KVM: ARM: User space API for getting/setting co-proc registers
[deliverable/linux.git] / Documentation / virtual / kvm / api.txt
CommitLineData
9c1b96e3
AK
1The Definitive KVM (Kernel-based Virtual Machine) API Documentation
2===================================================================
3
41. General description
414fa985 5----------------------
9c1b96e3
AK
6
7The kvm API is a set of ioctls that are issued to control various aspects
8of a virtual machine. The ioctls belong to three classes
9
10 - System ioctls: These query and set global attributes which affect the
11 whole kvm subsystem. In addition a system ioctl is used to create
12 virtual machines
13
14 - VM ioctls: These query and set attributes that affect an entire virtual
15 machine, for example memory layout. In addition a VM ioctl is used to
16 create virtual cpus (vcpus).
17
18 Only run VM ioctls from the same process (address space) that was used
19 to create the VM.
20
21 - vcpu ioctls: These query and set attributes that control the operation
22 of a single virtual cpu.
23
24 Only run vcpu ioctls from the same thread that was used to create the
25 vcpu.
26
414fa985 27
2044892d 282. File descriptors
414fa985 29-------------------
9c1b96e3
AK
30
31The kvm API is centered around file descriptors. An initial
32open("/dev/kvm") obtains a handle to the kvm subsystem; this handle
33can be used to issue system ioctls. A KVM_CREATE_VM ioctl on this
2044892d 34handle will create a VM file descriptor which can be used to issue VM
9c1b96e3
AK
35ioctls. A KVM_CREATE_VCPU ioctl on a VM fd will create a virtual cpu
36and return a file descriptor pointing to it. Finally, ioctls on a vcpu
37fd can be used to control the vcpu, including the important task of
38actually running guest code.
39
40In general file descriptors can be migrated among processes by means
41of fork() and the SCM_RIGHTS facility of unix domain socket. These
42kinds of tricks are explicitly not supported by kvm. While they will
43not cause harm to the host, their actual behavior is not guaranteed by
44the API. The only supported use is one virtual machine per process,
45and one vcpu per thread.
46
414fa985 47
9c1b96e3 483. Extensions
414fa985 49-------------
9c1b96e3
AK
50
51As of Linux 2.6.22, the KVM ABI has been stabilized: no backward
52incompatible change are allowed. However, there is an extension
53facility that allows backward-compatible extensions to the API to be
54queried and used.
55
56The extension mechanism is not based on on the Linux version number.
57Instead, kvm defines extension identifiers and a facility to query
58whether a particular extension identifier is available. If it is, a
59set of ioctls is available for application use.
60
414fa985 61
9c1b96e3 624. API description
414fa985 63------------------
9c1b96e3
AK
64
65This section describes ioctls that can be used to control kvm guests.
66For each ioctl, the following information is provided along with a
67description:
68
69 Capability: which KVM extension provides this ioctl. Can be 'basic',
70 which means that is will be provided by any kernel that supports
71 API version 12 (see section 4.1), or a KVM_CAP_xyz constant, which
72 means availability needs to be checked with KVM_CHECK_EXTENSION
73 (see section 4.4).
74
75 Architectures: which instruction set architectures provide this ioctl.
76 x86 includes both i386 and x86_64.
77
78 Type: system, vm, or vcpu.
79
80 Parameters: what parameters are accepted by the ioctl.
81
82 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
83 are not detailed, but errors with specific meanings are.
84
414fa985 85
9c1b96e3
AK
864.1 KVM_GET_API_VERSION
87
88Capability: basic
89Architectures: all
90Type: system ioctl
91Parameters: none
92Returns: the constant KVM_API_VERSION (=12)
93
94This identifies the API version as the stable kvm API. It is not
95expected that this number will change. However, Linux 2.6.20 and
962.6.21 report earlier versions; these are not documented and not
97supported. Applications should refuse to run if KVM_GET_API_VERSION
98returns a value other than 12. If this check passes, all ioctls
99described as 'basic' will be available.
100
414fa985 101
9c1b96e3
AK
1024.2 KVM_CREATE_VM
103
104Capability: basic
105Architectures: all
106Type: system ioctl
e08b9637 107Parameters: machine type identifier (KVM_VM_*)
9c1b96e3
AK
108Returns: a VM fd that can be used to control the new virtual machine.
109
110The new VM has no virtual cpus and no memory. An mmap() of a VM fd
111will access the virtual machine's physical address space; offset zero
112corresponds to guest physical address zero. Use of mmap() on a VM fd
113is discouraged if userspace memory allocation (KVM_CAP_USER_MEMORY) is
114available.
e08b9637
CO
115You most certainly want to use 0 as machine type.
116
117In order to create user controlled virtual machines on S390, check
118KVM_CAP_S390_UCONTROL and use the flag KVM_VM_S390_UCONTROL as
119privileged user (CAP_SYS_ADMIN).
9c1b96e3 120
414fa985 121
9c1b96e3
AK
1224.3 KVM_GET_MSR_INDEX_LIST
123
124Capability: basic
125Architectures: x86
126Type: system
127Parameters: struct kvm_msr_list (in/out)
128Returns: 0 on success; -1 on error
129Errors:
130 E2BIG: the msr index list is to be to fit in the array specified by
131 the user.
132
133struct kvm_msr_list {
134 __u32 nmsrs; /* number of msrs in entries */
135 __u32 indices[0];
136};
137
138This ioctl returns the guest msrs that are supported. The list varies
139by kvm version and host processor, but does not change otherwise. The
140user fills in the size of the indices array in nmsrs, and in return
141kvm adjusts nmsrs to reflect the actual number of msrs and fills in
142the indices array with their numbers.
143
2e2602ca
AK
144Note: if kvm indicates supports MCE (KVM_CAP_MCE), then the MCE bank MSRs are
145not returned in the MSR list, as different vcpus can have a different number
146of banks, as set via the KVM_X86_SETUP_MCE ioctl.
147
414fa985 148
9c1b96e3
AK
1494.4 KVM_CHECK_EXTENSION
150
151Capability: basic
152Architectures: all
153Type: system ioctl
154Parameters: extension identifier (KVM_CAP_*)
155Returns: 0 if unsupported; 1 (or some other positive integer) if supported
156
157The API allows the application to query about extensions to the core
158kvm API. Userspace passes an extension identifier (an integer) and
159receives an integer that describes the extension availability.
160Generally 0 means no and 1 means yes, but some extensions may report
161additional information in the integer return value.
162
414fa985 163
9c1b96e3
AK
1644.5 KVM_GET_VCPU_MMAP_SIZE
165
166Capability: basic
167Architectures: all
168Type: system ioctl
169Parameters: none
170Returns: size of vcpu mmap area, in bytes
171
172The KVM_RUN ioctl (cf.) communicates with userspace via a shared
173memory region. This ioctl returns the size of that region. See the
174KVM_RUN documentation for details.
175
414fa985 176
9c1b96e3
AK
1774.6 KVM_SET_MEMORY_REGION
178
179Capability: basic
180Architectures: all
181Type: vm ioctl
182Parameters: struct kvm_memory_region (in)
183Returns: 0 on success, -1 on error
184
b74a07be 185This ioctl is obsolete and has been removed.
9c1b96e3 186
414fa985 187
68ba6974 1884.7 KVM_CREATE_VCPU
9c1b96e3
AK
189
190Capability: basic
191Architectures: all
192Type: vm ioctl
193Parameters: vcpu id (apic id on x86)
194Returns: vcpu fd on success, -1 on error
195
196This API adds a vcpu to a virtual machine. The vcpu id is a small integer
8c3ba334
SL
197in the range [0, max_vcpus).
198
199The recommended max_vcpus value can be retrieved using the KVM_CAP_NR_VCPUS of
200the KVM_CHECK_EXTENSION ioctl() at run-time.
201The maximum possible value for max_vcpus can be retrieved using the
202KVM_CAP_MAX_VCPUS of the KVM_CHECK_EXTENSION ioctl() at run-time.
203
76d25402
PE
204If the KVM_CAP_NR_VCPUS does not exist, you should assume that max_vcpus is 4
205cpus max.
8c3ba334
SL
206If the KVM_CAP_MAX_VCPUS does not exist, you should assume that max_vcpus is
207same as the value returned from KVM_CAP_NR_VCPUS.
9c1b96e3 208
371fefd6
PM
209On powerpc using book3s_hv mode, the vcpus are mapped onto virtual
210threads in one or more virtual CPU cores. (This is because the
211hardware requires all the hardware threads in a CPU core to be in the
212same partition.) The KVM_CAP_PPC_SMT capability indicates the number
36442687
AK
213of vcpus per virtual core (vcore). The vcore id is obtained by
214dividing the vcpu id by the number of vcpus per vcore. The vcpus in a
215given vcore will always be in the same physical core as each other
216(though that might be a different physical core from time to time).
217Userspace can control the threading (SMT) mode of the guest by its
218allocation of vcpu ids. For example, if userspace wants
219single-threaded guest vcpus, it should make all vcpu ids be a multiple
220of the number of vcpus per vcore.
221
222On powerpc using book3s_hv mode, the vcpus are mapped onto virtual
223threads in one or more virtual CPU cores. (This is because the
224hardware requires all the hardware threads in a CPU core to be in the
225same partition.) The KVM_CAP_PPC_SMT capability indicates the number
371fefd6
PM
226of vcpus per virtual core (vcore). The vcore id is obtained by
227dividing the vcpu id by the number of vcpus per vcore. The vcpus in a
228given vcore will always be in the same physical core as each other
229(though that might be a different physical core from time to time).
230Userspace can control the threading (SMT) mode of the guest by its
231allocation of vcpu ids. For example, if userspace wants
232single-threaded guest vcpus, it should make all vcpu ids be a multiple
233of the number of vcpus per vcore.
234
5b1c1493
CO
235For virtual cpus that have been created with S390 user controlled virtual
236machines, the resulting vcpu fd can be memory mapped at page offset
237KVM_S390_SIE_PAGE_OFFSET in order to obtain a memory map of the virtual
238cpu's hardware control block.
239
414fa985 240
68ba6974 2414.8 KVM_GET_DIRTY_LOG (vm ioctl)
9c1b96e3
AK
242
243Capability: basic
244Architectures: x86
245Type: vm ioctl
246Parameters: struct kvm_dirty_log (in/out)
247Returns: 0 on success, -1 on error
248
249/* for KVM_GET_DIRTY_LOG */
250struct kvm_dirty_log {
251 __u32 slot;
252 __u32 padding;
253 union {
254 void __user *dirty_bitmap; /* one bit per page */
255 __u64 padding;
256 };
257};
258
259Given a memory slot, return a bitmap containing any pages dirtied
260since the last call to this ioctl. Bit 0 is the first page in the
261memory slot. Ensure the entire structure is cleared to avoid padding
262issues.
263
414fa985 264
68ba6974 2654.9 KVM_SET_MEMORY_ALIAS
9c1b96e3
AK
266
267Capability: basic
268Architectures: x86
269Type: vm ioctl
270Parameters: struct kvm_memory_alias (in)
271Returns: 0 (success), -1 (error)
272
a1f4d395 273This ioctl is obsolete and has been removed.
9c1b96e3 274
414fa985 275
68ba6974 2764.10 KVM_RUN
9c1b96e3
AK
277
278Capability: basic
279Architectures: all
280Type: vcpu ioctl
281Parameters: none
282Returns: 0 on success, -1 on error
283Errors:
284 EINTR: an unmasked signal is pending
285
286This ioctl is used to run a guest virtual cpu. While there are no
287explicit parameters, there is an implicit parameter block that can be
288obtained by mmap()ing the vcpu fd at offset 0, with the size given by
289KVM_GET_VCPU_MMAP_SIZE. The parameter block is formatted as a 'struct
290kvm_run' (see below).
291
414fa985 292
68ba6974 2934.11 KVM_GET_REGS
9c1b96e3
AK
294
295Capability: basic
749cf76c 296Architectures: all except ARM
9c1b96e3
AK
297Type: vcpu ioctl
298Parameters: struct kvm_regs (out)
299Returns: 0 on success, -1 on error
300
301Reads the general purpose registers from the vcpu.
302
303/* x86 */
304struct kvm_regs {
305 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
306 __u64 rax, rbx, rcx, rdx;
307 __u64 rsi, rdi, rsp, rbp;
308 __u64 r8, r9, r10, r11;
309 __u64 r12, r13, r14, r15;
310 __u64 rip, rflags;
311};
312
414fa985 313
68ba6974 3144.12 KVM_SET_REGS
9c1b96e3
AK
315
316Capability: basic
749cf76c 317Architectures: all except ARM
9c1b96e3
AK
318Type: vcpu ioctl
319Parameters: struct kvm_regs (in)
320Returns: 0 on success, -1 on error
321
322Writes the general purpose registers into the vcpu.
