e4
LT
4011 unsigned short reg, unsigned short val)
4012]]>
4013 </programlisting>
4014 </informalexample>
4015 </para>
4016
4017 <para>
4018 These callbacks are non-atomic like the callbacks of control API.
4019 </para>
4020
4021 <para>
4022 There are also other callbacks:
4023 <structfield>reset</structfield>,
4024 <structfield>wait</structfield> and
4025 <structfield>init</structfield>.
4026 </para>
4027
4028 <para>
4029 The <structfield>reset</structfield> callback is used to reset
4030 the codec. If the chip requires a special way of reset, you can
4031 define this callback.
4032 </para>
4033
4034 <para>
4035 The <structfield>wait</structfield> callback is used for a
4036 certain wait at the standard initialization of the codec. If the
4037 chip requires the extra wait-time, define this callback.
4038 </para>
4039
4040 <para>
4041 The <structfield>init</structfield> callback is used for
4042 additional initialization of the codec.
4043 </para>
4044 </section>
4045
4046 <section id="api-ac97-updating-registers">
4047 <title>Updating Registers in The Driver</title>
4048 <para>
4049 If you need to access to the codec from the driver, you can
4050 call the following functions:
4051 <function>snd_ac97_write()</function>,
4052 <function>snd_ac97_read()</function>,
4053 <function>snd_ac97_update()</function> and
4054 <function>snd_ac97_update_bits()</function>.
4055 </para>
4056
4057 <para>
4058 Both <function>snd_ac97_write()</function> and
4059 <function>snd_ac97_update()</function> functions are used to
4060 set a value to the given register
4061 (<constant>AC97_XXX</constant>). The difference between them is
4062 that <function>snd_ac97_update()</function> doesn't write a
4063 value if the given value has been already set, while
4064 <function>snd_ac97_write()</function> always rewrites the
4065 value.
4066
4067 <informalexample>
4068 <programlisting>
4069<![CDATA[
4070 snd_ac97_write(ac97, AC97_MASTER, 0x8080);
4071 snd_ac97_update(ac97, AC97_MASTER, 0x8080);
4072]]>
4073 </programlisting>
4074 </informalexample>
4075 </para>
4076
4077 <para>
4078 <function>snd_ac97_read()</function> is used to read the value
4079 of the given register. For example,
4080
4081 <informalexample>
4082 <programlisting>
4083<![CDATA[
4084 value = snd_ac97_read(ac97, AC97_MASTER);
4085]]>
4086 </programlisting>
4087 </informalexample>
4088 </para>
4089
4090 <para>
4091 <function>snd_ac97_update_bits()</function> is used to update
4092 some bits of the given register.
4093
4094 <informalexample>
4095 <programlisting>
4096<![CDATA[
4097 snd_ac97_update_bits(ac97, reg, mask, value);
4098]]>
4099 </programlisting>
4100 </informalexample>
4101 </para>
4102
4103 <para>
4104 Also, there is a function to change the sample rate (of a
4105 certain register such as
4106 <constant>AC97_PCM_FRONT_DAC_RATE</constant>) when VRA or
4107 DRA is supported by the codec:
4108 <function>snd_ac97_set_rate()</function>.
4109
4110 <informalexample>
4111 <programlisting>
4112<![CDATA[
4113 snd_ac97_set_rate(ac97, AC97_PCM_FRONT_DAC_RATE, 44100);
4114]]>
4115 </programlisting>
4116 </informalexample>
4117 </para>
4118
4119 <para>
4120 The following registers are available for setting the rate:
4121 <constant>AC97_PCM_MIC_ADC_RATE</constant>,
4122 <constant>AC97_PCM_FRONT_DAC_RATE</constant>,
4123 <constant>AC97_PCM_LR_ADC_RATE</constant>,
4124 <constant>AC97_SPDIF</constant>. When the
4125 <constant>AC97_SPDIF</constant> is specified, the register is
4126 not really changed but the corresponding IEC958 status bits will
4127 be updated.
4128 </para>
4129 </section>
4130
4131 <section id="api-ac97-clock-adjustment">
4132 <title>Clock Adjustment</title>
4133 <para>
4134 On some chip, the clock of the codec isn't 48000 but using a
4135 PCI clock (to save a quartz!). In this case, change the field
4136 bus-&gt;clock to the corresponding
4137 value. For example, intel8x0
4138 and es1968 drivers have the auto-measurement function of the
4139 clock.
4140 </para>
4141 </section>
4142
4143 <section id="api-ac97-proc-files">
4144 <title>Proc Files</title>
4145 <para>
4146 The ALSA AC97 interface will create a proc file such as
4147 <filename>/proc/asound/card0/codec97#0/ac97#0-0</filename> and
4148 <filename>ac97#0-0+regs</filename>. You can refer to these files to
4149 see the current status and registers of the codec.
4150 </para>
4151 </section>
4152
4153 <section id="api-ac97-multiple-codecs">
4154 <title>Multiple Codecs</title>
4155 <para>
4156 When there are several codecs on the same card, you need to
446ab5f5 4157 call <function>snd_ac97_mixer()</function> multiple times with
1da177e4
LT
4158 ac97.num=1 or greater. The <structfield>num</structfield> field
4159 specifies the codec
4160 number.
4161 </para>
4162
4163 <para>
4164 If you have set up multiple codecs, you need to either write
4165 different callbacks for each codec or check
4166 ac97-&gt;num in the
4167 callback routines.
4168 </para>
4169 </section>
4170
4171 </chapter>
4172
4173
4174<!-- ****************************************************** -->
4175<!-- MIDI (MPU401-UART) Interface -->
4176<!-- ****************************************************** -->
4177 <chapter id="midi-interface">
4178 <title>MIDI (MPU401-UART) Interface</title>
4179
4180 <section id="midi-interface-general">
4181 <title>General</title>
4182 <para>
4183 Many soundcards have built-in MIDI (MPU401-UART)
4184 interfaces. When the soundcard supports the standard MPU401-UART
4185 interface, most likely you can use the ALSA MPU401-UART API. The
4186 MPU401-UART API is defined in
4187 <filename>&lt;sound/mpu401.h&gt;</filename>.
4188 </para>
4189
4190 <para>
4191 Some soundchips have similar but a little bit different
4192 implementation of mpu401 stuff. For example, emu10k1 has its own
4193 mpu401 routines.
4194 </para>
4195 </section>
4196
4197 <section id="midi-interface-constructor">
4198 <title>Constructor</title>
4199 <para>
4200 For creating a rawmidi object, call
4201 <function>snd_mpu401_uart_new()</function>.
4202
4203 <informalexample>
4204 <programlisting>
4205<![CDATA[
446ab5f5 4206 struct snd_rawmidi *rmidi;
302e4c2f 4207 snd_mpu401_uart_new(card, 0, MPU401_HW_MPU401, port, info_flags,
1da177e4
LT
4208 irq, irq_flags, &rmidi);
4209]]>
4210 </programlisting>
4211 </informalexample>
4212 </para>
4213
4214 <para>
4215 The first argument is the card pointer, and the second is the
4216 index of this component. You can create up to 8 rawmidi
4217 devices.
4218 </para>
4219
4220 <para>
4221 The third argument is the type of the hardware,
4222 <constant>MPU401_HW_XXX</constant>. If it's not a special one,
4223 you can use <constant>MPU401_HW_MPU401</constant>.
4224 </para>
4225
4226 <para>
4227 The 4th argument is the i/o port address. Many
4228 backward-compatible MPU401 has an i/o port such as 0x330. Or, it
4229 might be a part of its own PCI i/o region. It depends on the
4230 chip design.
4231 </para>
4232
4233 <para>
302e4c2f 4234 The 5th argument is bitflags for additional information.
1da177e4
LT
4235 When the i/o port address above is a part of the PCI i/o
4236 region, the MPU401 i/o port might have been already allocated
302e4c2f
TI
4237 (reserved) by the driver itself. In such a case, pass a bit flag
4238 <constant>MPU401_INFO_INTEGRATED</constant>,
1da177e4
LT
4239 and
4240 the mpu401-uart layer will allocate the i/o ports by itself.
4241 </para>
4242
302e4c2f
TI
4243 <para>
4244 When the controller supports only the input or output MIDI stream,
4245 pass <constant>MPU401_INFO_INPUT</constant> or
4246 <constant>MPU401_INFO_OUTPUT</constant> bitflag, respectively.
4247 Then the rawmidi instance is created as a single stream.
4248 </para>
4249
4250 <para>
4251 <constant>MPU401_INFO_MMIO</constant> bitflag is used to change
4252 the access method to MMIO (via readb and writeb) instead of
4253 iob and outb. In this case, you have to pass the iomapped address
4254 to <function>snd_mpu401_uart_new()</function>.
4255 </para>
4256
4257 <para>
4258 When <constant>MPU401_INFO_TX_IRQ</constant> is set, the output
4259 stream isn't checked in the default interrupt handler. The driver
4260 needs to call <function>snd_mpu401_uart_interrupt_tx()</function>
4261 by itself to start processing the output stream in irq handler.
