KVM: Allow KVM_CHECK_EXTENSION on the vm fd
[deliverable/linux.git] / Documentation / virtual / kvm / api.txt
CommitLineData
9c1b96e3
AK
1The Definitive KVM (Kernel-based Virtual Machine) API Documentation
2===================================================================
3
41. General description
414fa985 5----------------------
9c1b96e3
AK
6
7The kvm API is a set of ioctls that are issued to control various aspects
8of a virtual machine. The ioctls belong to three classes
9
10 - System ioctls: These query and set global attributes which affect the
11 whole kvm subsystem. In addition a system ioctl is used to create
12 virtual machines
13
14 - VM ioctls: These query and set attributes that affect an entire virtual
15 machine, for example memory layout. In addition a VM ioctl is used to
16 create virtual cpus (vcpus).
17
18 Only run VM ioctls from the same process (address space) that was used
19 to create the VM.
20
21 - vcpu ioctls: These query and set attributes that control the operation
22 of a single virtual cpu.
23
24 Only run vcpu ioctls from the same thread that was used to create the
25 vcpu.
26
414fa985 27
2044892d 282. File descriptors
414fa985 29-------------------
9c1b96e3
AK
30
31The kvm API is centered around file descriptors. An initial
32open("/dev/kvm") obtains a handle to the kvm subsystem; this handle
33can be used to issue system ioctls. A KVM_CREATE_VM ioctl on this
2044892d 34handle will create a VM file descriptor which can be used to issue VM
9c1b96e3
AK
35ioctls. A KVM_CREATE_VCPU ioctl on a VM fd will create a virtual cpu
36and return a file descriptor pointing to it. Finally, ioctls on a vcpu
37fd can be used to control the vcpu, including the important task of
38actually running guest code.
39
40In general file descriptors can be migrated among processes by means
41of fork() and the SCM_RIGHTS facility of unix domain socket. These
42kinds of tricks are explicitly not supported by kvm. While they will
43not cause harm to the host, their actual behavior is not guaranteed by
44the API. The only supported use is one virtual machine per process,
45and one vcpu per thread.
46
414fa985 47
9c1b96e3 483. Extensions
414fa985 49-------------
9c1b96e3
AK
50
51As of Linux 2.6.22, the KVM ABI has been stabilized: no backward
52incompatible change are allowed. However, there is an extension
53facility that allows backward-compatible extensions to the API to be
54queried and used.
55
c9f3f2d8 56The extension mechanism is not based on the Linux version number.
9c1b96e3
AK
57Instead, kvm defines extension identifiers and a facility to query
58whether a particular extension identifier is available. If it is, a
59set of ioctls is available for application use.
60
414fa985 61
9c1b96e3 624. API description
414fa985 63------------------
9c1b96e3
AK
64
65This section describes ioctls that can be used to control kvm guests.
66For each ioctl, the following information is provided along with a
67description:
68
69 Capability: which KVM extension provides this ioctl. Can be 'basic',
70 which means that is will be provided by any kernel that supports
71 API version 12 (see section 4.1), or a KVM_CAP_xyz constant, which
72 means availability needs to be checked with KVM_CHECK_EXTENSION
73 (see section 4.4).
74
75 Architectures: which instruction set architectures provide this ioctl.
76 x86 includes both i386 and x86_64.
77
78 Type: system, vm, or vcpu.
79
80 Parameters: what parameters are accepted by the ioctl.
81
82 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
83 are not detailed, but errors with specific meanings are.
84
414fa985 85
9c1b96e3
AK
864.1 KVM_GET_API_VERSION
87
88Capability: basic
89Architectures: all
90Type: system ioctl
91Parameters: none
92Returns: the constant KVM_API_VERSION (=12)
93
94This identifies the API version as the stable kvm API. It is not
95expected that this number will change. However, Linux 2.6.20 and
962.6.21 report earlier versions; these are not documented and not
97supported. Applications should refuse to run if KVM_GET_API_VERSION
98returns a value other than 12. If this check passes, all ioctls
99described as 'basic' will be available.
100
414fa985 101
9c1b96e3
AK
1024.2 KVM_CREATE_VM
103
104Capability: basic
105Architectures: all
106Type: system ioctl
e08b9637 107Parameters: machine type identifier (KVM_VM_*)
9c1b96e3
AK
108Returns: a VM fd that can be used to control the new virtual machine.
109
110The new VM has no virtual cpus and no memory. An mmap() of a VM fd
111will access the virtual machine's physical address space; offset zero
112corresponds to guest physical address zero. Use of mmap() on a VM fd
113is discouraged if userspace memory allocation (KVM_CAP_USER_MEMORY) is
114available.
e08b9637
CO
115You most certainly want to use 0 as machine type.
116
117In order to create user controlled virtual machines on S390, check
118KVM_CAP_S390_UCONTROL and use the flag KVM_VM_S390_UCONTROL as
119privileged user (CAP_SYS_ADMIN).
9c1b96e3 120
414fa985 121
9c1b96e3
AK
1224.3 KVM_GET_MSR_INDEX_LIST
123
124Capability: basic
125Architectures: x86
126Type: system
127Parameters: struct kvm_msr_list (in/out)
128Returns: 0 on success; -1 on error
129Errors:
130 E2BIG: the msr index list is to be to fit in the array specified by
131 the user.
132
133struct kvm_msr_list {
134 __u32 nmsrs; /* number of msrs in entries */
135 __u32 indices[0];
136};
137
138This ioctl returns the guest msrs that are supported. The list varies
139by kvm version and host processor, but does not change otherwise. The
140user fills in the size of the indices array in nmsrs, and in return
141kvm adjusts nmsrs to reflect the actual number of msrs and fills in
142the indices array with their numbers.
143
2e2602ca
AK
144Note: if kvm indicates supports MCE (KVM_CAP_MCE), then the MCE bank MSRs are
145not returned in the MSR list, as different vcpus can have a different number
146of banks, as set via the KVM_X86_SETUP_MCE ioctl.
147
414fa985 148
9c1b96e3
AK
1494.4 KVM_CHECK_EXTENSION
150
92b591a4 151Capability: basic, KVM_CAP_CHECK_EXTENSION_VM for vm ioctl
9c1b96e3 152Architectures: all
92b591a4 153Type: system ioctl, vm ioctl
9c1b96e3
AK
154Parameters: extension identifier (KVM_CAP_*)
155Returns: 0 if unsupported; 1 (or some other positive integer) if supported
156
157The API allows the application to query about extensions to the core
158kvm API. Userspace passes an extension identifier (an integer) and
159receives an integer that describes the extension availability.
160Generally 0 means no and 1 means yes, but some extensions may report
161additional information in the integer return value.
162
92b591a4
AG
163Based on their initialization different VMs may have different capabilities.
164It is thus encouraged to use the vm ioctl to query for capabilities (available
165with KVM_CAP_CHECK_EXTENSION_VM on the vm fd)
414fa985 166
9c1b96e3
AK
1674.5 KVM_GET_VCPU_MMAP_SIZE
168
169Capability: basic
170Architectures: all
171Type: system ioctl
172Parameters: none
173Returns: size of vcpu mmap area, in bytes
174
175The KVM_RUN ioctl (cf.) communicates with userspace via a shared
176memory region. This ioctl returns the size of that region. See the
177KVM_RUN documentation for details.
178
414fa985 179
9c1b96e3
AK
1804.6 KVM_SET_MEMORY_REGION
181
182Capability: basic
183Architectures: all
184Type: vm ioctl
185Parameters: struct kvm_memory_region (in)
186Returns: 0 on success, -1 on error
187
b74a07be 188This ioctl is obsolete and has been removed.
9c1b96e3 189
414fa985 190
68ba6974 1914.7 KVM_CREATE_VCPU
9c1b96e3
AK
192
193Capability: basic
194Architectures: all
195Type: vm ioctl
196Parameters: vcpu id (apic id on x86)
197Returns: vcpu fd on success, -1 on error
198
199This API adds a vcpu to a virtual machine. The vcpu id is a small integer
8c3ba334
SL
200in the range [0, max_vcpus).
201
202The recommended max_vcpus value can be retrieved using the KVM_CAP_NR_VCPUS of
203the KVM_CHECK_EXTENSION ioctl() at run-time.
204The maximum possible value for max_vcpus can be retrieved using the
205KVM_CAP_MAX_VCPUS of the KVM_CHECK_EXTENSION ioctl() at run-time.
206
76d25402
PE
207If the KVM_CAP_NR_VCPUS does not exist, you should assume that max_vcpus is 4
208cpus max.
8c3ba334
SL
209If the KVM_CAP_MAX_VCPUS does not exist, you should assume that max_vcpus is
210same as the value returned from KVM_CAP_NR_VCPUS.
9c1b96e3 211
371fefd6
PM
212On powerpc using book3s_hv mode, the vcpus are mapped onto virtual
213threads in one or more virtual CPU cores. (This is because the
214hardware requires all the hardware threads in a CPU core to be in the
215same partition.) The KVM_CAP_PPC_SMT capability indicates the number
36442687
AK
216of vcpus per virtual core (vcore). The vcore id is obtained by
217dividing the vcpu id by the number of vcpus per vcore. The vcpus in a
218given vcore will always be in the same physical core as each other
219(though that might be a different physical core from time to time).
220Userspace can control the threading (SMT) mode of the guest by its
221allocation of vcpu ids. For example, if userspace wants
222single-threaded guest vcpus, it should make all vcpu ids be a multiple
223of the number of vcpus per vcore.
224
5b1c1493
CO
225For virtual cpus that have been created with S390 user controlled virtual
226machines, the resulting vcpu fd can be memory mapped at page offset
227KVM_S390_SIE_PAGE_OFFSET in order to obtain a memory map of the virtual
228cpu's hardware control block.
229
414fa985 230
68ba6974 2314.8 KVM_GET_DIRTY_LOG (vm ioctl)
9c1b96e3
AK
232
233Capability: basic
234Architectures: x86
235Type: vm ioctl
236Parameters: struct kvm_dirty_log (in/out)
237Returns: 0 on success, -1 on error
238
239/* for KVM_GET_DIRTY_LOG */
240struct kvm_dirty_log {
241 __u32 slot;
242 __u32 padding;
243 union {
244 void __user *dirty_bitmap; /* one bit per page */
245 __u64 padding;
246 };
247};
248
249Given a memory slot, return a bitmap containing any pages dirtied
250since the last call to this ioctl. Bit 0 is the first page in the
251memory slot. Ensure the entire structure is cleared to avoid padding
252issues.
253
414fa985 254
68ba6974 2554.9 KVM_SET_MEMORY_ALIAS
9c1b96e3
AK
256
257Capability: basic
258Architectures: x86
259Type: vm ioctl
260Parameters: struct kvm_memory_alias (in)
261Returns: 0 (success), -1 (error)
262
a1f4d395 263This ioctl is obsolete and has been removed.
9c1b96e3 264
414fa985 265
68ba6974 2664.10 KVM_RUN
9c1b96e3
AK
267
268Capability: basic
269Architectures: all
270Type: vcpu ioctl
271Parameters: none
272Returns: 0 on success, -1 on error
273Errors:
274 EINTR: an unmasked signal is pending
275
276This ioctl is used to run a guest virtual cpu. While there are no
277explicit parameters, there is an implicit parameter block that can be
278obtained by mmap()ing the vcpu fd at offset 0, with the size given by
279KVM_GET_VCPU_MMAP_SIZE. The parameter block is formatted as a 'struct
280kvm_run' (see below).
281
414fa985 282
68ba6974 2834.11 KVM_GET_REGS
9c1b96e3
AK
284
285Capability: basic
379e04c7 286Architectures: all except ARM, arm64
9c1b96e3
AK
287Type: vcpu ioctl
288Parameters: struct kvm_regs (out)
289Returns: 0 on success, -1 on error
290
291Reads the general purpose registers from the vcpu.
292
293/* x86 */
294struct kvm_regs {
295 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
296 __u64 rax, rbx, rcx, rdx;
297 __u64 rsi, rdi, rsp, rbp;
298 __u64 r8, r9, r10, r11;
299 __u64 r12, r13, r14, r15;
300 __u64 rip, rflags;
301};
302
414fa985 303
68ba6974 3044.12 KVM_SET_REGS
9c1b96e3
AK
305
306Capability: basic
379e04c7 307Architectures: all except ARM, arm64
9c1b96e3
AK
308Type: vcpu ioctl
309Parameters: struct kvm_regs (in)
310Returns: 0 on success, -1 on error
311
312Writes the general purpose registers into the vcpu.
313
314See KVM_GET_REGS for the data structure.
315
414fa985 316
68ba6974 3174.13 KVM_GET_SREGS
9c1b96e3
AK
318
319Capability: basic
5ce941ee 320Architectures: x86, ppc
9c1b96e3
AK
321Type: vcpu ioctl
322Parameters: struct kvm_sregs (out)
323Returns: 0 on success, -1 on error
324
325Reads special registers from the vcpu.
326
327/* x86 */
328struct kvm_sregs {
329 struct kvm_segment cs, ds, es, fs, gs, ss;
330 struct kvm_segment tr, ldt;
331 struct kvm_dtable gdt, idt;
332 __u64 cr0, cr2, cr3, cr4, cr8;
333 __u64 efer;
334 __u64 apic_base;
335 __u64 interrupt_bitmap[(KVM_NR_INTERRUPTS + 63) / 64];
336};
337
68e2ffed 338/* ppc -- see arch/powerpc/include/uapi/asm/kvm.h */
5ce941ee 339
9c1b96e3
AK
340interrupt_bitmap is a bitmap of pending external interrupts. At most
341one bit may be set. This interrupt has been acknowledged by the APIC
342but not yet injected into the cpu core.