323
324See KVM_GET_REGS for the data structure.
325
414fa985 326
68ba6974 3274.13 KVM_GET_SREGS
9c1b96e3
AK
328
329Capability: basic
5ce941ee 330Architectures: x86, ppc
9c1b96e3
AK
331Type: vcpu ioctl
332Parameters: struct kvm_sregs (out)
333Returns: 0 on success, -1 on error
334
335Reads special registers from the vcpu.
336
337/* x86 */
338struct kvm_sregs {
339 struct kvm_segment cs, ds, es, fs, gs, ss;
340 struct kvm_segment tr, ldt;
341 struct kvm_dtable gdt, idt;
342 __u64 cr0, cr2, cr3, cr4, cr8;
343 __u64 efer;
344 __u64 apic_base;
345 __u64 interrupt_bitmap[(KVM_NR_INTERRUPTS + 63) / 64];
346};
347
5ce941ee
SW
348/* ppc -- see arch/powerpc/include/asm/kvm.h */
349
9c1b96e3
AK
350interrupt_bitmap is a bitmap of pending external interrupts. At most
351one bit may be set. This interrupt has been acknowledged by the APIC
352but not yet injected into the cpu core.
353
414fa985 354
68ba6974 3554.14 KVM_SET_SREGS
9c1b96e3
AK
356
357Capability: basic
5ce941ee 358Architectures: x86, ppc
9c1b96e3
AK
359Type: vcpu ioctl
360Parameters: struct kvm_sregs (in)
361Returns: 0 on success, -1 on error
362
363Writes special registers into the vcpu. See KVM_GET_SREGS for the
364data structures.
365
414fa985 366
68ba6974 3674.15 KVM_TRANSLATE
9c1b96e3
AK
368
369Capability: basic
370Architectures: x86
371Type: vcpu ioctl
372Parameters: struct kvm_translation (in/out)
373Returns: 0 on success, -1 on error
374
375Translates a virtual address according to the vcpu's current address
376translation mode.
377
378struct kvm_translation {
379 /* in */
380 __u64 linear_address;
381
382 /* out */
383 __u64 physical_address;
384 __u8 valid;
385 __u8 writeable;
386 __u8 usermode;
387 __u8 pad[5];
388};
389
414fa985 390
68ba6974 3914.16 KVM_INTERRUPT
9c1b96e3
AK
392
393Capability: basic
6f7a2bd4 394Architectures: x86, ppc
9c1b96e3
AK
395Type: vcpu ioctl
396Parameters: struct kvm_interrupt (in)
397Returns: 0 on success, -1 on error
398
399Queues a hardware interrupt vector to be injected. This is only
6f7a2bd4 400useful if in-kernel local APIC or equivalent is not used.
9c1b96e3
AK
401
402/* for KVM_INTERRUPT */
403struct kvm_interrupt {
404 /* in */
405 __u32 irq;
406};
407
6f7a2bd4
AG
408X86:
409
9c1b96e3
AK
410Note 'irq' is an interrupt vector, not an interrupt pin or line.
411
6f7a2bd4
AG
412PPC:
413
414Queues an external interrupt to be injected. This ioctl is overleaded
415with 3 different irq values:
416
417a) KVM_INTERRUPT_SET
418
419 This injects an edge type external interrupt into the guest once it's ready
420 to receive interrupts. When injected, the interrupt is done.
421
422b) KVM_INTERRUPT_UNSET
423
424 This unsets any pending interrupt.
425
426 Only available with KVM_CAP_PPC_UNSET_IRQ.
427
428c) KVM_INTERRUPT_SET_LEVEL
429
430 This injects a level type external interrupt into the guest context. The
431 interrupt stays pending until a specific ioctl with KVM_INTERRUPT_UNSET
432 is triggered.
433
434 Only available with KVM_CAP_PPC_IRQ_LEVEL.
435
436Note that any value for 'irq' other than the ones stated above is invalid
437and incurs unexpected behavior.
438
414fa985 439
68ba6974 4404.17 KVM_DEBUG_GUEST
9c1b96e3
AK
441
442Capability: basic
443Architectures: none
444Type: vcpu ioctl
445Parameters: none)
446Returns: -1 on error
447
448Support for this has been removed. Use KVM_SET_GUEST_DEBUG instead.
449
414fa985 450
68ba6974 4514.18 KVM_GET_MSRS
9c1b96e3
AK
452
453Capability: basic
454Architectures: x86
455Type: vcpu ioctl
456Parameters: struct kvm_msrs (in/out)
457Returns: 0 on success, -1 on error
458
459Reads model-specific registers from the vcpu. Supported msr indices can
460be obtained using KVM_GET_MSR_INDEX_LIST.
461
462struct kvm_msrs {
463 __u32 nmsrs; /* number of msrs in entries */
464 __u32 pad;
465
466 struct kvm_msr_entry entries[0];
467};
468
469struct kvm_msr_entry {
470 __u32 index;
471 __u32 reserved;
472 __u64 data;
473};
474
475Application code should set the 'nmsrs' member (which indicates the
476size of the entries array) and the 'index' member of each array entry.
477kvm will fill in the 'data' member.
478
414fa985 479
68ba6974 4804.19 KVM_SET_MSRS
9c1b96e3
AK
481
482Capability: basic
483Architectures: x86
484Type: vcpu ioctl
485Parameters: struct kvm_msrs (in)
486Returns: 0 on success, -1 on error
487
488Writes model-specific registers to the vcpu. See KVM_GET_MSRS for the
489data structures.
490
491Application code should set the 'nmsrs' member (which indicates the
492size of the entries array), and the 'index' and 'data' members of each
493array entry.
494
414fa985 495
68ba6974 4964.20 KVM_SET_CPUID
9c1b96e3
AK
497
498Capability: basic
499Architectures: x86
500Type: vcpu ioctl
501Parameters: struct kvm_cpuid (in)
502Returns: 0 on success, -1 on error
503
504Defines the vcpu responses to the cpuid instruction. Applications
505should use the KVM_SET_CPUID2 ioctl if available.
506
507
508struct kvm_cpuid_entry {
509 __u32 function;
510 __u32 eax;
511 __u32 ebx;
512 __u32 ecx;
513 __u32 edx;
514 __u32 padding;
515};
516
517/* for KVM_SET_CPUID */
518struct kvm_cpuid {
519 __u32 nent;
520 __u32 padding;
521 struct kvm_cpuid_entry entries[0];
522};
523
414fa985 524
68ba6974 5254.21 KVM_SET_SIGNAL_MASK
9c1b96e3
AK
526
527Capability: basic
528Architectures: x86
529Type: vcpu ioctl
530Parameters: struct kvm_signal_mask (in)
531Returns: 0 on success, -1 on error
532
533Defines which signals are blocked during execution of KVM_RUN. This
534signal mask temporarily overrides the threads signal mask. Any
535unblocked signal received (except SIGKILL and SIGSTOP, which retain
536their traditional behaviour) will cause KVM_RUN to return with -EINTR.
537
538Note the signal will only be delivered if not blocked by the original
539signal mask.
540
541/* for KVM_SET_SIGNAL_MASK */
542struct kvm_signal_mask {
543 __u32 len;
544 __u8 sigset[0];
545};
546
414fa985 547
68ba6974 5484.22 KVM_GET_FPU
9c1b96e3
AK
549
550Capability: basic
551Architectures: x86
552Type: vcpu ioctl
553Parameters: struct kvm_fpu (out)
554Returns: 0 on success, -1 on error
555
556Reads the floating point state from the vcpu.
557
558/* for KVM_GET_FPU and KVM_SET_FPU */
559struct kvm_fpu {
560 __u8 fpr[8][16];
561 __u16 fcw;
562 __u16 fsw;
563 __u8 ftwx; /* in fxsave format */
564 __u8 pad1;
565 __u16 last_opcode;
566 __u64 last_ip;
567 __u64 last_dp;
568 __u8 xmm[16][16];
569 __u32 mxcsr;
570 __u32 pad2;
571};
572
414fa985 573
68ba6974 5744.23 KVM_SET_FPU
9c1b96e3
AK
575
576Capability: basic
577Architectures: x86
578Type: vcpu ioctl
579Parameters: struct kvm_fpu (in)
580Returns: 0 on success, -1 on error
581
582Writes the floating point state to the vcpu.
583
584/* for KVM_GET_FPU and KVM_SET_FPU */
585struct kvm_fpu {
586 __u8 fpr[8][16];
587 __u16 fcw;
588 __u16 fsw;
589 __u8 ftwx; /* in fxsave format */
590 __u8 pad1;
591 __u16 last_opcode;
592 __u64 last_ip;
593 __u64 last_dp;
594 __u8 xmm[16][16];
595 __u32 mxcsr;
596 __u32 pad2;
597};
598
414fa985 599
68ba6974 6004.24 KVM_CREATE_IRQCHIP
5dadbfd6
AK
601
602Capability: KVM_CAP_IRQCHIP
749cf76c 603Architectures: x86, ia64, ARM
5dadbfd6
AK
604Type: vm ioctl
605Parameters: none
606Returns: 0 on success, -1 on error
607
608Creates an interrupt controller model in the kernel. On x86, creates a virtual
609ioapic, a virtual PIC (two PICs, nested), and sets up future vcpus to have a
610local APIC. IRQ routing for GSIs 0-15 is set to both PIC and IOAPIC; GSI 16-23
749cf76c
CD
611only go to the IOAPIC. On ia64, a IOSAPIC is created. On ARM, a GIC is
612created.
5dadbfd6 613
414fa985 614
68ba6974 6154.25 KVM_IRQ_LINE
5dadbfd6
AK
616
617Capability: KVM_CAP_IRQCHIP
86ce8535 618Architectures: x86, ia64, arm
5dadbfd6
AK
619Type: vm ioctl
620Parameters: struct kvm_irq_level
621Returns: 0 on success, -1 on error
622
623Sets the level of a GSI input to the interrupt controller model in the kernel.
86ce8535
CD
624On some architectures it is required that an interrupt controller model has
625been previously created with KVM_CREATE_IRQCHIP. Note that edge-triggered
626interrupts require the level to be set to 1 and then back to 0.
627
628ARM can signal an interrupt either at the CPU level, or at the in-kernel irqchip
629(GIC), and for in-kernel irqchip can tell the GIC to use PPIs designated for
630specific cpus. The irq field is interpreted like this:
631
632  bits: | 31 ... 24 | 23 ... 16 | 15 ... 0 |
633 field: | irq_type | vcpu_index | irq_id |
634
635The irq_type field has the following values:
636- irq_type[0]: out-of-kernel GIC: irq_id 0 is IRQ, irq_id 1 is FIQ
637- irq_type[1]: in-kernel GIC: SPI, irq_id between 32 and 1019 (incl.)
638 (the vcpu_index field is ignored)
639- irq_type[2]: in-kernel GIC: PPI, irq_id between 16 and 31 (incl.)
640
641(The irq_id field thus corresponds nicely to the IRQ ID in the ARM GIC specs)
642
643In both cases, level is used to raise/lower the line.
5dadbfd6
AK
644
645struct kvm_irq_level {
646 union {
647 __u32 irq; /* GSI */
648 __s32 status; /* not used for KVM_IRQ_LEVEL */
649 };
650 __u32 level; /* 0 or 1 */
651};
652
414fa985 653
68ba6974 6544.26 KVM_GET_IRQCHIP
5dadbfd6
AK
655
656Capability: KVM_CAP_IRQCHIP
657Architectures: x86, ia64
658Type: vm ioctl
659Parameters: struct kvm_irqchip (in/out)
660Returns: 0 on success, -1 on error
661
662Reads the state of a kernel interrupt controller created with
663KVM_CREATE_IRQCHIP into a buffer provided by the caller.
664
665struct kvm_irqchip {
666 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
667 __u32 pad;
668 union {
669 char dummy[512]; /* reserving space */
670 struct kvm_pic_state pic;
671 struct kvm_ioapic_state ioapic;
672 } chip;
673};
674
414fa985 675
68ba6974 6764.27 KVM_SET_IRQCHIP
5dadbfd6
AK
677
678Capability: KVM_CAP_IRQCHIP
679Architectures: x86, ia64
680Type: vm ioctl
681Parameters: struct kvm_irqchip (in)
682Returns: 0 on success, -1 on error
683
684Sets the state of a kernel interrupt controller created with
685KVM_CREATE_IRQCHIP from a buffer provided by the caller.