4262 </para>
4263
1da177e4
LT
4264 <para>
4265 Usually, the port address corresponds to the command port and
4266 port + 1 corresponds to the data port. If not, you may change
4267 the <structfield>cport</structfield> field of
446ab5f5
TI
4268 struct <structname>snd_mpu401</structname> manually
4269 afterward. However, <structname>snd_mpu401</structname> pointer is not
1da177e4
LT
4270 returned explicitly by
4271 <function>snd_mpu401_uart_new()</function>. You need to cast
4272 rmidi-&gt;private_data to
446ab5f5 4273 <structname>snd_mpu401</structname> explicitly,
1da177e4
LT
4274
4275 <informalexample>
4276 <programlisting>
4277<![CDATA[
446ab5f5 4278 struct snd_mpu401 *mpu;
1da177e4
LT
4279 mpu = rmidi->private_data;
4280]]>
4281 </programlisting>
4282 </informalexample>
4283
4284 and reset the cport as you like:
4285
4286 <informalexample>
4287 <programlisting>
4288<![CDATA[
4289 mpu->cport = my_own_control_port;
4290]]>
4291 </programlisting>
4292 </informalexample>
4293 </para>
4294
4295 <para>
4296 The 6th argument specifies the irq number for UART. If the irq
4297 is already allocated, pass 0 to the 7th argument
4298 (<parameter>irq_flags</parameter>). Otherwise, pass the flags
4299 for irq allocation
4300 (<constant>SA_XXX</constant> bits) to it, and the irq will be
4301 reserved by the mpu401-uart layer. If the card doesn't generates
4302 UART interrupts, pass -1 as the irq number. Then a timer
4303 interrupt will be invoked for polling.
4304 </para>
4305 </section>
4306
4307 <section id="midi-interface-interrupt-handler">
4308 <title>Interrupt Handler</title>
4309 <para>
4310 When the interrupt is allocated in
4311 <function>snd_mpu401_uart_new()</function>, the private
4312 interrupt handler is used, hence you don't have to do nothing
4313 else than creating the mpu401 stuff. Otherwise, you have to call
4314 <function>snd_mpu401_uart_interrupt()</function> explicitly when
4315 a UART interrupt is invoked and checked in your own interrupt
4316 handler.
4317 </para>
4318
4319 <para>
4320 In this case, you need to pass the private_data of the
4321 returned rawmidi object from
4322 <function>snd_mpu401_uart_new()</function> as the second
4323 argument of <function>snd_mpu401_uart_interrupt()</function>.
4324
4325 <informalexample>
4326 <programlisting>
4327<![CDATA[
4328 snd_mpu401_uart_interrupt(irq, rmidi->private_data, regs);
4329]]>
4330 </programlisting>
4331 </informalexample>
4332 </para>
4333 </section>
4334
4335 </chapter>
4336
4337
4338<!-- ****************************************************** -->
4339<!-- RawMIDI Interface -->
4340<!-- ****************************************************** -->
4341 <chapter id="rawmidi-interface">
4342 <title>RawMIDI Interface</title>
4343
4344 <section id="rawmidi-interface-overview">
4345 <title>Overview</title>
4346
4347 <para>
4348 The raw MIDI interface is used for hardware MIDI ports that can
4349 be accessed as a byte stream. It is not used for synthesizer
4350 chips that do not directly understand MIDI.
4351 </para>
4352
4353 <para>
4354 ALSA handles file and buffer management. All you have to do is
4355 to write some code to move data between the buffer and the
4356 hardware.
4357 </para>
4358
4359 <para>
4360 The rawmidi API is defined in
4361 <filename>&lt;sound/rawmidi.h&gt;</filename>.
4362 </para>
4363 </section>
4364
4365 <section id="rawmidi-interface-constructor">
4366 <title>Constructor</title>
4367
4368 <para>
4369 To create a rawmidi device, call the
4370 <function>snd_rawmidi_new</function> function:
4371 <informalexample>
4372 <programlisting>
4373<![CDATA[
446ab5f5 4374 struct snd_rawmidi *rmidi;
1da177e4
LT
4375 err = snd_rawmidi_new(chip->card, "MyMIDI", 0, outs, ins, &rmidi);
4376 if (err < 0)
4377 return err;
4378 rmidi->private_data = chip;
4379 strcpy(rmidi->name, "My MIDI");
4380 rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT |
4381 SNDRV_RAWMIDI_INFO_INPUT |
4382 SNDRV_RAWMIDI_INFO_DUPLEX;
4383]]>
4384 </programlisting>
4385 </informalexample>
4386 </para>
4387
4388 <para>
4389 The first argument is the card pointer, the second argument is
4390 the ID string.
4391 </para>
4392
4393 <para>
4394 The third argument is the index of this component. You can
4395 create up to 8 rawmidi devices.
4396 </para>
4397
4398 <para>
4399 The fourth and fifth arguments are the number of output and
4400 input substreams, respectively, of this device. (A substream is
4401 the equivalent of a MIDI port.)
4402 </para>
4403
4404 <para>
4405 Set the <structfield>info_flags</structfield> field to specify
4406 the capabilities of the device.
4407 Set <constant>SNDRV_RAWMIDI_INFO_OUTPUT</constant> if there is
4408 at least one output port,
4409 <constant>SNDRV_RAWMIDI_INFO_INPUT</constant> if there is at
4410 least one input port,
4411 and <constant>SNDRV_RAWMIDI_INFO_DUPLEX</constant> if the device
4412 can handle output and input at the same time.
4413 </para>
4414
4415 <para>
4416 After the rawmidi device is created, you need to set the
4417 operators (callbacks) for each substream. There are helper
4418 functions to set the operators for all substream of a device:
4419 <informalexample>
4420 <programlisting>
4421<![CDATA[
4422 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_mymidi_output_ops);
4423 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_mymidi_input_ops);
4424]]>
4425 </programlisting>
4426 </informalexample>
4427 </para>
4428
4429 <para>
4430 The operators are usually defined like this:
4431 <informalexample>
4432 <programlisting>
4433<![CDATA[
446ab5f5 4434 static struct snd_rawmidi_ops snd_mymidi_output_ops = {
1da177e4
LT
4435 .open = snd_mymidi_output_open,
4436 .close = snd_mymidi_output_close,
4437 .trigger = snd_mymidi_output_trigger,
4438 };
4439]]>
4440 </programlisting>
4441 </informalexample>
4442 These callbacks are explained in the <link
4443 linkend="rawmidi-interface-callbacks"><citetitle>Callbacks</citetitle></link>
4444 section.
4445 </para>
4446
4447 <para>
4448 If there is more than one substream, you should give each one a
4449 unique name:
4450 <informalexample>
4451 <programlisting>
4452<![CDATA[
4453 struct list_head *list;
446ab5f5 4454 struct snd_rawmidi_substream *substream;
1da177e4 4455 list_for_each(list, &rmidi->streams[SNDRV_RAWMIDI_STREAM_OUTPUT].substreams) {
446ab5f5 4456 substream = list_entry(list, struct snd_rawmidi_substream, list);
1da177e4
LT
4457 sprintf(substream->name, "My MIDI Port %d", substream->number + 1);
4458 }
4459 /* same for SNDRV_RAWMIDI_STREAM_INPUT */
4460]]>
4461 </programlisting>
4462 </informalexample>
4463 </para>
4464 </section>
4465
4466 <section id="rawmidi-interface-callbacks">
4467 <title>Callbacks</title>
4468
4469 <para>
4470 In all callbacks, the private data that you've set for the
4471 rawmidi device can be accessed as
4472 substream-&gt;rmidi-&gt;private_data.
4473 <!-- <code> isn't available before DocBook 4.3 -->
4474 </para>
4475
4476 <para>
4477 If there is more than one port, your callbacks can determine the
446ab5f5 4478 port index from the struct snd_rawmidi_substream data passed to each
1da177e4
LT
4479 callback:
4480 <informalexample>
4481 <programlisting>
4482<![CDATA[
446ab5f5 4483 struct snd_rawmidi_substream *substream;
1da177e4
LT
4484 int index = substream->number;
4485]]>
4486 </programlisting>
4487 </informalexample>
4488 </para>
4489
4490 <section id="rawmidi-interface-op-open">
4491 <title><function>open</function> callback</title>
4492
4493 <informalexample>
4494 <programlisting>
4495<![CDATA[
446ab5f5 4496 static int snd_xxx_open(struct snd_rawmidi_substream *substream);
1da177e4
LT
4497]]>
4498 </programlisting>
4499 </informalexample>
4500
4501 <para>
4502 This is called when a substream is opened.
4503 You can initialize the hardware here, but you should not yet
4504 start transmitting/receiving data.
4505 </para>
4506 </section>
4507
4508 <section id="rawmidi-interface-op-close">
4509 <title><function>close</function> callback</title>
4510
4511 <informalexample>
4512 <programlisting>
4513<![CDATA[
446ab5f5 4514 static int snd_xxx_close(struct snd_rawmidi_substream *substream);
1da177e4
LT
4515]]>
4516 </programlisting>
4517 </informalexample>
4518
4519 <para>
4520 Guess what.
4521 </para>
4522
4523 <para>
4524 The <function>open</function> and <function>close</function>
4525 callbacks of a rawmidi device are serialized with a mutex,
4526 and can sleep.
4527 </para>
4528 </section>
4529
4530 <section id="rawmidi-interface-op-trigger-out">
4531 <title><function>trigger</function> callback for output
4532 substreams</title>
4533
4534 <informalexample>
4535 <programlisting>
4536<![CDATA[
446ab5f5 4537 static void snd_xxx_output_trigger(struct snd_rawmidi_substream *substream, int up);
1da177e4
LT
4538]]>
4539 </programlisting>
4540 </informalexample>
4541
4542 <para>
4543 This is called with a nonzero <parameter>up</parameter>
4544 parameter when there is some data in the substream buffer that
4545 must be transmitted.