343
414fa985 344
68ba6974 3454.14 KVM_SET_SREGS
9c1b96e3
AK
346
347Capability: basic
5ce941ee 348Architectures: x86, ppc
9c1b96e3
AK
349Type: vcpu ioctl
350Parameters: struct kvm_sregs (in)
351Returns: 0 on success, -1 on error
352
353Writes special registers into the vcpu. See KVM_GET_SREGS for the
354data structures.
355
414fa985 356
68ba6974 3574.15 KVM_TRANSLATE
9c1b96e3
AK
358
359Capability: basic
360Architectures: x86
361Type: vcpu ioctl
362Parameters: struct kvm_translation (in/out)
363Returns: 0 on success, -1 on error
364
365Translates a virtual address according to the vcpu's current address
366translation mode.
367
368struct kvm_translation {
369 /* in */
370 __u64 linear_address;
371
372 /* out */
373 __u64 physical_address;
374 __u8 valid;
375 __u8 writeable;
376 __u8 usermode;
377 __u8 pad[5];
378};
379
414fa985 380
68ba6974 3814.16 KVM_INTERRUPT
9c1b96e3
AK
382
383Capability: basic
6f7a2bd4 384Architectures: x86, ppc
9c1b96e3
AK
385Type: vcpu ioctl
386Parameters: struct kvm_interrupt (in)
387Returns: 0 on success, -1 on error
388
389Queues a hardware interrupt vector to be injected. This is only
6f7a2bd4 390useful if in-kernel local APIC or equivalent is not used.
9c1b96e3
AK
391
392/* for KVM_INTERRUPT */
393struct kvm_interrupt {
394 /* in */
395 __u32 irq;
396};
397
6f7a2bd4
AG
398X86:
399
9c1b96e3
AK
400Note 'irq' is an interrupt vector, not an interrupt pin or line.
401
6f7a2bd4
AG
402PPC:
403
404Queues an external interrupt to be injected. This ioctl is overleaded
405with 3 different irq values:
406
407a) KVM_INTERRUPT_SET
408
409 This injects an edge type external interrupt into the guest once it's ready
410 to receive interrupts. When injected, the interrupt is done.
411
412b) KVM_INTERRUPT_UNSET
413
414 This unsets any pending interrupt.
415
416 Only available with KVM_CAP_PPC_UNSET_IRQ.
417
418c) KVM_INTERRUPT_SET_LEVEL
419
420 This injects a level type external interrupt into the guest context. The
421 interrupt stays pending until a specific ioctl with KVM_INTERRUPT_UNSET
422 is triggered.
423
424 Only available with KVM_CAP_PPC_IRQ_LEVEL.
425
426Note that any value for 'irq' other than the ones stated above is invalid
427and incurs unexpected behavior.
428
414fa985 429
68ba6974 4304.17 KVM_DEBUG_GUEST
9c1b96e3
AK
431
432Capability: basic
433Architectures: none
434Type: vcpu ioctl
435Parameters: none)
436Returns: -1 on error
437
438Support for this has been removed. Use KVM_SET_GUEST_DEBUG instead.
439
414fa985 440
68ba6974 4414.18 KVM_GET_MSRS
9c1b96e3
AK
442
443Capability: basic
444Architectures: x86
445Type: vcpu ioctl
446Parameters: struct kvm_msrs (in/out)
447Returns: 0 on success, -1 on error
448
449Reads model-specific registers from the vcpu. Supported msr indices can
450be obtained using KVM_GET_MSR_INDEX_LIST.
451
452struct kvm_msrs {
453 __u32 nmsrs; /* number of msrs in entries */
454 __u32 pad;
455
456 struct kvm_msr_entry entries[0];
457};
458
459struct kvm_msr_entry {
460 __u32 index;
461 __u32 reserved;
462 __u64 data;
463};
464
465Application code should set the 'nmsrs' member (which indicates the
466size of the entries array) and the 'index' member of each array entry.
467kvm will fill in the 'data' member.
468
414fa985 469
68ba6974 4704.19 KVM_SET_MSRS
9c1b96e3
AK
471
472Capability: basic
473Architectures: x86
474Type: vcpu ioctl
475Parameters: struct kvm_msrs (in)
476Returns: 0 on success, -1 on error
477
478Writes model-specific registers to the vcpu. See KVM_GET_MSRS for the
479data structures.
480
481Application code should set the 'nmsrs' member (which indicates the
482size of the entries array), and the 'index' and 'data' members of each
483array entry.
484
414fa985 485
68ba6974 4864.20 KVM_SET_CPUID
9c1b96e3
AK
487
488Capability: basic
489Architectures: x86
490Type: vcpu ioctl
491Parameters: struct kvm_cpuid (in)
492Returns: 0 on success, -1 on error
493
494Defines the vcpu responses to the cpuid instruction. Applications
495should use the KVM_SET_CPUID2 ioctl if available.
496
497
498struct kvm_cpuid_entry {
499 __u32 function;
500 __u32 eax;
501 __u32 ebx;
502 __u32 ecx;
503 __u32 edx;
504 __u32 padding;
505};
506
507/* for KVM_SET_CPUID */
508struct kvm_cpuid {
509 __u32 nent;
510 __u32 padding;
511 struct kvm_cpuid_entry entries[0];
512};
513
414fa985 514
68ba6974 5154.21 KVM_SET_SIGNAL_MASK
9c1b96e3
AK
516
517Capability: basic
518Architectures: x86
519Type: vcpu ioctl
520Parameters: struct kvm_signal_mask (in)
521Returns: 0 on success, -1 on error
522
523Defines which signals are blocked during execution of KVM_RUN. This
524signal mask temporarily overrides the threads signal mask. Any
525unblocked signal received (except SIGKILL and SIGSTOP, which retain
526their traditional behaviour) will cause KVM_RUN to return with -EINTR.
527
528Note the signal will only be delivered if not blocked by the original
529signal mask.
530
531/* for KVM_SET_SIGNAL_MASK */
532struct kvm_signal_mask {
533 __u32 len;
534 __u8 sigset[0];
535};
536
414fa985 537
68ba6974 5384.22 KVM_GET_FPU
9c1b96e3
AK
539
540Capability: basic
541Architectures: x86
542Type: vcpu ioctl
543Parameters: struct kvm_fpu (out)
544Returns: 0 on success, -1 on error
545
546Reads the floating point state from the vcpu.
547
548/* for KVM_GET_FPU and KVM_SET_FPU */
549struct kvm_fpu {
550 __u8 fpr[8][16];
551 __u16 fcw;
552 __u16 fsw;
553 __u8 ftwx; /* in fxsave format */
554 __u8 pad1;
555 __u16 last_opcode;
556 __u64 last_ip;
557 __u64 last_dp;
558 __u8 xmm[16][16];
559 __u32 mxcsr;
560 __u32 pad2;
561};
562
414fa985 563
68ba6974 5644.23 KVM_SET_FPU
9c1b96e3
AK
565
566Capability: basic
567Architectures: x86
568Type: vcpu ioctl
569Parameters: struct kvm_fpu (in)
570Returns: 0 on success, -1 on error
571
572Writes the floating point state to the vcpu.
573
574/* for KVM_GET_FPU and KVM_SET_FPU */
575struct kvm_fpu {
576 __u8 fpr[8][16];
577 __u16 fcw;
578 __u16 fsw;
579 __u8 ftwx; /* in fxsave format */
580 __u8 pad1;
581 __u16 last_opcode;
582 __u64 last_ip;
583 __u64 last_dp;
584 __u8 xmm[16][16];
585 __u32 mxcsr;
586 __u32 pad2;
587};
588
414fa985 589
68ba6974 5904.24 KVM_CREATE_IRQCHIP
5dadbfd6 591
84223598
CH
592Capability: KVM_CAP_IRQCHIP, KVM_CAP_S390_IRQCHIP (s390)
593Architectures: x86, ia64, ARM, arm64, s390
5dadbfd6
AK
594Type: vm ioctl
595Parameters: none
596Returns: 0 on success, -1 on error
597
598Creates an interrupt controller model in the kernel. On x86, creates a virtual
599ioapic, a virtual PIC (two PICs, nested), and sets up future vcpus to have a
600local APIC. IRQ routing for GSIs 0-15 is set to both PIC and IOAPIC; GSI 16-23
379e04c7 601only go to the IOAPIC. On ia64, a IOSAPIC is created. On ARM/arm64, a GIC is
84223598
CH
602created. On s390, a dummy irq routing table is created.
603
604Note that on s390 the KVM_CAP_S390_IRQCHIP vm capability needs to be enabled
605before KVM_CREATE_IRQCHIP can be used.
5dadbfd6 606
414fa985 607
68ba6974 6084.25 KVM_IRQ_LINE
5dadbfd6
AK
609
610Capability: KVM_CAP_IRQCHIP
379e04c7 611Architectures: x86, ia64, arm, arm64
5dadbfd6
AK
612Type: vm ioctl
613Parameters: struct kvm_irq_level
614Returns: 0 on success, -1 on error
615
616Sets the level of a GSI input to the interrupt controller model in the kernel.
86ce8535
CD
617On some architectures it is required that an interrupt controller model has
618been previously created with KVM_CREATE_IRQCHIP. Note that edge-triggered
619interrupts require the level to be set to 1 and then back to 0.
620
100943c5
GS
621On real hardware, interrupt pins can be active-low or active-high. This
622does not matter for the level field of struct kvm_irq_level: 1 always
623means active (asserted), 0 means inactive (deasserted).
624
625x86 allows the operating system to program the interrupt polarity
626(active-low/active-high) for level-triggered interrupts, and KVM used
627to consider the polarity. However, due to bitrot in the handling of
628active-low interrupts, the above convention is now valid on x86 too.
629This is signaled by KVM_CAP_X86_IOAPIC_POLARITY_IGNORED. Userspace
630should not present interrupts to the guest as active-low unless this
631capability is present (or unless it is not using the in-kernel irqchip,
632of course).
633
634
379e04c7
MZ
635ARM/arm64 can signal an interrupt either at the CPU level, or at the
636in-kernel irqchip (GIC), and for in-kernel irqchip can tell the GIC to
637use PPIs designated for specific cpus. The irq field is interpreted
638like this:
86ce8535
CD
639
640  bits: | 31 ... 24 | 23 ... 16 | 15 ... 0 |
641 field: | irq_type | vcpu_index | irq_id |
642
643The irq_type field has the following values:
644- irq_type[0]: out-of-kernel GIC: irq_id 0 is IRQ, irq_id 1 is FIQ
645- irq_type[1]: in-kernel GIC: SPI, irq_id between 32 and 1019 (incl.)
646 (the vcpu_index field is ignored)
647- irq_type[2]: in-kernel GIC: PPI, irq_id between 16 and 31 (incl.)
648
649(The irq_id field thus corresponds nicely to the IRQ ID in the ARM GIC specs)
650
100943c5 651In both cases, level is used to assert/deassert the line.
5dadbfd6
AK
652
653struct kvm_irq_level {
654 union {
655 __u32 irq; /* GSI */
656 __s32 status; /* not used for KVM_IRQ_LEVEL */
657 };
658 __u32 level; /* 0 or 1 */
659};
660
414fa985 661
68ba6974 6624.26 KVM_GET_IRQCHIP
5dadbfd6
AK
663
664Capability: KVM_CAP_IRQCHIP
665Architectures: x86, ia64
666Type: vm ioctl
667Parameters: struct kvm_irqchip (in/out)
668Returns: 0 on success, -1 on error
669
670Reads the state of a kernel interrupt controller created with
671KVM_CREATE_IRQCHIP into a buffer provided by the caller.
672
673struct kvm_irqchip {
674 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
675 __u32 pad;
676 union {
677 char dummy[512]; /* reserving space */
678 struct kvm_pic_state pic;
679 struct kvm_ioapic_state ioapic;
680 } chip;
681};
682
414fa985 683
68ba6974 6844.27 KVM_SET_IRQCHIP
5dadbfd6
AK
685
686Capability: KVM_CAP_IRQCHIP
687Architectures: x86, ia64
688Type: vm ioctl
689Parameters: struct kvm_irqchip (in)
690Returns: 0 on success, -1 on error
691
692Sets the state of a kernel interrupt controller created with
693KVM_CREATE_IRQCHIP from a buffer provided by the caller.
694
695struct kvm_irqchip {
696 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
697 __u32 pad;
698 union {
699 char dummy[512]; /* reserving space */
700 struct kvm_pic_state pic;
701 struct kvm_ioapic_state ioapic;
702 } chip;
703};
704
414fa985 705
68ba6974 7064.28 KVM_XEN_HVM_CONFIG
ffde22ac
ES
707
708Capability: KVM_CAP_XEN_HVM
709Architectures: x86
710Type: vm ioctl
711Parameters: struct kvm_xen_hvm_config (in)
712Returns: 0 on success, -1 on error
713
714Sets the MSR that the Xen HVM guest uses to initialize its hypercall
715page, and provides the starting address and size of the hypercall
716blobs in userspace. When the guest writes the MSR, kvm copies one
717page of a blob (32- or 64-bit, depending on the vcpu mode) to guest
718memory.
719
720struct kvm_xen_hvm_config {
721 __u32 flags;
722 __u32 msr;
723 __u64 blob_addr_32;
724 __u64 blob_addr_64;
725 __u8 blob_size_32;
726 __u8 blob_size_64;
727 __u8 pad2[30];
728};
729
414fa985 730
68ba6974 7314.29 KVM_GET_CLOCK
afbcf7ab
GC
732
733Capability: KVM_CAP_ADJUST_CLOCK
734Architectures: x86
735Type: vm ioctl
736Parameters: struct kvm_clock_data (out)
737Returns: 0 on success, -1 on error
738
739Gets the current timestamp of kvmclock as seen by the current guest. In
740conjunction with KVM_SET_CLOCK, it is used to ensure monotonicity on scenarios
741such as migration.
