Merge branch 'x86-debug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / Documentation / virtual / kvm / api.txt
CommitLineData
9c1b96e3
AK
1The Definitive KVM (Kernel-based Virtual Machine) API Documentation
2===================================================================
3
41. General description
414fa985 5----------------------
9c1b96e3
AK
6
7The kvm API is a set of ioctls that are issued to control various aspects
8of a virtual machine. The ioctls belong to three classes
9
10 - System ioctls: These query and set global attributes which affect the
11 whole kvm subsystem. In addition a system ioctl is used to create
12 virtual machines
13
14 - VM ioctls: These query and set attributes that affect an entire virtual
15 machine, for example memory layout. In addition a VM ioctl is used to
16 create virtual cpus (vcpus).
17
18 Only run VM ioctls from the same process (address space) that was used
19 to create the VM.
20
21 - vcpu ioctls: These query and set attributes that control the operation
22 of a single virtual cpu.
23
24 Only run vcpu ioctls from the same thread that was used to create the
25 vcpu.
26
414fa985 27
2044892d 282. File descriptors
414fa985 29-------------------
9c1b96e3
AK
30
31The kvm API is centered around file descriptors. An initial
32open("/dev/kvm") obtains a handle to the kvm subsystem; this handle
33can be used to issue system ioctls. A KVM_CREATE_VM ioctl on this
2044892d 34handle will create a VM file descriptor which can be used to issue VM
9c1b96e3
AK
35ioctls. A KVM_CREATE_VCPU ioctl on a VM fd will create a virtual cpu
36and return a file descriptor pointing to it. Finally, ioctls on a vcpu
37fd can be used to control the vcpu, including the important task of
38actually running guest code.
39
40In general file descriptors can be migrated among processes by means
41of fork() and the SCM_RIGHTS facility of unix domain socket. These
42kinds of tricks are explicitly not supported by kvm. While they will
43not cause harm to the host, their actual behavior is not guaranteed by
44the API. The only supported use is one virtual machine per process,
45and one vcpu per thread.
46
414fa985 47
9c1b96e3 483. Extensions
414fa985 49-------------
9c1b96e3
AK
50
51As of Linux 2.6.22, the KVM ABI has been stabilized: no backward
52incompatible change are allowed. However, there is an extension
53facility that allows backward-compatible extensions to the API to be
54queried and used.
55
56The extension mechanism is not based on on the Linux version number.
57Instead, kvm defines extension identifiers and a facility to query
58whether a particular extension identifier is available. If it is, a
59set of ioctls is available for application use.
60
414fa985 61
9c1b96e3 624. API description
414fa985 63------------------
9c1b96e3
AK
64
65This section describes ioctls that can be used to control kvm guests.
66For each ioctl, the following information is provided along with a
67description:
68
69 Capability: which KVM extension provides this ioctl. Can be 'basic',
70 which means that is will be provided by any kernel that supports
71 API version 12 (see section 4.1), or a KVM_CAP_xyz constant, which
72 means availability needs to be checked with KVM_CHECK_EXTENSION
73 (see section 4.4).
74
75 Architectures: which instruction set architectures provide this ioctl.
76 x86 includes both i386 and x86_64.
77
78 Type: system, vm, or vcpu.
79
80 Parameters: what parameters are accepted by the ioctl.
81
82 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
83 are not detailed, but errors with specific meanings are.
84
414fa985 85
9c1b96e3
AK
864.1 KVM_GET_API_VERSION
87
88Capability: basic
89Architectures: all
90Type: system ioctl
91Parameters: none
92Returns: the constant KVM_API_VERSION (=12)
93
94This identifies the API version as the stable kvm API. It is not
95expected that this number will change. However, Linux 2.6.20 and
962.6.21 report earlier versions; these are not documented and not
97supported. Applications should refuse to run if KVM_GET_API_VERSION
98returns a value other than 12. If this check passes, all ioctls
99described as 'basic' will be available.
100
414fa985 101
9c1b96e3
AK
1024.2 KVM_CREATE_VM
103
104Capability: basic
105Architectures: all
106Type: system ioctl
e08b9637 107Parameters: machine type identifier (KVM_VM_*)
9c1b96e3
AK
108Returns: a VM fd that can be used to control the new virtual machine.
109
110The new VM has no virtual cpus and no memory. An mmap() of a VM fd
111will access the virtual machine's physical address space; offset zero
112corresponds to guest physical address zero. Use of mmap() on a VM fd
113is discouraged if userspace memory allocation (KVM_CAP_USER_MEMORY) is
114available.
e08b9637
CO
115You most certainly want to use 0 as machine type.
116
117In order to create user controlled virtual machines on S390, check
118KVM_CAP_S390_UCONTROL and use the flag KVM_VM_S390_UCONTROL as
119privileged user (CAP_SYS_ADMIN).
9c1b96e3 120
414fa985 121
9c1b96e3
AK
1224.3 KVM_GET_MSR_INDEX_LIST
123
124Capability: basic
125Architectures: x86
126Type: system
127Parameters: struct kvm_msr_list (in/out)
128Returns: 0 on success; -1 on error
129Errors:
130 E2BIG: the msr index list is to be to fit in the array specified by
131 the user.
132
133struct kvm_msr_list {
134 __u32 nmsrs; /* number of msrs in entries */
135 __u32 indices[0];
136};
137
138This ioctl returns the guest msrs that are supported. The list varies
139by kvm version and host processor, but does not change otherwise. The
140user fills in the size of the indices array in nmsrs, and in return
141kvm adjusts nmsrs to reflect the actual number of msrs and fills in
142the indices array with their numbers.
143
2e2602ca
AK
144Note: if kvm indicates supports MCE (KVM_CAP_MCE), then the MCE bank MSRs are
145not returned in the MSR list, as different vcpus can have a different number
146of banks, as set via the KVM_X86_SETUP_MCE ioctl.
147
414fa985 148
9c1b96e3
AK
1494.4 KVM_CHECK_EXTENSION
150
151Capability: basic
152Architectures: all
153Type: system ioctl
154Parameters: extension identifier (KVM_CAP_*)
155Returns: 0 if unsupported; 1 (or some other positive integer) if supported
156
157The API allows the application to query about extensions to the core
158kvm API. Userspace passes an extension identifier (an integer) and
159receives an integer that describes the extension availability.
160Generally 0 means no and 1 means yes, but some extensions may report
161additional information in the integer return value.
162
414fa985 163
9c1b96e3
AK
1644.5 KVM_GET_VCPU_MMAP_SIZE
165
166Capability: basic
167Architectures: all
168Type: system ioctl
169Parameters: none
170Returns: size of vcpu mmap area, in bytes
171
172The KVM_RUN ioctl (cf.) communicates with userspace via a shared
173memory region. This ioctl returns the size of that region. See the
174KVM_RUN documentation for details.
175
414fa985 176
9c1b96e3
AK
1774.6 KVM_SET_MEMORY_REGION
178
179Capability: basic
180Architectures: all
181Type: vm ioctl
182Parameters: struct kvm_memory_region (in)
183Returns: 0 on success, -1 on error
184
b74a07be 185This ioctl is obsolete and has been removed.
9c1b96e3 186
414fa985 187
68ba6974 1884.7 KVM_CREATE_VCPU
9c1b96e3
AK
189
190Capability: basic
191Architectures: all
192Type: vm ioctl
193Parameters: vcpu id (apic id on x86)
194Returns: vcpu fd on success, -1 on error
195
196This API adds a vcpu to a virtual machine. The vcpu id is a small integer
8c3ba334
SL
197in the range [0, max_vcpus).
198
199The recommended max_vcpus value can be retrieved using the KVM_CAP_NR_VCPUS of
200the KVM_CHECK_EXTENSION ioctl() at run-time.
201The maximum possible value for max_vcpus can be retrieved using the
202KVM_CAP_MAX_VCPUS of the KVM_CHECK_EXTENSION ioctl() at run-time.
203
76d25402
PE
204If the KVM_CAP_NR_VCPUS does not exist, you should assume that max_vcpus is 4
205cpus max.
8c3ba334
SL
206If the KVM_CAP_MAX_VCPUS does not exist, you should assume that max_vcpus is
207same as the value returned from KVM_CAP_NR_VCPUS.
9c1b96e3 208
371fefd6
PM
209On powerpc using book3s_hv mode, the vcpus are mapped onto virtual
210threads in one or more virtual CPU cores. (This is because the
211hardware requires all the hardware threads in a CPU core to be in the
212same partition.) The KVM_CAP_PPC_SMT capability indicates the number
36442687
AK
213of vcpus per virtual core (vcore). The vcore id is obtained by
214dividing the vcpu id by the number of vcpus per vcore. The vcpus in a
215given vcore will always be in the same physical core as each other
216(though that might be a different physical core from time to time).
217Userspace can control the threading (SMT) mode of the guest by its
218allocation of vcpu ids. For example, if userspace wants
219single-threaded guest vcpus, it should make all vcpu ids be a multiple
220of the number of vcpus per vcore.
221
222On powerpc using book3s_hv mode, the vcpus are mapped onto virtual
223threads in one or more virtual CPU cores. (This is because the
224hardware requires all the hardware threads in a CPU core to be in the
225same partition.) The KVM_CAP_PPC_SMT capability indicates the number
371fefd6
PM
226of vcpus per virtual core (vcore). The vcore id is obtained by
227dividing the vcpu id by the number of vcpus per vcore. The vcpus in a
228given vcore will always be in the same physical core as each other
229(though that might be a different physical core from time to time).
230Userspace can control the threading (SMT) mode of the guest by its
231allocation of vcpu ids. For example, if userspace wants
232single-threaded guest vcpus, it should make all vcpu ids be a multiple
233of the number of vcpus per vcore.
234
5b1c1493
CO
235For virtual cpus that have been created with S390 user controlled virtual
236machines, the resulting vcpu fd can be memory mapped at page offset
237KVM_S390_SIE_PAGE_OFFSET in order to obtain a memory map of the virtual
238cpu's hardware control block.
239
414fa985 240
68ba6974 2414.8 KVM_GET_DIRTY_LOG (vm ioctl)
9c1b96e3
AK
242
243Capability: basic
244Architectures: x86
245Type: vm ioctl
246Parameters: struct kvm_dirty_log (in/out)
247Returns: 0 on success, -1 on error
248
249/* for KVM_GET_DIRTY_LOG */
250struct kvm_dirty_log {
251 __u32 slot;
252 __u32 padding;
253 union {
254 void __user *dirty_bitmap; /* one bit per page */
255 __u64 padding;
256 };
257};
258
259Given a memory slot, return a bitmap containing any pages dirtied
260since the last call to this ioctl. Bit 0 is the first page in the
261memory slot. Ensure the entire structure is cleared to avoid padding
262issues.
263
414fa985 264
68ba6974 2654.9 KVM_SET_MEMORY_ALIAS
9c1b96e3
AK
266
267Capability: basic
268Architectures: x86
269Type: vm ioctl
270Parameters: struct kvm_memory_alias (in)
271Returns: 0 (success), -1 (error)
272
a1f4d395 273This ioctl is obsolete and has been removed.