4546 </para>
4547
4548 <para>
4549 To read data from the buffer, call
4550 <function>snd_rawmidi_transmit_peek</function>. It will
4551 return the number of bytes that have been read; this will be
4552 less than the number of bytes requested when there is no more
4553 data in the buffer.
4554 After the data has been transmitted successfully, call
4555 <function>snd_rawmidi_transmit_ack</function> to remove the
4556 data from the substream buffer:
4557 <informalexample>
4558 <programlisting>
4559<![CDATA[
4560 unsigned char data;
4561 while (snd_rawmidi_transmit_peek(substream, &data, 1) == 1) {
446ab5f5 4562 if (snd_mychip_try_to_transmit(data))
1da177e4
LT
4563 snd_rawmidi_transmit_ack(substream, 1);
4564 else
4565 break; /* hardware FIFO full */
4566 }
4567]]>
4568 </programlisting>
4569 </informalexample>
4570 </para>
4571
4572 <para>
4573 If you know beforehand that the hardware will accept data, you
4574 can use the <function>snd_rawmidi_transmit</function> function
4575 which reads some data and removes it from the buffer at once:
4576 <informalexample>
4577 <programlisting>
4578<![CDATA[
446ab5f5 4579 while (snd_mychip_transmit_possible()) {
1da177e4
LT
4580 unsigned char data;
4581 if (snd_rawmidi_transmit(substream, &data, 1) != 1)
4582 break; /* no more data */
446ab5f5 4583 snd_mychip_transmit(data);
1da177e4
LT
4584 }
4585]]>
4586 </programlisting>
4587 </informalexample>
4588 </para>
4589
4590 <para>
4591 If you know beforehand how many bytes you can accept, you can
4592 use a buffer size greater than one with the
4593 <function>snd_rawmidi_transmit*</function> functions.
4594 </para>
4595
4596 <para>
4597 The <function>trigger</function> callback must not sleep. If
4598 the hardware FIFO is full before the substream buffer has been
4599 emptied, you have to continue transmitting data later, either
4600 in an interrupt handler, or with a timer if the hardware
4601 doesn't have a MIDI transmit interrupt.
4602 </para>
4603
4604 <para>
4605 The <function>trigger</function> callback is called with a
4606 zero <parameter>up</parameter> parameter when the transmission
4607 of data should be aborted.
4608 </para>
4609 </section>
4610
4611 <section id="rawmidi-interface-op-trigger-in">
4612 <title><function>trigger</function> callback for input
4613 substreams</title>
4614
4615 <informalexample>
4616 <programlisting>
4617<![CDATA[
446ab5f5 4618 static void snd_xxx_input_trigger(struct snd_rawmidi_substream *substream, int up);
1da177e4
LT
4619]]>
4620 </programlisting>
4621 </informalexample>
4622
4623 <para>
4624 This is called with a nonzero <parameter>up</parameter>
4625 parameter to enable receiving data, or with a zero
4626 <parameter>up</parameter> parameter do disable receiving data.
4627 </para>
4628
4629 <para>
4630 The <function>trigger</function> callback must not sleep; the
4631 actual reading of data from the device is usually done in an
4632 interrupt handler.
4633 </para>
4634
4635 <para>
4636 When data reception is enabled, your interrupt handler should
4637 call <function>snd_rawmidi_receive</function> for all received
4638 data:
4639 <informalexample>
4640 <programlisting>
4641<![CDATA[
4642 void snd_mychip_midi_interrupt(...)
4643 {
4644 while (mychip_midi_available()) {
4645 unsigned char data;
4646 data = mychip_midi_read();
4647 snd_rawmidi_receive(substream, &data, 1);
4648 }
4649 }
4650]]>
4651 </programlisting>
4652 </informalexample>
4653 </para>
4654 </section>
4655
4656 <section id="rawmidi-interface-op-drain">
4657 <title><function>drain</function> callback</title>
4658
4659 <informalexample>
4660 <programlisting>
4661<![CDATA[
446ab5f5 4662 static void snd_xxx_drain(struct snd_rawmidi_substream *substream);
1da177e4
LT
4663]]>
4664 </programlisting>
4665 </informalexample>
4666
4667 <para>
4668 This is only used with output substreams. This function should wait
4669 until all data read from the substream buffer has been transmitted.
4670 This ensures that the device can be closed and the driver unloaded
4671 without losing data.
4672 </para>
4673
4674 <para>
4675 This callback is optional. If you do not set
446ab5f5 4676 <structfield>drain</structfield> in the struct snd_rawmidi_ops
1da177e4
LT
4677 structure, ALSA will simply wait for 50&nbsp;milliseconds
4678 instead.
4679 </para>
4680 </section>
4681 </section>
4682
4683 </chapter>
4684
4685
4686<!-- ****************************************************** -->
4687<!-- Miscellaneous Devices -->
4688<!-- ****************************************************** -->
4689 <chapter id="misc-devices">
4690 <title>Miscellaneous Devices</title>
4691
4692 <section id="misc-devices-opl3">
4693 <title>FM OPL3</title>
4694 <para>
4695 The FM OPL3 is still used on many chips (mainly for backward
4696 compatibility). ALSA has a nice OPL3 FM control layer, too. The
4697 OPL3 API is defined in
4698 <filename>&lt;sound/opl3.h&gt;</filename>.
4699 </para>
4700
4701 <para>
4702 FM registers can be directly accessed through direct-FM API,
4703 defined in <filename>&lt;sound/asound_fm.h&gt;</filename>. In
4704 ALSA native mode, FM registers are accessed through
4705 Hardware-Dependant Device direct-FM extension API, whereas in
4706 OSS compatible mode, FM registers can be accessed with OSS
4707 direct-FM compatible API on <filename>/dev/dmfmX</filename> device.
4708 </para>
4709
4710 <para>
4711 For creating the OPL3 component, you have two functions to
4712 call. The first one is a constructor for <type>opl3_t</type>
4713 instance.
4714
4715 <informalexample>
4716 <programlisting>
4717<![CDATA[
446ab5f5 4718 struct snd_opl3 *opl3;
1da177e4
LT
4719 snd_opl3_create(card, lport, rport, OPL3_HW_OPL3_XXX,
4720 integrated, &opl3);
4721]]>
4722 </programlisting>
4723 </informalexample>
4724 </para>
4725
4726 <para>
4727 The first argument is the card pointer, the second one is the
4728 left port address, and the third is the right port address. In
4729 most cases, the right port is placed at the left port + 2.
4730 </para>
4731
4732 <para>
4733 The fourth argument is the hardware type.
4734 </para>
4735
4736 <para>
4737 When the left and right ports have been already allocated by
4738 the card driver, pass non-zero to the fifth argument
4739 (<parameter>integrated</parameter>). Otherwise, opl3 module will
4740 allocate the specified ports by itself.
4741 </para>
4742
4743 <para>
4744 When the accessing to the hardware requires special method
4745 instead of the standard I/O access, you can create opl3 instance
4746 separately with <function>snd_opl3_new()</function>.
4747
4748 <informalexample>
4749 <programlisting>
4750<![CDATA[
446ab5f5 4751 struct snd_opl3 *opl3;
1da177e4
LT
4752 snd_opl3_new(card, OPL3_HW_OPL3_XXX, &opl3);
4753]]>
4754 </programlisting>
4755 </informalexample>
4756 </para>
4757
4758 <para>
4759 Then set <structfield>command</structfield>,
4760 <structfield>private_data</structfield> and
4761 <structfield>private_free</structfield> for the private
4762 access function, the private data and the destructor.
4763 The l_port and r_port are not necessarily set. Only the
4764 command must be set properly. You can retrieve the data
4765 from opl3-&gt;private_data field.
4766 </para>
4767
4768 <para>
4769 After creating the opl3 instance via <function>snd_opl3_new()</function>,
4770 call <function>snd_opl3_init()</function> to initialize the chip to the
4771 proper state. Note that <function>snd_opl3_create()</function> always
4772 calls it internally.
4773 </para>
4774
4775 <para>
4776 If the opl3 instance is created successfully, then create a
4777 hwdep device for this opl3.
4778
4779 <informalexample>
4780 <programlisting>
4781<![CDATA[
446ab5f5 4782 struct snd_hwdep *opl3hwdep;
1da177e4
LT
4783 snd_opl3_hwdep_new(opl3, 0, 1, &opl3hwdep);
4784]]>
4785 </programlisting>
4786 </informalexample>
4787 </para>
4788
4789 <para>
4790 The first argument is the <type>opl3_t</type> instance you
4791 created, and the second is the index number, usually 0.
4792 </para>
4793
4794 <para>
4795 The third argument is the index-offset for the sequencer
4796 client assigned to the OPL3 port. When there is an MPU401-UART,
4797 give 1 for here (UART always takes 0).
4798 </para>
4799 </section>
4800
4801 <section id="misc-devices-hardware-dependent">
4802 <title>Hardware-Dependent Devices</title>
4803 <para>
4804 Some chips need the access from the user-space for special
4805 controls or for loading the micro code. In such a case, you can
4806 create a hwdep (hardware-dependent) device. The hwdep API is
4807 defined in <filename>&lt;sound/hwdep.h&gt;</filename>. You can
4808 find examples in opl3 driver or
4809 <filename>isa/sb/sb16_csp.c</filename>.
4810 </para>
4811
4812 <para>
4813 Creation of the <type>hwdep</type> instance is done via
4814 <function>snd_hwdep_new()</function>.