742
743struct kvm_clock_data {
744 __u64 clock; /* kvmclock current value */
745 __u32 flags;
746 __u32 pad[9];
747};
748
414fa985 749
68ba6974 7504.30 KVM_SET_CLOCK
afbcf7ab
GC
751
752Capability: KVM_CAP_ADJUST_CLOCK
753Architectures: x86
754Type: vm ioctl
755Parameters: struct kvm_clock_data (in)
756Returns: 0 on success, -1 on error
757
2044892d 758Sets the current timestamp of kvmclock to the value specified in its parameter.
afbcf7ab
GC
759In conjunction with KVM_GET_CLOCK, it is used to ensure monotonicity on scenarios
760such as migration.
761
762struct kvm_clock_data {
763 __u64 clock; /* kvmclock current value */
764 __u32 flags;
765 __u32 pad[9];
766};
767
414fa985 768
68ba6974 7694.31 KVM_GET_VCPU_EVENTS
3cfc3092
JK
770
771Capability: KVM_CAP_VCPU_EVENTS
48005f64 772Extended by: KVM_CAP_INTR_SHADOW
3cfc3092
JK
773Architectures: x86
774Type: vm ioctl
775Parameters: struct kvm_vcpu_event (out)
776Returns: 0 on success, -1 on error
777
778Gets currently pending exceptions, interrupts, and NMIs as well as related
779states of the vcpu.
780
781struct kvm_vcpu_events {
782 struct {
783 __u8 injected;
784 __u8 nr;
785 __u8 has_error_code;
786 __u8 pad;
787 __u32 error_code;
788 } exception;
789 struct {
790 __u8 injected;
791 __u8 nr;
792 __u8 soft;
48005f64 793 __u8 shadow;
3cfc3092
JK
794 } interrupt;
795 struct {
796 __u8 injected;
797 __u8 pending;
798 __u8 masked;
799 __u8 pad;
800 } nmi;
801 __u32 sipi_vector;
dab4b911 802 __u32 flags;
3cfc3092
JK
803};
804
48005f64
JK
805KVM_VCPUEVENT_VALID_SHADOW may be set in the flags field to signal that
806interrupt.shadow contains a valid state. Otherwise, this field is undefined.
807
414fa985 808
68ba6974 8094.32 KVM_SET_VCPU_EVENTS
3cfc3092
JK
810
811Capability: KVM_CAP_VCPU_EVENTS
48005f64 812Extended by: KVM_CAP_INTR_SHADOW
3cfc3092
JK
813Architectures: x86
814Type: vm ioctl
815Parameters: struct kvm_vcpu_event (in)
816Returns: 0 on success, -1 on error
817
818Set pending exceptions, interrupts, and NMIs as well as related states of the
819vcpu.
820
821See KVM_GET_VCPU_EVENTS for the data structure.
822
dab4b911
JK
823Fields that may be modified asynchronously by running VCPUs can be excluded
824from the update. These fields are nmi.pending and sipi_vector. Keep the
825corresponding bits in the flags field cleared to suppress overwriting the
826current in-kernel state. The bits are:
827
828KVM_VCPUEVENT_VALID_NMI_PENDING - transfer nmi.pending to the kernel
829KVM_VCPUEVENT_VALID_SIPI_VECTOR - transfer sipi_vector
830
48005f64
JK
831If KVM_CAP_INTR_SHADOW is available, KVM_VCPUEVENT_VALID_SHADOW can be set in
832the flags field to signal that interrupt.shadow contains a valid state and
833shall be written into the VCPU.
834
414fa985 835
68ba6974 8364.33 KVM_GET_DEBUGREGS
a1efbe77
JK
837
838Capability: KVM_CAP_DEBUGREGS
839Architectures: x86
840Type: vm ioctl
841Parameters: struct kvm_debugregs (out)
842Returns: 0 on success, -1 on error
843
844Reads debug registers from the vcpu.
845
846struct kvm_debugregs {
847 __u64 db[4];
848 __u64 dr6;
849 __u64 dr7;
850 __u64 flags;
851 __u64 reserved[9];
852};
853
414fa985 854
68ba6974 8554.34 KVM_SET_DEBUGREGS
a1efbe77
JK
856
857Capability: KVM_CAP_DEBUGREGS
858Architectures: x86
859Type: vm ioctl
860Parameters: struct kvm_debugregs (in)
861Returns: 0 on success, -1 on error
862
863Writes debug registers into the vcpu.
864
865See KVM_GET_DEBUGREGS for the data structure. The flags field is unused
866yet and must be cleared on entry.
867
414fa985 868
68ba6974 8694.35 KVM_SET_USER_MEMORY_REGION
0f2d8f4d
AK
870
871Capability: KVM_CAP_USER_MEM
872Architectures: all
873Type: vm ioctl
874Parameters: struct kvm_userspace_memory_region (in)
875Returns: 0 on success, -1 on error
876
877struct kvm_userspace_memory_region {
878 __u32 slot;
879 __u32 flags;
880 __u64 guest_phys_addr;
881 __u64 memory_size; /* bytes */
882 __u64 userspace_addr; /* start of the userspace allocated memory */
883};
884
885/* for kvm_memory_region::flags */
4d8b81ab
XG
886#define KVM_MEM_LOG_DIRTY_PAGES (1UL << 0)
887#define KVM_MEM_READONLY (1UL << 1)
0f2d8f4d
AK
888
889This ioctl allows the user to create or modify a guest physical memory
890slot. When changing an existing slot, it may be moved in the guest
891physical memory space, or its flags may be modified. It may not be
892resized. Slots may not overlap in guest physical address space.
893
894Memory for the region is taken starting at the address denoted by the
895field userspace_addr, which must point at user addressable memory for
896the entire memory slot size. Any object may back this memory, including
897anonymous memory, ordinary files, and hugetlbfs.
898
899It is recommended that the lower 21 bits of guest_phys_addr and userspace_addr
900be identical. This allows large pages in the guest to be backed by large
901pages in the host.
902
75d61fbc
TY
903The flags field supports two flags: KVM_MEM_LOG_DIRTY_PAGES and
904KVM_MEM_READONLY. The former can be set to instruct KVM to keep track of
905writes to memory within the slot. See KVM_GET_DIRTY_LOG ioctl to know how to
906use it. The latter can be set, if KVM_CAP_READONLY_MEM capability allows it,
907to make a new slot read-only. In this case, writes to this memory will be
908posted to userspace as KVM_EXIT_MMIO exits.
7efd8fa1
JK
909
910When the KVM_CAP_SYNC_MMU capability is available, changes in the backing of
911the memory region are automatically reflected into the guest. For example, an
912mmap() that affects the region will be made visible immediately. Another
913example is madvise(MADV_DROP).
0f2d8f4d
AK
914
915It is recommended to use this API instead of the KVM_SET_MEMORY_REGION ioctl.
916The KVM_SET_MEMORY_REGION does not allow fine grained control over memory
917allocation and is deprecated.
3cfc3092 918
414fa985 919
68ba6974 9204.36 KVM_SET_TSS_ADDR
8a5416db
AK
921
922Capability: KVM_CAP_SET_TSS_ADDR
923Architectures: x86
924Type: vm ioctl
925Parameters: unsigned long tss_address (in)
926Returns: 0 on success, -1 on error
927
928This ioctl defines the physical address of a three-page region in the guest
929physical address space. The region must be within the first 4GB of the
930guest physical address space and must not conflict with any memory slot
931or any mmio address. The guest may malfunction if it accesses this memory
932region.
933
934This ioctl is required on Intel-based hosts. This is needed on Intel hardware
935because of a quirk in the virtualization implementation (see the internals
936documentation when it pops into existence).
937
414fa985 938
68ba6974 9394.37 KVM_ENABLE_CAP
71fbfd5f 940
d938dc55 941Capability: KVM_CAP_ENABLE_CAP, KVM_CAP_ENABLE_CAP_VM
d6712df9 942Architectures: ppc, s390
d938dc55 943Type: vcpu ioctl, vm ioctl (with KVM_CAP_ENABLE_CAP_VM)
71fbfd5f
AG
944Parameters: struct kvm_enable_cap (in)
945Returns: 0 on success; -1 on error
946
947+Not all extensions are enabled by default. Using this ioctl the application
948can enable an extension, making it available to the guest.
949
950On systems that do not support this ioctl, it always fails. On systems that
951do support it, it only works for extensions that are supported for enablement.
952
953To check if a capability can be enabled, the KVM_CHECK_EXTENSION ioctl should
954be used.
955
956struct kvm_enable_cap {
957 /* in */
958 __u32 cap;
959
960The capability that is supposed to get enabled.
961
962 __u32 flags;
963
964A bitfield indicating future enhancements. Has to be 0 for now.
965
966 __u64 args[4];
967
968Arguments for enabling a feature. If a feature needs initial values to
969function properly, this is the place to put them.
970
971 __u8 pad[64];
972};
973
d938dc55
CH
974The vcpu ioctl should be used for vcpu-specific capabilities, the vm ioctl
975for vm-wide capabilities.
414fa985 976
68ba6974 9774.38 KVM_GET_MP_STATE
b843f065
AK
978
979Capability: KVM_CAP_MP_STATE
980Architectures: x86, ia64
981Type: vcpu ioctl
982Parameters: struct kvm_mp_state (out)
983Returns: 0 on success; -1 on error
984
985struct kvm_mp_state {
986 __u32 mp_state;
987};
988
989Returns the vcpu's current "multiprocessing state" (though also valid on
990uniprocessor guests).
991
992Possible values are:
993
994 - KVM_MP_STATE_RUNNABLE: the vcpu is currently running
995 - KVM_MP_STATE_UNINITIALIZED: the vcpu is an application processor (AP)
996 which has not yet received an INIT signal
997 - KVM_MP_STATE_INIT_RECEIVED: the vcpu has received an INIT signal, and is
998 now ready for a SIPI
999 - KVM_MP_STATE_HALTED: the vcpu has executed a HLT instruction and
1000 is waiting for an interrupt
1001 - KVM_MP_STATE_SIPI_RECEIVED: the vcpu has just received a SIPI (vector
b595076a 1002 accessible via KVM_GET_VCPU_EVENTS)
b843f065
AK
1003
1004This ioctl is only useful after KVM_CREATE_IRQCHIP. Without an in-kernel
1005irqchip, the multiprocessing state must be maintained by userspace.
1006
414fa985 1007
68ba6974 10084.39 KVM_SET_MP_STATE
b843f065
AK
1009
1010Capability: KVM_CAP_MP_STATE
1011Architectures: x86, ia64
1012Type: vcpu ioctl
1013Parameters: struct kvm_mp_state (in)
1014Returns: 0 on success; -1 on error
1015
1016Sets the vcpu's current "multiprocessing state"; see KVM_GET_MP_STATE for
1017arguments.
1018
1019This ioctl is only useful after KVM_CREATE_IRQCHIP. Without an in-kernel
1020irqchip, the multiprocessing state must be maintained by userspace.
1021
414fa985 1022
68ba6974 10234.40 KVM_SET_IDENTITY_MAP_ADDR
47dbb84f
AK
1024
1025Capability: KVM_CAP_SET_IDENTITY_MAP_ADDR
1026Architectures: x86
1027Type: vm ioctl
1028Parameters: unsigned long identity (in)
1029Returns: 0 on success, -1 on error
1030
1031This ioctl defines the physical address of a one-page region in the guest
1032physical address space. The region must be within the first 4GB of the
1033guest physical address space and must not conflict with any memory slot
1034or any mmio address. The guest may malfunction if it accesses this memory
1035region.
1036
1037This ioctl is required on Intel-based hosts. This is needed on Intel hardware
1038because of a quirk in the virtualization implementation (see the internals
1039documentation when it pops into existence).
1040
414fa985 1041
68ba6974 10424.41 KVM_SET_BOOT_CPU_ID
57bc24cf
AK
1043
1044Capability: KVM_CAP_SET_BOOT_CPU_ID
1045Architectures: x86, ia64
1046Type: vm ioctl
1047Parameters: unsigned long vcpu_id
1048Returns: 0 on success, -1 on error
1049
1050Define which vcpu is the Bootstrap Processor (BSP). Values are the same
1051as the vcpu id in KVM_CREATE_VCPU. If this ioctl is not called, the default
1052is vcpu 0.
1053
414fa985 1054
68ba6974 10554.42 KVM_GET_XSAVE
2d5b5a66
SY
1056
1057Capability: KVM_CAP_XSAVE
1058Architectures: x86
1059Type: vcpu ioctl
1060Parameters: struct kvm_xsave (out)
1061Returns: 0 on success, -1 on error
1062
1063struct kvm_xsave {
1064 __u32 region[1024];
1065};
1066
1067This ioctl would copy current vcpu's xsave struct to the userspace.
1068
414fa985 1069
68ba6974 10704.43 KVM_SET_XSAVE
2d5b5a66
SY
1071
1072Capability: KVM_CAP_XSAVE
1073Architectures: x86
1074Type: vcpu ioctl
1075Parameters: struct kvm_xsave (in)
1076Returns: 0 on success, -1 on error
1077
1078struct kvm_xsave {
1079 __u32 region[1024];
1080};
1081
1082This ioctl would copy userspace's xsave struct to the kernel.
1083
414fa985 1084
68ba6974 10854.44 KVM_GET_XCRS
2d5b5a66
SY
1086
1087Capability: KVM_CAP_XCRS
1088Architectures: x86
1089Type: vcpu ioctl
1090Parameters: struct kvm_xcrs (out)
1091Returns: 0 on success, -1 on error
1092
1093struct kvm_xcr {
1094 __u32 xcr;
1095 __u32 reserved;
1096 __u64 value;
1097};
1098
1099struct kvm_xcrs {
1100 __u32 nr_xcrs;
1101 __u32 flags;
1102 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1103 __u64 padding[16];
1104};
1105
1106This ioctl would copy current vcpu's xcrs to the userspace.