9c1b96e3 274
414fa985 275
68ba6974 2764.10 KVM_RUN
9c1b96e3
AK
277
278Capability: basic
279Architectures: all
280Type: vcpu ioctl
281Parameters: none
282Returns: 0 on success, -1 on error
283Errors:
284 EINTR: an unmasked signal is pending
285
286This ioctl is used to run a guest virtual cpu. While there are no
287explicit parameters, there is an implicit parameter block that can be
288obtained by mmap()ing the vcpu fd at offset 0, with the size given by
289KVM_GET_VCPU_MMAP_SIZE. The parameter block is formatted as a 'struct
290kvm_run' (see below).
291
414fa985 292
68ba6974 2934.11 KVM_GET_REGS
9c1b96e3
AK
294
295Capability: basic
296Architectures: all
297Type: vcpu ioctl
298Parameters: struct kvm_regs (out)
299Returns: 0 on success, -1 on error
300
301Reads the general purpose registers from the vcpu.
302
303/* x86 */
304struct kvm_regs {
305 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
306 __u64 rax, rbx, rcx, rdx;
307 __u64 rsi, rdi, rsp, rbp;
308 __u64 r8, r9, r10, r11;
309 __u64 r12, r13, r14, r15;
310 __u64 rip, rflags;
311};
312
414fa985 313
68ba6974 3144.12 KVM_SET_REGS
9c1b96e3
AK
315
316Capability: basic
317Architectures: all
318Type: vcpu ioctl
319Parameters: struct kvm_regs (in)
320Returns: 0 on success, -1 on error
321
322Writes the general purpose registers into the vcpu.
323
324See KVM_GET_REGS for the data structure.
325
414fa985 326
68ba6974 3274.13 KVM_GET_SREGS
9c1b96e3
AK
328
329Capability: basic
5ce941ee 330Architectures: x86, ppc
9c1b96e3
AK
331Type: vcpu ioctl
332Parameters: struct kvm_sregs (out)
333Returns: 0 on success, -1 on error
334
335Reads special registers from the vcpu.
336
337/* x86 */
338struct kvm_sregs {
339 struct kvm_segment cs, ds, es, fs, gs, ss;
340 struct kvm_segment tr, ldt;
341 struct kvm_dtable gdt, idt;
342 __u64 cr0, cr2, cr3, cr4, cr8;
343 __u64 efer;
344 __u64 apic_base;
345 __u64 interrupt_bitmap[(KVM_NR_INTERRUPTS + 63) / 64];
346};
347
5ce941ee
SW
348/* ppc -- see arch/powerpc/include/asm/kvm.h */
349
9c1b96e3
AK
350interrupt_bitmap is a bitmap of pending external interrupts. At most
351one bit may be set. This interrupt has been acknowledged by the APIC
352but not yet injected into the cpu core.
353
414fa985 354
68ba6974 3554.14 KVM_SET_SREGS
9c1b96e3
AK
356
357Capability: basic
5ce941ee 358Architectures: x86, ppc
9c1b96e3
AK
359Type: vcpu ioctl
360Parameters: struct kvm_sregs (in)
361Returns: 0 on success, -1 on error
362
363Writes special registers into the vcpu. See KVM_GET_SREGS for the
364data structures.
365
414fa985 366
68ba6974 3674.15 KVM_TRANSLATE
9c1b96e3
AK
368
369Capability: basic
370Architectures: x86
371Type: vcpu ioctl
372Parameters: struct kvm_translation (in/out)
373Returns: 0 on success, -1 on error
374
375Translates a virtual address according to the vcpu's current address
376translation mode.
377
378struct kvm_translation {
379 /* in */
380 __u64 linear_address;
381
382 /* out */
383 __u64 physical_address;
384 __u8 valid;
385 __u8 writeable;
386 __u8 usermode;
387 __u8 pad[5];
388};
389
414fa985 390
68ba6974 3914.16 KVM_INTERRUPT
9c1b96e3
AK
392
393Capability: basic
6f7a2bd4 394Architectures: x86, ppc
9c1b96e3
AK
395Type: vcpu ioctl
396Parameters: struct kvm_interrupt (in)
397Returns: 0 on success, -1 on error
398
399Queues a hardware interrupt vector to be injected. This is only
6f7a2bd4 400useful if in-kernel local APIC or equivalent is not used.
9c1b96e3
AK
401
402/* for KVM_INTERRUPT */
403struct kvm_interrupt {
404 /* in */
405 __u32 irq;
406};
407
6f7a2bd4
AG
408X86:
409
9c1b96e3
AK
410Note 'irq' is an interrupt vector, not an interrupt pin or line.
411
6f7a2bd4
AG
412PPC:
413
414Queues an external interrupt to be injected. This ioctl is overleaded
415with 3 different irq values:
416
417a) KVM_INTERRUPT_SET
418
419 This injects an edge type external interrupt into the guest once it's ready
420 to receive interrupts. When injected, the interrupt is done.
421
422b) KVM_INTERRUPT_UNSET
423
424 This unsets any pending interrupt.
425
426 Only available with KVM_CAP_PPC_UNSET_IRQ.
427
428c) KVM_INTERRUPT_SET_LEVEL
429
430 This injects a level type external interrupt into the guest context. The
431 interrupt stays pending until a specific ioctl with KVM_INTERRUPT_UNSET
432 is triggered.
433
434 Only available with KVM_CAP_PPC_IRQ_LEVEL.
435
436Note that any value for 'irq' other than the ones stated above is invalid
437and incurs unexpected behavior.
438
414fa985 439
68ba6974 4404.17 KVM_DEBUG_GUEST
9c1b96e3
AK
441
442Capability: basic
443Architectures: none
444Type: vcpu ioctl
445Parameters: none)
446Returns: -1 on error
447
448Support for this has been removed. Use KVM_SET_GUEST_DEBUG instead.
449
414fa985 450
68ba6974 4514.18 KVM_GET_MSRS
9c1b96e3
AK
452
453Capability: basic
454Architectures: x86
455Type: vcpu ioctl
456Parameters: struct kvm_msrs (in/out)
457Returns: 0 on success, -1 on error
458
459Reads model-specific registers from the vcpu. Supported msr indices can
460be obtained using KVM_GET_MSR_INDEX_LIST.
461
462struct kvm_msrs {
463 __u32 nmsrs; /* number of msrs in entries */
464 __u32 pad;
465
466 struct kvm_msr_entry entries[0];
467};
468
469struct kvm_msr_entry {
470 __u32 index;
471 __u32 reserved;
472 __u64 data;
473};
474
475Application code should set the 'nmsrs' member (which indicates the
476size of the entries array) and the 'index' member of each array entry.
477kvm will fill in the 'data' member.
478
414fa985 479
68ba6974 4804.19 KVM_SET_MSRS
9c1b96e3
AK
481
482Capability: basic
483Architectures: x86
484Type: vcpu ioctl
485Parameters: struct kvm_msrs (in)
486Returns: 0 on success, -1 on error
487
488Writes model-specific registers to the vcpu. See KVM_GET_MSRS for the
489data structures.
490
491Application code should set the 'nmsrs' member (which indicates the
492size of the entries array), and the 'index' and 'data' members of each
493array entry.
494
414fa985 495
68ba6974 4964.20 KVM_SET_CPUID
9c1b96e3
AK
497
498Capability: basic
499Architectures: x86
500Type: vcpu ioctl
501Parameters: struct kvm_cpuid (in)
502Returns: 0 on success, -1 on error
503
504Defines the vcpu responses to the cpuid instruction. Applications
505should use the KVM_SET_CPUID2 ioctl if available.
506
507
508struct kvm_cpuid_entry {
509 __u32 function;
510 __u32 eax;
511 __u32 ebx;
512 __u32 ecx;
513 __u32 edx;
514 __u32 padding;
515};
516
517/* for KVM_SET_CPUID */
518struct kvm_cpuid {
519 __u32 nent;
520 __u32 padding;
521 struct kvm_cpuid_entry entries[0];
522};
523
414fa985 524
68ba6974 5254.21 KVM_SET_SIGNAL_MASK
9c1b96e3
AK
526
527Capability: basic
528Architectures: x86
529Type: vcpu ioctl
530Parameters: struct kvm_signal_mask (in)
531Returns: 0 on success, -1 on error
532
533Defines which signals are blocked during execution of KVM_RUN. This
534signal mask temporarily overrides the threads signal mask. Any
535unblocked signal received (except SIGKILL and SIGSTOP, which retain
536their traditional behaviour) will cause KVM_RUN to return with -EINTR.
537
538Note the signal will only be delivered if not blocked by the original
539signal mask.
540
541/* for KVM_SET_SIGNAL_MASK */
542struct kvm_signal_mask {
543 __u32 len;
544 __u8 sigset[0];
545};
546
414fa985 547
68ba6974 5484.22 KVM_GET_FPU
9c1b96e3
AK
549
550Capability: basic
551Architectures: x86
552Type: vcpu ioctl
553Parameters: struct kvm_fpu (out)
554Returns: 0 on success, -1 on error
555
556Reads the floating point state from the vcpu.
557
558/* for KVM_GET_FPU and KVM_SET_FPU */
559struct kvm_fpu {
560 __u8 fpr[8][16];
561 __u16 fcw;
562 __u16 fsw;
563 __u8 ftwx; /* in fxsave format */
564 __u8 pad1;
565 __u16 last_opcode;
566 __u64 last_ip;
567 __u64 last_dp;
568 __u8 xmm[16][16];
569 __u32 mxcsr;
570 __u32 pad2;
571};
572
414fa985 573
68ba6974 5744.23 KVM_SET_FPU
9c1b96e3
AK
575
576Capability: basic
577Architectures: x86
578Type: vcpu ioctl
579Parameters: struct kvm_fpu (in)
580Returns: 0 on success, -1 on error
581
582Writes the floating point state to the vcpu.
583
584/* for KVM_GET_FPU and KVM_SET_FPU */
585struct kvm_fpu {
586 __u8 fpr[8][16];
587 __u16 fcw;
588 __u16 fsw;
589 __u8 ftwx; /* in fxsave format */
590 __u8 pad1;
591 __u16 last_opcode;
592 __u64 last_ip;
593 __u64 last_dp;
594 __u8 xmm[16][16];
595 __u32 mxcsr;
596 __u32 pad2;
597};
598
414fa985 599
68ba6974 6004.24 KVM_CREATE_IRQCHIP
5dadbfd6
AK
601
602Capability: KVM_CAP_IRQCHIP
603Architectures: x86, ia64
604Type: vm ioctl
605Parameters: none
606Returns: 0 on success, -1 on error
607
608Creates an interrupt controller model in the kernel. On x86, creates a virtual
609ioapic, a virtual PIC (two PICs, nested), and sets up future vcpus to have a
610local APIC. IRQ routing for GSIs 0-15 is set to both PIC and IOAPIC; GSI 16-23
611only go to the IOAPIC. On ia64, a IOSAPIC is created.