4815
4816 <informalexample>
4817 <programlisting>
4818<![CDATA[
446ab5f5 4819 struct snd_hwdep *hw;
1da177e4
LT
4820 snd_hwdep_new(card, "My HWDEP", 0, &hw);
4821]]>
4822 </programlisting>
4823 </informalexample>
4824
4825 where the third argument is the index number.
4826 </para>
4827
4828 <para>
4829 You can then pass any pointer value to the
4830 <parameter>private_data</parameter>.
4831 If you assign a private data, you should define the
4832 destructor, too. The destructor function is set to
4833 <structfield>private_free</structfield> field.
4834
4835 <informalexample>
4836 <programlisting>
4837<![CDATA[
446ab5f5 4838 struct mydata *p = kmalloc(sizeof(*p), GFP_KERNEL);
1da177e4
LT
4839 hw->private_data = p;
4840 hw->private_free = mydata_free;
4841]]>
4842 </programlisting>
4843 </informalexample>
4844
4845 and the implementation of destructor would be:
4846
4847 <informalexample>
4848 <programlisting>
4849<![CDATA[
446ab5f5 4850 static void mydata_free(struct snd_hwdep *hw)
1da177e4 4851 {
446ab5f5 4852 struct mydata *p = hw->private_data;
1da177e4
LT
4853 kfree(p);
4854 }
4855]]>
4856 </programlisting>
4857 </informalexample>
4858 </para>
4859
4860 <para>
4861 The arbitrary file operations can be defined for this
4862 instance. The file operators are defined in
4863 <parameter>ops</parameter> table. For example, assume that
4864 this chip needs an ioctl.
4865
4866 <informalexample>
4867 <programlisting>
4868<![CDATA[
4869 hw->ops.open = mydata_open;
4870 hw->ops.ioctl = mydata_ioctl;
4871 hw->ops.release = mydata_release;
4872]]>
4873 </programlisting>
4874 </informalexample>
4875
4876 And implement the callback functions as you like.
4877 </para>
4878 </section>
4879
4880 <section id="misc-devices-IEC958">
4881 <title>IEC958 (S/PDIF)</title>
4882 <para>
4883 Usually the controls for IEC958 devices are implemented via
4884 control interface. There is a macro to compose a name string for
4885 IEC958 controls, <function>SNDRV_CTL_NAME_IEC958()</function>
4886 defined in <filename>&lt;include/asound.h&gt;</filename>.
4887 </para>
4888
4889 <para>
4890 There are some standard controls for IEC958 status bits. These
4891 controls use the type <type>SNDRV_CTL_ELEM_TYPE_IEC958</type>,
4892 and the size of element is fixed as 4 bytes array
4893 (value.iec958.status[x]). For <structfield>info</structfield>
4894 callback, you don't specify
4895 the value field for this type (the count field must be set,
4896 though).
4897 </para>
4898
4899 <para>
4900 <quote>IEC958 Playback Con Mask</quote> is used to return the
4901 bit-mask for the IEC958 status bits of consumer mode. Similarly,
4902 <quote>IEC958 Playback Pro Mask</quote> returns the bitmask for
4903 professional mode. They are read-only controls, and are defined
4904 as MIXER controls (iface =
4905 <constant>SNDRV_CTL_ELEM_IFACE_MIXER</constant>).
4906 </para>
4907
4908 <para>
4909 Meanwhile, <quote>IEC958 Playback Default</quote> control is
4910 defined for getting and setting the current default IEC958
4911 bits. Note that this one is usually defined as a PCM control
4912 (iface = <constant>SNDRV_CTL_ELEM_IFACE_PCM</constant>),
4913 although in some places it's defined as a MIXER control.
4914 </para>
4915
4916 <para>
4917 In addition, you can define the control switches to
4918 enable/disable or to set the raw bit mode. The implementation
4919 will depend on the chip, but the control should be named as
4920 <quote>IEC958 xxx</quote>, preferably using
4921 <function>SNDRV_CTL_NAME_IEC958()</function> macro.
4922 </para>
4923
4924 <para>
4925 You can find several cases, for example,
4926 <filename>pci/emu10k1</filename>,
4927 <filename>pci/ice1712</filename>, or
4928 <filename>pci/cmipci.c</filename>.
4929 </para>
4930 </section>
4931
4932 </chapter>
4933
4934
4935<!-- ****************************************************** -->
4936<!-- Buffer and Memory Management -->
4937<!-- ****************************************************** -->
4938 <chapter id="buffer-and-memory">
4939 <title>Buffer and Memory Management</title>
4940
4941 <section id="buffer-and-memory-buffer-types">
4942 <title>Buffer Types</title>
4943 <para>
4944 ALSA provides several different buffer allocation functions
4945 depending on the bus and the architecture. All these have a
4946 consistent API. The allocation of physically-contiguous pages is
4947 done via
4948 <function>snd_malloc_xxx_pages()</function> function, where xxx
4949 is the bus type.
4950 </para>
4951
4952 <para>
4953 The allocation of pages with fallback is
4954 <function>snd_malloc_xxx_pages_fallback()</function>. This
4955 function tries to allocate the specified pages but if the pages
4956 are not available, it tries to reduce the page sizes until the
4957 enough space is found.
4958 </para>
4959
4960 <para>
4961 For releasing the space, call
4962 <function>snd_free_xxx_pages()</function> function.
4963 </para>
4964
4965 <para>
4966 Usually, ALSA drivers try to allocate and reserve
4967 a large contiguous physical space
4968 at the time the module is loaded for the later use.
4969 This is called <quote>pre-allocation</quote>.
4970 As already written, you can call the following function at the
4971 construction of pcm instance (in the case of PCI bus).
4972
4973 <informalexample>
4974 <programlisting>
4975<![CDATA[
4976 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
4977 snd_dma_pci_data(pci), size, max);
4978]]>
4979 </programlisting>
4980 </informalexample>
4981
4982 where <parameter>size</parameter> is the byte size to be
4983 pre-allocated and the <parameter>max</parameter> is the maximal
4984 size to be changed via <filename>prealloc</filename> proc file.
4985 The allocator will try to get as large area as possible
4986 within the given size.
4987 </para>
4988
4989 <para>
4990 The second argument (type) and the third argument (device pointer)
4991 are dependent on the bus.
4992 In the case of ISA bus, pass <function>snd_dma_isa_data()</function>
4993 as the third argument with <constant>SNDRV_DMA_TYPE_DEV</constant> type.
4994 For the continuous buffer unrelated to the bus can be pre-allocated
4995 with <constant>SNDRV_DMA_TYPE_CONTINUOUS</constant> type and the
4996 <function>snd_dma_continuous_data(GFP_KERNEL)</function> device pointer,
4997 whereh <constant>GFP_KERNEL</constant> is the kernel allocation flag to
4998 use. For the SBUS, <constant>SNDRV_DMA_TYPE_SBUS</constant> and
4999 <function>snd_dma_sbus_data(sbus_dev)</function> are used instead.
5000 For the PCI scatter-gather buffers, use
5001 <constant>SNDRV_DMA_TYPE_DEV_SG</constant> with
5002 <function>snd_dma_pci_data(pci)</function>
5003 (see the section
5004 <link linkend="buffer-and-memory-non-contiguous"><citetitle>Non-Contiguous Buffers
5005 </citetitle></link>).
5006 </para>
5007
5008 <para>
5009 Once when the buffer is pre-allocated, you can use the
5010 allocator in the <structfield>hw_params</structfield> callback
5011
5012 <informalexample>
5013 <programlisting>
5014<![CDATA[
5015 snd_pcm_lib_malloc_pages(substream, size);
5016]]>
5017 </programlisting>
5018 </informalexample>
5019
5020 Note that you have to pre-allocate to use this function.
5021 </para>
5022 </section>
5023
5024 <section id="buffer-and-memory-external-hardware">
5025 <title>External Hardware Buffers</title>
5026 <para>
5027 Some chips have their own hardware buffers and the DMA
5028 transfer from the host memory is not available. In such a case,
5029 you need to either 1) copy/set the audio data directly to the
5030 external hardware buffer, or 2) make an intermediate buffer and
5031 copy/set the data from it to the external hardware buffer in
5032 interrupts (or in tasklets, preferably).
5033 </para>
5034
5035 <para>
5036 The first case works fine if the external hardware buffer is enough
5037 large. This method doesn't need any extra buffers and thus is
5038 more effective. You need to define the
5039 <structfield>copy</structfield> and
5040 <structfield>silence</structfield> callbacks for
5041 the data transfer. However, there is a drawback: it cannot
5042 be mmapped. The examples are GUS's GF1 PCM or emu8000's
5043 wavetable PCM.
5044 </para>
5045
5046 <para>
5047 The second case allows the mmap of the buffer, although you have
5048 to handle an interrupt or a tasklet for transferring the data
5049 from the intermediate buffer to the hardware buffer. You can find an
5050 example in vxpocket driver.
5051 </para>
5052
5053 <para>
5054 Another case is that the chip uses a PCI memory-map
5055 region for the buffer instead of the host memory. In this case,
5056 mmap is available only on certain architectures like intel. In
5057 non-mmap mode, the data cannot be transferred as the normal
5058 way. Thus you need to define <structfield>copy</structfield> and
5059 <structfield>silence</structfield> callbacks as well
5060 as in the cases above. The examples are found in
5061 <filename>rme32.c</filename> and <filename>rme96.c</filename>.