686
687struct kvm_irqchip {
688 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
689 __u32 pad;
690 union {
691 char dummy[512]; /* reserving space */
692 struct kvm_pic_state pic;
693 struct kvm_ioapic_state ioapic;
694 } chip;
695};
696
414fa985 697
68ba6974 6984.28 KVM_XEN_HVM_CONFIG
ffde22ac
ES
699
700Capability: KVM_CAP_XEN_HVM
701Architectures: x86
702Type: vm ioctl
703Parameters: struct kvm_xen_hvm_config (in)
704Returns: 0 on success, -1 on error
705
706Sets the MSR that the Xen HVM guest uses to initialize its hypercall
707page, and provides the starting address and size of the hypercall
708blobs in userspace. When the guest writes the MSR, kvm copies one
709page of a blob (32- or 64-bit, depending on the vcpu mode) to guest
710memory.
711
712struct kvm_xen_hvm_config {
713 __u32 flags;
714 __u32 msr;
715 __u64 blob_addr_32;
716 __u64 blob_addr_64;
717 __u8 blob_size_32;
718 __u8 blob_size_64;
719 __u8 pad2[30];
720};
721
414fa985 722
68ba6974 7234.29 KVM_GET_CLOCK
afbcf7ab
GC
724
725Capability: KVM_CAP_ADJUST_CLOCK
726Architectures: x86
727Type: vm ioctl
728Parameters: struct kvm_clock_data (out)
729Returns: 0 on success, -1 on error
730
731Gets the current timestamp of kvmclock as seen by the current guest. In
732conjunction with KVM_SET_CLOCK, it is used to ensure monotonicity on scenarios
733such as migration.
734
735struct kvm_clock_data {
736 __u64 clock; /* kvmclock current value */
737 __u32 flags;
738 __u32 pad[9];
739};
740
414fa985 741
68ba6974 7424.30 KVM_SET_CLOCK
afbcf7ab
GC
743
744Capability: KVM_CAP_ADJUST_CLOCK
745Architectures: x86
746Type: vm ioctl
747Parameters: struct kvm_clock_data (in)
748Returns: 0 on success, -1 on error
749
2044892d 750Sets the current timestamp of kvmclock to the value specified in its parameter.
afbcf7ab
GC
751In conjunction with KVM_GET_CLOCK, it is used to ensure monotonicity on scenarios
752such as migration.
753
754struct kvm_clock_data {
755 __u64 clock; /* kvmclock current value */
756 __u32 flags;
757 __u32 pad[9];
758};
759
414fa985 760
68ba6974 7614.31 KVM_GET_VCPU_EVENTS
3cfc3092
JK
762
763Capability: KVM_CAP_VCPU_EVENTS
48005f64 764Extended by: KVM_CAP_INTR_SHADOW
3cfc3092
JK
765Architectures: x86
766Type: vm ioctl
767Parameters: struct kvm_vcpu_event (out)
768Returns: 0 on success, -1 on error
769
770Gets currently pending exceptions, interrupts, and NMIs as well as related
771states of the vcpu.
772
773struct kvm_vcpu_events {
774 struct {
775 __u8 injected;
776 __u8 nr;
777 __u8 has_error_code;
778 __u8 pad;
779 __u32 error_code;
780 } exception;
781 struct {
782 __u8 injected;
783 __u8 nr;
784 __u8 soft;
48005f64 785 __u8 shadow;
3cfc3092
JK
786 } interrupt;
787 struct {
788 __u8 injected;
789 __u8 pending;
790 __u8 masked;
791 __u8 pad;
792 } nmi;
793 __u32 sipi_vector;
dab4b911 794 __u32 flags;
3cfc3092
JK
795};
796
48005f64
JK
797KVM_VCPUEVENT_VALID_SHADOW may be set in the flags field to signal that
798interrupt.shadow contains a valid state. Otherwise, this field is undefined.
799
414fa985 800
68ba6974 8014.32 KVM_SET_VCPU_EVENTS
3cfc3092
JK
802
803Capability: KVM_CAP_VCPU_EVENTS
48005f64 804Extended by: KVM_CAP_INTR_SHADOW
3cfc3092
JK
805Architectures: x86
806Type: vm ioctl
807Parameters: struct kvm_vcpu_event (in)
808Returns: 0 on success, -1 on error
809
810Set pending exceptions, interrupts, and NMIs as well as related states of the
811vcpu.
812
813See KVM_GET_VCPU_EVENTS for the data structure.
814
dab4b911
JK
815Fields that may be modified asynchronously by running VCPUs can be excluded
816from the update. These fields are nmi.pending and sipi_vector. Keep the
817corresponding bits in the flags field cleared to suppress overwriting the
818current in-kernel state. The bits are:
819
820KVM_VCPUEVENT_VALID_NMI_PENDING - transfer nmi.pending to the kernel
821KVM_VCPUEVENT_VALID_SIPI_VECTOR - transfer sipi_vector
822
48005f64
JK
823If KVM_CAP_INTR_SHADOW is available, KVM_VCPUEVENT_VALID_SHADOW can be set in
824the flags field to signal that interrupt.shadow contains a valid state and
825shall be written into the VCPU.
826
414fa985 827
68ba6974 8284.33 KVM_GET_DEBUGREGS
a1efbe77
JK
829
830Capability: KVM_CAP_DEBUGREGS
831Architectures: x86
832Type: vm ioctl
833Parameters: struct kvm_debugregs (out)
834Returns: 0 on success, -1 on error
835
836Reads debug registers from the vcpu.
837
838struct kvm_debugregs {
839 __u64 db[4];
840 __u64 dr6;
841 __u64 dr7;
842 __u64 flags;
843 __u64 reserved[9];
844};
845
414fa985 846
68ba6974 8474.34 KVM_SET_DEBUGREGS
a1efbe77
JK
848
849Capability: KVM_CAP_DEBUGREGS
850Architectures: x86
851Type: vm ioctl
852Parameters: struct kvm_debugregs (in)
853Returns: 0 on success, -1 on error
854
855Writes debug registers into the vcpu.
856
857See KVM_GET_DEBUGREGS for the data structure. The flags field is unused
858yet and must be cleared on entry.
859
414fa985 860
68ba6974 8614.35 KVM_SET_USER_MEMORY_REGION
0f2d8f4d
AK
862
863Capability: KVM_CAP_USER_MEM
864Architectures: all
865Type: vm ioctl
866Parameters: struct kvm_userspace_memory_region (in)
867Returns: 0 on success, -1 on error
868
869struct kvm_userspace_memory_region {
870 __u32 slot;
871 __u32 flags;
872 __u64 guest_phys_addr;
873 __u64 memory_size; /* bytes */
874 __u64 userspace_addr; /* start of the userspace allocated memory */
875};
876
877/* for kvm_memory_region::flags */
4d8b81ab
XG
878#define KVM_MEM_LOG_DIRTY_PAGES (1UL << 0)
879#define KVM_MEM_READONLY (1UL << 1)
0f2d8f4d
AK
880
881This ioctl allows the user to create or modify a guest physical memory
882slot. When changing an existing slot, it may be moved in the guest
883physical memory space, or its flags may be modified. It may not be
884resized. Slots may not overlap in guest physical address space.
885
886Memory for the region is taken starting at the address denoted by the
887field userspace_addr, which must point at user addressable memory for
888the entire memory slot size. Any object may back this memory, including
889anonymous memory, ordinary files, and hugetlbfs.
890
891It is recommended that the lower 21 bits of guest_phys_addr and userspace_addr
892be identical. This allows large pages in the guest to be backed by large
893pages in the host.
894
7efd8fa1
JK
895The flags field supports two flag, KVM_MEM_LOG_DIRTY_PAGES, which instructs
896kvm to keep track of writes to memory within the slot. See KVM_GET_DIRTY_LOG
897ioctl. The KVM_CAP_READONLY_MEM capability indicates the availability of the
898KVM_MEM_READONLY flag. When this flag is set for a memory region, KVM only
899allows read accesses. Writes will be posted to userspace as KVM_EXIT_MMIO
900exits.
901
902When the KVM_CAP_SYNC_MMU capability is available, changes in the backing of
903the memory region are automatically reflected into the guest. For example, an
904mmap() that affects the region will be made visible immediately. Another
905example is madvise(MADV_DROP).
0f2d8f4d
AK
906
907It is recommended to use this API instead of the KVM_SET_MEMORY_REGION ioctl.
908The KVM_SET_MEMORY_REGION does not allow fine grained control over memory
909allocation and is deprecated.
3cfc3092 910
414fa985 911
68ba6974 9124.36 KVM_SET_TSS_ADDR
8a5416db
AK
913
914Capability: KVM_CAP_SET_TSS_ADDR
915Architectures: x86
916Type: vm ioctl
917Parameters: unsigned long tss_address (in)
918Returns: 0 on success, -1 on error
919
920This ioctl defines the physical address of a three-page region in the guest
921physical address space. The region must be within the first 4GB of the
922guest physical address space and must not conflict with any memory slot
923or any mmio address. The guest may malfunction if it accesses this memory
924region.
925
926This ioctl is required on Intel-based hosts. This is needed on Intel hardware
927because of a quirk in the virtualization implementation (see the internals
928documentation when it pops into existence).
929
414fa985 930
68ba6974 9314.37 KVM_ENABLE_CAP
71fbfd5f
AG
932
933Capability: KVM_CAP_ENABLE_CAP
934Architectures: ppc
935Type: vcpu ioctl
936Parameters: struct kvm_enable_cap (in)
937Returns: 0 on success; -1 on error
938
939+Not all extensions are enabled by default. Using this ioctl the application
940can enable an extension, making it available to the guest.
941
942On systems that do not support this ioctl, it always fails. On systems that
943do support it, it only works for extensions that are supported for enablement.
944
945To check if a capability can be enabled, the KVM_CHECK_EXTENSION ioctl should
946be used.
947
948struct kvm_enable_cap {
949 /* in */
950 __u32 cap;
951
952The capability that is supposed to get enabled.
953
954 __u32 flags;
955
956A bitfield indicating future enhancements. Has to be 0 for now.
957
958 __u64 args[4];
959
960Arguments for enabling a feature. If a feature needs initial values to
961function properly, this is the place to put them.
962
963 __u8 pad[64];
964};
965
414fa985 966
68ba6974 9674.38 KVM_GET_MP_STATE
b843f065
AK
968
969Capability: KVM_CAP_MP_STATE
970Architectures: x86, ia64
971Type: vcpu ioctl
972Parameters: struct kvm_mp_state (out)
973Returns: 0 on success; -1 on error
974
975struct kvm_mp_state {
976 __u32 mp_state;
977};
978
979Returns the vcpu's current "multiprocessing state" (though also valid on
980uniprocessor guests).
981
982Possible values are:
983
984 - KVM_MP_STATE_RUNNABLE: the vcpu is currently running
985 - KVM_MP_STATE_UNINITIALIZED: the vcpu is an application processor (AP)
986 which has not yet received an INIT signal
987 - KVM_MP_STATE_INIT_RECEIVED: the vcpu has received an INIT signal, and is
988 now ready for a SIPI
989 - KVM_MP_STATE_HALTED: the vcpu has executed a HLT instruction and
990 is waiting for an interrupt
991 - KVM_MP_STATE_SIPI_RECEIVED: the vcpu has just received a SIPI (vector
b595076a 992 accessible via KVM_GET_VCPU_EVENTS)
b843f065
AK
993
994This ioctl is only useful after KVM_CREATE_IRQCHIP. Without an in-kernel
995irqchip, the multiprocessing state must be maintained by userspace.
996
414fa985 997
68ba6974 9984.39 KVM_SET_MP_STATE
b843f065
AK
999
1000Capability: KVM_CAP_MP_STATE
1001Architectures: x86, ia64
1002Type: vcpu ioctl
1003Parameters: struct kvm_mp_state (in)
1004Returns: 0 on success; -1 on error
1005
1006Sets the vcpu's current "multiprocessing state"; see KVM_GET_MP_STATE for
1007arguments.
1008
1009This ioctl is only useful after KVM_CREATE_IRQCHIP. Without an in-kernel
1010irqchip, the multiprocessing state must be maintained by userspace.
1011
414fa985 1012
68ba6974 10134.40 KVM_SET_IDENTITY_MAP_ADDR
47dbb84f
AK
1014
1015Capability: KVM_CAP_SET_IDENTITY_MAP_ADDR
1016Architectures: x86
1017Type: vm ioctl
1018Parameters: unsigned long identity (in)
1019Returns: 0 on success, -1 on error
1020
1021This ioctl defines the physical address of a one-page region in the guest
1022physical address space. The region must be within the first 4GB of the
1023guest physical address space and must not conflict with any memory slot
1024or any mmio address. The guest may malfunction if it accesses this memory
1025region.