1107
414fa985 1108
68ba6974 11094.45 KVM_SET_XCRS
2d5b5a66
SY
1110
1111Capability: KVM_CAP_XCRS
1112Architectures: x86
1113Type: vcpu ioctl
1114Parameters: struct kvm_xcrs (in)
1115Returns: 0 on success, -1 on error
1116
1117struct kvm_xcr {
1118 __u32 xcr;
1119 __u32 reserved;
1120 __u64 value;
1121};
1122
1123struct kvm_xcrs {
1124 __u32 nr_xcrs;
1125 __u32 flags;
1126 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1127 __u64 padding[16];
1128};
1129
1130This ioctl would set vcpu's xcr to the value userspace specified.
1131
414fa985 1132
68ba6974 11334.46 KVM_GET_SUPPORTED_CPUID
d153513d
AK
1134
1135Capability: KVM_CAP_EXT_CPUID
1136Architectures: x86
1137Type: system ioctl
1138Parameters: struct kvm_cpuid2 (in/out)
1139Returns: 0 on success, -1 on error
1140
1141struct kvm_cpuid2 {
1142 __u32 nent;
1143 __u32 padding;
1144 struct kvm_cpuid_entry2 entries[0];
1145};
1146
9c15bb1d
BP
1147#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0)
1148#define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1)
1149#define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2)
d153513d
AK
1150
1151struct kvm_cpuid_entry2 {
1152 __u32 function;
1153 __u32 index;
1154 __u32 flags;
1155 __u32 eax;
1156 __u32 ebx;
1157 __u32 ecx;
1158 __u32 edx;
1159 __u32 padding[3];
1160};
1161
1162This ioctl returns x86 cpuid features which are supported by both the hardware
1163and kvm. Userspace can use the information returned by this ioctl to
1164construct cpuid information (for KVM_SET_CPUID2) that is consistent with
1165hardware, kernel, and userspace capabilities, and with user requirements (for
1166example, the user may wish to constrain cpuid to emulate older hardware,
1167or for feature consistency across a cluster).
1168
1169Userspace invokes KVM_GET_SUPPORTED_CPUID by passing a kvm_cpuid2 structure
1170with the 'nent' field indicating the number of entries in the variable-size
1171array 'entries'. If the number of entries is too low to describe the cpu
1172capabilities, an error (E2BIG) is returned. If the number is too high,
1173the 'nent' field is adjusted and an error (ENOMEM) is returned. If the
1174number is just right, the 'nent' field is adjusted to the number of valid
1175entries in the 'entries' array, which is then filled.
1176
1177The entries returned are the host cpuid as returned by the cpuid instruction,
c39cbd2a
AK
1178with unknown or unsupported features masked out. Some features (for example,
1179x2apic), may not be present in the host cpu, but are exposed by kvm if it can
1180emulate them efficiently. The fields in each entry are defined as follows:
d153513d
AK
1181
1182 function: the eax value used to obtain the entry
1183 index: the ecx value used to obtain the entry (for entries that are
1184 affected by ecx)
1185 flags: an OR of zero or more of the following:
1186 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
1187 if the index field is valid
1188 KVM_CPUID_FLAG_STATEFUL_FUNC:
1189 if cpuid for this function returns different values for successive
1190 invocations; there will be several entries with the same function,
1191 all with this flag set
1192 KVM_CPUID_FLAG_STATE_READ_NEXT:
1193 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
1194 the first entry to be read by a cpu
1195 eax, ebx, ecx, edx: the values returned by the cpuid instruction for
1196 this function/index combination
1197
4d25a066
JK
1198The TSC deadline timer feature (CPUID leaf 1, ecx[24]) is always returned
1199as false, since the feature depends on KVM_CREATE_IRQCHIP for local APIC
1200support. Instead it is reported via
1201
1202 ioctl(KVM_CHECK_EXTENSION, KVM_CAP_TSC_DEADLINE_TIMER)
1203
1204if that returns true and you use KVM_CREATE_IRQCHIP, or if you emulate the
1205feature in userspace, then you can enable the feature for KVM_SET_CPUID2.
1206
414fa985 1207
68ba6974 12084.47 KVM_PPC_GET_PVINFO
15711e9c
AG
1209
1210Capability: KVM_CAP_PPC_GET_PVINFO
1211Architectures: ppc
1212Type: vm ioctl
1213Parameters: struct kvm_ppc_pvinfo (out)
1214Returns: 0 on success, !0 on error
1215
1216struct kvm_ppc_pvinfo {
1217 __u32 flags;
1218 __u32 hcall[4];
1219 __u8 pad[108];
1220};
1221
1222This ioctl fetches PV specific information that need to be passed to the guest
1223using the device tree or other means from vm context.
1224
9202e076 1225The hcall array defines 4 instructions that make up a hypercall.
15711e9c
AG
1226
1227If any additional field gets added to this structure later on, a bit for that
1228additional piece of information will be set in the flags bitmap.
1229
9202e076
LYB
1230The flags bitmap is defined as:
1231
1232 /* the host supports the ePAPR idle hcall
1233 #define KVM_PPC_PVINFO_FLAGS_EV_IDLE (1<<0)
414fa985 1234
68ba6974 12354.48 KVM_ASSIGN_PCI_DEVICE
49f48172
JK
1236
1237Capability: KVM_CAP_DEVICE_ASSIGNMENT
1238Architectures: x86 ia64
1239Type: vm ioctl
1240Parameters: struct kvm_assigned_pci_dev (in)
1241Returns: 0 on success, -1 on error
1242
1243Assigns a host PCI device to the VM.
1244
1245struct kvm_assigned_pci_dev {
1246 __u32 assigned_dev_id;
1247 __u32 busnr;
1248 __u32 devfn;
1249 __u32 flags;
1250 __u32 segnr;
1251 union {
1252 __u32 reserved[11];
1253 };
1254};
1255
1256The PCI device is specified by the triple segnr, busnr, and devfn.
1257Identification in succeeding service requests is done via assigned_dev_id. The
1258following flags are specified:
1259
1260/* Depends on KVM_CAP_IOMMU */
1261#define KVM_DEV_ASSIGN_ENABLE_IOMMU (1 << 0)
07700a94
JK
1262/* The following two depend on KVM_CAP_PCI_2_3 */
1263#define KVM_DEV_ASSIGN_PCI_2_3 (1 << 1)
1264#define KVM_DEV_ASSIGN_MASK_INTX (1 << 2)
1265
1266If KVM_DEV_ASSIGN_PCI_2_3 is set, the kernel will manage legacy INTx interrupts
1267via the PCI-2.3-compliant device-level mask, thus enable IRQ sharing with other
1268assigned devices or host devices. KVM_DEV_ASSIGN_MASK_INTX specifies the
1269guest's view on the INTx mask, see KVM_ASSIGN_SET_INTX_MASK for details.
49f48172 1270
42387373
AW
1271The KVM_DEV_ASSIGN_ENABLE_IOMMU flag is a mandatory option to ensure
1272isolation of the device. Usages not specifying this flag are deprecated.
1273
3d27e23b
AW
1274Only PCI header type 0 devices with PCI BAR resources are supported by
1275device assignment. The user requesting this ioctl must have read/write
1276access to the PCI sysfs resource files associated with the device.
1277
414fa985 1278
68ba6974 12794.49 KVM_DEASSIGN_PCI_DEVICE
49f48172
JK
1280
1281Capability: KVM_CAP_DEVICE_DEASSIGNMENT
1282Architectures: x86 ia64
1283Type: vm ioctl
1284Parameters: struct kvm_assigned_pci_dev (in)
1285Returns: 0 on success, -1 on error
1286
1287Ends PCI device assignment, releasing all associated resources.
1288
1289See KVM_CAP_DEVICE_ASSIGNMENT for the data structure. Only assigned_dev_id is
1290used in kvm_assigned_pci_dev to identify the device.
1291
414fa985 1292
68ba6974 12934.50 KVM_ASSIGN_DEV_IRQ
49f48172
JK
1294
1295Capability: KVM_CAP_ASSIGN_DEV_IRQ
1296Architectures: x86 ia64
1297Type: vm ioctl
1298Parameters: struct kvm_assigned_irq (in)
1299Returns: 0 on success, -1 on error
1300
1301Assigns an IRQ to a passed-through device.
1302
1303struct kvm_assigned_irq {
1304 __u32 assigned_dev_id;
91e3d71d 1305 __u32 host_irq; /* ignored (legacy field) */
49f48172
JK
1306 __u32 guest_irq;
1307 __u32 flags;
1308 union {
49f48172
JK
1309 __u32 reserved[12];
1310 };
1311};
1312
1313The following flags are defined:
1314
1315#define KVM_DEV_IRQ_HOST_INTX (1 << 0)
1316#define KVM_DEV_IRQ_HOST_MSI (1 << 1)
1317#define KVM_DEV_IRQ_HOST_MSIX (1 << 2)
1318
1319#define KVM_DEV_IRQ_GUEST_INTX (1 << 8)
1320#define KVM_DEV_IRQ_GUEST_MSI (1 << 9)
1321#define KVM_DEV_IRQ_GUEST_MSIX (1 << 10)
1322
1323It is not valid to specify multiple types per host or guest IRQ. However, the
1324IRQ type of host and guest can differ or can even be null.
1325
414fa985 1326
68ba6974 13274.51 KVM_DEASSIGN_DEV_IRQ
49f48172
JK
1328
1329Capability: KVM_CAP_ASSIGN_DEV_IRQ
1330Architectures: x86 ia64
1331Type: vm ioctl
1332Parameters: struct kvm_assigned_irq (in)
1333Returns: 0 on success, -1 on error
1334
1335Ends an IRQ assignment to a passed-through device.
1336
1337See KVM_ASSIGN_DEV_IRQ for the data structure. The target device is specified
1338by assigned_dev_id, flags must correspond to the IRQ type specified on
1339KVM_ASSIGN_DEV_IRQ. Partial deassignment of host or guest IRQ is allowed.
1340
414fa985 1341
68ba6974 13424.52 KVM_SET_GSI_ROUTING
49f48172
JK
1343
1344Capability: KVM_CAP_IRQ_ROUTING
84223598 1345Architectures: x86 ia64 s390
49f48172
JK
1346Type: vm ioctl
1347Parameters: struct kvm_irq_routing (in)
1348Returns: 0 on success, -1 on error
1349
1350Sets the GSI routing table entries, overwriting any previously set entries.
1351
1352struct kvm_irq_routing {
1353 __u32 nr;
1354 __u32 flags;
1355 struct kvm_irq_routing_entry entries[0];
1356};
1357
1358No flags are specified so far, the corresponding field must be set to zero.
1359
1360struct kvm_irq_routing_entry {
1361 __u32 gsi;
1362 __u32 type;
1363 __u32 flags;
1364 __u32 pad;
1365 union {
1366 struct kvm_irq_routing_irqchip irqchip;
1367 struct kvm_irq_routing_msi msi;
84223598 1368 struct kvm_irq_routing_s390_adapter adapter;
49f48172
JK
1369 __u32 pad[8];
1370 } u;
1371};
1372
1373/* gsi routing entry types */
1374#define KVM_IRQ_ROUTING_IRQCHIP 1
1375#define KVM_IRQ_ROUTING_MSI 2
84223598 1376#define KVM_IRQ_ROUTING_S390_ADAPTER 3
49f48172
JK
1377
1378No flags are specified so far, the corresponding field must be set to zero.
1379
1380struct kvm_irq_routing_irqchip {
1381 __u32 irqchip;
1382 __u32 pin;
1383};
1384
1385struct kvm_irq_routing_msi {
1386 __u32 address_lo;
1387 __u32 address_hi;
1388 __u32 data;
1389 __u32 pad;
1390};
1391
84223598
CH
1392struct kvm_irq_routing_s390_adapter {
1393 __u64 ind_addr;
1394 __u64 summary_addr;
1395 __u64 ind_offset;
1396 __u32 summary_offset;
1397 __u32 adapter_id;
1398};
1399
414fa985 1400
68ba6974 14014.53 KVM_ASSIGN_SET_MSIX_NR
49f48172
JK
1402
1403Capability: KVM_CAP_DEVICE_MSIX
1404Architectures: x86 ia64
1405Type: vm ioctl
1406Parameters: struct kvm_assigned_msix_nr (in)
1407Returns: 0 on success, -1 on error
1408
58f0964e
JK
1409Set the number of MSI-X interrupts for an assigned device. The number is
1410reset again by terminating the MSI-X assignment of the device via
1411KVM_DEASSIGN_DEV_IRQ. Calling this service more than once at any earlier
1412point will fail.
49f48172
JK
1413
1414struct kvm_assigned_msix_nr {
1415 __u32 assigned_dev_id;
1416 __u16 entry_nr;
1417 __u16 padding;
1418};
1419
1420#define KVM_MAX_MSIX_PER_DEV 256
1421
414fa985 1422
68ba6974 14234.54 KVM_ASSIGN_SET_MSIX_ENTRY
49f48172
JK
1424
1425Capability: KVM_CAP_DEVICE_MSIX
1426Architectures: x86 ia64
1427Type: vm ioctl
1428Parameters: struct kvm_assigned_msix_entry (in)
1429Returns: 0 on success, -1 on error
1430
1431Specifies the routing of an MSI-X assigned device interrupt to a GSI. Setting
1432the GSI vector to zero means disabling the interrupt.
1433
1434struct kvm_assigned_msix_entry {
1435 __u32 assigned_dev_id;
1436 __u32 gsi;
1437 __u16 entry; /* The index of entry in the MSI-X table */
1438 __u16 padding[3];
1439};
1440
414fa985
JK
1441
14424.55 KVM_SET_TSC_KHZ
92a1f12d
JR
1443
1444Capability: KVM_CAP_TSC_CONTROL
1445Architectures: x86
1446Type: vcpu ioctl
1447Parameters: virtual tsc_khz
1448Returns: 0 on success, -1 on error
1449
1450Specifies the tsc frequency for the virtual machine. The unit of the
1451frequency is KHz.