5062 </para>
5063
5064 <para>
5065 The implementation of <structfield>copy</structfield> and
5066 <structfield>silence</structfield> callbacks depends upon
5067 whether the hardware supports interleaved or non-interleaved
5068 samples. The <structfield>copy</structfield> callback is
5069 defined like below, a bit
5070 differently depending whether the direction is playback or
5071 capture:
5072
5073 <informalexample>
5074 <programlisting>
5075<![CDATA[
446ab5f5 5076 static int playback_copy(struct snd_pcm_substream *substream, int channel,
1da177e4 5077 snd_pcm_uframes_t pos, void *src, snd_pcm_uframes_t count);
446ab5f5 5078 static int capture_copy(struct snd_pcm_substream *substream, int channel,
1da177e4
LT
5079 snd_pcm_uframes_t pos, void *dst, snd_pcm_uframes_t count);
5080]]>
5081 </programlisting>
5082 </informalexample>
5083 </para>
5084
5085 <para>
5086 In the case of interleaved samples, the second argument
5087 (<parameter>channel</parameter>) is not used. The third argument
5088 (<parameter>pos</parameter>) points the
5089 current position offset in frames.
5090 </para>
5091
5092 <para>
5093 The meaning of the fourth argument is different between
5094 playback and capture. For playback, it holds the source data
5095 pointer, and for capture, it's the destination data pointer.
5096 </para>
5097
5098 <para>
5099 The last argument is the number of frames to be copied.
5100 </para>
5101
5102 <para>
5103 What you have to do in this callback is again different
5104 between playback and capture directions. In the case of
5105 playback, you do: copy the given amount of data
5106 (<parameter>count</parameter>) at the specified pointer
5107 (<parameter>src</parameter>) to the specified offset
5108 (<parameter>pos</parameter>) on the hardware buffer. When
5109 coded like memcpy-like way, the copy would be like:
5110
5111 <informalexample>
5112 <programlisting>
5113<![CDATA[
5114 my_memcpy(my_buffer + frames_to_bytes(runtime, pos), src,
5115 frames_to_bytes(runtime, count));
5116]]>
5117 </programlisting>
5118 </informalexample>
5119 </para>
5120
5121 <para>
5122 For the capture direction, you do: copy the given amount of
5123 data (<parameter>count</parameter>) at the specified offset
5124 (<parameter>pos</parameter>) on the hardware buffer to the
5125 specified pointer (<parameter>dst</parameter>).
5126
5127 <informalexample>
5128 <programlisting>
5129<![CDATA[
5130 my_memcpy(dst, my_buffer + frames_to_bytes(runtime, pos),
5131 frames_to_bytes(runtime, count));
5132]]>
5133 </programlisting>
5134 </informalexample>
5135
5136 Note that both of the position and the data amount are given
5137 in frames.
5138 </para>
5139
5140 <para>
5141 In the case of non-interleaved samples, the implementation
5142 will be a bit more complicated.
5143 </para>
5144
5145 <para>
5146 You need to check the channel argument, and if it's -1, copy
5147 the whole channels. Otherwise, you have to copy only the
5148 specified channel. Please check
5149 <filename>isa/gus/gus_pcm.c</filename> as an example.
5150 </para>
5151
5152 <para>
5153 The <structfield>silence</structfield> callback is also
5154 implemented in a similar way.
5155
5156 <informalexample>
5157 <programlisting>
5158<![CDATA[
446ab5f5 5159 static int silence(struct snd_pcm_substream *substream, int channel,
1da177e4
LT
5160 snd_pcm_uframes_t pos, snd_pcm_uframes_t count);
5161]]>
5162 </programlisting>
5163 </informalexample>
5164 </para>
5165
5166 <para>
5167 The meanings of arguments are identical with the
5168 <structfield>copy</structfield>
5169 callback, although there is no <parameter>src/dst</parameter>
5170 argument. In the case of interleaved samples, the channel
5171 argument has no meaning, as well as on
5172 <structfield>copy</structfield> callback.
5173 </para>
5174
5175 <para>
5176 The role of <structfield>silence</structfield> callback is to
5177 set the given amount
5178 (<parameter>count</parameter>) of silence data at the
5179 specified offset (<parameter>pos</parameter>) on the hardware
5180 buffer. Suppose that the data format is signed (that is, the
5181 silent-data is 0), and the implementation using a memset-like
5182 function would be like:
5183
5184 <informalexample>
5185 <programlisting>
5186<![CDATA[
5187 my_memcpy(my_buffer + frames_to_bytes(runtime, pos), 0,
5188 frames_to_bytes(runtime, count));
5189]]>
5190 </programlisting>
5191 </informalexample>
5192 </para>
5193
5194 <para>
5195 In the case of non-interleaved samples, again, the
5196 implementation becomes a bit more complicated. See, for example,
5197 <filename>isa/gus/gus_pcm.c</filename>.
5198 </para>
5199 </section>
5200
5201 <section id="buffer-and-memory-non-contiguous">
5202 <title>Non-Contiguous Buffers</title>
5203 <para>
5204 If your hardware supports the page table like emu10k1 or the
5205 buffer descriptors like via82xx, you can use the scatter-gather
5206 (SG) DMA. ALSA provides an interface for handling SG-buffers.
5207 The API is provided in <filename>&lt;sound/pcm.h&gt;</filename>.
5208 </para>
5209
5210 <para>
5211 For creating the SG-buffer handler, call
5212 <function>snd_pcm_lib_preallocate_pages()</function> or
5213 <function>snd_pcm_lib_preallocate_pages_for_all()</function>
5214 with <constant>SNDRV_DMA_TYPE_DEV_SG</constant>
5215 in the PCM constructor like other PCI pre-allocator.
5216 You need to pass the <function>snd_dma_pci_data(pci)</function>,
5217 where pci is the struct <structname>pci_dev</structname> pointer
5218 of the chip as well.
44275f18 5219 The <type>struct snd_sg_buf</type> instance is created as
1da177e4
LT
5220 substream-&gt;dma_private. You can cast
5221 the pointer like:
5222
5223 <informalexample>
5224 <programlisting>
5225<![CDATA[
44275f18 5226 struct snd_sg_buf *sgbuf = (struct snd_sg_buf *)substream->dma_private;
1da177e4
LT
5227]]>
5228 </programlisting>
5229 </informalexample>
5230 </para>
5231
5232 <para>
5233 Then call <function>snd_pcm_lib_malloc_pages()</function>
5234 in <structfield>hw_params</structfield> callback
5235 as well as in the case of normal PCI buffer.
5236 The SG-buffer handler will allocate the non-contiguous kernel
5237 pages of the given size and map them onto the virtually contiguous
5238 memory. The virtual pointer is addressed in runtime-&gt;dma_area.
5239 The physical address (runtime-&gt;dma_addr) is set to zero,
5240 because the buffer is physically non-contigous.
5241 The physical address table is set up in sgbuf-&gt;table.
5242 You can get the physical address at a certain offset via
5243 <function>snd_pcm_sgbuf_get_addr()</function>.
5244 </para>
5245
5246 <para>
5247 When a SG-handler is used, you need to set
5248 <function>snd_pcm_sgbuf_ops_page</function> as
5249 the <structfield>page</structfield> callback.
5250 (See <link linkend="pcm-interface-operators-page-callback">
5251 <citetitle>page callback section</citetitle></link>.)
5252 </para>
5253
5254 <para>
5255 For releasing the data, call
5256 <function>snd_pcm_lib_free_pages()</function> in the
5257 <structfield>hw_free</structfield> callback as usual.
5258 </para>
5259 </section>
5260
5261 <section id="buffer-and-memory-vmalloced">
5262 <title>Vmalloc'ed Buffers</title>
5263 <para>
5264 It's possible to use a buffer allocated via
5265 <function>vmalloc</function>, for example, for an intermediate
5266 buffer. Since the allocated pages are not contiguous, you need
5267 to set the <structfield>page</structfield> callback to obtain
5268 the physical address at every offset.
5269 </para>
5270
5271 <para>
5272 The implementation of <structfield>page</structfield> callback
5273 would be like this:
5274
5275 <informalexample>
5276 <programlisting>
5277<![CDATA[
5278 #include <linux/vmalloc.h>
5279
5280 /* get the physical page pointer on the given offset */
446ab5f5 5281 static struct page *mychip_page(struct snd_pcm_substream *substream,
1da177e4
LT
5282 unsigned long offset)
5283 {
5284 void *pageptr = substream->runtime->dma_area + offset;
5285 return vmalloc_to_page(pageptr);
5286 }
5287]]>
5288 </programlisting>
5289 </informalexample>
5290 </para>
5291 </section>
5292
5293 </chapter>
5294
5295
5296<!-- ****************************************************** -->
5297<!-- Proc Interface -->
5298<!-- ****************************************************** -->
5299 <chapter id="proc-interface">
5300 <title>Proc Interface</title>
5301 <para>
5302 ALSA provides an easy interface for procfs. The proc files are
5303 very useful for debugging. I recommend you set up proc files if
5304 you write a driver and want to get a running status or register
5305 dumps. The API is found in
5306 <filename>&lt;sound/info.h&gt;</filename>.
5307 </para>
5308
5309 <para>
5310 For creating a proc file, call
5311 <function>snd_card_proc_new()</function>.
5312
5313 <informalexample>
5314 <programlisting>
5315<![CDATA[
446ab5f5 5316 struct snd_info_entry *entry;
1da177e4
LT
5317 int err = snd_card_proc_new(card, "my-file", &entry);
5318]]>
5319 </programlisting>
5320 </informalexample>
5321
5322 where the second argument specifies the proc-file name to be
5323 created. The above example will create a file
5324 <filename>my-file</filename> under the card directory,
5325 e.g. <filename>/proc/asound/card0/my-file</filename>.