1026
1027This ioctl is required on Intel-based hosts. This is needed on Intel hardware
1028because of a quirk in the virtualization implementation (see the internals
1029documentation when it pops into existence).
1030
414fa985 1031
68ba6974 10324.41 KVM_SET_BOOT_CPU_ID
57bc24cf
AK
1033
1034Capability: KVM_CAP_SET_BOOT_CPU_ID
1035Architectures: x86, ia64
1036Type: vm ioctl
1037Parameters: unsigned long vcpu_id
1038Returns: 0 on success, -1 on error
1039
1040Define which vcpu is the Bootstrap Processor (BSP). Values are the same
1041as the vcpu id in KVM_CREATE_VCPU. If this ioctl is not called, the default
1042is vcpu 0.
1043
414fa985 1044
68ba6974 10454.42 KVM_GET_XSAVE
2d5b5a66
SY
1046
1047Capability: KVM_CAP_XSAVE
1048Architectures: x86
1049Type: vcpu ioctl
1050Parameters: struct kvm_xsave (out)
1051Returns: 0 on success, -1 on error
1052
1053struct kvm_xsave {
1054 __u32 region[1024];
1055};
1056
1057This ioctl would copy current vcpu's xsave struct to the userspace.
1058
414fa985 1059
68ba6974 10604.43 KVM_SET_XSAVE
2d5b5a66
SY
1061
1062Capability: KVM_CAP_XSAVE
1063Architectures: x86
1064Type: vcpu ioctl
1065Parameters: struct kvm_xsave (in)
1066Returns: 0 on success, -1 on error
1067
1068struct kvm_xsave {
1069 __u32 region[1024];
1070};
1071
1072This ioctl would copy userspace's xsave struct to the kernel.
1073
414fa985 1074
68ba6974 10754.44 KVM_GET_XCRS
2d5b5a66
SY
1076
1077Capability: KVM_CAP_XCRS
1078Architectures: x86
1079Type: vcpu ioctl
1080Parameters: struct kvm_xcrs (out)
1081Returns: 0 on success, -1 on error
1082
1083struct kvm_xcr {
1084 __u32 xcr;
1085 __u32 reserved;
1086 __u64 value;
1087};
1088
1089struct kvm_xcrs {
1090 __u32 nr_xcrs;
1091 __u32 flags;
1092 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1093 __u64 padding[16];
1094};
1095
1096This ioctl would copy current vcpu's xcrs to the userspace.
1097
414fa985 1098
68ba6974 10994.45 KVM_SET_XCRS
2d5b5a66
SY
1100
1101Capability: KVM_CAP_XCRS
1102Architectures: x86
1103Type: vcpu ioctl
1104Parameters: struct kvm_xcrs (in)
1105Returns: 0 on success, -1 on error
1106
1107struct kvm_xcr {
1108 __u32 xcr;
1109 __u32 reserved;
1110 __u64 value;
1111};
1112
1113struct kvm_xcrs {
1114 __u32 nr_xcrs;
1115 __u32 flags;
1116 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1117 __u64 padding[16];
1118};
1119
1120This ioctl would set vcpu's xcr to the value userspace specified.
1121
414fa985 1122
68ba6974 11234.46 KVM_GET_SUPPORTED_CPUID
d153513d
AK
1124
1125Capability: KVM_CAP_EXT_CPUID
1126Architectures: x86
1127Type: system ioctl
1128Parameters: struct kvm_cpuid2 (in/out)
1129Returns: 0 on success, -1 on error
1130
1131struct kvm_cpuid2 {
1132 __u32 nent;
1133 __u32 padding;
1134 struct kvm_cpuid_entry2 entries[0];
1135};
1136
1137#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX 1
1138#define KVM_CPUID_FLAG_STATEFUL_FUNC 2
1139#define KVM_CPUID_FLAG_STATE_READ_NEXT 4
1140
1141struct kvm_cpuid_entry2 {
1142 __u32 function;
1143 __u32 index;
1144 __u32 flags;
1145 __u32 eax;
1146 __u32 ebx;
1147 __u32 ecx;
1148 __u32 edx;
1149 __u32 padding[3];
1150};
1151
1152This ioctl returns x86 cpuid features which are supported by both the hardware
1153and kvm. Userspace can use the information returned by this ioctl to
1154construct cpuid information (for KVM_SET_CPUID2) that is consistent with
1155hardware, kernel, and userspace capabilities, and with user requirements (for
1156example, the user may wish to constrain cpuid to emulate older hardware,
1157or for feature consistency across a cluster).
1158
1159Userspace invokes KVM_GET_SUPPORTED_CPUID by passing a kvm_cpuid2 structure
1160with the 'nent' field indicating the number of entries in the variable-size
1161array 'entries'. If the number of entries is too low to describe the cpu
1162capabilities, an error (E2BIG) is returned. If the number is too high,
1163the 'nent' field is adjusted and an error (ENOMEM) is returned. If the
1164number is just right, the 'nent' field is adjusted to the number of valid
1165entries in the 'entries' array, which is then filled.
1166
1167The entries returned are the host cpuid as returned by the cpuid instruction,
c39cbd2a
AK
1168with unknown or unsupported features masked out. Some features (for example,
1169x2apic), may not be present in the host cpu, but are exposed by kvm if it can
1170emulate them efficiently. The fields in each entry are defined as follows:
d153513d
AK
1171
1172 function: the eax value used to obtain the entry
1173 index: the ecx value used to obtain the entry (for entries that are
1174 affected by ecx)
1175 flags: an OR of zero or more of the following:
1176 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
1177 if the index field is valid
1178 KVM_CPUID_FLAG_STATEFUL_FUNC:
1179 if cpuid for this function returns different values for successive
1180 invocations; there will be several entries with the same function,
1181 all with this flag set
1182 KVM_CPUID_FLAG_STATE_READ_NEXT:
1183 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
1184 the first entry to be read by a cpu
1185 eax, ebx, ecx, edx: the values returned by the cpuid instruction for
1186 this function/index combination
1187
4d25a066
JK
1188The TSC deadline timer feature (CPUID leaf 1, ecx[24]) is always returned
1189as false, since the feature depends on KVM_CREATE_IRQCHIP for local APIC
1190support. Instead it is reported via
1191
1192 ioctl(KVM_CHECK_EXTENSION, KVM_CAP_TSC_DEADLINE_TIMER)
1193
1194if that returns true and you use KVM_CREATE_IRQCHIP, or if you emulate the
1195feature in userspace, then you can enable the feature for KVM_SET_CPUID2.
1196
414fa985 1197
68ba6974 11984.47 KVM_PPC_GET_PVINFO
15711e9c
AG
1199
1200Capability: KVM_CAP_PPC_GET_PVINFO
1201Architectures: ppc
1202Type: vm ioctl
1203Parameters: struct kvm_ppc_pvinfo (out)
1204Returns: 0 on success, !0 on error
1205
1206struct kvm_ppc_pvinfo {
1207 __u32 flags;
1208 __u32 hcall[4];
1209 __u8 pad[108];
1210};
1211
1212This ioctl fetches PV specific information that need to be passed to the guest
1213using the device tree or other means from vm context.
1214
9202e076 1215The hcall array defines 4 instructions that make up a hypercall.
15711e9c
AG
1216
1217If any additional field gets added to this structure later on, a bit for that
1218additional piece of information will be set in the flags bitmap.
1219
9202e076
LYB
1220The flags bitmap is defined as:
1221
1222 /* the host supports the ePAPR idle hcall
1223 #define KVM_PPC_PVINFO_FLAGS_EV_IDLE (1<<0)
414fa985 1224
68ba6974 12254.48 KVM_ASSIGN_PCI_DEVICE
49f48172
JK
1226
1227Capability: KVM_CAP_DEVICE_ASSIGNMENT
1228Architectures: x86 ia64
1229Type: vm ioctl
1230Parameters: struct kvm_assigned_pci_dev (in)
1231Returns: 0 on success, -1 on error
1232
1233Assigns a host PCI device to the VM.
1234
1235struct kvm_assigned_pci_dev {
1236 __u32 assigned_dev_id;
1237 __u32 busnr;
1238 __u32 devfn;
1239 __u32 flags;
1240 __u32 segnr;
1241 union {
1242 __u32 reserved[11];
1243 };
1244};
1245
1246The PCI device is specified by the triple segnr, busnr, and devfn.
1247Identification in succeeding service requests is done via assigned_dev_id. The
1248following flags are specified:
1249
1250/* Depends on KVM_CAP_IOMMU */
1251#define KVM_DEV_ASSIGN_ENABLE_IOMMU (1 << 0)
07700a94
JK
1252/* The following two depend on KVM_CAP_PCI_2_3 */
1253#define KVM_DEV_ASSIGN_PCI_2_3 (1 << 1)
1254#define KVM_DEV_ASSIGN_MASK_INTX (1 << 2)
1255
1256If KVM_DEV_ASSIGN_PCI_2_3 is set, the kernel will manage legacy INTx interrupts
1257via the PCI-2.3-compliant device-level mask, thus enable IRQ sharing with other
1258assigned devices or host devices. KVM_DEV_ASSIGN_MASK_INTX specifies the
1259guest's view on the INTx mask, see KVM_ASSIGN_SET_INTX_MASK for details.
49f48172 1260
42387373
AW
1261The KVM_DEV_ASSIGN_ENABLE_IOMMU flag is a mandatory option to ensure
1262isolation of the device. Usages not specifying this flag are deprecated.
1263
3d27e23b
AW
1264Only PCI header type 0 devices with PCI BAR resources are supported by
1265device assignment. The user requesting this ioctl must have read/write
1266access to the PCI sysfs resource files associated with the device.
1267
414fa985 1268
68ba6974 12694.49 KVM_DEASSIGN_PCI_DEVICE
49f48172
JK
1270
1271Capability: KVM_CAP_DEVICE_DEASSIGNMENT
1272Architectures: x86 ia64
1273Type: vm ioctl
1274Parameters: struct kvm_assigned_pci_dev (in)
1275Returns: 0 on success, -1 on error
1276
1277Ends PCI device assignment, releasing all associated resources.
1278
1279See KVM_CAP_DEVICE_ASSIGNMENT for the data structure. Only assigned_dev_id is
1280used in kvm_assigned_pci_dev to identify the device.
1281
414fa985 1282
68ba6974 12834.50 KVM_ASSIGN_DEV_IRQ
49f48172
JK
1284
1285Capability: KVM_CAP_ASSIGN_DEV_IRQ
1286Architectures: x86 ia64
1287Type: vm ioctl
1288Parameters: struct kvm_assigned_irq (in)
1289Returns: 0 on success, -1 on error
1290
1291Assigns an IRQ to a passed-through device.
1292
1293struct kvm_assigned_irq {
1294 __u32 assigned_dev_id;
91e3d71d 1295 __u32 host_irq; /* ignored (legacy field) */
49f48172
JK
1296 __u32 guest_irq;
1297 __u32 flags;
1298 union {
49f48172
JK
1299 __u32 reserved[12];
1300 };
1301};
1302
1303The following flags are defined:
1304
1305#define KVM_DEV_IRQ_HOST_INTX (1 << 0)
1306#define KVM_DEV_IRQ_HOST_MSI (1 << 1)
1307#define KVM_DEV_IRQ_HOST_MSIX (1 << 2)
1308
1309#define KVM_DEV_IRQ_GUEST_INTX (1 << 8)
1310#define KVM_DEV_IRQ_GUEST_MSI (1 << 9)
1311#define KVM_DEV_IRQ_GUEST_MSIX (1 << 10)
1312
1313It is not valid to specify multiple types per host or guest IRQ. However, the
1314IRQ type of host and guest can differ or can even be null.
1315
414fa985 1316
68ba6974 13174.51 KVM_DEASSIGN_DEV_IRQ
49f48172
JK
1318
1319Capability: KVM_CAP_ASSIGN_DEV_IRQ
1320Architectures: x86 ia64
1321Type: vm ioctl
1322Parameters: struct kvm_assigned_irq (in)
1323Returns: 0 on success, -1 on error
1324
1325Ends an IRQ assignment to a passed-through device.
1326
1327See KVM_ASSIGN_DEV_IRQ for the data structure. The target device is specified
1328by assigned_dev_id, flags must correspond to the IRQ type specified on
1329KVM_ASSIGN_DEV_IRQ. Partial deassignment of host or guest IRQ is allowed.