612
414fa985 613
68ba6974 6144.25 KVM_IRQ_LINE
5dadbfd6
AK
615
616Capability: KVM_CAP_IRQCHIP
617Architectures: x86, ia64
618Type: vm ioctl
619Parameters: struct kvm_irq_level
620Returns: 0 on success, -1 on error
621
622Sets the level of a GSI input to the interrupt controller model in the kernel.
623Requires that an interrupt controller model has been previously created with
624KVM_CREATE_IRQCHIP. Note that edge-triggered interrupts require the level
625to be set to 1 and then back to 0.
626
627struct kvm_irq_level {
628 union {
629 __u32 irq; /* GSI */
630 __s32 status; /* not used for KVM_IRQ_LEVEL */
631 };
632 __u32 level; /* 0 or 1 */
633};
634
414fa985 635
68ba6974 6364.26 KVM_GET_IRQCHIP
5dadbfd6
AK
637
638Capability: KVM_CAP_IRQCHIP
639Architectures: x86, ia64
640Type: vm ioctl
641Parameters: struct kvm_irqchip (in/out)
642Returns: 0 on success, -1 on error
643
644Reads the state of a kernel interrupt controller created with
645KVM_CREATE_IRQCHIP into a buffer provided by the caller.
646
647struct kvm_irqchip {
648 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
649 __u32 pad;
650 union {
651 char dummy[512]; /* reserving space */
652 struct kvm_pic_state pic;
653 struct kvm_ioapic_state ioapic;
654 } chip;
655};
656
414fa985 657
68ba6974 6584.27 KVM_SET_IRQCHIP
5dadbfd6
AK
659
660Capability: KVM_CAP_IRQCHIP
661Architectures: x86, ia64
662Type: vm ioctl
663Parameters: struct kvm_irqchip (in)
664Returns: 0 on success, -1 on error
665
666Sets the state of a kernel interrupt controller created with
667KVM_CREATE_IRQCHIP from a buffer provided by the caller.
668
669struct kvm_irqchip {
670 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
671 __u32 pad;
672 union {
673 char dummy[512]; /* reserving space */
674 struct kvm_pic_state pic;
675 struct kvm_ioapic_state ioapic;
676 } chip;
677};
678
414fa985 679
68ba6974 6804.28 KVM_XEN_HVM_CONFIG
ffde22ac
ES
681
682Capability: KVM_CAP_XEN_HVM
683Architectures: x86
684Type: vm ioctl
685Parameters: struct kvm_xen_hvm_config (in)
686Returns: 0 on success, -1 on error
687
688Sets the MSR that the Xen HVM guest uses to initialize its hypercall
689page, and provides the starting address and size of the hypercall
690blobs in userspace. When the guest writes the MSR, kvm copies one
691page of a blob (32- or 64-bit, depending on the vcpu mode) to guest
692memory.
693
694struct kvm_xen_hvm_config {
695 __u32 flags;
696 __u32 msr;
697 __u64 blob_addr_32;
698 __u64 blob_addr_64;
699 __u8 blob_size_32;
700 __u8 blob_size_64;
701 __u8 pad2[30];
702};
703
414fa985 704
68ba6974 7054.29 KVM_GET_CLOCK
afbcf7ab
GC
706
707Capability: KVM_CAP_ADJUST_CLOCK
708Architectures: x86
709Type: vm ioctl
710Parameters: struct kvm_clock_data (out)
711Returns: 0 on success, -1 on error
712
713Gets the current timestamp of kvmclock as seen by the current guest. In
714conjunction with KVM_SET_CLOCK, it is used to ensure monotonicity on scenarios
715such as migration.
716
717struct kvm_clock_data {
718 __u64 clock; /* kvmclock current value */
719 __u32 flags;
720 __u32 pad[9];
721};
722
414fa985 723
68ba6974 7244.30 KVM_SET_CLOCK
afbcf7ab
GC
725
726Capability: KVM_CAP_ADJUST_CLOCK
727Architectures: x86
728Type: vm ioctl
729Parameters: struct kvm_clock_data (in)
730Returns: 0 on success, -1 on error
731
2044892d 732Sets the current timestamp of kvmclock to the value specified in its parameter.
afbcf7ab
GC
733In conjunction with KVM_GET_CLOCK, it is used to ensure monotonicity on scenarios
734such as migration.
735
736struct kvm_clock_data {
737 __u64 clock; /* kvmclock current value */
738 __u32 flags;
739 __u32 pad[9];
740};
741
414fa985 742
68ba6974 7434.31 KVM_GET_VCPU_EVENTS
3cfc3092
JK
744
745Capability: KVM_CAP_VCPU_EVENTS
48005f64 746Extended by: KVM_CAP_INTR_SHADOW
3cfc3092
JK
747Architectures: x86
748Type: vm ioctl
749Parameters: struct kvm_vcpu_event (out)
750Returns: 0 on success, -1 on error
751
752Gets currently pending exceptions, interrupts, and NMIs as well as related
753states of the vcpu.
754
755struct kvm_vcpu_events {
756 struct {
757 __u8 injected;
758 __u8 nr;
759 __u8 has_error_code;
760 __u8 pad;
761 __u32 error_code;
762 } exception;
763 struct {
764 __u8 injected;
765 __u8 nr;
766 __u8 soft;
48005f64 767 __u8 shadow;
3cfc3092
JK
768 } interrupt;
769 struct {
770 __u8 injected;
771 __u8 pending;
772 __u8 masked;
773 __u8 pad;
774 } nmi;
775 __u32 sipi_vector;
dab4b911 776 __u32 flags;
3cfc3092
JK
777};
778
48005f64
JK
779KVM_VCPUEVENT_VALID_SHADOW may be set in the flags field to signal that
780interrupt.shadow contains a valid state. Otherwise, this field is undefined.
781
414fa985 782
68ba6974 7834.32 KVM_SET_VCPU_EVENTS
3cfc3092
JK
784
785Capability: KVM_CAP_VCPU_EVENTS
48005f64 786Extended by: KVM_CAP_INTR_SHADOW
3cfc3092
JK
787Architectures: x86
788Type: vm ioctl
789Parameters: struct kvm_vcpu_event (in)
790Returns: 0 on success, -1 on error
791
792Set pending exceptions, interrupts, and NMIs as well as related states of the
793vcpu.
794
795See KVM_GET_VCPU_EVENTS for the data structure.
796
dab4b911
JK
797Fields that may be modified asynchronously by running VCPUs can be excluded
798from the update. These fields are nmi.pending and sipi_vector. Keep the
799corresponding bits in the flags field cleared to suppress overwriting the
800current in-kernel state. The bits are:
801
802KVM_VCPUEVENT_VALID_NMI_PENDING - transfer nmi.pending to the kernel
803KVM_VCPUEVENT_VALID_SIPI_VECTOR - transfer sipi_vector
804
48005f64
JK
805If KVM_CAP_INTR_SHADOW is available, KVM_VCPUEVENT_VALID_SHADOW can be set in
806the flags field to signal that interrupt.shadow contains a valid state and
807shall be written into the VCPU.
808
414fa985 809
68ba6974 8104.33 KVM_GET_DEBUGREGS
a1efbe77
JK
811
812Capability: KVM_CAP_DEBUGREGS
813Architectures: x86
814Type: vm ioctl
815Parameters: struct kvm_debugregs (out)
816Returns: 0 on success, -1 on error
817
818Reads debug registers from the vcpu.
819
820struct kvm_debugregs {
821 __u64 db[4];
822 __u64 dr6;
823 __u64 dr7;
824 __u64 flags;
825 __u64 reserved[9];
826};
827
414fa985 828
68ba6974 8294.34 KVM_SET_DEBUGREGS
a1efbe77
JK
830
831Capability: KVM_CAP_DEBUGREGS
832Architectures: x86
833Type: vm ioctl
834Parameters: struct kvm_debugregs (in)
835Returns: 0 on success, -1 on error
836
837Writes debug registers into the vcpu.
838
839See KVM_GET_DEBUGREGS for the data structure. The flags field is unused
840yet and must be cleared on entry.
841
414fa985 842
68ba6974 8434.35 KVM_SET_USER_MEMORY_REGION
0f2d8f4d
AK
844
845Capability: KVM_CAP_USER_MEM
846Architectures: all
847Type: vm ioctl
848Parameters: struct kvm_userspace_memory_region (in)
849Returns: 0 on success, -1 on error
850
851struct kvm_userspace_memory_region {
852 __u32 slot;
853 __u32 flags;
854 __u64 guest_phys_addr;
855 __u64 memory_size; /* bytes */
856 __u64 userspace_addr; /* start of the userspace allocated memory */
857};
858
859/* for kvm_memory_region::flags */
860#define KVM_MEM_LOG_DIRTY_PAGES 1UL
861
862This ioctl allows the user to create or modify a guest physical memory
863slot. When changing an existing slot, it may be moved in the guest
864physical memory space, or its flags may be modified. It may not be
865resized. Slots may not overlap in guest physical address space.
866
867Memory for the region is taken starting at the address denoted by the
868field userspace_addr, which must point at user addressable memory for
869the entire memory slot size. Any object may back this memory, including
870anonymous memory, ordinary files, and hugetlbfs.
871
872It is recommended that the lower 21 bits of guest_phys_addr and userspace_addr
873be identical. This allows large pages in the guest to be backed by large
874pages in the host.
875
876The flags field supports just one flag, KVM_MEM_LOG_DIRTY_PAGES, which
877instructs kvm to keep track of writes to memory within the slot. See
878the KVM_GET_DIRTY_LOG ioctl.
879
880When the KVM_CAP_SYNC_MMU capability, changes in the backing of the memory
881region are automatically reflected into the guest. For example, an mmap()
882that affects the region will be made visible immediately. Another example
883is madvise(MADV_DROP).
884
885It is recommended to use this API instead of the KVM_SET_MEMORY_REGION ioctl.
886The KVM_SET_MEMORY_REGION does not allow fine grained control over memory
887allocation and is deprecated.
3cfc3092 888
414fa985 889
68ba6974 8904.36 KVM_SET_TSS_ADDR
8a5416db
AK
891
892Capability: KVM_CAP_SET_TSS_ADDR
893Architectures: x86
894Type: vm ioctl
895Parameters: unsigned long tss_address (in)
896Returns: 0 on success, -1 on error
897
898This ioctl defines the physical address of a three-page region in the guest
899physical address space. The region must be within the first 4GB of the
900guest physical address space and must not conflict with any memory slot
901or any mmio address. The guest may malfunction if it accesses this memory
902region.
903
904This ioctl is required on Intel-based hosts. This is needed on Intel hardware
905because of a quirk in the virtualization implementation (see the internals
906documentation when it pops into existence).