5326 </para>
5327
5328 <para>
5329 Like other components, the proc entry created via
5330 <function>snd_card_proc_new()</function> will be registered and
5331 released automatically in the card registration and release
5332 functions.
5333 </para>
5334
5335 <para>
5336 When the creation is successful, the function stores a new
5337 instance at the pointer given in the third argument.
5338 It is initialized as a text proc file for read only. For using
5339 this proc file as a read-only text file as it is, set the read
5340 callback with a private data via
5341 <function>snd_info_set_text_ops()</function>.
5342
5343 <informalexample>
5344 <programlisting>
5345<![CDATA[
bf850204 5346 snd_info_set_text_ops(entry, chip, my_proc_read);
1da177e4
LT
5347]]>
5348 </programlisting>
5349 </informalexample>
5350
5351 where the second argument (<parameter>chip</parameter>) is the
5352 private data to be used in the callbacks. The third parameter
5353 specifies the read buffer size and the fourth
5354 (<parameter>my_proc_read</parameter>) is the callback function, which
5355 is defined like
5356
5357 <informalexample>
5358 <programlisting>
5359<![CDATA[
446ab5f5
TI
5360 static void my_proc_read(struct snd_info_entry *entry,
5361 struct snd_info_buffer *buffer);
1da177e4
LT
5362]]>
5363 </programlisting>
5364 </informalexample>
5365
5366 </para>
5367
5368 <para>
5369 In the read callback, use <function>snd_iprintf()</function> for
5370 output strings, which works just like normal
5371 <function>printf()</function>. For example,
5372
5373 <informalexample>
5374 <programlisting>
5375<![CDATA[
446ab5f5
TI
5376 static void my_proc_read(struct snd_info_entry *entry,
5377 struct snd_info_buffer *buffer)
1da177e4 5378 {
446ab5f5 5379 struct my_chip *chip = entry->private_data;
1da177e4
LT
5380
5381 snd_iprintf(buffer, "This is my chip!\n");
5382 snd_iprintf(buffer, "Port = %ld\n", chip->port);
5383 }
5384]]>
5385 </programlisting>
5386 </informalexample>
5387 </para>
5388
5389 <para>
5390 The file permission can be changed afterwards. As default, it's
5391 set as read only for all users. If you want to add the write
5392 permission to the user (root as default), set like below:
5393
5394 <informalexample>
5395 <programlisting>
5396<![CDATA[
5397 entry->mode = S_IFREG | S_IRUGO | S_IWUSR;
5398]]>
5399 </programlisting>
5400 </informalexample>
5401
5402 and set the write buffer size and the callback
5403
5404 <informalexample>
5405 <programlisting>
5406<![CDATA[
1da177e4
LT
5407 entry->c.text.write = my_proc_write;
5408]]>
5409 </programlisting>
5410 </informalexample>
5411 </para>
5412
1da177e4
LT
5413 <para>
5414 For the write callback, you can use
5415 <function>snd_info_get_line()</function> to get a text line, and
5416 <function>snd_info_get_str()</function> to retrieve a string from
5417 the line. Some examples are found in
5418 <filename>core/oss/mixer_oss.c</filename>, core/oss/and
5419 <filename>pcm_oss.c</filename>.
5420 </para>
5421
5422 <para>
5423 For a raw-data proc-file, set the attributes like the following:
5424
5425 <informalexample>
5426 <programlisting>
5427<![CDATA[
5428 static struct snd_info_entry_ops my_file_io_ops = {
5429 .read = my_file_io_read,
5430 };
5431
5432 entry->content = SNDRV_INFO_CONTENT_DATA;
5433 entry->private_data = chip;
5434 entry->c.ops = &my_file_io_ops;
5435 entry->size = 4096;
5436 entry->mode = S_IFREG | S_IRUGO;
5437]]>
5438 </programlisting>
5439 </informalexample>
5440 </para>
5441
5442 <para>
5443 The callback is much more complicated than the text-file
5444 version. You need to use a low-level i/o functions such as
5445 <function>copy_from/to_user()</function> to transfer the
5446 data.
5447
5448 <informalexample>
5449 <programlisting>
5450<![CDATA[
446ab5f5 5451 static long my_file_io_read(struct snd_info_entry *entry,
1da177e4
LT
5452 void *file_private_data,
5453 struct file *file,
5454 char *buf,
5455 unsigned long count,
5456 unsigned long pos)
5457 {
5458 long size = count;
5459 if (pos + size > local_max_size)
5460 size = local_max_size - pos;
5461 if (copy_to_user(buf, local_data + pos, size))
5462 return -EFAULT;
5463 return size;
5464 }
5465]]>
5466 </programlisting>
5467 </informalexample>
5468 </para>
5469
5470 </chapter>
5471
5472
5473<!-- ****************************************************** -->
5474<!-- Power Management -->
5475<!-- ****************************************************** -->
5476 <chapter id="power-management">
5477 <title>Power Management</title>
5478 <para>
670e9f34 5479 If the chip is supposed to work with suspend/resume
1da177e4
LT
5480 functions, you need to add the power-management codes to the
5481 driver. The additional codes for the power-management should be
5482 <function>ifdef</function>'ed with
5483 <constant>CONFIG_PM</constant>.
5484 </para>
5485
5fe76e4d
TI
5486 <para>
5487 If the driver supports the suspend/resume
5488 <emphasis>fully</emphasis>, that is, the device can be
5489 properly resumed to the status at the suspend is called,
5490 you can set <constant>SNDRV_PCM_INFO_RESUME</constant> flag
5491 to pcm info field. Usually, this is possible when the
5492 registers of ths chip can be safely saved and restored to the
5493 RAM. If this is set, the trigger callback is called with
5494 <constant>SNDRV_PCM_TRIGGER_RESUME</constant> after resume
5495 callback is finished.
5496 </para>
5497
5498 <para>
5499 Even if the driver doesn't support PM fully but only the
5500 partial suspend/resume is possible, it's still worthy to
5501 implement suspend/resume callbacks. In such a case, applications
5502 would reset the status by calling
5503 <function>snd_pcm_prepare()</function> and restart the stream
5504 appropriately. Hence, you can define suspend/resume callbacks
5505 below but don't set <constant>SNDRV_PCM_INFO_RESUME</constant>
5506 info flag to the PCM.
5507 </para>
5508
5509 <para>
5510 Note that the trigger with SUSPEND can be always called when
5511 <function>snd_pcm_suspend_all</function> is called,
5512 regardless of <constant>SNDRV_PCM_INFO_RESUME</constant> flag.
5513 The <constant>RESUME</constant> flag affects only the behavior
5514 of <function>snd_pcm_resume()</function>.
5515 (Thus, in theory,
5516 <constant>SNDRV_PCM_TRIGGER_RESUME</constant> isn't needed
5517 to be handled in the trigger callback when no
5518 <constant>SNDRV_PCM_INFO_RESUME</constant> flag is set. But,
5519 it's better to keep it for compatibility reason.)
5520 </para>
1da177e4 5521 <para>
5fe76e4d
TI
5522 In the earlier version of ALSA drivers, a common
5523 power-management layer was provided, but it has been removed.
5524 The driver needs to define the suspend/resume hooks according to
5525 the bus the device is assigned. In the case of PCI driver, the
5526 callbacks look like below:
1da177e4
LT
5527
5528 <informalexample>
5529 <programlisting>
5530<![CDATA[
5531 #ifdef CONFIG_PM
5fe76e4d 5532 static int snd_my_suspend(struct pci_dev *pci, pm_message_t state)
1da177e4 5533 {
5fe76e4d 5534 .... /* do things for suspsend */
1da177e4
LT
5535 return 0;
5536 }
5fe76e4d 5537 static int snd_my_resume(struct pci_dev *pci)
1da177e4 5538 {
5fe76e4d 5539 .... /* do things for suspsend */
1da177e4
LT
5540 return 0;
5541 }
5542 #endif
5543]]>
5544 </programlisting>
5545 </informalexample>
5546 </para>
5547
5548 <para>
5549 The scheme of the real suspend job is as following.
5550
5551 <orderedlist>
5fe76e4d
TI
5552 <listitem><para>Retrieve the card and the chip data.</para></listitem>
5553 <listitem><para>Call <function>snd_power_change_state()</function> with
5554 <constant>SNDRV_CTL_POWER_D3hot</constant> to change the
5555 power status.</para></listitem>
1da177e4 5556 <listitem><para>Call <function>snd_pcm_suspend_all()</function> to suspend the running PCM streams.</para></listitem>
5fe76e4d 5557 <listitem><para>If AC97 codecs are used, call
a7306336 5558 <function>snd_ac97_suspend()</function> for each codec.</para></listitem>
1da177e4
LT
5559 <listitem><para>Save the register values if necessary.</para></listitem>
5560 <listitem><para>Stop the hardware if necessary.</para></listitem>
5fe76e4d
TI
5561 <listitem><para>Disable the PCI device by calling
5562 <function>pci_disable_device()</function>. Then, call
5563 <function>pci_save_state()</function> at last.</para></listitem>
1da177e4
LT
5564 </orderedlist>
5565 </para>
5566
5567 <para>
5568 A typical code would be like:
5569
5570 <informalexample>
5571 <programlisting>
5572<![CDATA[
32357988 5573 static int mychip_suspend(struct pci_dev *pci, pm_message_t state)
1da177e4
LT
5574 {
5575 /* (1) */
5fe76e4d
TI
5576 struct snd_card *card = pci_get_drvdata(pci);
5577 struct mychip *chip = card->private_data;
1da177e4 5578 /* (2) */
5fe76e4d 5579 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
1da177e4 5580 /* (3) */
5fe76e4d 5581 snd_pcm_suspend_all(chip->pcm);
1da177e4 5582 /* (4) */
5fe76e4d 5583 snd_ac97_suspend(chip->ac97);
1da177e4 5584 /* (5) */
5fe76e4d
TI
5585 snd_mychip_save_registers(chip);
5586 /* (6) */
5587 snd_mychip_stop_hardware(chip);
5588 /* (7) */
5589 pci_disable_device(pci);
5590 pci_save_state(pci);
1da177e4
LT
5591 return 0;
5592 }
5593]]>
5594 </programlisting>
5595 </informalexample>
5596 </para>
5597
5598 <para>
5599 The scheme of the real resume job is as following.
5600
5601 <orderedlist>
5fe76e4d
TI
5602 <listitem><para>Retrieve the card and the chip data.</para></listitem>
5603 <listitem><para>Set up PCI. First, call <function>pci_restore_state()</function>.