1330
414fa985 1331
68ba6974 13324.52 KVM_SET_GSI_ROUTING
49f48172
JK
1333
1334Capability: KVM_CAP_IRQ_ROUTING
1335Architectures: x86 ia64
1336Type: vm ioctl
1337Parameters: struct kvm_irq_routing (in)
1338Returns: 0 on success, -1 on error
1339
1340Sets the GSI routing table entries, overwriting any previously set entries.
1341
1342struct kvm_irq_routing {
1343 __u32 nr;
1344 __u32 flags;
1345 struct kvm_irq_routing_entry entries[0];
1346};
1347
1348No flags are specified so far, the corresponding field must be set to zero.
1349
1350struct kvm_irq_routing_entry {
1351 __u32 gsi;
1352 __u32 type;
1353 __u32 flags;
1354 __u32 pad;
1355 union {
1356 struct kvm_irq_routing_irqchip irqchip;
1357 struct kvm_irq_routing_msi msi;
1358 __u32 pad[8];
1359 } u;
1360};
1361
1362/* gsi routing entry types */
1363#define KVM_IRQ_ROUTING_IRQCHIP 1
1364#define KVM_IRQ_ROUTING_MSI 2
1365
1366No flags are specified so far, the corresponding field must be set to zero.
1367
1368struct kvm_irq_routing_irqchip {
1369 __u32 irqchip;
1370 __u32 pin;
1371};
1372
1373struct kvm_irq_routing_msi {
1374 __u32 address_lo;
1375 __u32 address_hi;
1376 __u32 data;
1377 __u32 pad;
1378};
1379
414fa985 1380
68ba6974 13814.53 KVM_ASSIGN_SET_MSIX_NR
49f48172
JK
1382
1383Capability: KVM_CAP_DEVICE_MSIX
1384Architectures: x86 ia64
1385Type: vm ioctl
1386Parameters: struct kvm_assigned_msix_nr (in)
1387Returns: 0 on success, -1 on error
1388
58f0964e
JK
1389Set the number of MSI-X interrupts for an assigned device. The number is
1390reset again by terminating the MSI-X assignment of the device via
1391KVM_DEASSIGN_DEV_IRQ. Calling this service more than once at any earlier
1392point will fail.
49f48172
JK
1393
1394struct kvm_assigned_msix_nr {
1395 __u32 assigned_dev_id;
1396 __u16 entry_nr;
1397 __u16 padding;
1398};
1399
1400#define KVM_MAX_MSIX_PER_DEV 256
1401
414fa985 1402
68ba6974 14034.54 KVM_ASSIGN_SET_MSIX_ENTRY
49f48172
JK
1404
1405Capability: KVM_CAP_DEVICE_MSIX
1406Architectures: x86 ia64
1407Type: vm ioctl
1408Parameters: struct kvm_assigned_msix_entry (in)
1409Returns: 0 on success, -1 on error
1410
1411Specifies the routing of an MSI-X assigned device interrupt to a GSI. Setting
1412the GSI vector to zero means disabling the interrupt.
1413
1414struct kvm_assigned_msix_entry {
1415 __u32 assigned_dev_id;
1416 __u32 gsi;
1417 __u16 entry; /* The index of entry in the MSI-X table */
1418 __u16 padding[3];
1419};
1420
414fa985
JK
1421
14224.55 KVM_SET_TSC_KHZ
92a1f12d
JR
1423
1424Capability: KVM_CAP_TSC_CONTROL
1425Architectures: x86
1426Type: vcpu ioctl
1427Parameters: virtual tsc_khz
1428Returns: 0 on success, -1 on error
1429
1430Specifies the tsc frequency for the virtual machine. The unit of the
1431frequency is KHz.
1432
414fa985
JK
1433
14344.56 KVM_GET_TSC_KHZ
92a1f12d
JR
1435
1436Capability: KVM_CAP_GET_TSC_KHZ
1437Architectures: x86
1438Type: vcpu ioctl
1439Parameters: none
1440Returns: virtual tsc-khz on success, negative value on error
1441
1442Returns the tsc frequency of the guest. The unit of the return value is
1443KHz. If the host has unstable tsc this ioctl returns -EIO instead as an
1444error.
1445
414fa985
JK
1446
14474.57 KVM_GET_LAPIC
e7677933
AK
1448
1449Capability: KVM_CAP_IRQCHIP
1450Architectures: x86
1451Type: vcpu ioctl
1452Parameters: struct kvm_lapic_state (out)
1453Returns: 0 on success, -1 on error
1454
1455#define KVM_APIC_REG_SIZE 0x400
1456struct kvm_lapic_state {
1457 char regs[KVM_APIC_REG_SIZE];
1458};
1459
1460Reads the Local APIC registers and copies them into the input argument. The
1461data format and layout are the same as documented in the architecture manual.
1462
414fa985
JK
1463
14644.58 KVM_SET_LAPIC
e7677933
AK
1465
1466Capability: KVM_CAP_IRQCHIP
1467Architectures: x86
1468Type: vcpu ioctl
1469Parameters: struct kvm_lapic_state (in)
1470Returns: 0 on success, -1 on error
1471
1472#define KVM_APIC_REG_SIZE 0x400
1473struct kvm_lapic_state {
1474 char regs[KVM_APIC_REG_SIZE];
1475};
1476
1477Copies the input argument into the the Local APIC registers. The data format
1478and layout are the same as documented in the architecture manual.
1479
414fa985
JK
1480
14814.59 KVM_IOEVENTFD
55399a02
SL
1482
1483Capability: KVM_CAP_IOEVENTFD
1484Architectures: all
1485Type: vm ioctl
1486Parameters: struct kvm_ioeventfd (in)
1487Returns: 0 on success, !0 on error
1488
1489This ioctl attaches or detaches an ioeventfd to a legal pio/mmio address
1490within the guest. A guest write in the registered address will signal the
1491provided event instead of triggering an exit.
1492
1493struct kvm_ioeventfd {
1494 __u64 datamatch;
1495 __u64 addr; /* legal pio/mmio address */
1496 __u32 len; /* 1, 2, 4, or 8 bytes */
1497 __s32 fd;
1498 __u32 flags;
1499 __u8 pad[36];
1500};
1501
1502The following flags are defined:
1503
1504#define KVM_IOEVENTFD_FLAG_DATAMATCH (1 << kvm_ioeventfd_flag_nr_datamatch)
1505#define KVM_IOEVENTFD_FLAG_PIO (1 << kvm_ioeventfd_flag_nr_pio)
1506#define KVM_IOEVENTFD_FLAG_DEASSIGN (1 << kvm_ioeventfd_flag_nr_deassign)
1507
1508If datamatch flag is set, the event will be signaled only if the written value
1509to the registered address is equal to datamatch in struct kvm_ioeventfd.
1510
414fa985
JK
1511
15124.60 KVM_DIRTY_TLB
dc83b8bc
SW
1513
1514Capability: KVM_CAP_SW_TLB
1515Architectures: ppc
1516Type: vcpu ioctl
1517Parameters: struct kvm_dirty_tlb (in)
1518Returns: 0 on success, -1 on error
1519
1520struct kvm_dirty_tlb {
1521 __u64 bitmap;
1522 __u32 num_dirty;
1523};
1524
1525This must be called whenever userspace has changed an entry in the shared
1526TLB, prior to calling KVM_RUN on the associated vcpu.
1527
1528The "bitmap" field is the userspace address of an array. This array
1529consists of a number of bits, equal to the total number of TLB entries as
1530determined by the last successful call to KVM_CONFIG_TLB, rounded up to the
1531nearest multiple of 64.
1532
1533Each bit corresponds to one TLB entry, ordered the same as in the shared TLB
1534array.
1535
1536The array is little-endian: the bit 0 is the least significant bit of the
1537first byte, bit 8 is the least significant bit of the second byte, etc.
1538This avoids any complications with differing word sizes.
1539
1540The "num_dirty" field is a performance hint for KVM to determine whether it
1541should skip processing the bitmap and just invalidate everything. It must
1542be set to the number of set bits in the bitmap.
1543
414fa985
JK
1544
15454.61 KVM_ASSIGN_SET_INTX_MASK
07700a94
JK
1546
1547Capability: KVM_CAP_PCI_2_3
1548Architectures: x86
1549Type: vm ioctl
1550Parameters: struct kvm_assigned_pci_dev (in)
1551Returns: 0 on success, -1 on error
1552
1553Allows userspace to mask PCI INTx interrupts from the assigned device. The
1554kernel will not deliver INTx interrupts to the guest between setting and
1555clearing of KVM_ASSIGN_SET_INTX_MASK via this interface. This enables use of
1556and emulation of PCI 2.3 INTx disable command register behavior.
1557
1558This may be used for both PCI 2.3 devices supporting INTx disable natively and
1559older devices lacking this support. Userspace is responsible for emulating the
1560read value of the INTx disable bit in the guest visible PCI command register.
1561When modifying the INTx disable state, userspace should precede updating the
1562physical device command register by calling this ioctl to inform the kernel of
1563the new intended INTx mask state.
1564
1565Note that the kernel uses the device INTx disable bit to internally manage the
1566device interrupt state for PCI 2.3 devices. Reads of this register may
1567therefore not match the expected value. Writes should always use the guest
1568intended INTx disable value rather than attempting to read-copy-update the
1569current physical device state. Races between user and kernel updates to the
1570INTx disable bit are handled lazily in the kernel. It's possible the device
1571may generate unintended interrupts, but they will not be injected into the
1572guest.
1573
1574See KVM_ASSIGN_DEV_IRQ for the data structure. The target device is specified
1575by assigned_dev_id. In the flags field, only KVM_DEV_ASSIGN_MASK_INTX is
1576evaluated.
1577
414fa985 1578
54738c09
DG
15794.62 KVM_CREATE_SPAPR_TCE
1580
1581Capability: KVM_CAP_SPAPR_TCE
1582Architectures: powerpc
1583Type: vm ioctl
1584Parameters: struct kvm_create_spapr_tce (in)
1585Returns: file descriptor for manipulating the created TCE table
1586
1587This creates a virtual TCE (translation control entry) table, which
1588is an IOMMU for PAPR-style virtual I/O. It is used to translate
1589logical addresses used in virtual I/O into guest physical addresses,
1590and provides a scatter/gather capability for PAPR virtual I/O.
1591
1592/* for KVM_CAP_SPAPR_TCE */
1593struct kvm_create_spapr_tce {
1594 __u64 liobn;
1595 __u32 window_size;
1596};
1597
1598The liobn field gives the logical IO bus number for which to create a
1599TCE table. The window_size field specifies the size of the DMA window
1600which this TCE table will translate - the table will contain one 64
1601bit TCE entry for every 4kiB of the DMA window.
1602
1603When the guest issues an H_PUT_TCE hcall on a liobn for which a TCE
1604table has been created using this ioctl(), the kernel will handle it
1605in real mode, updating the TCE table. H_PUT_TCE calls for other
1606liobns will cause a vm exit and must be handled by userspace.
1607
1608The return value is a file descriptor which can be passed to mmap(2)
1609to map the created TCE table into userspace. This lets userspace read
1610the entries written by kernel-handled H_PUT_TCE calls, and also lets
1611userspace update the TCE table directly which is useful in some
1612circumstances.
1613
414fa985 1614
aa04b4cc
PM
16154.63 KVM_ALLOCATE_RMA
1616
1617Capability: KVM_CAP_PPC_RMA
1618Architectures: powerpc
1619Type: vm ioctl
1620Parameters: struct kvm_allocate_rma (out)
1621Returns: file descriptor for mapping the allocated RMA
1622
1623This allocates a Real Mode Area (RMA) from the pool allocated at boot
1624time by the kernel. An RMA is a physically-contiguous, aligned region
1625of memory used on older POWER processors to provide the memory which
1626will be accessed by real-mode (MMU off) accesses in a KVM guest.
1627POWER processors support a set of sizes for the RMA that usually
1628includes 64MB, 128MB, 256MB and some larger powers of two.
1629
1630/* for KVM_ALLOCATE_RMA */
1631struct kvm_allocate_rma {
1632 __u64 rma_size;
1633};
1634
1635The return value is a file descriptor which can be passed to mmap(2)
1636to map the allocated RMA into userspace. The mapped area can then be
1637passed to the KVM_SET_USER_MEMORY_REGION ioctl to establish it as the
1638RMA for a virtual machine. The size of the RMA in bytes (which is
1639fixed at host kernel boot time) is returned in the rma_size field of
1640the argument structure.