1452
414fa985
JK
1453
14544.56 KVM_GET_TSC_KHZ
92a1f12d
JR
1455
1456Capability: KVM_CAP_GET_TSC_KHZ
1457Architectures: x86
1458Type: vcpu ioctl
1459Parameters: none
1460Returns: virtual tsc-khz on success, negative value on error
1461
1462Returns the tsc frequency of the guest. The unit of the return value is
1463KHz. If the host has unstable tsc this ioctl returns -EIO instead as an
1464error.
1465
414fa985
JK
1466
14674.57 KVM_GET_LAPIC
e7677933
AK
1468
1469Capability: KVM_CAP_IRQCHIP
1470Architectures: x86
1471Type: vcpu ioctl
1472Parameters: struct kvm_lapic_state (out)
1473Returns: 0 on success, -1 on error
1474
1475#define KVM_APIC_REG_SIZE 0x400
1476struct kvm_lapic_state {
1477 char regs[KVM_APIC_REG_SIZE];
1478};
1479
1480Reads the Local APIC registers and copies them into the input argument. The
1481data format and layout are the same as documented in the architecture manual.
1482
414fa985
JK
1483
14844.58 KVM_SET_LAPIC
e7677933
AK
1485
1486Capability: KVM_CAP_IRQCHIP
1487Architectures: x86
1488Type: vcpu ioctl
1489Parameters: struct kvm_lapic_state (in)
1490Returns: 0 on success, -1 on error
1491
1492#define KVM_APIC_REG_SIZE 0x400
1493struct kvm_lapic_state {
1494 char regs[KVM_APIC_REG_SIZE];
1495};
1496
df5cbb27 1497Copies the input argument into the Local APIC registers. The data format
e7677933
AK
1498and layout are the same as documented in the architecture manual.
1499
414fa985
JK
1500
15014.59 KVM_IOEVENTFD
55399a02
SL
1502
1503Capability: KVM_CAP_IOEVENTFD
1504Architectures: all
1505Type: vm ioctl
1506Parameters: struct kvm_ioeventfd (in)
1507Returns: 0 on success, !0 on error
1508
1509This ioctl attaches or detaches an ioeventfd to a legal pio/mmio address
1510within the guest. A guest write in the registered address will signal the
1511provided event instead of triggering an exit.
1512
1513struct kvm_ioeventfd {
1514 __u64 datamatch;
1515 __u64 addr; /* legal pio/mmio address */
1516 __u32 len; /* 1, 2, 4, or 8 bytes */
1517 __s32 fd;
1518 __u32 flags;
1519 __u8 pad[36];
1520};
1521
2b83451b
CH
1522For the special case of virtio-ccw devices on s390, the ioevent is matched
1523to a subchannel/virtqueue tuple instead.
1524
55399a02
SL
1525The following flags are defined:
1526
1527#define KVM_IOEVENTFD_FLAG_DATAMATCH (1 << kvm_ioeventfd_flag_nr_datamatch)
1528#define KVM_IOEVENTFD_FLAG_PIO (1 << kvm_ioeventfd_flag_nr_pio)
1529#define KVM_IOEVENTFD_FLAG_DEASSIGN (1 << kvm_ioeventfd_flag_nr_deassign)
2b83451b
CH
1530#define KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY \
1531 (1 << kvm_ioeventfd_flag_nr_virtio_ccw_notify)
55399a02
SL
1532
1533If datamatch flag is set, the event will be signaled only if the written value
1534to the registered address is equal to datamatch in struct kvm_ioeventfd.
1535
2b83451b
CH
1536For virtio-ccw devices, addr contains the subchannel id and datamatch the
1537virtqueue index.
1538
414fa985
JK
1539
15404.60 KVM_DIRTY_TLB
dc83b8bc
SW
1541
1542Capability: KVM_CAP_SW_TLB
1543Architectures: ppc
1544Type: vcpu ioctl
1545Parameters: struct kvm_dirty_tlb (in)
1546Returns: 0 on success, -1 on error
1547
1548struct kvm_dirty_tlb {
1549 __u64 bitmap;
1550 __u32 num_dirty;
1551};
1552
1553This must be called whenever userspace has changed an entry in the shared
1554TLB, prior to calling KVM_RUN on the associated vcpu.
1555
1556The "bitmap" field is the userspace address of an array. This array
1557consists of a number of bits, equal to the total number of TLB entries as
1558determined by the last successful call to KVM_CONFIG_TLB, rounded up to the
1559nearest multiple of 64.
1560
1561Each bit corresponds to one TLB entry, ordered the same as in the shared TLB
1562array.
1563
1564The array is little-endian: the bit 0 is the least significant bit of the
1565first byte, bit 8 is the least significant bit of the second byte, etc.
1566This avoids any complications with differing word sizes.
1567
1568The "num_dirty" field is a performance hint for KVM to determine whether it
1569should skip processing the bitmap and just invalidate everything. It must
1570be set to the number of set bits in the bitmap.
1571
414fa985
JK
1572
15734.61 KVM_ASSIGN_SET_INTX_MASK
07700a94
JK
1574
1575Capability: KVM_CAP_PCI_2_3
1576Architectures: x86
1577Type: vm ioctl
1578Parameters: struct kvm_assigned_pci_dev (in)
1579Returns: 0 on success, -1 on error
1580
1581Allows userspace to mask PCI INTx interrupts from the assigned device. The
1582kernel will not deliver INTx interrupts to the guest between setting and
1583clearing of KVM_ASSIGN_SET_INTX_MASK via this interface. This enables use of
1584and emulation of PCI 2.3 INTx disable command register behavior.
1585
1586This may be used for both PCI 2.3 devices supporting INTx disable natively and
1587older devices lacking this support. Userspace is responsible for emulating the
1588read value of the INTx disable bit in the guest visible PCI command register.
1589When modifying the INTx disable state, userspace should precede updating the
1590physical device command register by calling this ioctl to inform the kernel of
1591the new intended INTx mask state.
1592
1593Note that the kernel uses the device INTx disable bit to internally manage the
1594device interrupt state for PCI 2.3 devices. Reads of this register may
1595therefore not match the expected value. Writes should always use the guest
1596intended INTx disable value rather than attempting to read-copy-update the
1597current physical device state. Races between user and kernel updates to the
1598INTx disable bit are handled lazily in the kernel. It's possible the device
1599may generate unintended interrupts, but they will not be injected into the
1600guest.
1601
1602See KVM_ASSIGN_DEV_IRQ for the data structure. The target device is specified
1603by assigned_dev_id. In the flags field, only KVM_DEV_ASSIGN_MASK_INTX is
1604evaluated.
1605
414fa985 1606
54738c09
DG
16074.62 KVM_CREATE_SPAPR_TCE
1608
1609Capability: KVM_CAP_SPAPR_TCE
1610Architectures: powerpc
1611Type: vm ioctl
1612Parameters: struct kvm_create_spapr_tce (in)
1613Returns: file descriptor for manipulating the created TCE table
1614
1615This creates a virtual TCE (translation control entry) table, which
1616is an IOMMU for PAPR-style virtual I/O. It is used to translate
1617logical addresses used in virtual I/O into guest physical addresses,
1618and provides a scatter/gather capability for PAPR virtual I/O.
1619
1620/* for KVM_CAP_SPAPR_TCE */
1621struct kvm_create_spapr_tce {
1622 __u64 liobn;
1623 __u32 window_size;
1624};
1625
1626The liobn field gives the logical IO bus number for which to create a
1627TCE table. The window_size field specifies the size of the DMA window
1628which this TCE table will translate - the table will contain one 64
1629bit TCE entry for every 4kiB of the DMA window.
1630
1631When the guest issues an H_PUT_TCE hcall on a liobn for which a TCE
1632table has been created using this ioctl(), the kernel will handle it
1633in real mode, updating the TCE table. H_PUT_TCE calls for other
1634liobns will cause a vm exit and must be handled by userspace.
1635
1636The return value is a file descriptor which can be passed to mmap(2)
1637to map the created TCE table into userspace. This lets userspace read
1638the entries written by kernel-handled H_PUT_TCE calls, and also lets
1639userspace update the TCE table directly which is useful in some
1640circumstances.
1641
414fa985 1642
aa04b4cc
PM
16434.63 KVM_ALLOCATE_RMA
1644
1645Capability: KVM_CAP_PPC_RMA
1646Architectures: powerpc
1647Type: vm ioctl
1648Parameters: struct kvm_allocate_rma (out)
1649Returns: file descriptor for mapping the allocated RMA
1650
1651This allocates a Real Mode Area (RMA) from the pool allocated at boot
1652time by the kernel. An RMA is a physically-contiguous, aligned region
1653of memory used on older POWER processors to provide the memory which
1654will be accessed by real-mode (MMU off) accesses in a KVM guest.
1655POWER processors support a set of sizes for the RMA that usually
1656includes 64MB, 128MB, 256MB and some larger powers of two.
1657
1658/* for KVM_ALLOCATE_RMA */
1659struct kvm_allocate_rma {
1660 __u64 rma_size;
1661};
1662
1663The return value is a file descriptor which can be passed to mmap(2)
1664to map the allocated RMA into userspace. The mapped area can then be
1665passed to the KVM_SET_USER_MEMORY_REGION ioctl to establish it as the
1666RMA for a virtual machine. The size of the RMA in bytes (which is
1667fixed at host kernel boot time) is returned in the rma_size field of
1668the argument structure.
1669
1670The KVM_CAP_PPC_RMA capability is 1 or 2 if the KVM_ALLOCATE_RMA ioctl
1671is supported; 2 if the processor requires all virtual machines to have
1672an RMA, or 1 if the processor can use an RMA but doesn't require it,
1673because it supports the Virtual RMA (VRMA) facility.
1674
414fa985 1675
3f745f1e
AK
16764.64 KVM_NMI
1677
1678Capability: KVM_CAP_USER_NMI
1679Architectures: x86
1680Type: vcpu ioctl
1681Parameters: none
1682Returns: 0 on success, -1 on error
1683
1684Queues an NMI on the thread's vcpu. Note this is well defined only
1685when KVM_CREATE_IRQCHIP has not been called, since this is an interface
1686between the virtual cpu core and virtual local APIC. After KVM_CREATE_IRQCHIP
1687has been called, this interface is completely emulated within the kernel.
1688
1689To use this to emulate the LINT1 input with KVM_CREATE_IRQCHIP, use the
1690following algorithm:
1691
1692 - pause the vpcu
1693 - read the local APIC's state (KVM_GET_LAPIC)
1694 - check whether changing LINT1 will queue an NMI (see the LVT entry for LINT1)
1695 - if so, issue KVM_NMI
1696 - resume the vcpu
1697
1698Some guests configure the LINT1 NMI input to cause a panic, aiding in
1699debugging.
1700
414fa985 1701
e24ed81f 17024.65 KVM_S390_UCAS_MAP
27e0393f
CO
1703
1704Capability: KVM_CAP_S390_UCONTROL
1705Architectures: s390
1706Type: vcpu ioctl
1707Parameters: struct kvm_s390_ucas_mapping (in)
1708Returns: 0 in case of success
1709
1710The parameter is defined like this:
1711 struct kvm_s390_ucas_mapping {
1712 __u64 user_addr;
1713 __u64 vcpu_addr;
1714 __u64 length;
1715 };
1716
1717This ioctl maps the memory at "user_addr" with the length "length" to
1718the vcpu's address space starting at "vcpu_addr". All parameters need to
f884ab15 1719be aligned by 1 megabyte.
27e0393f 1720
414fa985 1721
e24ed81f 17224.66 KVM_S390_UCAS_UNMAP
27e0393f
CO
1723
1724Capability: KVM_CAP_S390_UCONTROL
1725Architectures: s390
1726Type: vcpu ioctl
1727Parameters: struct kvm_s390_ucas_mapping (in)
1728Returns: 0 in case of success
1729
1730The parameter is defined like this:
1731 struct kvm_s390_ucas_mapping {
1732 __u64 user_addr;
1733 __u64 vcpu_addr;
1734 __u64 length;
1735 };
1736
1737This ioctl unmaps the memory in the vcpu's address space starting at
1738"vcpu_addr" with the length "length". The field "user_addr" is ignored.
f884ab15 1739All parameters need to be aligned by 1 megabyte.
27e0393f 1740
414fa985 1741
e24ed81f 17424.67 KVM_S390_VCPU_FAULT
ccc7910f
CO
1743
1744Capability: KVM_CAP_S390_UCONTROL
1745Architectures: s390
1746Type: vcpu ioctl
1747Parameters: vcpu absolute address (in)
1748Returns: 0 in case of success
1749
1750This call creates a page table entry on the virtual cpu's address space
1751(for user controlled virtual machines) or the virtual machine's address
1752space (for regular virtual machines). This only works for minor faults,
1753thus it's recommended to access subject memory page via the user page
1754table upfront. This is useful to handle validity intercepts for user
1755controlled virtual machines to fault in the virtual cpu's lowcore pages
1756prior to calling the KVM_RUN ioctl.