907
414fa985 908
68ba6974 9094.37 KVM_ENABLE_CAP
71fbfd5f
AG
910
911Capability: KVM_CAP_ENABLE_CAP
912Architectures: ppc
913Type: vcpu ioctl
914Parameters: struct kvm_enable_cap (in)
915Returns: 0 on success; -1 on error
916
917+Not all extensions are enabled by default. Using this ioctl the application
918can enable an extension, making it available to the guest.
919
920On systems that do not support this ioctl, it always fails. On systems that
921do support it, it only works for extensions that are supported for enablement.
922
923To check if a capability can be enabled, the KVM_CHECK_EXTENSION ioctl should
924be used.
925
926struct kvm_enable_cap {
927 /* in */
928 __u32 cap;
929
930The capability that is supposed to get enabled.
931
932 __u32 flags;
933
934A bitfield indicating future enhancements. Has to be 0 for now.
935
936 __u64 args[4];
937
938Arguments for enabling a feature. If a feature needs initial values to
939function properly, this is the place to put them.
940
941 __u8 pad[64];
942};
943
414fa985 944
68ba6974 9454.38 KVM_GET_MP_STATE
b843f065
AK
946
947Capability: KVM_CAP_MP_STATE
948Architectures: x86, ia64
949Type: vcpu ioctl
950Parameters: struct kvm_mp_state (out)
951Returns: 0 on success; -1 on error
952
953struct kvm_mp_state {
954 __u32 mp_state;
955};
956
957Returns the vcpu's current "multiprocessing state" (though also valid on
958uniprocessor guests).
959
960Possible values are:
961
962 - KVM_MP_STATE_RUNNABLE: the vcpu is currently running
963 - KVM_MP_STATE_UNINITIALIZED: the vcpu is an application processor (AP)
964 which has not yet received an INIT signal
965 - KVM_MP_STATE_INIT_RECEIVED: the vcpu has received an INIT signal, and is
966 now ready for a SIPI
967 - KVM_MP_STATE_HALTED: the vcpu has executed a HLT instruction and
968 is waiting for an interrupt
969 - KVM_MP_STATE_SIPI_RECEIVED: the vcpu has just received a SIPI (vector
b595076a 970 accessible via KVM_GET_VCPU_EVENTS)
b843f065
AK
971
972This ioctl is only useful after KVM_CREATE_IRQCHIP. Without an in-kernel
973irqchip, the multiprocessing state must be maintained by userspace.
974
414fa985 975
68ba6974 9764.39 KVM_SET_MP_STATE
b843f065
AK
977
978Capability: KVM_CAP_MP_STATE
979Architectures: x86, ia64
980Type: vcpu ioctl
981Parameters: struct kvm_mp_state (in)
982Returns: 0 on success; -1 on error
983
984Sets the vcpu's current "multiprocessing state"; see KVM_GET_MP_STATE for
985arguments.
986
987This ioctl is only useful after KVM_CREATE_IRQCHIP. Without an in-kernel
988irqchip, the multiprocessing state must be maintained by userspace.
989
414fa985 990
68ba6974 9914.40 KVM_SET_IDENTITY_MAP_ADDR
47dbb84f
AK
992
993Capability: KVM_CAP_SET_IDENTITY_MAP_ADDR
994Architectures: x86
995Type: vm ioctl
996Parameters: unsigned long identity (in)
997Returns: 0 on success, -1 on error
998
999This ioctl defines the physical address of a one-page region in the guest
1000physical address space. The region must be within the first 4GB of the
1001guest physical address space and must not conflict with any memory slot
1002or any mmio address. The guest may malfunction if it accesses this memory
1003region.
1004
1005This ioctl is required on Intel-based hosts. This is needed on Intel hardware
1006because of a quirk in the virtualization implementation (see the internals
1007documentation when it pops into existence).
1008
414fa985 1009
68ba6974 10104.41 KVM_SET_BOOT_CPU_ID
57bc24cf
AK
1011
1012Capability: KVM_CAP_SET_BOOT_CPU_ID
1013Architectures: x86, ia64
1014Type: vm ioctl
1015Parameters: unsigned long vcpu_id
1016Returns: 0 on success, -1 on error
1017
1018Define which vcpu is the Bootstrap Processor (BSP). Values are the same
1019as the vcpu id in KVM_CREATE_VCPU. If this ioctl is not called, the default
1020is vcpu 0.
1021
414fa985 1022
68ba6974 10234.42 KVM_GET_XSAVE
2d5b5a66
SY
1024
1025Capability: KVM_CAP_XSAVE
1026Architectures: x86
1027Type: vcpu ioctl
1028Parameters: struct kvm_xsave (out)
1029Returns: 0 on success, -1 on error
1030
1031struct kvm_xsave {
1032 __u32 region[1024];
1033};
1034
1035This ioctl would copy current vcpu's xsave struct to the userspace.
1036
414fa985 1037
68ba6974 10384.43 KVM_SET_XSAVE
2d5b5a66
SY
1039
1040Capability: KVM_CAP_XSAVE
1041Architectures: x86
1042Type: vcpu ioctl
1043Parameters: struct kvm_xsave (in)
1044Returns: 0 on success, -1 on error
1045
1046struct kvm_xsave {
1047 __u32 region[1024];
1048};
1049
1050This ioctl would copy userspace's xsave struct to the kernel.
1051
414fa985 1052
68ba6974 10534.44 KVM_GET_XCRS
2d5b5a66
SY
1054
1055Capability: KVM_CAP_XCRS
1056Architectures: x86
1057Type: vcpu ioctl
1058Parameters: struct kvm_xcrs (out)
1059Returns: 0 on success, -1 on error
1060
1061struct kvm_xcr {
1062 __u32 xcr;
1063 __u32 reserved;
1064 __u64 value;
1065};
1066
1067struct kvm_xcrs {
1068 __u32 nr_xcrs;
1069 __u32 flags;
1070 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1071 __u64 padding[16];
1072};
1073
1074This ioctl would copy current vcpu's xcrs to the userspace.
1075
414fa985 1076
68ba6974 10774.45 KVM_SET_XCRS
2d5b5a66
SY
1078
1079Capability: KVM_CAP_XCRS
1080Architectures: x86
1081Type: vcpu ioctl
1082Parameters: struct kvm_xcrs (in)
1083Returns: 0 on success, -1 on error
1084
1085struct kvm_xcr {
1086 __u32 xcr;
1087 __u32 reserved;
1088 __u64 value;
1089};
1090
1091struct kvm_xcrs {
1092 __u32 nr_xcrs;
1093 __u32 flags;
1094 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1095 __u64 padding[16];
1096};
1097
1098This ioctl would set vcpu's xcr to the value userspace specified.
1099
414fa985 1100
68ba6974 11014.46 KVM_GET_SUPPORTED_CPUID
d153513d
AK
1102
1103Capability: KVM_CAP_EXT_CPUID
1104Architectures: x86
1105Type: system ioctl
1106Parameters: struct kvm_cpuid2 (in/out)
1107Returns: 0 on success, -1 on error
1108
1109struct kvm_cpuid2 {
1110 __u32 nent;
1111 __u32 padding;
1112 struct kvm_cpuid_entry2 entries[0];
1113};
1114
1115#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX 1
1116#define KVM_CPUID_FLAG_STATEFUL_FUNC 2
1117#define KVM_CPUID_FLAG_STATE_READ_NEXT 4
1118
1119struct kvm_cpuid_entry2 {
1120 __u32 function;
1121 __u32 index;
1122 __u32 flags;
1123 __u32 eax;
1124 __u32 ebx;
1125 __u32 ecx;
1126 __u32 edx;
1127 __u32 padding[3];
1128};
1129
1130This ioctl returns x86 cpuid features which are supported by both the hardware
1131and kvm. Userspace can use the information returned by this ioctl to
1132construct cpuid information (for KVM_SET_CPUID2) that is consistent with
1133hardware, kernel, and userspace capabilities, and with user requirements (for
1134example, the user may wish to constrain cpuid to emulate older hardware,
1135or for feature consistency across a cluster).
1136
1137Userspace invokes KVM_GET_SUPPORTED_CPUID by passing a kvm_cpuid2 structure
1138with the 'nent' field indicating the number of entries in the variable-size
1139array 'entries'. If the number of entries is too low to describe the cpu
1140capabilities, an error (E2BIG) is returned. If the number is too high,
1141the 'nent' field is adjusted and an error (ENOMEM) is returned. If the
1142number is just right, the 'nent' field is adjusted to the number of valid
1143entries in the 'entries' array, which is then filled.
1144
1145The entries returned are the host cpuid as returned by the cpuid instruction,
c39cbd2a
AK
1146with unknown or unsupported features masked out. Some features (for example,
1147x2apic), may not be present in the host cpu, but are exposed by kvm if it can
1148emulate them efficiently. The fields in each entry are defined as follows:
d153513d
AK
1149
1150 function: the eax value used to obtain the entry
1151 index: the ecx value used to obtain the entry (for entries that are
1152 affected by ecx)
1153 flags: an OR of zero or more of the following:
1154 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
1155 if the index field is valid
1156 KVM_CPUID_FLAG_STATEFUL_FUNC:
1157 if cpuid for this function returns different values for successive
1158 invocations; there will be several entries with the same function,
1159 all with this flag set
1160 KVM_CPUID_FLAG_STATE_READ_NEXT:
1161 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
1162 the first entry to be read by a cpu
1163 eax, ebx, ecx, edx: the values returned by the cpuid instruction for
1164 this function/index combination
1165
4d25a066
JK
1166The TSC deadline timer feature (CPUID leaf 1, ecx[24]) is always returned
1167as false, since the feature depends on KVM_CREATE_IRQCHIP for local APIC
1168support. Instead it is reported via
1169
1170 ioctl(KVM_CHECK_EXTENSION, KVM_CAP_TSC_DEADLINE_TIMER)
1171
1172if that returns true and you use KVM_CREATE_IRQCHIP, or if you emulate the
1173feature in userspace, then you can enable the feature for KVM_SET_CPUID2.
1174
414fa985 1175
68ba6974 11764.47 KVM_PPC_GET_PVINFO
15711e9c
AG
1177
1178Capability: KVM_CAP_PPC_GET_PVINFO
1179Architectures: ppc
1180Type: vm ioctl
1181Parameters: struct kvm_ppc_pvinfo (out)
1182Returns: 0 on success, !0 on error
1183
1184struct kvm_ppc_pvinfo {
1185 __u32 flags;
1186 __u32 hcall[4];
1187 __u8 pad[108];
1188};
1189
1190This ioctl fetches PV specific information that need to be passed to the guest
1191using the device tree or other means from vm context.
1192
1193For now the only implemented piece of information distributed here is an array
1194of 4 instructions that make up a hypercall.
1195
1196If any additional field gets added to this structure later on, a bit for that
1197additional piece of information will be set in the flags bitmap.
1198
414fa985 1199
68ba6974 12004.48 KVM_ASSIGN_PCI_DEVICE
49f48172
JK
1201
1202Capability: KVM_CAP_DEVICE_ASSIGNMENT
1203Architectures: x86 ia64
1204Type: vm ioctl
1205Parameters: struct kvm_assigned_pci_dev (in)
1206Returns: 0 on success, -1 on error
1207
1208Assigns a host PCI device to the VM.