1641
1642The KVM_CAP_PPC_RMA capability is 1 or 2 if the KVM_ALLOCATE_RMA ioctl
1643is supported; 2 if the processor requires all virtual machines to have
1644an RMA, or 1 if the processor can use an RMA but doesn't require it,
1645because it supports the Virtual RMA (VRMA) facility.
1646
414fa985 1647
3f745f1e
AK
16484.64 KVM_NMI
1649
1650Capability: KVM_CAP_USER_NMI
1651Architectures: x86
1652Type: vcpu ioctl
1653Parameters: none
1654Returns: 0 on success, -1 on error
1655
1656Queues an NMI on the thread's vcpu. Note this is well defined only
1657when KVM_CREATE_IRQCHIP has not been called, since this is an interface
1658between the virtual cpu core and virtual local APIC. After KVM_CREATE_IRQCHIP
1659has been called, this interface is completely emulated within the kernel.
1660
1661To use this to emulate the LINT1 input with KVM_CREATE_IRQCHIP, use the
1662following algorithm:
1663
1664 - pause the vpcu
1665 - read the local APIC's state (KVM_GET_LAPIC)
1666 - check whether changing LINT1 will queue an NMI (see the LVT entry for LINT1)
1667 - if so, issue KVM_NMI
1668 - resume the vcpu
1669
1670Some guests configure the LINT1 NMI input to cause a panic, aiding in
1671debugging.
1672
414fa985 1673
e24ed81f 16744.65 KVM_S390_UCAS_MAP
27e0393f
CO
1675
1676Capability: KVM_CAP_S390_UCONTROL
1677Architectures: s390
1678Type: vcpu ioctl
1679Parameters: struct kvm_s390_ucas_mapping (in)
1680Returns: 0 in case of success
1681
1682The parameter is defined like this:
1683 struct kvm_s390_ucas_mapping {
1684 __u64 user_addr;
1685 __u64 vcpu_addr;
1686 __u64 length;
1687 };
1688
1689This ioctl maps the memory at "user_addr" with the length "length" to
1690the vcpu's address space starting at "vcpu_addr". All parameters need to
1691be alligned by 1 megabyte.
1692
414fa985 1693
e24ed81f 16944.66 KVM_S390_UCAS_UNMAP
27e0393f
CO
1695
1696Capability: KVM_CAP_S390_UCONTROL
1697Architectures: s390
1698Type: vcpu ioctl
1699Parameters: struct kvm_s390_ucas_mapping (in)
1700Returns: 0 in case of success
1701
1702The parameter is defined like this:
1703 struct kvm_s390_ucas_mapping {
1704 __u64 user_addr;
1705 __u64 vcpu_addr;
1706 __u64 length;
1707 };
1708
1709This ioctl unmaps the memory in the vcpu's address space starting at
1710"vcpu_addr" with the length "length". The field "user_addr" is ignored.
1711All parameters need to be alligned by 1 megabyte.
1712
414fa985 1713
e24ed81f 17144.67 KVM_S390_VCPU_FAULT
ccc7910f
CO
1715
1716Capability: KVM_CAP_S390_UCONTROL
1717Architectures: s390
1718Type: vcpu ioctl
1719Parameters: vcpu absolute address (in)
1720Returns: 0 in case of success
1721
1722This call creates a page table entry on the virtual cpu's address space
1723(for user controlled virtual machines) or the virtual machine's address
1724space (for regular virtual machines). This only works for minor faults,
1725thus it's recommended to access subject memory page via the user page
1726table upfront. This is useful to handle validity intercepts for user
1727controlled virtual machines to fault in the virtual cpu's lowcore pages
1728prior to calling the KVM_RUN ioctl.
1729
414fa985 1730
e24ed81f
AG
17314.68 KVM_SET_ONE_REG
1732
1733Capability: KVM_CAP_ONE_REG
1734Architectures: all
1735Type: vcpu ioctl
1736Parameters: struct kvm_one_reg (in)
1737Returns: 0 on success, negative value on failure
1738
1739struct kvm_one_reg {
1740 __u64 id;
1741 __u64 addr;
1742};
1743
1744Using this ioctl, a single vcpu register can be set to a specific value
1745defined by user space with the passed in struct kvm_one_reg, where id
1746refers to the register identifier as described below and addr is a pointer
1747to a variable with the respective size. There can be architecture agnostic
1748and architecture specific registers. Each have their own range of operation
1749and their own constants and width. To keep track of the implemented
1750registers, find a list below:
1751
1752 Arch | Register | Width (bits)
1753 | |
1022fc3d 1754 PPC | KVM_REG_PPC_HIOR | 64
2e232702
BB
1755 PPC | KVM_REG_PPC_IAC1 | 64
1756 PPC | KVM_REG_PPC_IAC2 | 64
1757 PPC | KVM_REG_PPC_IAC3 | 64
1758 PPC | KVM_REG_PPC_IAC4 | 64
1759 PPC | KVM_REG_PPC_DAC1 | 64
1760 PPC | KVM_REG_PPC_DAC2 | 64
a136a8bd
PM
1761 PPC | KVM_REG_PPC_DABR | 64
1762 PPC | KVM_REG_PPC_DSCR | 64
1763 PPC | KVM_REG_PPC_PURR | 64
1764 PPC | KVM_REG_PPC_SPURR | 64
1765 PPC | KVM_REG_PPC_DAR | 64
1766 PPC | KVM_REG_PPC_DSISR | 32
1767 PPC | KVM_REG_PPC_AMR | 64
1768 PPC | KVM_REG_PPC_UAMOR | 64
1769 PPC | KVM_REG_PPC_MMCR0 | 64
1770 PPC | KVM_REG_PPC_MMCR1 | 64
1771 PPC | KVM_REG_PPC_MMCRA | 64
1772 PPC | KVM_REG_PPC_PMC1 | 32
1773 PPC | KVM_REG_PPC_PMC2 | 32
1774 PPC | KVM_REG_PPC_PMC3 | 32
1775 PPC | KVM_REG_PPC_PMC4 | 32
1776 PPC | KVM_REG_PPC_PMC5 | 32
1777 PPC | KVM_REG_PPC_PMC6 | 32
1778 PPC | KVM_REG_PPC_PMC7 | 32
1779 PPC | KVM_REG_PPC_PMC8 | 32
a8bd19ef
PM
1780 PPC | KVM_REG_PPC_FPR0 | 64
1781 ...
1782 PPC | KVM_REG_PPC_FPR31 | 64
1783 PPC | KVM_REG_PPC_VR0 | 128
1784 ...
1785 PPC | KVM_REG_PPC_VR31 | 128
1786 PPC | KVM_REG_PPC_VSR0 | 128
1787 ...
1788 PPC | KVM_REG_PPC_VSR31 | 128
1789 PPC | KVM_REG_PPC_FPSCR | 64
1790 PPC | KVM_REG_PPC_VSCR | 32
55b665b0
PM
1791 PPC | KVM_REG_PPC_VPA_ADDR | 64
1792 PPC | KVM_REG_PPC_VPA_SLB | 128
1793 PPC | KVM_REG_PPC_VPA_DTL | 128
352df1de 1794 PPC | KVM_REG_PPC_EPCR | 32
414fa985 1795
749cf76c
CD
1796ARM registers are mapped using the lower 32 bits. The upper 16 of that
1797is the register group type, or coprocessor number:
1798
1799ARM core registers have the following id bit patterns:
1800 0x4002 0000 0010 <index into the kvm_regs struct:16>
1801
1138245c
CD
1802ARM 32-bit CP15 registers have the following id bit patterns:
1803 0x4002 0000 000F <zero:1> <crn:4> <crm:4> <opc1:4> <opc2:3>
1804
1805ARM 64-bit CP15 registers have the following id bit patterns:
1806 0x4003 0000 000F <zero:1> <zero:4> <crm:4> <opc1:4> <zero:3>
749cf76c
CD
1807
1808
e24ed81f
AG
18094.69 KVM_GET_ONE_REG
1810
1811Capability: KVM_CAP_ONE_REG
1812Architectures: all
1813Type: vcpu ioctl
1814Parameters: struct kvm_one_reg (in and out)
1815Returns: 0 on success, negative value on failure
1816
1817This ioctl allows to receive the value of a single register implemented
1818in a vcpu. The register to read is indicated by the "id" field of the
1819kvm_one_reg struct passed in. On success, the register value can be found
1820at the memory location pointed to by "addr".
1821
1822The list of registers accessible using this interface is identical to the
2e232702 1823list in 4.68.
e24ed81f 1824
414fa985 1825
1c0b28c2
EM
18264.70 KVM_KVMCLOCK_CTRL
1827
1828Capability: KVM_CAP_KVMCLOCK_CTRL
1829Architectures: Any that implement pvclocks (currently x86 only)
1830Type: vcpu ioctl
1831Parameters: None
1832Returns: 0 on success, -1 on error
1833
1834This signals to the host kernel that the specified guest is being paused by
1835userspace. The host will set a flag in the pvclock structure that is checked
1836from the soft lockup watchdog. The flag is part of the pvclock structure that
1837is shared between guest and host, specifically the second bit of the flags
1838field of the pvclock_vcpu_time_info structure. It will be set exclusively by
1839the host and read/cleared exclusively by the guest. The guest operation of
1840checking and clearing the flag must an atomic operation so
1841load-link/store-conditional, or equivalent must be used. There are two cases
1842where the guest will clear the flag: when the soft lockup watchdog timer resets
1843itself or when a soft lockup is detected. This ioctl can be called any time
1844after pausing the vcpu, but before it is resumed.
1845
414fa985 1846
07975ad3
JK
18474.71 KVM_SIGNAL_MSI
1848
1849Capability: KVM_CAP_SIGNAL_MSI
1850Architectures: x86
1851Type: vm ioctl
1852Parameters: struct kvm_msi (in)
1853Returns: >0 on delivery, 0 if guest blocked the MSI, and -1 on error
1854
1855Directly inject a MSI message. Only valid with in-kernel irqchip that handles
1856MSI messages.
1857
1858struct kvm_msi {
1859 __u32 address_lo;
1860 __u32 address_hi;
1861 __u32 data;
1862 __u32 flags;
1863 __u8 pad[16];
1864};
1865
1866No flags are defined so far. The corresponding field must be 0.
1867
414fa985 1868
0589ff6c
JK
18694.71 KVM_CREATE_PIT2
1870
1871Capability: KVM_CAP_PIT2
1872Architectures: x86
1873Type: vm ioctl
1874Parameters: struct kvm_pit_config (in)
1875Returns: 0 on success, -1 on error
1876
1877Creates an in-kernel device model for the i8254 PIT. This call is only valid
1878after enabling in-kernel irqchip support via KVM_CREATE_IRQCHIP. The following
1879parameters have to be passed:
1880
1881struct kvm_pit_config {
1882 __u32 flags;
1883 __u32 pad[15];
1884};
1885
1886Valid flags are:
1887
1888#define KVM_PIT_SPEAKER_DUMMY 1 /* emulate speaker port stub */
1889
b6ddf05f
JK
1890PIT timer interrupts may use a per-VM kernel thread for injection. If it
1891exists, this thread will have a name of the following pattern:
1892
1893kvm-pit/<owner-process-pid>
1894
1895When running a guest with elevated priorities, the scheduling parameters of
1896this thread may have to be adjusted accordingly.
1897
0589ff6c
JK
1898This IOCTL replaces the obsolete KVM_CREATE_PIT.
1899
1900
19014.72 KVM_GET_PIT2
1902
1903Capability: KVM_CAP_PIT_STATE2
1904Architectures: x86
1905Type: vm ioctl
1906Parameters: struct kvm_pit_state2 (out)
1907Returns: 0 on success, -1 on error
1908
1909Retrieves the state of the in-kernel PIT model. Only valid after
1910KVM_CREATE_PIT2. The state is returned in the following structure:
1911
1912struct kvm_pit_state2 {
1913 struct kvm_pit_channel_state channels[3];
1914 __u32 flags;
1915 __u32 reserved[9];
1916};
1917
1918Valid flags are:
1919
1920/* disable PIT in HPET legacy mode */
1921#define KVM_PIT_FLAGS_HPET_LEGACY 0x00000001
1922
1923This IOCTL replaces the obsolete KVM_GET_PIT.
1924
1925
19264.73 KVM_SET_PIT2
1927
1928Capability: KVM_CAP_PIT_STATE2
1929Architectures: x86
1930Type: vm ioctl
1931Parameters: struct kvm_pit_state2 (in)
1932Returns: 0 on success, -1 on error
1933
1934Sets the state of the in-kernel PIT model. Only valid after KVM_CREATE_PIT2.