1757
414fa985 1758
e24ed81f
AG
17594.68 KVM_SET_ONE_REG
1760
1761Capability: KVM_CAP_ONE_REG
1762Architectures: all
1763Type: vcpu ioctl
1764Parameters: struct kvm_one_reg (in)
1765Returns: 0 on success, negative value on failure
1766
1767struct kvm_one_reg {
1768 __u64 id;
1769 __u64 addr;
1770};
1771
1772Using this ioctl, a single vcpu register can be set to a specific value
1773defined by user space with the passed in struct kvm_one_reg, where id
1774refers to the register identifier as described below and addr is a pointer
1775to a variable with the respective size. There can be architecture agnostic
1776and architecture specific registers. Each have their own range of operation
1777and their own constants and width. To keep track of the implemented
1778registers, find a list below:
1779
1780 Arch | Register | Width (bits)
1781 | |
1022fc3d 1782 PPC | KVM_REG_PPC_HIOR | 64
2e232702
BB
1783 PPC | KVM_REG_PPC_IAC1 | 64
1784 PPC | KVM_REG_PPC_IAC2 | 64
1785 PPC | KVM_REG_PPC_IAC3 | 64
1786 PPC | KVM_REG_PPC_IAC4 | 64
1787 PPC | KVM_REG_PPC_DAC1 | 64
1788 PPC | KVM_REG_PPC_DAC2 | 64
a136a8bd
PM
1789 PPC | KVM_REG_PPC_DABR | 64
1790 PPC | KVM_REG_PPC_DSCR | 64
1791 PPC | KVM_REG_PPC_PURR | 64
1792 PPC | KVM_REG_PPC_SPURR | 64
1793 PPC | KVM_REG_PPC_DAR | 64
1794 PPC | KVM_REG_PPC_DSISR | 32
1795 PPC | KVM_REG_PPC_AMR | 64
1796 PPC | KVM_REG_PPC_UAMOR | 64
1797 PPC | KVM_REG_PPC_MMCR0 | 64
1798 PPC | KVM_REG_PPC_MMCR1 | 64
1799 PPC | KVM_REG_PPC_MMCRA | 64
2f9c6943
PM
1800 PPC | KVM_REG_PPC_MMCR2 | 64
1801 PPC | KVM_REG_PPC_MMCRS | 64
1802 PPC | KVM_REG_PPC_SIAR | 64
1803 PPC | KVM_REG_PPC_SDAR | 64
1804 PPC | KVM_REG_PPC_SIER | 64
a136a8bd
PM
1805 PPC | KVM_REG_PPC_PMC1 | 32
1806 PPC | KVM_REG_PPC_PMC2 | 32
1807 PPC | KVM_REG_PPC_PMC3 | 32
1808 PPC | KVM_REG_PPC_PMC4 | 32
1809 PPC | KVM_REG_PPC_PMC5 | 32
1810 PPC | KVM_REG_PPC_PMC6 | 32
1811 PPC | KVM_REG_PPC_PMC7 | 32
1812 PPC | KVM_REG_PPC_PMC8 | 32
a8bd19ef
PM
1813 PPC | KVM_REG_PPC_FPR0 | 64
1814 ...
1815 PPC | KVM_REG_PPC_FPR31 | 64
1816 PPC | KVM_REG_PPC_VR0 | 128
1817 ...
1818 PPC | KVM_REG_PPC_VR31 | 128
1819 PPC | KVM_REG_PPC_VSR0 | 128
1820 ...
1821 PPC | KVM_REG_PPC_VSR31 | 128
1822 PPC | KVM_REG_PPC_FPSCR | 64
1823 PPC | KVM_REG_PPC_VSCR | 32
55b665b0
PM
1824 PPC | KVM_REG_PPC_VPA_ADDR | 64
1825 PPC | KVM_REG_PPC_VPA_SLB | 128
1826 PPC | KVM_REG_PPC_VPA_DTL | 128
352df1de 1827 PPC | KVM_REG_PPC_EPCR | 32
324b3e63 1828 PPC | KVM_REG_PPC_EPR | 32
78accda4
BB
1829 PPC | KVM_REG_PPC_TCR | 32
1830 PPC | KVM_REG_PPC_TSR | 32
1831 PPC | KVM_REG_PPC_OR_TSR | 32
1832 PPC | KVM_REG_PPC_CLEAR_TSR | 32
a85d2aa2
MC
1833 PPC | KVM_REG_PPC_MAS0 | 32
1834 PPC | KVM_REG_PPC_MAS1 | 32
1835 PPC | KVM_REG_PPC_MAS2 | 64
1836 PPC | KVM_REG_PPC_MAS7_3 | 64
1837 PPC | KVM_REG_PPC_MAS4 | 32
1838 PPC | KVM_REG_PPC_MAS6 | 32
1839 PPC | KVM_REG_PPC_MMUCFG | 32
1840 PPC | KVM_REG_PPC_TLB0CFG | 32
1841 PPC | KVM_REG_PPC_TLB1CFG | 32
1842 PPC | KVM_REG_PPC_TLB2CFG | 32
1843 PPC | KVM_REG_PPC_TLB3CFG | 32
307d9008
MC
1844 PPC | KVM_REG_PPC_TLB0PS | 32
1845 PPC | KVM_REG_PPC_TLB1PS | 32
1846 PPC | KVM_REG_PPC_TLB2PS | 32
1847 PPC | KVM_REG_PPC_TLB3PS | 32
9a6061d7 1848 PPC | KVM_REG_PPC_EPTCFG | 32
8b78645c 1849 PPC | KVM_REG_PPC_ICP_STATE | 64
93b0f4dc 1850 PPC | KVM_REG_PPC_TB_OFFSET | 64
3b783474
MN
1851 PPC | KVM_REG_PPC_SPMC1 | 32
1852 PPC | KVM_REG_PPC_SPMC2 | 32
1853 PPC | KVM_REG_PPC_IAMR | 64
1854 PPC | KVM_REG_PPC_TFHAR | 64
1855 PPC | KVM_REG_PPC_TFIAR | 64
1856 PPC | KVM_REG_PPC_TEXASR | 64
1857 PPC | KVM_REG_PPC_FSCR | 64
1858 PPC | KVM_REG_PPC_PSPB | 32
1859 PPC | KVM_REG_PPC_EBBHR | 64
1860 PPC | KVM_REG_PPC_EBBRR | 64
1861 PPC | KVM_REG_PPC_BESCR | 64
1862 PPC | KVM_REG_PPC_TAR | 64
1863 PPC | KVM_REG_PPC_DPDES | 64
1864 PPC | KVM_REG_PPC_DAWR | 64
1865 PPC | KVM_REG_PPC_DAWRX | 64
1866 PPC | KVM_REG_PPC_CIABR | 64
1867 PPC | KVM_REG_PPC_IC | 64
1868 PPC | KVM_REG_PPC_VTB | 64
1869 PPC | KVM_REG_PPC_CSIGR | 64
1870 PPC | KVM_REG_PPC_TACR | 64
1871 PPC | KVM_REG_PPC_TCSCR | 64
1872 PPC | KVM_REG_PPC_PID | 64
1873 PPC | KVM_REG_PPC_ACOP | 64
c0867fd5 1874 PPC | KVM_REG_PPC_VRSAVE | 32
a0840240
AK
1875 PPC | KVM_REG_PPC_LPCR | 32
1876 PPC | KVM_REG_PPC_LPCR_64 | 64
4b8473c9 1877 PPC | KVM_REG_PPC_PPR | 64
388cc6e1 1878 PPC | KVM_REG_PPC_ARCH_COMPAT 32
8563bf52 1879 PPC | KVM_REG_PPC_DABRX | 32
e1d8a96d 1880 PPC | KVM_REG_PPC_WORT | 64
3b783474
MN
1881 PPC | KVM_REG_PPC_TM_GPR0 | 64
1882 ...
1883 PPC | KVM_REG_PPC_TM_GPR31 | 64
1884 PPC | KVM_REG_PPC_TM_VSR0 | 128
1885 ...
1886 PPC | KVM_REG_PPC_TM_VSR63 | 128
1887 PPC | KVM_REG_PPC_TM_CR | 64
1888 PPC | KVM_REG_PPC_TM_LR | 64
1889 PPC | KVM_REG_PPC_TM_CTR | 64
1890 PPC | KVM_REG_PPC_TM_FPSCR | 64
1891 PPC | KVM_REG_PPC_TM_AMR | 64
1892 PPC | KVM_REG_PPC_TM_PPR | 64
1893 PPC | KVM_REG_PPC_TM_VRSAVE | 64
1894 PPC | KVM_REG_PPC_TM_VSCR | 32
1895 PPC | KVM_REG_PPC_TM_DSCR | 64
1896 PPC | KVM_REG_PPC_TM_TAR | 64
414fa985 1897
749cf76c
CD
1898ARM registers are mapped using the lower 32 bits. The upper 16 of that
1899is the register group type, or coprocessor number:
1900
1901ARM core registers have the following id bit patterns:
aa404ddf 1902 0x4020 0000 0010 <index into the kvm_regs struct:16>
749cf76c 1903
1138245c 1904ARM 32-bit CP15 registers have the following id bit patterns:
aa404ddf 1905 0x4020 0000 000F <zero:1> <crn:4> <crm:4> <opc1:4> <opc2:3>
1138245c
CD
1906
1907ARM 64-bit CP15 registers have the following id bit patterns:
aa404ddf 1908 0x4030 0000 000F <zero:1> <zero:4> <crm:4> <opc1:4> <zero:3>
749cf76c 1909
c27581ed 1910ARM CCSIDR registers are demultiplexed by CSSELR value:
aa404ddf 1911 0x4020 0000 0011 00 <csselr:8>
749cf76c 1912
4fe21e4c 1913ARM 32-bit VFP control registers have the following id bit patterns:
aa404ddf 1914 0x4020 0000 0012 1 <regno:12>
4fe21e4c
RR
1915
1916ARM 64-bit FP registers have the following id bit patterns:
aa404ddf 1917 0x4030 0000 0012 0 <regno:12>
4fe21e4c 1918
379e04c7
MZ
1919
1920arm64 registers are mapped using the lower 32 bits. The upper 16 of
1921that is the register group type, or coprocessor number:
1922
1923arm64 core/FP-SIMD registers have the following id bit patterns. Note
1924that the size of the access is variable, as the kvm_regs structure
1925contains elements ranging from 32 to 128 bits. The index is a 32bit
1926value in the kvm_regs structure seen as a 32bit array.
1927 0x60x0 0000 0010 <index into the kvm_regs struct:16>
1928
1929arm64 CCSIDR registers are demultiplexed by CSSELR value:
1930 0x6020 0000 0011 00 <csselr:8>
1931
1932arm64 system registers have the following id bit patterns:
1933 0x6030 0000 0013 <op0:2> <op1:3> <crn:4> <crm:4> <op2:3>
1934
e24ed81f
AG
19354.69 KVM_GET_ONE_REG
1936
1937Capability: KVM_CAP_ONE_REG
1938Architectures: all
1939Type: vcpu ioctl
1940Parameters: struct kvm_one_reg (in and out)
1941Returns: 0 on success, negative value on failure
1942
1943This ioctl allows to receive the value of a single register implemented
1944in a vcpu. The register to read is indicated by the "id" field of the
1945kvm_one_reg struct passed in. On success, the register value can be found
1946at the memory location pointed to by "addr".
1947
1948The list of registers accessible using this interface is identical to the
2e232702 1949list in 4.68.
e24ed81f 1950
414fa985 1951
1c0b28c2
EM
19524.70 KVM_KVMCLOCK_CTRL
1953
1954Capability: KVM_CAP_KVMCLOCK_CTRL
1955Architectures: Any that implement pvclocks (currently x86 only)
1956Type: vcpu ioctl
1957Parameters: None
1958Returns: 0 on success, -1 on error
1959
1960This signals to the host kernel that the specified guest is being paused by
1961userspace. The host will set a flag in the pvclock structure that is checked
1962from the soft lockup watchdog. The flag is part of the pvclock structure that
1963is shared between guest and host, specifically the second bit of the flags
1964field of the pvclock_vcpu_time_info structure. It will be set exclusively by
1965the host and read/cleared exclusively by the guest. The guest operation of
1966checking and clearing the flag must an atomic operation so
1967load-link/store-conditional, or equivalent must be used. There are two cases
1968where the guest will clear the flag: when the soft lockup watchdog timer resets
1969itself or when a soft lockup is detected. This ioctl can be called any time
1970after pausing the vcpu, but before it is resumed.
1971
414fa985 1972
07975ad3
JK
19734.71 KVM_SIGNAL_MSI
1974
1975Capability: KVM_CAP_SIGNAL_MSI
1976Architectures: x86
1977Type: vm ioctl
1978Parameters: struct kvm_msi (in)
1979Returns: >0 on delivery, 0 if guest blocked the MSI, and -1 on error
1980
1981Directly inject a MSI message. Only valid with in-kernel irqchip that handles
1982MSI messages.
1983
1984struct kvm_msi {
1985 __u32 address_lo;
1986 __u32 address_hi;
1987 __u32 data;
1988 __u32 flags;
1989 __u8 pad[16];
1990};
1991
1992No flags are defined so far. The corresponding field must be 0.
1993
414fa985 1994
0589ff6c
JK
19954.71 KVM_CREATE_PIT2
1996
1997Capability: KVM_CAP_PIT2
1998Architectures: x86
1999Type: vm ioctl
2000Parameters: struct kvm_pit_config (in)
2001Returns: 0 on success, -1 on error
2002
2003Creates an in-kernel device model for the i8254 PIT. This call is only valid
2004after enabling in-kernel irqchip support via KVM_CREATE_IRQCHIP. The following
2005parameters have to be passed:
2006
2007struct kvm_pit_config {
2008 __u32 flags;
2009 __u32 pad[15];
2010};
2011
2012Valid flags are:
2013
2014#define KVM_PIT_SPEAKER_DUMMY 1 /* emulate speaker port stub */
2015
b6ddf05f
JK
2016PIT timer interrupts may use a per-VM kernel thread for injection. If it
2017exists, this thread will have a name of the following pattern:
2018
2019kvm-pit/<owner-process-pid>
2020
2021When running a guest with elevated priorities, the scheduling parameters of
2022this thread may have to be adjusted accordingly.