5604 Then enable the pci device again by calling <function>pci_enable_device()</function>.
5605 Call <function>pci_set_master()</function> if necessary, too.</para></listitem>
1da177e4
LT
5606 <listitem><para>Re-initialize the chip.</para></listitem>
5607 <listitem><para>Restore the saved registers if necessary.</para></listitem>
5608 <listitem><para>Resume the mixer, e.g. calling
5609 <function>snd_ac97_resume()</function>.</para></listitem>
5610 <listitem><para>Restart the hardware (if any).</para></listitem>
5fe76e4d
TI
5611 <listitem><para>Call <function>snd_power_change_state()</function> with
5612 <constant>SNDRV_CTL_POWER_D0</constant> to notify the processes.</para></listitem>
1da177e4
LT
5613 </orderedlist>
5614 </para>
5615
5616 <para>
5617 A typical code would be like:
5618
5619 <informalexample>
5620 <programlisting>
5621<![CDATA[
5fe76e4d 5622 static int mychip_resume(struct pci_dev *pci)
1da177e4
LT
5623 {
5624 /* (1) */
5fe76e4d
TI
5625 struct snd_card *card = pci_get_drvdata(pci);
5626 struct mychip *chip = card->private_data;
1da177e4 5627 /* (2) */
5fe76e4d
TI
5628 pci_restore_state(pci);
5629 pci_enable_device(pci);
5630 pci_set_master(pci);
1da177e4
LT
5631 /* (3) */
5632 snd_mychip_reinit_chip(chip);
5633 /* (4) */
5634 snd_mychip_restore_registers(chip);
5635 /* (5) */
5636 snd_ac97_resume(chip->ac97);
5637 /* (6) */
5638 snd_mychip_restart_chip(chip);
5fe76e4d
TI
5639 /* (7) */
5640 snd_power_change_state(card, SNDRV_CTL_POWER_D0);
1da177e4
LT
5641 return 0;
5642 }
5643]]>
5644 </programlisting>
5645 </informalexample>
5646 </para>
5647
5648 <para>
5fe76e4d
TI
5649 As shown in the above, it's better to save registers after
5650 suspending the PCM operations via
5651 <function>snd_pcm_suspend_all()</function> or
5652 <function>snd_pcm_suspend()</function>. It means that the PCM
5653 streams are already stoppped when the register snapshot is
5654 taken. But, remind that you don't have to restart the PCM
5655 stream in the resume callback. It'll be restarted via
5656 trigger call with <constant>SNDRV_PCM_TRIGGER_RESUME</constant>
5657 when necessary.
5658 </para>
5659
5660 <para>
5661 OK, we have all callbacks now. Let's set them up. In the
5662 initialization of the card, make sure that you can get the chip
5663 data from the card instance, typically via
5664 <structfield>private_data</structfield> field, in case you
5665 created the chip data individually.
5666
5667 <informalexample>
5668 <programlisting>
5669<![CDATA[
5670 static int __devinit snd_mychip_probe(struct pci_dev *pci,
5671 const struct pci_device_id *pci_id)
5672 {
5673 ....
5674 struct snd_card *card;
5675 struct mychip *chip;
5676 ....
5677 card = snd_card_new(index[dev], id[dev], THIS_MODULE, NULL);
5678 ....
5679 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
5680 ....
5681 card->private_data = chip;
5682 ....
5683 }
5684]]>
5685 </programlisting>
5686 </informalexample>
5687
5688 When you created the chip data with
5689 <function>snd_card_new()</function>, it's anyway accessible
5690 via <structfield>private_data</structfield> field.
1da177e4
LT
5691
5692 <informalexample>
5693 <programlisting>
5694<![CDATA[
5695 static int __devinit snd_mychip_probe(struct pci_dev *pci,
5696 const struct pci_device_id *pci_id)
5697 {
5698 ....
446ab5f5
TI
5699 struct snd_card *card;
5700 struct mychip *chip;
1da177e4 5701 ....
5fe76e4d
TI
5702 card = snd_card_new(index[dev], id[dev], THIS_MODULE,
5703 sizeof(struct mychip));
5704 ....
5705 chip = card->private_data;
1da177e4
LT
5706 ....
5707 }
5708]]>
5709 </programlisting>
5710 </informalexample>
5711
1da177e4
LT
5712 </para>
5713
5714 <para>
5fe76e4d
TI
5715 If you need a space for saving the registers, allocate the
5716 buffer for it here, too, since it would be fatal
1da177e4
LT
5717 if you cannot allocate a memory in the suspend phase.
5718 The allocated buffer should be released in the corresponding
5719 destructor.
5720 </para>
5721
5722 <para>
5fe76e4d 5723 And next, set suspend/resume callbacks to the pci_driver.
1da177e4
LT
5724
5725 <informalexample>
5726 <programlisting>
5727<![CDATA[
5728 static struct pci_driver driver = {
5729 .name = "My Chip",
5730 .id_table = snd_my_ids,
5731 .probe = snd_my_probe,
5732 .remove = __devexit_p(snd_my_remove),
5fe76e4d
TI
5733 #ifdef CONFIG_PM
5734 .suspend = snd_my_suspend,
5735 .resume = snd_my_resume,
5736 #endif
1da177e4
LT
5737 };
5738]]>
5739 </programlisting>
5740 </informalexample>
5741 </para>
5742
5743 </chapter>
5744
5745
5746<!-- ****************************************************** -->
5747<!-- Module Parameters -->
5748<!-- ****************************************************** -->
5749 <chapter id="module-parameters">
5750 <title>Module Parameters</title>
5751 <para>
5752 There are standard module options for ALSA. At least, each
5753 module should have <parameter>index</parameter>,
5754 <parameter>id</parameter> and <parameter>enable</parameter>
5755 options.
5756 </para>
5757
5758 <para>
5759 If the module supports multiple cards (usually up to
5760 8 = <constant>SNDRV_CARDS</constant> cards), they should be
5761 arrays. The default initial values are defined already as
5762 constants for ease of programming:
5763
5764 <informalexample>
5765 <programlisting>
5766<![CDATA[
5767 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
5768 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
5769 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
5770]]>
5771 </programlisting>
5772 </informalexample>
5773 </para>
5774
5775 <para>
5776 If the module supports only a single card, they could be single
5777 variables, instead. <parameter>enable</parameter> option is not
5778 always necessary in this case, but it wouldn't be so bad to have a
5779 dummy option for compatibility.
5780 </para>
5781
5782 <para>
5783 The module parameters must be declared with the standard
5784 <function>module_param()()</function>,
5785 <function>module_param_array()()</function> and
5786 <function>MODULE_PARM_DESC()</function> macros.
5787 </para>
5788
5789 <para>
5790 The typical coding would be like below:
5791
5792 <informalexample>
5793 <programlisting>
5794<![CDATA[
5795 #define CARD_NAME "My Chip"
5796
5797 module_param_array(index, int, NULL, 0444);
5798 MODULE_PARM_DESC(index, "Index value for " CARD_NAME " soundcard.");
5799 module_param_array(id, charp, NULL, 0444);
5800 MODULE_PARM_DESC(id, "ID string for " CARD_NAME " soundcard.");
5801 module_param_array(enable, bool, NULL, 0444);
5802 MODULE_PARM_DESC(enable, "Enable " CARD_NAME " soundcard.");
5803]]>
5804 </programlisting>
5805 </informalexample>
5806 </para>
5807
5808 <para>
5809 Also, don't forget to define the module description, classes,
5810 license and devices. Especially, the recent modprobe requires to
5811 define the module license as GPL, etc., otherwise the system is
5812 shown as <quote>tainted</quote>.
5813
5814 <informalexample>
5815 <programlisting>
5816<![CDATA[
5817 MODULE_DESCRIPTION("My Chip");
5818 MODULE_LICENSE("GPL");
5819 MODULE_SUPPORTED_DEVICE("{{Vendor,My Chip Name}}");
5820]]>
5821 </programlisting>
5822 </informalexample>
5823 </para>
5824
5825 </chapter>
5826
5827
5828<!-- ****************************************************** -->
5829<!-- How To Put Your Driver -->
5830<!-- ****************************************************** -->
5831 <chapter id="how-to-put-your-driver">
5832 <title>How To Put Your Driver Into ALSA Tree</title>
5833 <section>
5834 <title>General</title>
5835 <para>
5836 So far, you've learned how to write the driver codes.
5837 And you might have a question now: how to put my own
5838 driver into the ALSA driver tree?