1209
1210struct kvm_assigned_pci_dev {
1211 __u32 assigned_dev_id;
1212 __u32 busnr;
1213 __u32 devfn;
1214 __u32 flags;
1215 __u32 segnr;
1216 union {
1217 __u32 reserved[11];
1218 };
1219};
1220
1221The PCI device is specified by the triple segnr, busnr, and devfn.
1222Identification in succeeding service requests is done via assigned_dev_id. The
1223following flags are specified:
1224
1225/* Depends on KVM_CAP_IOMMU */
1226#define KVM_DEV_ASSIGN_ENABLE_IOMMU (1 << 0)
07700a94
JK
1227/* The following two depend on KVM_CAP_PCI_2_3 */
1228#define KVM_DEV_ASSIGN_PCI_2_3 (1 << 1)
1229#define KVM_DEV_ASSIGN_MASK_INTX (1 << 2)
1230
1231If KVM_DEV_ASSIGN_PCI_2_3 is set, the kernel will manage legacy INTx interrupts
1232via the PCI-2.3-compliant device-level mask, thus enable IRQ sharing with other
1233assigned devices or host devices. KVM_DEV_ASSIGN_MASK_INTX specifies the
1234guest's view on the INTx mask, see KVM_ASSIGN_SET_INTX_MASK for details.
49f48172 1235
42387373
AW
1236The KVM_DEV_ASSIGN_ENABLE_IOMMU flag is a mandatory option to ensure
1237isolation of the device. Usages not specifying this flag are deprecated.
1238
3d27e23b
AW
1239Only PCI header type 0 devices with PCI BAR resources are supported by
1240device assignment. The user requesting this ioctl must have read/write
1241access to the PCI sysfs resource files associated with the device.
1242
414fa985 1243
68ba6974 12444.49 KVM_DEASSIGN_PCI_DEVICE
49f48172
JK
1245
1246Capability: KVM_CAP_DEVICE_DEASSIGNMENT
1247Architectures: x86 ia64
1248Type: vm ioctl
1249Parameters: struct kvm_assigned_pci_dev (in)
1250Returns: 0 on success, -1 on error
1251
1252Ends PCI device assignment, releasing all associated resources.
1253
1254See KVM_CAP_DEVICE_ASSIGNMENT for the data structure. Only assigned_dev_id is
1255used in kvm_assigned_pci_dev to identify the device.
1256
414fa985 1257
68ba6974 12584.50 KVM_ASSIGN_DEV_IRQ
49f48172
JK
1259
1260Capability: KVM_CAP_ASSIGN_DEV_IRQ
1261Architectures: x86 ia64
1262Type: vm ioctl
1263Parameters: struct kvm_assigned_irq (in)
1264Returns: 0 on success, -1 on error
1265
1266Assigns an IRQ to a passed-through device.
1267
1268struct kvm_assigned_irq {
1269 __u32 assigned_dev_id;
91e3d71d 1270 __u32 host_irq; /* ignored (legacy field) */
49f48172
JK
1271 __u32 guest_irq;
1272 __u32 flags;
1273 union {
49f48172
JK
1274 __u32 reserved[12];
1275 };
1276};
1277
1278The following flags are defined:
1279
1280#define KVM_DEV_IRQ_HOST_INTX (1 << 0)
1281#define KVM_DEV_IRQ_HOST_MSI (1 << 1)
1282#define KVM_DEV_IRQ_HOST_MSIX (1 << 2)
1283
1284#define KVM_DEV_IRQ_GUEST_INTX (1 << 8)
1285#define KVM_DEV_IRQ_GUEST_MSI (1 << 9)
1286#define KVM_DEV_IRQ_GUEST_MSIX (1 << 10)
1287
1288It is not valid to specify multiple types per host or guest IRQ. However, the
1289IRQ type of host and guest can differ or can even be null.
1290
414fa985 1291
68ba6974 12924.51 KVM_DEASSIGN_DEV_IRQ
49f48172
JK
1293
1294Capability: KVM_CAP_ASSIGN_DEV_IRQ
1295Architectures: x86 ia64
1296Type: vm ioctl
1297Parameters: struct kvm_assigned_irq (in)
1298Returns: 0 on success, -1 on error
1299
1300Ends an IRQ assignment to a passed-through device.
1301
1302See KVM_ASSIGN_DEV_IRQ for the data structure. The target device is specified
1303by assigned_dev_id, flags must correspond to the IRQ type specified on
1304KVM_ASSIGN_DEV_IRQ. Partial deassignment of host or guest IRQ is allowed.
1305
414fa985 1306
68ba6974 13074.52 KVM_SET_GSI_ROUTING
49f48172
JK
1308
1309Capability: KVM_CAP_IRQ_ROUTING
1310Architectures: x86 ia64
1311Type: vm ioctl
1312Parameters: struct kvm_irq_routing (in)
1313Returns: 0 on success, -1 on error
1314
1315Sets the GSI routing table entries, overwriting any previously set entries.
1316
1317struct kvm_irq_routing {
1318 __u32 nr;
1319 __u32 flags;
1320 struct kvm_irq_routing_entry entries[0];
1321};
1322
1323No flags are specified so far, the corresponding field must be set to zero.
1324
1325struct kvm_irq_routing_entry {
1326 __u32 gsi;
1327 __u32 type;
1328 __u32 flags;
1329 __u32 pad;
1330 union {
1331 struct kvm_irq_routing_irqchip irqchip;
1332 struct kvm_irq_routing_msi msi;
1333 __u32 pad[8];
1334 } u;
1335};
1336
1337/* gsi routing entry types */
1338#define KVM_IRQ_ROUTING_IRQCHIP 1
1339#define KVM_IRQ_ROUTING_MSI 2
1340
1341No flags are specified so far, the corresponding field must be set to zero.
1342
1343struct kvm_irq_routing_irqchip {
1344 __u32 irqchip;
1345 __u32 pin;
1346};
1347
1348struct kvm_irq_routing_msi {
1349 __u32 address_lo;
1350 __u32 address_hi;
1351 __u32 data;
1352 __u32 pad;
1353};
1354
414fa985 1355
68ba6974 13564.53 KVM_ASSIGN_SET_MSIX_NR
49f48172
JK
1357
1358Capability: KVM_CAP_DEVICE_MSIX
1359Architectures: x86 ia64
1360Type: vm ioctl
1361Parameters: struct kvm_assigned_msix_nr (in)
1362Returns: 0 on success, -1 on error
1363
58f0964e
JK
1364Set the number of MSI-X interrupts for an assigned device. The number is
1365reset again by terminating the MSI-X assignment of the device via
1366KVM_DEASSIGN_DEV_IRQ. Calling this service more than once at any earlier
1367point will fail.
49f48172
JK
1368
1369struct kvm_assigned_msix_nr {
1370 __u32 assigned_dev_id;
1371 __u16 entry_nr;
1372 __u16 padding;
1373};
1374
1375#define KVM_MAX_MSIX_PER_DEV 256
1376
414fa985 1377
68ba6974 13784.54 KVM_ASSIGN_SET_MSIX_ENTRY
49f48172
JK
1379
1380Capability: KVM_CAP_DEVICE_MSIX
1381Architectures: x86 ia64
1382Type: vm ioctl
1383Parameters: struct kvm_assigned_msix_entry (in)
1384Returns: 0 on success, -1 on error
1385
1386Specifies the routing of an MSI-X assigned device interrupt to a GSI. Setting
1387the GSI vector to zero means disabling the interrupt.
1388
1389struct kvm_assigned_msix_entry {
1390 __u32 assigned_dev_id;
1391 __u32 gsi;
1392 __u16 entry; /* The index of entry in the MSI-X table */
1393 __u16 padding[3];
1394};
1395
414fa985
JK
1396
13974.55 KVM_SET_TSC_KHZ
92a1f12d
JR
1398
1399Capability: KVM_CAP_TSC_CONTROL
1400Architectures: x86
1401Type: vcpu ioctl
1402Parameters: virtual tsc_khz
1403Returns: 0 on success, -1 on error
1404
1405Specifies the tsc frequency for the virtual machine. The unit of the
1406frequency is KHz.
1407
414fa985
JK
1408
14094.56 KVM_GET_TSC_KHZ
92a1f12d
JR
1410
1411Capability: KVM_CAP_GET_TSC_KHZ
1412Architectures: x86
1413Type: vcpu ioctl
1414Parameters: none
1415Returns: virtual tsc-khz on success, negative value on error
1416
1417Returns the tsc frequency of the guest. The unit of the return value is
1418KHz. If the host has unstable tsc this ioctl returns -EIO instead as an
1419error.
1420
414fa985
JK
1421
14224.57 KVM_GET_LAPIC
e7677933
AK
1423
1424Capability: KVM_CAP_IRQCHIP
1425Architectures: x86
1426Type: vcpu ioctl
1427Parameters: struct kvm_lapic_state (out)
1428Returns: 0 on success, -1 on error
1429
1430#define KVM_APIC_REG_SIZE 0x400
1431struct kvm_lapic_state {
1432 char regs[KVM_APIC_REG_SIZE];
1433};
1434
1435Reads the Local APIC registers and copies them into the input argument. The
1436data format and layout are the same as documented in the architecture manual.
1437
414fa985
JK
1438
14394.58 KVM_SET_LAPIC
e7677933
AK
1440
1441Capability: KVM_CAP_IRQCHIP
1442Architectures: x86
1443Type: vcpu ioctl
1444Parameters: struct kvm_lapic_state (in)
1445Returns: 0 on success, -1 on error
1446
1447#define KVM_APIC_REG_SIZE 0x400
1448struct kvm_lapic_state {
1449 char regs[KVM_APIC_REG_SIZE];
1450};
1451
1452Copies the input argument into the the Local APIC registers. The data format
1453and layout are the same as documented in the architecture manual.
1454
414fa985
JK
1455
14564.59 KVM_IOEVENTFD
55399a02
SL
1457
1458Capability: KVM_CAP_IOEVENTFD
1459Architectures: all
1460Type: vm ioctl
1461Parameters: struct kvm_ioeventfd (in)
1462Returns: 0 on success, !0 on error
1463
1464This ioctl attaches or detaches an ioeventfd to a legal pio/mmio address
1465within the guest. A guest write in the registered address will signal the
1466provided event instead of triggering an exit.
1467
1468struct kvm_ioeventfd {
1469 __u64 datamatch;
1470 __u64 addr; /* legal pio/mmio address */
1471 __u32 len; /* 1, 2, 4, or 8 bytes */
1472 __s32 fd;
1473 __u32 flags;
1474 __u8 pad[36];
1475};
1476
1477The following flags are defined:
1478
1479#define KVM_IOEVENTFD_FLAG_DATAMATCH (1 << kvm_ioeventfd_flag_nr_datamatch)
1480#define KVM_IOEVENTFD_FLAG_PIO (1 << kvm_ioeventfd_flag_nr_pio)
1481#define KVM_IOEVENTFD_FLAG_DEASSIGN (1 << kvm_ioeventfd_flag_nr_deassign)
1482
1483If datamatch flag is set, the event will be signaled only if the written value
1484to the registered address is equal to datamatch in struct kvm_ioeventfd.