2023
0589ff6c
JK
2024This IOCTL replaces the obsolete KVM_CREATE_PIT.
2025
2026
20274.72 KVM_GET_PIT2
2028
2029Capability: KVM_CAP_PIT_STATE2
2030Architectures: x86
2031Type: vm ioctl
2032Parameters: struct kvm_pit_state2 (out)
2033Returns: 0 on success, -1 on error
2034
2035Retrieves the state of the in-kernel PIT model. Only valid after
2036KVM_CREATE_PIT2. The state is returned in the following structure:
2037
2038struct kvm_pit_state2 {
2039 struct kvm_pit_channel_state channels[3];
2040 __u32 flags;
2041 __u32 reserved[9];
2042};
2043
2044Valid flags are:
2045
2046/* disable PIT in HPET legacy mode */
2047#define KVM_PIT_FLAGS_HPET_LEGACY 0x00000001
2048
2049This IOCTL replaces the obsolete KVM_GET_PIT.
2050
2051
20524.73 KVM_SET_PIT2
2053
2054Capability: KVM_CAP_PIT_STATE2
2055Architectures: x86
2056Type: vm ioctl
2057Parameters: struct kvm_pit_state2 (in)
2058Returns: 0 on success, -1 on error
2059
2060Sets the state of the in-kernel PIT model. Only valid after KVM_CREATE_PIT2.
2061See KVM_GET_PIT2 for details on struct kvm_pit_state2.
2062
2063This IOCTL replaces the obsolete KVM_SET_PIT.
2064
2065
5b74716e
BH
20664.74 KVM_PPC_GET_SMMU_INFO
2067
2068Capability: KVM_CAP_PPC_GET_SMMU_INFO
2069Architectures: powerpc
2070Type: vm ioctl
2071Parameters: None
2072Returns: 0 on success, -1 on error
2073
2074This populates and returns a structure describing the features of
2075the "Server" class MMU emulation supported by KVM.
cc22c354 2076This can in turn be used by userspace to generate the appropriate
5b74716e
BH
2077device-tree properties for the guest operating system.
2078
c98be0c9 2079The structure contains some global information, followed by an
5b74716e
BH
2080array of supported segment page sizes:
2081
2082 struct kvm_ppc_smmu_info {
2083 __u64 flags;
2084 __u32 slb_size;
2085 __u32 pad;
2086 struct kvm_ppc_one_seg_page_size sps[KVM_PPC_PAGE_SIZES_MAX_SZ];
2087 };
2088
2089The supported flags are:
2090
2091 - KVM_PPC_PAGE_SIZES_REAL:
2092 When that flag is set, guest page sizes must "fit" the backing
2093 store page sizes. When not set, any page size in the list can
2094 be used regardless of how they are backed by userspace.
2095
2096 - KVM_PPC_1T_SEGMENTS
2097 The emulated MMU supports 1T segments in addition to the
2098 standard 256M ones.
2099
2100The "slb_size" field indicates how many SLB entries are supported
2101
2102The "sps" array contains 8 entries indicating the supported base
2103page sizes for a segment in increasing order. Each entry is defined
2104as follow:
2105
2106 struct kvm_ppc_one_seg_page_size {
2107 __u32 page_shift; /* Base page shift of segment (or 0) */
2108 __u32 slb_enc; /* SLB encoding for BookS */
2109 struct kvm_ppc_one_page_size enc[KVM_PPC_PAGE_SIZES_MAX_SZ];
2110 };
2111
2112An entry with a "page_shift" of 0 is unused. Because the array is
2113organized in increasing order, a lookup can stop when encoutering
2114such an entry.
2115
2116The "slb_enc" field provides the encoding to use in the SLB for the
2117page size. The bits are in positions such as the value can directly
2118be OR'ed into the "vsid" argument of the slbmte instruction.
2119
2120The "enc" array is a list which for each of those segment base page
2121size provides the list of supported actual page sizes (which can be
2122only larger or equal to the base page size), along with the
f884ab15 2123corresponding encoding in the hash PTE. Similarly, the array is
5b74716e
BH
21248 entries sorted by increasing sizes and an entry with a "0" shift
2125is an empty entry and a terminator:
2126
2127 struct kvm_ppc_one_page_size {
2128 __u32 page_shift; /* Page shift (or 0) */
2129 __u32 pte_enc; /* Encoding in the HPTE (>>12) */
2130 };
2131
2132The "pte_enc" field provides a value that can OR'ed into the hash
2133PTE's RPN field (ie, it needs to be shifted left by 12 to OR it
2134into the hash PTE second double word).
2135
f36992e3
AW
21364.75 KVM_IRQFD
2137
2138Capability: KVM_CAP_IRQFD
ebc32262 2139Architectures: x86 s390
f36992e3
AW
2140Type: vm ioctl
2141Parameters: struct kvm_irqfd (in)
2142Returns: 0 on success, -1 on error
2143
2144Allows setting an eventfd to directly trigger a guest interrupt.
2145kvm_irqfd.fd specifies the file descriptor to use as the eventfd and
2146kvm_irqfd.gsi specifies the irqchip pin toggled by this event. When
17180032 2147an event is triggered on the eventfd, an interrupt is injected into
f36992e3
AW
2148the guest using the specified gsi pin. The irqfd is removed using
2149the KVM_IRQFD_FLAG_DEASSIGN flag, specifying both kvm_irqfd.fd
2150and kvm_irqfd.gsi.
2151
7a84428a
AW
2152With KVM_CAP_IRQFD_RESAMPLE, KVM_IRQFD supports a de-assert and notify
2153mechanism allowing emulation of level-triggered, irqfd-based
2154interrupts. When KVM_IRQFD_FLAG_RESAMPLE is set the user must pass an
2155additional eventfd in the kvm_irqfd.resamplefd field. When operating
2156in resample mode, posting of an interrupt through kvm_irq.fd asserts
2157the specified gsi in the irqchip. When the irqchip is resampled, such
17180032 2158as from an EOI, the gsi is de-asserted and the user is notified via
7a84428a
AW
2159kvm_irqfd.resamplefd. It is the user's responsibility to re-queue
2160the interrupt if the device making use of it still requires service.
2161Note that closing the resamplefd is not sufficient to disable the
2162irqfd. The KVM_IRQFD_FLAG_RESAMPLE is only necessary on assignment
2163and need not be specified with KVM_IRQFD_FLAG_DEASSIGN.
2164
5fecc9d8 21654.76 KVM_PPC_ALLOCATE_HTAB
32fad281
PM
2166
2167Capability: KVM_CAP_PPC_ALLOC_HTAB
2168Architectures: powerpc
2169Type: vm ioctl
2170Parameters: Pointer to u32 containing hash table order (in/out)
2171Returns: 0 on success, -1 on error
2172
2173This requests the host kernel to allocate an MMU hash table for a
2174guest using the PAPR paravirtualization interface. This only does
2175anything if the kernel is configured to use the Book 3S HV style of
2176virtualization. Otherwise the capability doesn't exist and the ioctl
2177returns an ENOTTY error. The rest of this description assumes Book 3S
2178HV.
2179
2180There must be no vcpus running when this ioctl is called; if there
2181are, it will do nothing and return an EBUSY error.
2182
2183The parameter is a pointer to a 32-bit unsigned integer variable
2184containing the order (log base 2) of the desired size of the hash
2185table, which must be between 18 and 46. On successful return from the
2186ioctl, it will have been updated with the order of the hash table that
2187was allocated.
2188
2189If no hash table has been allocated when any vcpu is asked to run
2190(with the KVM_RUN ioctl), the host kernel will allocate a
2191default-sized hash table (16 MB).
2192
2193If this ioctl is called when a hash table has already been allocated,
2194the kernel will clear out the existing hash table (zero all HPTEs) and
2195return the hash table order in the parameter. (If the guest is using
2196the virtualized real-mode area (VRMA) facility, the kernel will
2197re-create the VMRA HPTEs on the next KVM_RUN of any vcpu.)
2198
416ad65f
CH
21994.77 KVM_S390_INTERRUPT
2200
2201Capability: basic
2202Architectures: s390
2203Type: vm ioctl, vcpu ioctl
2204Parameters: struct kvm_s390_interrupt (in)
2205Returns: 0 on success, -1 on error
2206
2207Allows to inject an interrupt to the guest. Interrupts can be floating
2208(vm ioctl) or per cpu (vcpu ioctl), depending on the interrupt type.
2209
2210Interrupt parameters are passed via kvm_s390_interrupt:
2211
2212struct kvm_s390_interrupt {
2213 __u32 type;
2214 __u32 parm;
2215 __u64 parm64;
2216};
2217
2218type can be one of the following:
2219
2220KVM_S390_SIGP_STOP (vcpu) - sigp restart
2221KVM_S390_PROGRAM_INT (vcpu) - program check; code in parm
2222KVM_S390_SIGP_SET_PREFIX (vcpu) - sigp set prefix; prefix address in parm
2223KVM_S390_RESTART (vcpu) - restart
e029ae5b
TH
2224KVM_S390_INT_CLOCK_COMP (vcpu) - clock comparator interrupt
2225KVM_S390_INT_CPU_TIMER (vcpu) - CPU timer interrupt
416ad65f
CH
2226KVM_S390_INT_VIRTIO (vm) - virtio external interrupt; external interrupt
2227 parameters in parm and parm64
2228KVM_S390_INT_SERVICE (vm) - sclp external interrupt; sclp parameter in parm
2229KVM_S390_INT_EMERGENCY (vcpu) - sigp emergency; source cpu in parm
2230KVM_S390_INT_EXTERNAL_CALL (vcpu) - sigp external call; source cpu in parm
d8346b7d
CH
2231KVM_S390_INT_IO(ai,cssid,ssid,schid) (vm) - compound value to indicate an
2232 I/O interrupt (ai - adapter interrupt; cssid,ssid,schid - subchannel);
2233 I/O interruption parameters in parm (subchannel) and parm64 (intparm,
2234 interruption subclass)
48a3e950
CH
2235KVM_S390_MCHK (vm, vcpu) - machine check interrupt; cr 14 bits in parm,
2236 machine check interrupt code in parm64 (note that
2237 machine checks needing further payload are not
2238 supported by this ioctl)
416ad65f
CH
2239
2240Note that the vcpu ioctl is asynchronous to vcpu execution.
2241
a2932923
PM
22424.78 KVM_PPC_GET_HTAB_FD
2243
2244Capability: KVM_CAP_PPC_HTAB_FD
2245Architectures: powerpc
2246Type: vm ioctl
2247Parameters: Pointer to struct kvm_get_htab_fd (in)
2248Returns: file descriptor number (>= 0) on success, -1 on error
2249
2250This returns a file descriptor that can be used either to read out the
2251entries in the guest's hashed page table (HPT), or to write entries to
2252initialize the HPT. The returned fd can only be written to if the
2253KVM_GET_HTAB_WRITE bit is set in the flags field of the argument, and
2254can only be read if that bit is clear. The argument struct looks like
2255this:
2256
2257/* For KVM_PPC_GET_HTAB_FD */
2258struct kvm_get_htab_fd {
2259 __u64 flags;
2260 __u64 start_index;
2261 __u64 reserved[2];
2262};
2263
2264/* Values for kvm_get_htab_fd.flags */
2265#define KVM_GET_HTAB_BOLTED_ONLY ((__u64)0x1)
2266#define KVM_GET_HTAB_WRITE ((__u64)0x2)
2267
2268The `start_index' field gives the index in the HPT of the entry at
2269which to start reading. It is ignored when writing.
2270
2271Reads on the fd will initially supply information about all
2272"interesting" HPT entries. Interesting entries are those with the
2273bolted bit set, if the KVM_GET_HTAB_BOLTED_ONLY bit is set, otherwise
2274all entries. When the end of the HPT is reached, the read() will
2275return. If read() is called again on the fd, it will start again from
2276the beginning of the HPT, but will only return HPT entries that have
2277changed since they were last read.
2278
2279Data read or written is structured as a header (8 bytes) followed by a
2280series of valid HPT entries (16 bytes) each. The header indicates how
2281many valid HPT entries there are and how many invalid entries follow
2282the valid entries. The invalid entries are not represented explicitly
2283in the stream. The header format is:
2284
2285struct kvm_get_htab_header {
2286 __u32 index;
2287 __u16 n_valid;
2288 __u16 n_invalid;
2289};
2290
2291Writes to the fd create HPT entries starting at the index given in the
2292header; first `n_valid' valid entries with contents from the data
2293written, then `n_invalid' invalid entries, invalidating any previously
2294valid entries found.
2295
852b6d57
SW
22964.79 KVM_CREATE_DEVICE
2297
2298Capability: KVM_CAP_DEVICE_CTRL
2299Type: vm ioctl
2300Parameters: struct kvm_create_device (in/out)
2301Returns: 0 on success, -1 on error
2302Errors:
2303 ENODEV: The device type is unknown or unsupported
2304 EEXIST: Device already created, and this type of device may not
2305 be instantiated multiple times
2306
2307 Other error conditions may be defined by individual device types or
2308 have their standard meanings.
2309
2310Creates an emulated device in the kernel. The file descriptor returned
2311in fd can be used with KVM_SET/GET/HAS_DEVICE_ATTR.
2312
2313If the KVM_CREATE_DEVICE_TEST flag is set, only test whether the
2314device type is supported (not necessarily whether it can be created
2315in the current vm).
2316
2317Individual devices should not define flags. Attributes should be used
2318for specifying any behavior that is not implied by the device type
2319number.