1935See KVM_GET_PIT2 for details on struct kvm_pit_state2.
1936
1937This IOCTL replaces the obsolete KVM_SET_PIT.
1938
1939
5b74716e
BH
19404.74 KVM_PPC_GET_SMMU_INFO
1941
1942Capability: KVM_CAP_PPC_GET_SMMU_INFO
1943Architectures: powerpc
1944Type: vm ioctl
1945Parameters: None
1946Returns: 0 on success, -1 on error
1947
1948This populates and returns a structure describing the features of
1949the "Server" class MMU emulation supported by KVM.
1950This can in turn be used by userspace to generate the appropariate
1951device-tree properties for the guest operating system.
1952
1953The structure contains some global informations, followed by an
1954array of supported segment page sizes:
1955
1956 struct kvm_ppc_smmu_info {
1957 __u64 flags;
1958 __u32 slb_size;
1959 __u32 pad;
1960 struct kvm_ppc_one_seg_page_size sps[KVM_PPC_PAGE_SIZES_MAX_SZ];
1961 };
1962
1963The supported flags are:
1964
1965 - KVM_PPC_PAGE_SIZES_REAL:
1966 When that flag is set, guest page sizes must "fit" the backing
1967 store page sizes. When not set, any page size in the list can
1968 be used regardless of how they are backed by userspace.
1969
1970 - KVM_PPC_1T_SEGMENTS
1971 The emulated MMU supports 1T segments in addition to the
1972 standard 256M ones.
1973
1974The "slb_size" field indicates how many SLB entries are supported
1975
1976The "sps" array contains 8 entries indicating the supported base
1977page sizes for a segment in increasing order. Each entry is defined
1978as follow:
1979
1980 struct kvm_ppc_one_seg_page_size {
1981 __u32 page_shift; /* Base page shift of segment (or 0) */
1982 __u32 slb_enc; /* SLB encoding for BookS */
1983 struct kvm_ppc_one_page_size enc[KVM_PPC_PAGE_SIZES_MAX_SZ];
1984 };
1985
1986An entry with a "page_shift" of 0 is unused. Because the array is
1987organized in increasing order, a lookup can stop when encoutering
1988such an entry.
1989
1990The "slb_enc" field provides the encoding to use in the SLB for the
1991page size. The bits are in positions such as the value can directly
1992be OR'ed into the "vsid" argument of the slbmte instruction.
1993
1994The "enc" array is a list which for each of those segment base page
1995size provides the list of supported actual page sizes (which can be
1996only larger or equal to the base page size), along with the
1997corresponding encoding in the hash PTE. Similarily, the array is
19988 entries sorted by increasing sizes and an entry with a "0" shift
1999is an empty entry and a terminator:
2000
2001 struct kvm_ppc_one_page_size {
2002 __u32 page_shift; /* Page shift (or 0) */
2003 __u32 pte_enc; /* Encoding in the HPTE (>>12) */
2004 };
2005
2006The "pte_enc" field provides a value that can OR'ed into the hash
2007PTE's RPN field (ie, it needs to be shifted left by 12 to OR it
2008into the hash PTE second double word).
2009
f36992e3
AW
20104.75 KVM_IRQFD
2011
2012Capability: KVM_CAP_IRQFD
2013Architectures: x86
2014Type: vm ioctl
2015Parameters: struct kvm_irqfd (in)
2016Returns: 0 on success, -1 on error
2017
2018Allows setting an eventfd to directly trigger a guest interrupt.
2019kvm_irqfd.fd specifies the file descriptor to use as the eventfd and
2020kvm_irqfd.gsi specifies the irqchip pin toggled by this event. When
2021an event is tiggered on the eventfd, an interrupt is injected into
2022the guest using the specified gsi pin. The irqfd is removed using
2023the KVM_IRQFD_FLAG_DEASSIGN flag, specifying both kvm_irqfd.fd
2024and kvm_irqfd.gsi.
2025
7a84428a
AW
2026With KVM_CAP_IRQFD_RESAMPLE, KVM_IRQFD supports a de-assert and notify
2027mechanism allowing emulation of level-triggered, irqfd-based
2028interrupts. When KVM_IRQFD_FLAG_RESAMPLE is set the user must pass an
2029additional eventfd in the kvm_irqfd.resamplefd field. When operating
2030in resample mode, posting of an interrupt through kvm_irq.fd asserts
2031the specified gsi in the irqchip. When the irqchip is resampled, such
2032as from an EOI, the gsi is de-asserted and the user is notifed via
2033kvm_irqfd.resamplefd. It is the user's responsibility to re-queue
2034the interrupt if the device making use of it still requires service.
2035Note that closing the resamplefd is not sufficient to disable the
2036irqfd. The KVM_IRQFD_FLAG_RESAMPLE is only necessary on assignment
2037and need not be specified with KVM_IRQFD_FLAG_DEASSIGN.
2038
5fecc9d8 20394.76 KVM_PPC_ALLOCATE_HTAB
32fad281
PM
2040
2041Capability: KVM_CAP_PPC_ALLOC_HTAB
2042Architectures: powerpc
2043Type: vm ioctl
2044Parameters: Pointer to u32 containing hash table order (in/out)
2045Returns: 0 on success, -1 on error
2046
2047This requests the host kernel to allocate an MMU hash table for a
2048guest using the PAPR paravirtualization interface. This only does
2049anything if the kernel is configured to use the Book 3S HV style of
2050virtualization. Otherwise the capability doesn't exist and the ioctl
2051returns an ENOTTY error. The rest of this description assumes Book 3S
2052HV.
2053
2054There must be no vcpus running when this ioctl is called; if there
2055are, it will do nothing and return an EBUSY error.
2056
2057The parameter is a pointer to a 32-bit unsigned integer variable
2058containing the order (log base 2) of the desired size of the hash
2059table, which must be between 18 and 46. On successful return from the
2060ioctl, it will have been updated with the order of the hash table that
2061was allocated.
2062
2063If no hash table has been allocated when any vcpu is asked to run
2064(with the KVM_RUN ioctl), the host kernel will allocate a
2065default-sized hash table (16 MB).
2066
2067If this ioctl is called when a hash table has already been allocated,
2068the kernel will clear out the existing hash table (zero all HPTEs) and
2069return the hash table order in the parameter. (If the guest is using
2070the virtualized real-mode area (VRMA) facility, the kernel will
2071re-create the VMRA HPTEs on the next KVM_RUN of any vcpu.)
2072
416ad65f
CH
20734.77 KVM_S390_INTERRUPT
2074
2075Capability: basic
2076Architectures: s390
2077Type: vm ioctl, vcpu ioctl
2078Parameters: struct kvm_s390_interrupt (in)
2079Returns: 0 on success, -1 on error
2080
2081Allows to inject an interrupt to the guest. Interrupts can be floating
2082(vm ioctl) or per cpu (vcpu ioctl), depending on the interrupt type.
2083
2084Interrupt parameters are passed via kvm_s390_interrupt:
2085
2086struct kvm_s390_interrupt {
2087 __u32 type;
2088 __u32 parm;
2089 __u64 parm64;
2090};
2091
2092type can be one of the following:
2093
2094KVM_S390_SIGP_STOP (vcpu) - sigp restart
2095KVM_S390_PROGRAM_INT (vcpu) - program check; code in parm
2096KVM_S390_SIGP_SET_PREFIX (vcpu) - sigp set prefix; prefix address in parm
2097KVM_S390_RESTART (vcpu) - restart
2098KVM_S390_INT_VIRTIO (vm) - virtio external interrupt; external interrupt
2099 parameters in parm and parm64
2100KVM_S390_INT_SERVICE (vm) - sclp external interrupt; sclp parameter in parm
2101KVM_S390_INT_EMERGENCY (vcpu) - sigp emergency; source cpu in parm
2102KVM_S390_INT_EXTERNAL_CALL (vcpu) - sigp external call; source cpu in parm
2103
2104Note that the vcpu ioctl is asynchronous to vcpu execution.
2105
a2932923
PM
21064.78 KVM_PPC_GET_HTAB_FD
2107
2108Capability: KVM_CAP_PPC_HTAB_FD
2109Architectures: powerpc
2110Type: vm ioctl
2111Parameters: Pointer to struct kvm_get_htab_fd (in)
2112Returns: file descriptor number (>= 0) on success, -1 on error
2113
2114This returns a file descriptor that can be used either to read out the
2115entries in the guest's hashed page table (HPT), or to write entries to
2116initialize the HPT. The returned fd can only be written to if the
2117KVM_GET_HTAB_WRITE bit is set in the flags field of the argument, and
2118can only be read if that bit is clear. The argument struct looks like
2119this:
2120
2121/* For KVM_PPC_GET_HTAB_FD */
2122struct kvm_get_htab_fd {
2123 __u64 flags;
2124 __u64 start_index;
2125 __u64 reserved[2];
2126};
2127
2128/* Values for kvm_get_htab_fd.flags */
2129#define KVM_GET_HTAB_BOLTED_ONLY ((__u64)0x1)
2130#define KVM_GET_HTAB_WRITE ((__u64)0x2)
2131
2132The `start_index' field gives the index in the HPT of the entry at
2133which to start reading. It is ignored when writing.
2134
2135Reads on the fd will initially supply information about all
2136"interesting" HPT entries. Interesting entries are those with the
2137bolted bit set, if the KVM_GET_HTAB_BOLTED_ONLY bit is set, otherwise
2138all entries. When the end of the HPT is reached, the read() will
2139return. If read() is called again on the fd, it will start again from
2140the beginning of the HPT, but will only return HPT entries that have
2141changed since they were last read.
2142
2143Data read or written is structured as a header (8 bytes) followed by a
2144series of valid HPT entries (16 bytes) each. The header indicates how
2145many valid HPT entries there are and how many invalid entries follow
2146the valid entries. The invalid entries are not represented explicitly
2147in the stream. The header format is:
2148
2149struct kvm_get_htab_header {
2150 __u32 index;
2151 __u16 n_valid;
2152 __u16 n_invalid;
2153};
2154
2155Writes to the fd create HPT entries starting at the index given in the
2156header; first `n_valid' valid entries with contents from the data
2157written, then `n_invalid' invalid entries, invalidating any previously
2158valid entries found.
2159
f36992e3 2160
749cf76c
CD
21614.77 KVM_ARM_VCPU_INIT
2162
2163Capability: basic
2164Architectures: arm
2165Type: vcpu ioctl
2166Parameters: struct struct kvm_vcpu_init (in)
2167Returns: 0 on success; -1 on error
2168Errors:
2169  EINVAL:    the target is unknown, or the combination of features is invalid.
2170  ENOENT:    a features bit specified is unknown.
2171
2172This tells KVM what type of CPU to present to the guest, and what
2173optional features it should have.  This will cause a reset of the cpu
2174registers to their initial values.  If this is not called, KVM_RUN will
2175return ENOEXEC for that vcpu.
2176
2177Note that because some registers reflect machine topology, all vcpus
2178should be created before this ioctl is invoked.
2179
2180
21814.78 KVM_GET_REG_LIST
2182
2183Capability: basic
2184Architectures: arm
2185Type: vcpu ioctl
2186Parameters: struct kvm_reg_list (in/out)
2187Returns: 0 on success; -1 on error
2188Errors:
2189  E2BIG:     the reg index list is too big to fit in the array specified by
2190             the user (the number required will be written into n).
2191
2192struct kvm_reg_list {
2193 __u64 n; /* number of registers in reg[] */
2194 __u64 reg[0];
2195};
2196
2197This ioctl returns the guest registers that are supported for the
2198KVM_GET_ONE_REG/KVM_SET_ONE_REG calls.
2199
2200
9c1b96e3 22015. The kvm_run structure
414fa985 2202------------------------
9c1b96e3
AK
2203
2204Application code obtains a pointer to the kvm_run structure by
2205mmap()ing a vcpu fd. From that point, application code can control
2206execution by changing fields in kvm_run prior to calling the KVM_RUN
2207ioctl, and obtain information about the reason KVM_RUN returned by
2208looking up structure members.
2209
2210struct kvm_run {
2211 /* in */
2212 __u8 request_interrupt_window;
2213
2214Request that KVM_RUN return when it becomes possible to inject external
2215interrupts into the guest. Useful in conjunction with KVM_INTERRUPT.
2216
2217 __u8 padding1[7];
2218
2219 /* out */
2220 __u32 exit_reason;
2221
2222When KVM_RUN has returned successfully (return value 0), this informs
2223application code why KVM_RUN has returned. Allowable values for this
2224field are detailed below.