1485
414fa985
JK
1486
14874.60 KVM_DIRTY_TLB
dc83b8bc
SW
1488
1489Capability: KVM_CAP_SW_TLB
1490Architectures: ppc
1491Type: vcpu ioctl
1492Parameters: struct kvm_dirty_tlb (in)
1493Returns: 0 on success, -1 on error
1494
1495struct kvm_dirty_tlb {
1496 __u64 bitmap;
1497 __u32 num_dirty;
1498};
1499
1500This must be called whenever userspace has changed an entry in the shared
1501TLB, prior to calling KVM_RUN on the associated vcpu.
1502
1503The "bitmap" field is the userspace address of an array. This array
1504consists of a number of bits, equal to the total number of TLB entries as
1505determined by the last successful call to KVM_CONFIG_TLB, rounded up to the
1506nearest multiple of 64.
1507
1508Each bit corresponds to one TLB entry, ordered the same as in the shared TLB
1509array.
1510
1511The array is little-endian: the bit 0 is the least significant bit of the
1512first byte, bit 8 is the least significant bit of the second byte, etc.
1513This avoids any complications with differing word sizes.
1514
1515The "num_dirty" field is a performance hint for KVM to determine whether it
1516should skip processing the bitmap and just invalidate everything. It must
1517be set to the number of set bits in the bitmap.
1518
414fa985
JK
1519
15204.61 KVM_ASSIGN_SET_INTX_MASK
07700a94
JK
1521
1522Capability: KVM_CAP_PCI_2_3
1523Architectures: x86
1524Type: vm ioctl
1525Parameters: struct kvm_assigned_pci_dev (in)
1526Returns: 0 on success, -1 on error
1527
1528Allows userspace to mask PCI INTx interrupts from the assigned device. The
1529kernel will not deliver INTx interrupts to the guest between setting and
1530clearing of KVM_ASSIGN_SET_INTX_MASK via this interface. This enables use of
1531and emulation of PCI 2.3 INTx disable command register behavior.
1532
1533This may be used for both PCI 2.3 devices supporting INTx disable natively and
1534older devices lacking this support. Userspace is responsible for emulating the
1535read value of the INTx disable bit in the guest visible PCI command register.
1536When modifying the INTx disable state, userspace should precede updating the
1537physical device command register by calling this ioctl to inform the kernel of
1538the new intended INTx mask state.
1539
1540Note that the kernel uses the device INTx disable bit to internally manage the
1541device interrupt state for PCI 2.3 devices. Reads of this register may
1542therefore not match the expected value. Writes should always use the guest
1543intended INTx disable value rather than attempting to read-copy-update the
1544current physical device state. Races between user and kernel updates to the
1545INTx disable bit are handled lazily in the kernel. It's possible the device
1546may generate unintended interrupts, but they will not be injected into the
1547guest.
1548
1549See KVM_ASSIGN_DEV_IRQ for the data structure. The target device is specified
1550by assigned_dev_id. In the flags field, only KVM_DEV_ASSIGN_MASK_INTX is
1551evaluated.
1552
414fa985 1553
54738c09
DG
15544.62 KVM_CREATE_SPAPR_TCE
1555
1556Capability: KVM_CAP_SPAPR_TCE
1557Architectures: powerpc
1558Type: vm ioctl
1559Parameters: struct kvm_create_spapr_tce (in)
1560Returns: file descriptor for manipulating the created TCE table
1561
1562This creates a virtual TCE (translation control entry) table, which
1563is an IOMMU for PAPR-style virtual I/O. It is used to translate
1564logical addresses used in virtual I/O into guest physical addresses,
1565and provides a scatter/gather capability for PAPR virtual I/O.
1566
1567/* for KVM_CAP_SPAPR_TCE */
1568struct kvm_create_spapr_tce {
1569 __u64 liobn;
1570 __u32 window_size;
1571};
1572
1573The liobn field gives the logical IO bus number for which to create a
1574TCE table. The window_size field specifies the size of the DMA window
1575which this TCE table will translate - the table will contain one 64
1576bit TCE entry for every 4kiB of the DMA window.
1577
1578When the guest issues an H_PUT_TCE hcall on a liobn for which a TCE
1579table has been created using this ioctl(), the kernel will handle it
1580in real mode, updating the TCE table. H_PUT_TCE calls for other
1581liobns will cause a vm exit and must be handled by userspace.
1582
1583The return value is a file descriptor which can be passed to mmap(2)
1584to map the created TCE table into userspace. This lets userspace read
1585the entries written by kernel-handled H_PUT_TCE calls, and also lets
1586userspace update the TCE table directly which is useful in some
1587circumstances.
1588
414fa985 1589
aa04b4cc
PM
15904.63 KVM_ALLOCATE_RMA
1591
1592Capability: KVM_CAP_PPC_RMA
1593Architectures: powerpc
1594Type: vm ioctl
1595Parameters: struct kvm_allocate_rma (out)
1596Returns: file descriptor for mapping the allocated RMA
1597
1598This allocates a Real Mode Area (RMA) from the pool allocated at boot
1599time by the kernel. An RMA is a physically-contiguous, aligned region
1600of memory used on older POWER processors to provide the memory which
1601will be accessed by real-mode (MMU off) accesses in a KVM guest.
1602POWER processors support a set of sizes for the RMA that usually
1603includes 64MB, 128MB, 256MB and some larger powers of two.
1604
1605/* for KVM_ALLOCATE_RMA */
1606struct kvm_allocate_rma {
1607 __u64 rma_size;
1608};
1609
1610The return value is a file descriptor which can be passed to mmap(2)
1611to map the allocated RMA into userspace. The mapped area can then be
1612passed to the KVM_SET_USER_MEMORY_REGION ioctl to establish it as the
1613RMA for a virtual machine. The size of the RMA in bytes (which is
1614fixed at host kernel boot time) is returned in the rma_size field of
1615the argument structure.
1616
1617The KVM_CAP_PPC_RMA capability is 1 or 2 if the KVM_ALLOCATE_RMA ioctl
1618is supported; 2 if the processor requires all virtual machines to have
1619an RMA, or 1 if the processor can use an RMA but doesn't require it,
1620because it supports the Virtual RMA (VRMA) facility.
1621
414fa985 1622
3f745f1e
AK
16234.64 KVM_NMI
1624
1625Capability: KVM_CAP_USER_NMI
1626Architectures: x86
1627Type: vcpu ioctl
1628Parameters: none
1629Returns: 0 on success, -1 on error
1630
1631Queues an NMI on the thread's vcpu. Note this is well defined only
1632when KVM_CREATE_IRQCHIP has not been called, since this is an interface
1633between the virtual cpu core and virtual local APIC. After KVM_CREATE_IRQCHIP
1634has been called, this interface is completely emulated within the kernel.
1635
1636To use this to emulate the LINT1 input with KVM_CREATE_IRQCHIP, use the
1637following algorithm:
1638
1639 - pause the vpcu
1640 - read the local APIC's state (KVM_GET_LAPIC)
1641 - check whether changing LINT1 will queue an NMI (see the LVT entry for LINT1)
1642 - if so, issue KVM_NMI
1643 - resume the vcpu
1644
1645Some guests configure the LINT1 NMI input to cause a panic, aiding in
1646debugging.
1647
414fa985 1648
e24ed81f 16494.65 KVM_S390_UCAS_MAP
27e0393f
CO
1650
1651Capability: KVM_CAP_S390_UCONTROL
1652Architectures: s390
1653Type: vcpu ioctl
1654Parameters: struct kvm_s390_ucas_mapping (in)
1655Returns: 0 in case of success
1656
1657The parameter is defined like this:
1658 struct kvm_s390_ucas_mapping {
1659 __u64 user_addr;
1660 __u64 vcpu_addr;
1661 __u64 length;
1662 };
1663
1664This ioctl maps the memory at "user_addr" with the length "length" to
1665the vcpu's address space starting at "vcpu_addr". All parameters need to
1666be alligned by 1 megabyte.
1667
414fa985 1668
e24ed81f 16694.66 KVM_S390_UCAS_UNMAP
27e0393f
CO
1670
1671Capability: KVM_CAP_S390_UCONTROL
1672Architectures: s390
1673Type: vcpu ioctl
1674Parameters: struct kvm_s390_ucas_mapping (in)
1675Returns: 0 in case of success
1676
1677The parameter is defined like this:
1678 struct kvm_s390_ucas_mapping {
1679 __u64 user_addr;
1680 __u64 vcpu_addr;
1681 __u64 length;
1682 };
1683
1684This ioctl unmaps the memory in the vcpu's address space starting at
1685"vcpu_addr" with the length "length". The field "user_addr" is ignored.
1686All parameters need to be alligned by 1 megabyte.
1687
414fa985 1688
e24ed81f 16894.67 KVM_S390_VCPU_FAULT
ccc7910f
CO
1690
1691Capability: KVM_CAP_S390_UCONTROL
1692Architectures: s390
1693Type: vcpu ioctl
1694Parameters: vcpu absolute address (in)
1695Returns: 0 in case of success
1696
1697This call creates a page table entry on the virtual cpu's address space
1698(for user controlled virtual machines) or the virtual machine's address
1699space (for regular virtual machines). This only works for minor faults,
1700thus it's recommended to access subject memory page via the user page
1701table upfront. This is useful to handle validity intercepts for user
1702controlled virtual machines to fault in the virtual cpu's lowcore pages
1703prior to calling the KVM_RUN ioctl.
1704
414fa985 1705
e24ed81f
AG
17064.68 KVM_SET_ONE_REG
1707
1708Capability: KVM_CAP_ONE_REG
1709Architectures: all
1710Type: vcpu ioctl
1711Parameters: struct kvm_one_reg (in)
1712Returns: 0 on success, negative value on failure
1713
1714struct kvm_one_reg {
1715 __u64 id;
1716 __u64 addr;
1717};
1718
1719Using this ioctl, a single vcpu register can be set to a specific value
1720defined by user space with the passed in struct kvm_one_reg, where id
1721refers to the register identifier as described below and addr is a pointer
1722to a variable with the respective size. There can be architecture agnostic
1723and architecture specific registers. Each have their own range of operation
1724and their own constants and width. To keep track of the implemented
1725registers, find a list below:
1726
1727 Arch | Register | Width (bits)
1728 | |
1022fc3d 1729 PPC | KVM_REG_PPC_HIOR | 64
e24ed81f 1730
414fa985 1731
e24ed81f
AG
17324.69 KVM_GET_ONE_REG
1733
1734Capability: KVM_CAP_ONE_REG
1735Architectures: all
1736Type: vcpu ioctl
1737Parameters: struct kvm_one_reg (in and out)
1738Returns: 0 on success, negative value on failure
1739
1740This ioctl allows to receive the value of a single register implemented
1741in a vcpu. The register to read is indicated by the "id" field of the
1742kvm_one_reg struct passed in. On success, the register value can be found
1743at the memory location pointed to by "addr".