5839 Here (finally :) the standard procedure is described briefly.
5840 </para>
5841
5842 <para>
5843 Suppose that you'll create a new PCI driver for the card
5844 <quote>xyz</quote>. The card module name would be
5845 snd-xyz. The new driver is usually put into alsa-driver
5846 tree, <filename>alsa-driver/pci</filename> directory in
5847 the case of PCI cards.
5848 Then the driver is evaluated, audited and tested
5849 by developers and users. After a certain time, the driver
5850 will go to alsa-kernel tree (to the corresponding directory,
5851 such as <filename>alsa-kernel/pci</filename>) and eventually
5852 integrated into Linux 2.6 tree (the directory would be
5853 <filename>linux/sound/pci</filename>).
5854 </para>
5855
5856 <para>
5857 In the following sections, the driver code is supposed
5858 to be put into alsa-driver tree. The two cases are assumed:
5859 a driver consisting of a single source file and one consisting
5860 of several source files.
5861 </para>
5862 </section>
5863
5864 <section>
5865 <title>Driver with A Single Source File</title>
5866 <para>
5867 <orderedlist>
5868 <listitem>
5869 <para>
5870 Modify alsa-driver/pci/Makefile
5871 </para>
5872
5873 <para>
5874 Suppose you have a file xyz.c. Add the following
5875 two lines
5876 <informalexample>
5877 <programlisting>
5878<![CDATA[
5879 snd-xyz-objs := xyz.o
5880 obj-$(CONFIG_SND_XYZ) += snd-xyz.o
5881]]>
5882 </programlisting>
5883 </informalexample>
5884 </para>
5885 </listitem>
5886
5887 <listitem>
5888 <para>
5889 Create the Kconfig entry
5890 </para>
5891
5892 <para>
5893 Add the new entry of Kconfig for your xyz driver.
5894 <informalexample>
5895 <programlisting>
5896<![CDATA[
5897 config SND_XYZ
5898 tristate "Foobar XYZ"
5899 depends on SND
5900 select SND_PCM
5901 help
5902 Say Y here to include support for Foobar XYZ soundcard.
5903
5904 To compile this driver as a module, choose M here: the module
5905 will be called snd-xyz.
5906]]>
5907 </programlisting>
5908 </informalexample>
5909
5910 the line, select SND_PCM, specifies that the driver xyz supports
5911 PCM. In addition to SND_PCM, the following components are
5912 supported for select command:
5913 SND_RAWMIDI, SND_TIMER, SND_HWDEP, SND_MPU401_UART,
5914 SND_OPL3_LIB, SND_OPL4_LIB, SND_VX_LIB, SND_AC97_CODEC.
5915 Add the select command for each supported component.
5916 </para>
5917
5918 <para>
5919 Note that some selections imply the lowlevel selections.
5920 For example, PCM includes TIMER, MPU401_UART includes RAWMIDI,
5921 AC97_CODEC includes PCM, and OPL3_LIB includes HWDEP.
5922 You don't need to give the lowlevel selections again.
5923 </para>
5924
5925 <para>
5926 For the details of Kconfig script, refer to the kbuild
5927 documentation.
5928 </para>
5929
5930 </listitem>
5931
5932 <listitem>
5933 <para>
5934 Run cvscompile script to re-generate the configure script and
5935 build the whole stuff again.
5936 </para>
5937 </listitem>
5938 </orderedlist>
5939 </para>
5940 </section>
5941
5942 <section>
5943 <title>Drivers with Several Source Files</title>
5944 <para>
5945 Suppose that the driver snd-xyz have several source files.
5946 They are located in the new subdirectory,
5947 pci/xyz.
5948
5949 <orderedlist>
5950 <listitem>
5951 <para>
5952 Add a new directory (<filename>xyz</filename>) in
5953 <filename>alsa-driver/pci/Makefile</filename> like below
5954
5955 <informalexample>
5956 <programlisting>
5957<![CDATA[
5958 obj-$(CONFIG_SND) += xyz/
5959]]>
5960 </programlisting>
5961 </informalexample>
5962 </para>
5963 </listitem>
5964
5965 <listitem>
5966 <para>
5967 Under the directory <filename>xyz</filename>, create a Makefile
5968
5969 <example>
5970 <title>Sample Makefile for a driver xyz</title>
5971 <programlisting>
5972<![CDATA[
5973 ifndef SND_TOPDIR
5974 SND_TOPDIR=../..
5975 endif
5976
5977 include $(SND_TOPDIR)/toplevel.config
5978 include $(SND_TOPDIR)/Makefile.conf
5979
5980 snd-xyz-objs := xyz.o abc.o def.o
5981
5982 obj-$(CONFIG_SND_XYZ) += snd-xyz.o
5983
5984 include $(SND_TOPDIR)/Rules.make
5985]]>
5986 </programlisting>
5987 </example>
5988 </para>
5989 </listitem>
5990
5991 <listitem>
5992 <para>
5993 Create the Kconfig entry
5994 </para>
5995
5996 <para>
5997 This procedure is as same as in the last section.
5998 </para>
5999 </listitem>
6000
6001 <listitem>
6002 <para>
6003 Run cvscompile script to re-generate the configure script and
6004 build the whole stuff again.
6005 </para>
6006 </listitem>
6007 </orderedlist>
6008 </para>
6009 </section>
6010
6011 </chapter>
6012
6013<!-- ****************************************************** -->
6014<!-- Useful Functions -->
6015<!-- ****************************************************** -->
6016 <chapter id="useful-functions">
6017 <title>Useful Functions</title>
6018
6019 <section id="useful-functions-snd-printk">
6020 <title><function>snd_printk()</function> and friends</title>
6021 <para>
6022 ALSA provides a verbose version of
6023 <function>printk()</function> function. If a kernel config
6024 <constant>CONFIG_SND_VERBOSE_PRINTK</constant> is set, this
6025 function prints the given message together with the file name
6026 and the line of the caller. The <constant>KERN_XXX</constant>
6027 prefix is processed as
6028 well as the original <function>printk()</function> does, so it's
6029 recommended to add this prefix, e.g.
6030
6031 <informalexample>
6032 <programlisting>
6033<![CDATA[
6034 snd_printk(KERN_ERR "Oh my, sorry, it's extremely bad!\n");
6035]]>
6036 </programlisting>
6037 </informalexample>
6038 </para>
6039
6040 <para>
6041 There are also <function>printk()</function>'s for
6042 debugging. <function>snd_printd()</function> can be used for
6043 general debugging purposes. If
6044 <constant>CONFIG_SND_DEBUG</constant> is set, this function is
6045 compiled, and works just like
6046 <function>snd_printk()</function>. If the ALSA is compiled
6047 without the debugging flag, it's ignored.
6048 </para>
6049
6050 <para>
6051 <function>snd_printdd()</function> is compiled in only when
6052 <constant>CONFIG_SND_DEBUG_DETECT</constant> is set. Please note
6053 that <constant>DEBUG_DETECT</constant> is not set as default
6054 even if you configure the alsa-driver with
6055 <option>--with-debug=full</option> option. You need to give
6056 explicitly <option>--with-debug=detect</option> option instead.
6057 </para>
6058 </section>
6059
6060 <section id="useful-functions-snd-assert">
6061 <title><function>snd_assert()</function></title>
6062 <para>
6063 <function>snd_assert()</function> macro is similar with the
6064 normal <function>assert()</function> macro. For example,
6065
6066 <informalexample>
6067 <programlisting>
6068<![CDATA[
6069 snd_assert(pointer != NULL, return -EINVAL);
6070]]>
6071 </programlisting>
6072 </informalexample>
6073 </para>
6074
6075 <para>
6076 The first argument is the expression to evaluate, and the
6077 second argument is the action if it fails. When
6078 <constant>CONFIG_SND_DEBUG</constant>, is set, it will show an
7c22f1aa
TI
6079 error message such as <computeroutput>BUG? (xxx)</computeroutput>
6080 together with stack trace.
1da177e4 6081 </para>
1da177e4 6082 <para>
7c22f1aa 6083 When no debug flag is set, this macro is ignored.
1da177e4
LT
6084 </para>
6085 </section>
6086
6087 <section id="useful-functions-snd-bug">
6088 <title><function>snd_BUG()</function></title>
6089 <para>
7c22f1aa
TI
6090 It shows <computeroutput>BUG?</computeroutput> message and
6091 stack trace as well as <function>snd_assert</function> at the point.
6092 It's useful to show that a fatal error happens there.
6093 </para>
6094 <para>
6095 When no debug flag is set, this macro is ignored.
1da177e4
LT
6096 </para>
6097 </section>
6098 </chapter>
6099
6100
6101<!-- ****************************************************** -->
6102<!-- Acknowledgments -->
6103<!-- ****************************************************** -->
6104 <chapter id="acknowledments">
6105 <title>Acknowledgments</title>
6106 <para>
6107 I would like to thank Phil Kerr for his help for improvement and
6108 corrections of this document.
6109 </para>
6110 <para>
6111 Kevin Conder reformatted the original plain-text to the
6112 DocBook format.
6113 </para>
6114 <para>
6115 Giuliano Pochini corrected typos and contributed the example codes
6116 in the hardware constraints section.
6117 </para>
6118 </chapter>
6119
6120
6121</book>
This page took 0.495269 seconds and 5 git commands to generate.