2225
2226 __u8 ready_for_interrupt_injection;
2227
2228If request_interrupt_window has been specified, this field indicates
2229an interrupt can be injected now with KVM_INTERRUPT.
2230
2231 __u8 if_flag;
2232
2233The value of the current interrupt flag. Only valid if in-kernel
2234local APIC is not used.
2235
2236 __u8 padding2[2];
2237
2238 /* in (pre_kvm_run), out (post_kvm_run) */
2239 __u64 cr8;
2240
2241The value of the cr8 register. Only valid if in-kernel local APIC is
2242not used. Both input and output.
2243
2244 __u64 apic_base;
2245
2246The value of the APIC BASE msr. Only valid if in-kernel local
2247APIC is not used. Both input and output.
2248
2249 union {
2250 /* KVM_EXIT_UNKNOWN */
2251 struct {
2252 __u64 hardware_exit_reason;
2253 } hw;
2254
2255If exit_reason is KVM_EXIT_UNKNOWN, the vcpu has exited due to unknown
2256reasons. Further architecture-specific information is available in
2257hardware_exit_reason.
2258
2259 /* KVM_EXIT_FAIL_ENTRY */
2260 struct {
2261 __u64 hardware_entry_failure_reason;
2262 } fail_entry;
2263
2264If exit_reason is KVM_EXIT_FAIL_ENTRY, the vcpu could not be run due
2265to unknown reasons. Further architecture-specific information is
2266available in hardware_entry_failure_reason.
2267
2268 /* KVM_EXIT_EXCEPTION */
2269 struct {
2270 __u32 exception;
2271 __u32 error_code;
2272 } ex;
2273
2274Unused.
2275
2276 /* KVM_EXIT_IO */
2277 struct {
2278#define KVM_EXIT_IO_IN 0
2279#define KVM_EXIT_IO_OUT 1
2280 __u8 direction;
2281 __u8 size; /* bytes */
2282 __u16 port;
2283 __u32 count;
2284 __u64 data_offset; /* relative to kvm_run start */
2285 } io;
2286
2044892d 2287If exit_reason is KVM_EXIT_IO, then the vcpu has
9c1b96e3
AK
2288executed a port I/O instruction which could not be satisfied by kvm.
2289data_offset describes where the data is located (KVM_EXIT_IO_OUT) or
2290where kvm expects application code to place the data for the next
2044892d 2291KVM_RUN invocation (KVM_EXIT_IO_IN). Data format is a packed array.
9c1b96e3
AK
2292
2293 struct {
2294 struct kvm_debug_exit_arch arch;
2295 } debug;
2296
2297Unused.
2298
2299 /* KVM_EXIT_MMIO */
2300 struct {
2301 __u64 phys_addr;
2302 __u8 data[8];
2303 __u32 len;
2304 __u8 is_write;
2305 } mmio;
2306
2044892d 2307If exit_reason is KVM_EXIT_MMIO, then the vcpu has
9c1b96e3
AK
2308executed a memory-mapped I/O instruction which could not be satisfied
2309by kvm. The 'data' member contains the written data if 'is_write' is
2310true, and should be filled by application code otherwise.
2311
686de182
AG
2312NOTE: For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXIT_OSI, KVM_EXIT_DCR
2313 and KVM_EXIT_PAPR the corresponding
ad0a048b
AG
2314operations are complete (and guest state is consistent) only after userspace
2315has re-entered the kernel with KVM_RUN. The kernel side will first finish
67961344
MT
2316incomplete operations and then check for pending signals. Userspace
2317can re-enter the guest with an unmasked signal pending to complete
2318pending operations.
2319
9c1b96e3
AK
2320 /* KVM_EXIT_HYPERCALL */
2321 struct {
2322 __u64 nr;
2323 __u64 args[6];
2324 __u64 ret;
2325 __u32 longmode;
2326 __u32 pad;
2327 } hypercall;
2328
647dc49e
AK
2329Unused. This was once used for 'hypercall to userspace'. To implement
2330such functionality, use KVM_EXIT_IO (x86) or KVM_EXIT_MMIO (all except s390).
2331Note KVM_EXIT_IO is significantly faster than KVM_EXIT_MMIO.
9c1b96e3
AK
2332
2333 /* KVM_EXIT_TPR_ACCESS */
2334 struct {
2335 __u64 rip;
2336 __u32 is_write;
2337 __u32 pad;
2338 } tpr_access;
2339
2340To be documented (KVM_TPR_ACCESS_REPORTING).
2341
2342 /* KVM_EXIT_S390_SIEIC */
2343 struct {
2344 __u8 icptcode;
2345 __u64 mask; /* psw upper half */
2346 __u64 addr; /* psw lower half */
2347 __u16 ipa;
2348 __u32 ipb;
2349 } s390_sieic;
2350
2351s390 specific.
2352
2353 /* KVM_EXIT_S390_RESET */
2354#define KVM_S390_RESET_POR 1
2355#define KVM_S390_RESET_CLEAR 2
2356#define KVM_S390_RESET_SUBSYSTEM 4
2357#define KVM_S390_RESET_CPU_INIT 8
2358#define KVM_S390_RESET_IPL 16
2359 __u64 s390_reset_flags;
2360
2361s390 specific.
2362
e168bf8d
CO
2363 /* KVM_EXIT_S390_UCONTROL */
2364 struct {
2365 __u64 trans_exc_code;
2366 __u32 pgm_code;
2367 } s390_ucontrol;
2368
2369s390 specific. A page fault has occurred for a user controlled virtual
2370machine (KVM_VM_S390_UNCONTROL) on it's host page table that cannot be
2371resolved by the kernel.
2372The program code and the translation exception code that were placed
2373in the cpu's lowcore are presented here as defined by the z Architecture
2374Principles of Operation Book in the Chapter for Dynamic Address Translation
2375(DAT)
2376
9c1b96e3
AK
2377 /* KVM_EXIT_DCR */
2378 struct {
2379 __u32 dcrn;
2380 __u32 data;
2381 __u8 is_write;
2382 } dcr;
2383
2384powerpc specific.
2385
ad0a048b
AG
2386 /* KVM_EXIT_OSI */
2387 struct {
2388 __u64 gprs[32];
2389 } osi;
2390
2391MOL uses a special hypercall interface it calls 'OSI'. To enable it, we catch
2392hypercalls and exit with this exit struct that contains all the guest gprs.
2393
2394If exit_reason is KVM_EXIT_OSI, then the vcpu has triggered such a hypercall.
2395Userspace can now handle the hypercall and when it's done modify the gprs as
2396necessary. Upon guest entry all guest GPRs will then be replaced by the values
2397in this struct.
2398
de56a948
PM
2399 /* KVM_EXIT_PAPR_HCALL */
2400 struct {
2401 __u64 nr;
2402 __u64 ret;
2403 __u64 args[9];
2404 } papr_hcall;
2405
2406This is used on 64-bit PowerPC when emulating a pSeries partition,
2407e.g. with the 'pseries' machine type in qemu. It occurs when the
2408guest does a hypercall using the 'sc 1' instruction. The 'nr' field
2409contains the hypercall number (from the guest R3), and 'args' contains
2410the arguments (from the guest R4 - R12). Userspace should put the
2411return code in 'ret' and any extra returned values in args[].
2412The possible hypercalls are defined in the Power Architecture Platform
2413Requirements (PAPR) document available from www.power.org (free
2414developer registration required to access it).
2415
9c1b96e3
AK
2416 /* Fix the size of the union. */
2417 char padding[256];
2418 };
b9e5dc8d
CB
2419
2420 /*
2421 * shared registers between kvm and userspace.
2422 * kvm_valid_regs specifies the register classes set by the host
2423 * kvm_dirty_regs specified the register classes dirtied by userspace
2424 * struct kvm_sync_regs is architecture specific, as well as the
2425 * bits for kvm_valid_regs and kvm_dirty_regs
2426 */
2427 __u64 kvm_valid_regs;
2428 __u64 kvm_dirty_regs;
2429 union {
2430 struct kvm_sync_regs regs;
2431 char padding[1024];
2432 } s;
2433
2434If KVM_CAP_SYNC_REGS is defined, these fields allow userspace to access
2435certain guest registers without having to call SET/GET_*REGS. Thus we can
2436avoid some system call overhead if userspace has to handle the exit.
2437Userspace can query the validity of the structure by checking
2438kvm_valid_regs for specific bits. These bits are architecture specific
2439and usually define the validity of a groups of registers. (e.g. one bit
2440 for general purpose registers)
2441
9c1b96e3 2442};
821246a5 2443
414fa985 2444
821246a5 24456. Capabilities that can be enabled
414fa985 2446-----------------------------------
821246a5
AG
2447
2448There are certain capabilities that change the behavior of the virtual CPU when
2449enabled. To enable them, please see section 4.37. Below you can find a list of
2450capabilities and what their effect on the vCPU is when enabling them.
2451
2452The following information is provided along with the description:
2453
2454 Architectures: which instruction set architectures provide this ioctl.
2455 x86 includes both i386 and x86_64.
2456
2457 Parameters: what parameters are accepted by the capability.
2458
2459 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
2460 are not detailed, but errors with specific meanings are.
2461
414fa985 2462
821246a5
AG
24636.1 KVM_CAP_PPC_OSI
2464
2465Architectures: ppc
2466Parameters: none
2467Returns: 0 on success; -1 on error
2468
2469This capability enables interception of OSI hypercalls that otherwise would
2470be treated as normal system calls to be injected into the guest. OSI hypercalls
2471were invented by Mac-on-Linux to have a standardized communication mechanism
2472between the guest and the host.
2473
2474When this capability is enabled, KVM_EXIT_OSI can occur.
2475
414fa985 2476
821246a5
AG
24776.2 KVM_CAP_PPC_PAPR
2478
2479Architectures: ppc
2480Parameters: none
2481Returns: 0 on success; -1 on error
2482
2483This capability enables interception of PAPR hypercalls. PAPR hypercalls are
2484done using the hypercall instruction "sc 1".
2485
2486It also sets the guest privilege level to "supervisor" mode. Usually the guest
2487runs in "hypervisor" privilege mode with a few missing features.
2488
2489In addition to the above, it changes the semantics of SDR1. In this mode, the
2490HTAB address part of SDR1 contains an HVA instead of a GPA, as PAPR keeps the
2491HTAB invisible to the guest.
2492
2493When this capability is enabled, KVM_EXIT_PAPR_HCALL can occur.
dc83b8bc 2494
414fa985 2495
dc83b8bc
SW
24966.3 KVM_CAP_SW_TLB
2497
2498Architectures: ppc
2499Parameters: args[0] is the address of a struct kvm_config_tlb
2500Returns: 0 on success; -1 on error
2501
2502struct kvm_config_tlb {
2503 __u64 params;
2504 __u64 array;
2505 __u32 mmu_type;
2506 __u32 array_len;
2507};
2508
2509Configures the virtual CPU's TLB array, establishing a shared memory area
2510between userspace and KVM. The "params" and "array" fields are userspace
2511addresses of mmu-type-specific data structures. The "array_len" field is an
2512safety mechanism, and should be set to the size in bytes of the memory that
2513userspace has reserved for the array. It must be at least the size dictated
2514by "mmu_type" and "params".
2515
2516While KVM_RUN is active, the shared region is under control of KVM. Its
2517contents are undefined, and any modification by userspace results in
2518boundedly undefined behavior.
2519
2520On return from KVM_RUN, the shared region will reflect the current state of
2521the guest's TLB. If userspace makes any changes, it must call KVM_DIRTY_TLB
2522to tell KVM which entries have been changed, prior to calling KVM_RUN again
2523on this vcpu.
2524
2525For mmu types KVM_MMU_FSL_BOOKE_NOHV and KVM_MMU_FSL_BOOKE_HV:
2526 - The "params" field is of type "struct kvm_book3e_206_tlb_params".
2527 - The "array" field points to an array of type "struct
2528 kvm_book3e_206_tlb_entry".
2529 - The array consists of all entries in the first TLB, followed by all
2530 entries in the second TLB.
2531 - Within a TLB, entries are ordered first by increasing set number. Within a
2532 set, entries are ordered by way (increasing ESEL).
2533 - The hash for determining set number in TLB0 is: (MAS2 >> 12) & (num_sets - 1)
2534 where "num_sets" is the tlb_sizes[] value divided by the tlb_ways[] value.
2535 - The tsize field of mas1 shall be set to 4K on TLB0, even though the
2536 hardware ignores this value for TLB0.
This page took 0.333813 seconds and 5 git commands to generate.