1744
1745The list of registers accessible using this interface is identical to the
1746list in 4.64.
1747
414fa985 1748
1c0b28c2
EM
17494.70 KVM_KVMCLOCK_CTRL
1750
1751Capability: KVM_CAP_KVMCLOCK_CTRL
1752Architectures: Any that implement pvclocks (currently x86 only)
1753Type: vcpu ioctl
1754Parameters: None
1755Returns: 0 on success, -1 on error
1756
1757This signals to the host kernel that the specified guest is being paused by
1758userspace. The host will set a flag in the pvclock structure that is checked
1759from the soft lockup watchdog. The flag is part of the pvclock structure that
1760is shared between guest and host, specifically the second bit of the flags
1761field of the pvclock_vcpu_time_info structure. It will be set exclusively by
1762the host and read/cleared exclusively by the guest. The guest operation of
1763checking and clearing the flag must an atomic operation so
1764load-link/store-conditional, or equivalent must be used. There are two cases
1765where the guest will clear the flag: when the soft lockup watchdog timer resets
1766itself or when a soft lockup is detected. This ioctl can be called any time
1767after pausing the vcpu, but before it is resumed.
1768
414fa985 1769
07975ad3
JK
17704.71 KVM_SIGNAL_MSI
1771
1772Capability: KVM_CAP_SIGNAL_MSI
1773Architectures: x86
1774Type: vm ioctl
1775Parameters: struct kvm_msi (in)
1776Returns: >0 on delivery, 0 if guest blocked the MSI, and -1 on error
1777
1778Directly inject a MSI message. Only valid with in-kernel irqchip that handles
1779MSI messages.
1780
1781struct kvm_msi {
1782 __u32 address_lo;
1783 __u32 address_hi;
1784 __u32 data;
1785 __u32 flags;
1786 __u8 pad[16];
1787};
1788
1789No flags are defined so far. The corresponding field must be 0.
1790
414fa985 1791
0589ff6c
JK
17924.71 KVM_CREATE_PIT2
1793
1794Capability: KVM_CAP_PIT2
1795Architectures: x86
1796Type: vm ioctl
1797Parameters: struct kvm_pit_config (in)
1798Returns: 0 on success, -1 on error
1799
1800Creates an in-kernel device model for the i8254 PIT. This call is only valid
1801after enabling in-kernel irqchip support via KVM_CREATE_IRQCHIP. The following
1802parameters have to be passed:
1803
1804struct kvm_pit_config {
1805 __u32 flags;
1806 __u32 pad[15];
1807};
1808
1809Valid flags are:
1810
1811#define KVM_PIT_SPEAKER_DUMMY 1 /* emulate speaker port stub */
1812
b6ddf05f
JK
1813PIT timer interrupts may use a per-VM kernel thread for injection. If it
1814exists, this thread will have a name of the following pattern:
1815
1816kvm-pit/<owner-process-pid>
1817
1818When running a guest with elevated priorities, the scheduling parameters of
1819this thread may have to be adjusted accordingly.
1820
0589ff6c
JK
1821This IOCTL replaces the obsolete KVM_CREATE_PIT.
1822
1823
18244.72 KVM_GET_PIT2
1825
1826Capability: KVM_CAP_PIT_STATE2
1827Architectures: x86
1828Type: vm ioctl
1829Parameters: struct kvm_pit_state2 (out)
1830Returns: 0 on success, -1 on error
1831
1832Retrieves the state of the in-kernel PIT model. Only valid after
1833KVM_CREATE_PIT2. The state is returned in the following structure:
1834
1835struct kvm_pit_state2 {
1836 struct kvm_pit_channel_state channels[3];
1837 __u32 flags;
1838 __u32 reserved[9];
1839};
1840
1841Valid flags are:
1842
1843/* disable PIT in HPET legacy mode */
1844#define KVM_PIT_FLAGS_HPET_LEGACY 0x00000001
1845
1846This IOCTL replaces the obsolete KVM_GET_PIT.
1847
1848
18494.73 KVM_SET_PIT2
1850
1851Capability: KVM_CAP_PIT_STATE2
1852Architectures: x86
1853Type: vm ioctl
1854Parameters: struct kvm_pit_state2 (in)
1855Returns: 0 on success, -1 on error
1856
1857Sets the state of the in-kernel PIT model. Only valid after KVM_CREATE_PIT2.
1858See KVM_GET_PIT2 for details on struct kvm_pit_state2.
1859
1860This IOCTL replaces the obsolete KVM_SET_PIT.
1861
1862
5b74716e
BH
18634.74 KVM_PPC_GET_SMMU_INFO
1864
1865Capability: KVM_CAP_PPC_GET_SMMU_INFO
1866Architectures: powerpc
1867Type: vm ioctl
1868Parameters: None
1869Returns: 0 on success, -1 on error
1870
1871This populates and returns a structure describing the features of
1872the "Server" class MMU emulation supported by KVM.
1873This can in turn be used by userspace to generate the appropariate
1874device-tree properties for the guest operating system.
1875
1876The structure contains some global informations, followed by an
1877array of supported segment page sizes:
1878
1879 struct kvm_ppc_smmu_info {
1880 __u64 flags;
1881 __u32 slb_size;
1882 __u32 pad;
1883 struct kvm_ppc_one_seg_page_size sps[KVM_PPC_PAGE_SIZES_MAX_SZ];
1884 };
1885
1886The supported flags are:
1887
1888 - KVM_PPC_PAGE_SIZES_REAL:
1889 When that flag is set, guest page sizes must "fit" the backing
1890 store page sizes. When not set, any page size in the list can
1891 be used regardless of how they are backed by userspace.
1892
1893 - KVM_PPC_1T_SEGMENTS
1894 The emulated MMU supports 1T segments in addition to the
1895 standard 256M ones.
1896
1897The "slb_size" field indicates how many SLB entries are supported
1898
1899The "sps" array contains 8 entries indicating the supported base
1900page sizes for a segment in increasing order. Each entry is defined
1901as follow:
1902
1903 struct kvm_ppc_one_seg_page_size {
1904 __u32 page_shift; /* Base page shift of segment (or 0) */
1905 __u32 slb_enc; /* SLB encoding for BookS */
1906 struct kvm_ppc_one_page_size enc[KVM_PPC_PAGE_SIZES_MAX_SZ];
1907 };
1908
1909An entry with a "page_shift" of 0 is unused. Because the array is
1910organized in increasing order, a lookup can stop when encoutering
1911such an entry.
1912
1913The "slb_enc" field provides the encoding to use in the SLB for the
1914page size. The bits are in positions such as the value can directly
1915be OR'ed into the "vsid" argument of the slbmte instruction.
1916
1917The "enc" array is a list which for each of those segment base page
1918size provides the list of supported actual page sizes (which can be
1919only larger or equal to the base page size), along with the
1920corresponding encoding in the hash PTE. Similarily, the array is
19218 entries sorted by increasing sizes and an entry with a "0" shift
1922is an empty entry and a terminator:
1923
1924 struct kvm_ppc_one_page_size {
1925 __u32 page_shift; /* Page shift (or 0) */
1926 __u32 pte_enc; /* Encoding in the HPTE (>>12) */
1927 };
1928
1929The "pte_enc" field provides a value that can OR'ed into the hash
1930PTE's RPN field (ie, it needs to be shifted left by 12 to OR it
1931into the hash PTE second double word).
1932
f36992e3
AW
19334.75 KVM_IRQFD
1934
1935Capability: KVM_CAP_IRQFD
1936Architectures: x86
1937Type: vm ioctl
1938Parameters: struct kvm_irqfd (in)
1939Returns: 0 on success, -1 on error
1940
1941Allows setting an eventfd to directly trigger a guest interrupt.
1942kvm_irqfd.fd specifies the file descriptor to use as the eventfd and
1943kvm_irqfd.gsi specifies the irqchip pin toggled by this event. When
1944an event is tiggered on the eventfd, an interrupt is injected into
1945the guest using the specified gsi pin. The irqfd is removed using
1946the KVM_IRQFD_FLAG_DEASSIGN flag, specifying both kvm_irqfd.fd
1947and kvm_irqfd.gsi.
1948
1949
9c1b96e3 19505. The kvm_run structure
414fa985 1951------------------------
9c1b96e3
AK
1952
1953Application code obtains a pointer to the kvm_run structure by
1954mmap()ing a vcpu fd. From that point, application code can control
1955execution by changing fields in kvm_run prior to calling the KVM_RUN
1956ioctl, and obtain information about the reason KVM_RUN returned by
1957looking up structure members.
1958
1959struct kvm_run {
1960 /* in */
1961 __u8 request_interrupt_window;
1962
1963Request that KVM_RUN return when it becomes possible to inject external
1964interrupts into the guest. Useful in conjunction with KVM_INTERRUPT.
1965
1966 __u8 padding1[7];
1967
1968 /* out */
1969 __u32 exit_reason;
1970
1971When KVM_RUN has returned successfully (return value 0), this informs
1972application code why KVM_RUN has returned. Allowable values for this
1973field are detailed below.
1974
1975 __u8 ready_for_interrupt_injection;
1976
1977If request_interrupt_window has been specified, this field indicates
1978an interrupt can be injected now with KVM_INTERRUPT.
1979
1980 __u8 if_flag;
1981
1982The value of the current interrupt flag. Only valid if in-kernel
1983local APIC is not used.
1984
1985 __u8 padding2[2];
1986
1987 /* in (pre_kvm_run), out (post_kvm_run) */
1988 __u64 cr8;
1989
1990The value of the cr8 register. Only valid if in-kernel local APIC is
1991not used. Both input and output.
1992
1993 __u64 apic_base;
1994
1995The value of the APIC BASE msr. Only valid if in-kernel local
1996APIC is not used. Both input and output.
1997
1998 union {
1999 /* KVM_EXIT_UNKNOWN */
2000 struct {
2001 __u64 hardware_exit_reason;
2002 } hw;
2003
2004If exit_reason is KVM_EXIT_UNKNOWN, the vcpu has exited due to unknown
2005reasons. Further architecture-specific information is available in
2006hardware_exit_reason.
2007
2008 /* KVM_EXIT_FAIL_ENTRY */
2009 struct {
2010 __u64 hardware_entry_failure_reason;
2011 } fail_entry;
2012
2013If exit_reason is KVM_EXIT_FAIL_ENTRY, the vcpu could not be run due
2014to unknown reasons. Further architecture-specific information is
2015available in hardware_entry_failure_reason.
2016
2017 /* KVM_EXIT_EXCEPTION */
2018 struct {
2019 __u32 exception;
2020 __u32 error_code;
2021 } ex;
2022
2023Unused.
2024
2025 /* KVM_EXIT_IO */
2026 struct {
2027#define KVM_EXIT_IO_IN 0
2028#define KVM_EXIT_IO_OUT 1
2029 __u8 direction;
2030 __u8 size; /* bytes */
2031 __u16 port;
2032 __u32 count;
2033 __u64 data_offset; /* relative to kvm_run start */
2034 } io;
2035
2044892d 2036If exit_reason is KVM_EXIT_IO, then the vcpu has
9c1b96e3
AK
2037executed a port I/O instruction which could not be satisfied by kvm.
2038data_offset describes where the data is located (KVM_EXIT_IO_OUT) or
2039where kvm expects application code to place the data for the next
2044892d 2040KVM_RUN invocation (KVM_EXIT_IO_IN). Data format is a packed array.
9c1b96e3
AK
2041
2042 struct {
2043 struct kvm_debug_exit_arch arch;
2044 } debug;
2045
2046Unused.
2047
2048 /* KVM_EXIT_MMIO */
2049 struct {
2050 __u64 phys_addr;
2051 __u8 data[8];
2052 __u32 len;
2053 __u8 is_write;
2054 } mmio;
2055
2044892d 2056If exit_reason is KVM_EXIT_MMIO, then the vcpu has
9c1b96e3
AK
2057executed a memory-mapped I/O instruction which could not be satisfied
2058by kvm. The 'data' member contains the written data if 'is_write' is
2059true, and should be filled by application code otherwise.
2060
ad0a048b
AG
2061NOTE: For KVM_EXIT_IO, KVM_EXIT_MMIO and KVM_EXIT_OSI, the corresponding
2062operations are complete (and guest state is consistent) only after userspace
2063has re-entered the kernel with KVM_RUN. The kernel side will first finish
67961344
MT
2064incomplete operations and then check for pending signals. Userspace
2065can re-enter the guest with an unmasked signal pending to complete
2066pending operations.
2067
9c1b96e3
AK
2068 /* KVM_EXIT_HYPERCALL */
2069 struct {
2070 __u64 nr;
2071 __u64 args[6];
2072 __u64 ret;
2073 __u32 longmode;
2074 __u32 pad;
2075 } hypercall;
2076
647dc49e
AK
2077Unused. This was once used for 'hypercall to userspace'. To implement
2078such functionality, use KVM_EXIT_IO (x86) or KVM_EXIT_MMIO (all except s390).
2079Note KVM_EXIT_IO is significantly faster than KVM_EXIT_MMIO.
9c1b96e3
AK
2080
2081 /* KVM_EXIT_TPR_ACCESS */
2082 struct {
2083 __u64 rip;
2084 __u32 is_write;
2085 __u32 pad;
2086 } tpr_access;
2087
2088To be documented (KVM_TPR_ACCESS_REPORTING).
2089
2090 /* KVM_EXIT_S390_SIEIC */
2091 struct {
2092 __u8 icptcode;
2093 __u64 mask; /* psw upper half */
2094 __u64 addr; /* psw lower half */
2095 __u16 ipa;
2096 __u32 ipb;
2097 } s390_sieic;
2098
2099s390 specific.
2100
2101 /* KVM_EXIT_S390_RESET */
2102#define KVM_S390_RESET_POR 1
2103#define KVM_S390_RESET_CLEAR 2
2104#define KVM_S390_RESET_SUBSYSTEM 4
2105#define KVM_S390_RESET_CPU_INIT 8
2106#define KVM_S390_RESET_IPL 16
2107 __u64 s390_reset_flags;
2108
2109s390 specific.
2110
e168bf8d
CO
2111 /* KVM_EXIT_S390_UCONTROL */
2112 struct {
2113 __u64 trans_exc_code;
2114 __u32 pgm_code;
2115 } s390_ucontrol;
2116
2117s390 specific. A page fault has occurred for a user controlled virtual
2118machine (KVM_VM_S390_UNCONTROL) on it's host page table that cannot be
2119resolved by the kernel.
2120The program code and the translation exception code that were placed
2121in the cpu's lowcore are presented here as defined by the z Architecture
2122Principles of Operation Book in the Chapter for Dynamic Address Translation
2123(DAT)
2124
9c1b96e3
AK
2125 /* KVM_EXIT_DCR */
2126 struct {
2127 __u32 dcrn;
2128 __u32 data;
2129 __u8 is_write;
2130 } dcr;
2131
2132powerpc specific.
2133
ad0a048b
AG
2134 /* KVM_EXIT_OSI */
2135 struct {
2136 __u64 gprs[32];
2137 } osi;
2138
2139MOL uses a special hypercall interface it calls 'OSI'. To enable it, we catch
2140hypercalls and exit with this exit struct that contains all the guest gprs.
2141
2142If exit_reason is KVM_EXIT_OSI, then the vcpu has triggered such a hypercall.
2143Userspace can now handle the hypercall and when it's done modify the gprs as
2144necessary. Upon guest entry all guest GPRs will then be replaced by the values
2145in this struct.
2146
de56a948
PM
2147 /* KVM_EXIT_PAPR_HCALL */
2148 struct {
2149 __u64 nr;
2150 __u64 ret;
2151 __u64 args[9];
2152 } papr_hcall;
2153
2154This is used on 64-bit PowerPC when emulating a pSeries partition,
2155e.g. with the 'pseries' machine type in qemu. It occurs when the
2156guest does a hypercall using the 'sc 1' instruction. The 'nr' field
2157contains the hypercall number (from the guest R3), and 'args' contains
2158the arguments (from the guest R4 - R12). Userspace should put the
2159return code in 'ret' and any extra returned values in args[].
2160The possible hypercalls are defined in the Power Architecture Platform
2161Requirements (PAPR) document available from www.power.org (free
2162developer registration required to access it).
2163
9c1b96e3
AK
2164 /* Fix the size of the union. */
2165 char padding[256];
2166 };
b9e5dc8d
CB
2167
2168 /*
2169 * shared registers between kvm and userspace.
2170 * kvm_valid_regs specifies the register classes set by the host
2171 * kvm_dirty_regs specified the register classes dirtied by userspace
2172 * struct kvm_sync_regs is architecture specific, as well as the
2173 * bits for kvm_valid_regs and kvm_dirty_regs
2174 */
2175 __u64 kvm_valid_regs;
2176 __u64 kvm_dirty_regs;
2177 union {
2178 struct kvm_sync_regs regs;
2179 char padding[1024];
2180 } s;
2181
2182If KVM_CAP_SYNC_REGS is defined, these fields allow userspace to access
2183certain guest registers without having to call SET/GET_*REGS. Thus we can
2184avoid some system call overhead if userspace has to handle the exit.
2185Userspace can query the validity of the structure by checking
2186kvm_valid_regs for specific bits. These bits are architecture specific
2187and usually define the validity of a groups of registers. (e.g. one bit
2188 for general purpose registers)
2189
9c1b96e3 2190};
821246a5 2191
414fa985 2192
821246a5 21936. Capabilities that can be enabled
414fa985 2194-----------------------------------
821246a5
AG
2195
2196There are certain capabilities that change the behavior of the virtual CPU when
2197enabled. To enable them, please see section 4.37. Below you can find a list of
2198capabilities and what their effect on the vCPU is when enabling them.
2199
2200The following information is provided along with the description:
2201
2202 Architectures: which instruction set architectures provide this ioctl.
2203 x86 includes both i386 and x86_64.
2204
2205 Parameters: what parameters are accepted by the capability.
2206
2207 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
2208 are not detailed, but errors with specific meanings are.
2209
414fa985 2210
821246a5
AG
22116.1 KVM_CAP_PPC_OSI
2212
2213Architectures: ppc
2214Parameters: none
2215Returns: 0 on success; -1 on error
2216
2217This capability enables interception of OSI hypercalls that otherwise would
2218be treated as normal system calls to be injected into the guest. OSI hypercalls
2219were invented by Mac-on-Linux to have a standardized communication mechanism
2220between the guest and the host.
2221
2222When this capability is enabled, KVM_EXIT_OSI can occur.
2223
414fa985 2224
821246a5
AG
22256.2 KVM_CAP_PPC_PAPR
2226
2227Architectures: ppc
2228Parameters: none
2229Returns: 0 on success; -1 on error
2230
2231This capability enables interception of PAPR hypercalls. PAPR hypercalls are
2232done using the hypercall instruction "sc 1".
2233
2234It also sets the guest privilege level to "supervisor" mode. Usually the guest
2235runs in "hypervisor" privilege mode with a few missing features.
2236
2237In addition to the above, it changes the semantics of SDR1. In this mode, the
2238HTAB address part of SDR1 contains an HVA instead of a GPA, as PAPR keeps the
2239HTAB invisible to the guest.
2240
2241When this capability is enabled, KVM_EXIT_PAPR_HCALL can occur.
dc83b8bc 2242
414fa985 2243
dc83b8bc
SW
22446.3 KVM_CAP_SW_TLB
2245
2246Architectures: ppc
2247Parameters: args[0] is the address of a struct kvm_config_tlb
2248Returns: 0 on success; -1 on error
2249
2250struct kvm_config_tlb {
2251 __u64 params;
2252 __u64 array;
2253 __u32 mmu_type;
2254 __u32 array_len;
2255};
2256
2257Configures the virtual CPU's TLB array, establishing a shared memory area
2258between userspace and KVM. The "params" and "array" fields are userspace
2259addresses of mmu-type-specific data structures. The "array_len" field is an
2260safety mechanism, and should be set to the size in bytes of the memory that
2261userspace has reserved for the array. It must be at least the size dictated
2262by "mmu_type" and "params".
2263
2264While KVM_RUN is active, the shared region is under control of KVM. Its
2265contents are undefined, and any modification by userspace results in
2266boundedly undefined behavior.
2267
2268On return from KVM_RUN, the shared region will reflect the current state of
2269the guest's TLB. If userspace makes any changes, it must call KVM_DIRTY_TLB
2270to tell KVM which entries have been changed, prior to calling KVM_RUN again
2271on this vcpu.
2272
2273For mmu types KVM_MMU_FSL_BOOKE_NOHV and KVM_MMU_FSL_BOOKE_HV:
2274 - The "params" field is of type "struct kvm_book3e_206_tlb_params".
2275 - The "array" field points to an array of type "struct
2276 kvm_book3e_206_tlb_entry".
2277 - The array consists of all entries in the first TLB, followed by all
2278 entries in the second TLB.
2279 - Within a TLB, entries are ordered first by increasing set number. Within a
2280 set, entries are ordered by way (increasing ESEL).
2281 - The hash for determining set number in TLB0 is: (MAS2 >> 12) & (num_sets - 1)
2282 where "num_sets" is the tlb_sizes[] value divided by the tlb_ways[] value.
2283 - The tsize field of mas1 shall be set to 4K on TLB0, even though the
2284 hardware ignores this value for TLB0.
This page took 0.44733 seconds and 5 git commands to generate.