2320
2321struct kvm_create_device {
2322 __u32 type; /* in: KVM_DEV_TYPE_xxx */
2323 __u32 fd; /* out: device handle */
2324 __u32 flags; /* in: KVM_CREATE_DEVICE_xxx */
2325};
2326
23274.80 KVM_SET_DEVICE_ATTR/KVM_GET_DEVICE_ATTR
2328
f2061656
DD
2329Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device
2330Type: device ioctl, vm ioctl
852b6d57
SW
2331Parameters: struct kvm_device_attr
2332Returns: 0 on success, -1 on error
2333Errors:
2334 ENXIO: The group or attribute is unknown/unsupported for this device
2335 EPERM: The attribute cannot (currently) be accessed this way
2336 (e.g. read-only attribute, or attribute that only makes
2337 sense when the device is in a different state)
2338
2339 Other error conditions may be defined by individual device types.
2340
2341Gets/sets a specified piece of device configuration and/or state. The
2342semantics are device-specific. See individual device documentation in
2343the "devices" directory. As with ONE_REG, the size of the data
2344transferred is defined by the particular attribute.
2345
2346struct kvm_device_attr {
2347 __u32 flags; /* no flags currently defined */
2348 __u32 group; /* device-defined */
2349 __u64 attr; /* group-defined */
2350 __u64 addr; /* userspace address of attr data */
2351};
2352
23534.81 KVM_HAS_DEVICE_ATTR
2354
f2061656
DD
2355Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device
2356Type: device ioctl, vm ioctl
852b6d57
SW
2357Parameters: struct kvm_device_attr
2358Returns: 0 on success, -1 on error
2359Errors:
2360 ENXIO: The group or attribute is unknown/unsupported for this device
2361
2362Tests whether a device supports a particular attribute. A successful
2363return indicates the attribute is implemented. It does not necessarily
2364indicate that the attribute can be read or written in the device's
2365current state. "addr" is ignored.
f36992e3 2366
d8968f1f 23674.82 KVM_ARM_VCPU_INIT
749cf76c
CD
2368
2369Capability: basic
379e04c7 2370Architectures: arm, arm64
749cf76c 2371Type: vcpu ioctl
beb11fc7 2372Parameters: struct kvm_vcpu_init (in)
749cf76c
CD
2373Returns: 0 on success; -1 on error
2374Errors:
2375  EINVAL:    the target is unknown, or the combination of features is invalid.
2376  ENOENT:    a features bit specified is unknown.
2377
2378This tells KVM what type of CPU to present to the guest, and what
2379optional features it should have.  This will cause a reset of the cpu
2380registers to their initial values.  If this is not called, KVM_RUN will
2381return ENOEXEC for that vcpu.
2382
2383Note that because some registers reflect machine topology, all vcpus
2384should be created before this ioctl is invoked.
2385
aa024c2f
MZ
2386Possible features:
2387 - KVM_ARM_VCPU_POWER_OFF: Starts the CPU in a power-off state.
2388 Depends on KVM_CAP_ARM_PSCI.
379e04c7
MZ
2389 - KVM_ARM_VCPU_EL1_32BIT: Starts the CPU in a 32bit mode.
2390 Depends on KVM_CAP_ARM_EL1_32BIT (arm64 only).
50bb0c94
AP
2391 - KVM_ARM_VCPU_PSCI_0_2: Emulate PSCI v0.2 for the CPU.
2392 Depends on KVM_CAP_ARM_PSCI_0_2.
aa024c2f 2393
749cf76c 2394
740edfc0
AP
23954.83 KVM_ARM_PREFERRED_TARGET
2396
2397Capability: basic
2398Architectures: arm, arm64
2399Type: vm ioctl
2400Parameters: struct struct kvm_vcpu_init (out)
2401Returns: 0 on success; -1 on error
2402Errors:
a7265fb1 2403 ENODEV: no preferred target available for the host
740edfc0
AP
2404
2405This queries KVM for preferred CPU target type which can be emulated
2406by KVM on underlying host.
2407
2408The ioctl returns struct kvm_vcpu_init instance containing information
2409about preferred CPU target type and recommended features for it. The
2410kvm_vcpu_init->features bitmap returned will have feature bits set if
2411the preferred target recommends setting these features, but this is
2412not mandatory.
2413
2414The information returned by this ioctl can be used to prepare an instance
2415of struct kvm_vcpu_init for KVM_ARM_VCPU_INIT ioctl which will result in
2416in VCPU matching underlying host.
2417
2418
24194.84 KVM_GET_REG_LIST
749cf76c
CD
2420
2421Capability: basic
379e04c7 2422Architectures: arm, arm64
749cf76c
CD
2423Type: vcpu ioctl
2424Parameters: struct kvm_reg_list (in/out)
2425Returns: 0 on success; -1 on error
2426Errors:
2427  E2BIG:     the reg index list is too big to fit in the array specified by
2428             the user (the number required will be written into n).
2429
2430struct kvm_reg_list {
2431 __u64 n; /* number of registers in reg[] */
2432 __u64 reg[0];
2433};
2434
2435This ioctl returns the guest registers that are supported for the
2436KVM_GET_ONE_REG/KVM_SET_ONE_REG calls.
2437
ce01e4e8
CD
2438
24394.85 KVM_ARM_SET_DEVICE_ADDR (deprecated)
3401d546
CD
2440
2441Capability: KVM_CAP_ARM_SET_DEVICE_ADDR
379e04c7 2442Architectures: arm, arm64
3401d546
CD
2443Type: vm ioctl
2444Parameters: struct kvm_arm_device_address (in)
2445Returns: 0 on success, -1 on error
2446Errors:
2447 ENODEV: The device id is unknown
2448 ENXIO: Device not supported on current system
2449 EEXIST: Address already set
2450 E2BIG: Address outside guest physical address space
330690cd 2451 EBUSY: Address overlaps with other device range
3401d546
CD
2452
2453struct kvm_arm_device_addr {
2454 __u64 id;
2455 __u64 addr;
2456};
2457
2458Specify a device address in the guest's physical address space where guests
2459can access emulated or directly exposed devices, which the host kernel needs
2460to know about. The id field is an architecture specific identifier for a
2461specific device.
2462
379e04c7
MZ
2463ARM/arm64 divides the id field into two parts, a device id and an
2464address type id specific to the individual device.
3401d546
CD
2465
2466  bits: | 63 ... 32 | 31 ... 16 | 15 ... 0 |
2467 field: | 0x00000000 | device id | addr type id |
2468
379e04c7
MZ
2469ARM/arm64 currently only require this when using the in-kernel GIC
2470support for the hardware VGIC features, using KVM_ARM_DEVICE_VGIC_V2
2471as the device id. When setting the base address for the guest's
2472mapping of the VGIC virtual CPU and distributor interface, the ioctl
2473must be called after calling KVM_CREATE_IRQCHIP, but before calling
2474KVM_RUN on any of the VCPUs. Calling this ioctl twice for any of the
2475base addresses will return -EEXIST.
3401d546 2476
ce01e4e8
CD
2477Note, this IOCTL is deprecated and the more flexible SET/GET_DEVICE_ATTR API
2478should be used instead.
2479
2480
740edfc0 24814.86 KVM_PPC_RTAS_DEFINE_TOKEN
8e591cb7
ME
2482
2483Capability: KVM_CAP_PPC_RTAS
2484Architectures: ppc
2485Type: vm ioctl
2486Parameters: struct kvm_rtas_token_args
2487Returns: 0 on success, -1 on error
2488
2489Defines a token value for a RTAS (Run Time Abstraction Services)
2490service in order to allow it to be handled in the kernel. The
2491argument struct gives the name of the service, which must be the name
2492of a service that has a kernel-side implementation. If the token
2493value is non-zero, it will be associated with that service, and
2494subsequent RTAS calls by the guest specifying that token will be
2495handled by the kernel. If the token value is 0, then any token
2496associated with the service will be forgotten, and subsequent RTAS
2497calls by the guest for that service will be passed to userspace to be
2498handled.
2499
3401d546 2500
9c1b96e3 25015. The kvm_run structure
414fa985 2502------------------------
9c1b96e3
AK
2503
2504Application code obtains a pointer to the kvm_run structure by
2505mmap()ing a vcpu fd. From that point, application code can control
2506execution by changing fields in kvm_run prior to calling the KVM_RUN
2507ioctl, and obtain information about the reason KVM_RUN returned by
2508looking up structure members.
2509
2510struct kvm_run {
2511 /* in */
2512 __u8 request_interrupt_window;
2513
2514Request that KVM_RUN return when it becomes possible to inject external
2515interrupts into the guest. Useful in conjunction with KVM_INTERRUPT.
2516
2517 __u8 padding1[7];
2518
2519 /* out */
2520 __u32 exit_reason;
2521
2522When KVM_RUN has returned successfully (return value 0), this informs
2523application code why KVM_RUN has returned. Allowable values for this
2524field are detailed below.
2525
2526 __u8 ready_for_interrupt_injection;
2527
2528If request_interrupt_window has been specified, this field indicates
2529an interrupt can be injected now with KVM_INTERRUPT.
2530
2531 __u8 if_flag;
2532
2533The value of the current interrupt flag. Only valid if in-kernel
2534local APIC is not used.
2535
2536 __u8 padding2[2];
2537
2538 /* in (pre_kvm_run), out (post_kvm_run) */
2539 __u64 cr8;
2540
2541The value of the cr8 register. Only valid if in-kernel local APIC is
2542not used. Both input and output.
2543
2544 __u64 apic_base;
2545
2546The value of the APIC BASE msr. Only valid if in-kernel local
2547APIC is not used. Both input and output.
2548
2549 union {
2550 /* KVM_EXIT_UNKNOWN */
2551 struct {
2552 __u64 hardware_exit_reason;
2553 } hw;
2554
2555If exit_reason is KVM_EXIT_UNKNOWN, the vcpu has exited due to unknown
2556reasons. Further architecture-specific information is available in
2557hardware_exit_reason.
2558
2559 /* KVM_EXIT_FAIL_ENTRY */
2560 struct {
2561 __u64 hardware_entry_failure_reason;
2562 } fail_entry;
2563
2564If exit_reason is KVM_EXIT_FAIL_ENTRY, the vcpu could not be run due
2565to unknown reasons. Further architecture-specific information is
2566available in hardware_entry_failure_reason.
2567
2568 /* KVM_EXIT_EXCEPTION */
2569 struct {
2570 __u32 exception;
2571 __u32 error_code;
2572 } ex;
2573
2574Unused.
2575
2576 /* KVM_EXIT_IO */
2577 struct {
2578#define KVM_EXIT_IO_IN 0
2579#define KVM_EXIT_IO_OUT 1
2580 __u8 direction;
2581 __u8 size; /* bytes */
2582 __u16 port;
2583 __u32 count;
2584 __u64 data_offset; /* relative to kvm_run start */
2585 } io;
2586
2044892d 2587If exit_reason is KVM_EXIT_IO, then the vcpu has
9c1b96e3
AK
2588executed a port I/O instruction which could not be satisfied by kvm.
2589data_offset describes where the data is located (KVM_EXIT_IO_OUT) or
2590where kvm expects application code to place the data for the next
2044892d 2591KVM_RUN invocation (KVM_EXIT_IO_IN). Data format is a packed array.
9c1b96e3
AK
2592
2593 struct {
2594 struct kvm_debug_exit_arch arch;
2595 } debug;
2596
2597Unused.
2598
2599 /* KVM_EXIT_MMIO */
2600 struct {
2601 __u64 phys_addr;
2602 __u8 data[8];
2603 __u32 len;
2604 __u8 is_write;
2605 } mmio;
2606
2044892d 2607If exit_reason is KVM_EXIT_MMIO, then the vcpu has
9c1b96e3
AK
2608executed a memory-mapped I/O instruction which could not be satisfied
2609by kvm. The 'data' member contains the written data if 'is_write' is
2610true, and should be filled by application code otherwise.
2611
6acdb160
CD
2612The 'data' member contains, in its first 'len' bytes, the value as it would
2613appear if the VCPU performed a load or store of the appropriate width directly
2614to the byte array.
2615
1c810636
AG
2616NOTE: For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXIT_OSI, KVM_EXIT_DCR,
2617 KVM_EXIT_PAPR and KVM_EXIT_EPR the corresponding
ad0a048b
AG
2618operations are complete (and guest state is consistent) only after userspace
2619has re-entered the kernel with KVM_RUN. The kernel side will first finish
67961344
MT
2620incomplete operations and then check for pending signals. Userspace
2621can re-enter the guest with an unmasked signal pending to complete
2622pending operations.
2623
9c1b96e3
AK
2624 /* KVM_EXIT_HYPERCALL */
2625 struct {
2626 __u64 nr;
2627 __u64 args[6];
2628 __u64 ret;
2629 __u32 longmode;
2630 __u32 pad;
2631 } hypercall;
2632
647dc49e
AK
2633Unused. This was once used for 'hypercall to userspace'. To implement
2634such functionality, use KVM_EXIT_IO (x86) or KVM_EXIT_MMIO (all except s390).
2635Note KVM_EXIT_IO is significantly faster than KVM_EXIT_MMIO.
9c1b96e3
AK
2636
2637 /* KVM_EXIT_TPR_ACCESS */
2638 struct {
2639 __u64 rip;
2640 __u32 is_write;
2641 __u32 pad;
2642 } tpr_access;
2643
2644To be documented (KVM_TPR_ACCESS_REPORTING).
2645
2646 /* KVM_EXIT_S390_SIEIC */
2647 struct {
2648 __u8 icptcode;
2649 __u64 mask; /* psw upper half */
2650 __u64 addr; /* psw lower half */
2651 __u16 ipa;
2652 __u32 ipb;
2653 } s390_sieic;
2654
2655s390 specific.
2656
2657 /* KVM_EXIT_S390_RESET */
2658#define KVM_S390_RESET_POR 1
2659#define KVM_S390_RESET_CLEAR 2
2660#define KVM_S390_RESET_SUBSYSTEM 4
2661#define KVM_S390_RESET_CPU_INIT 8
2662#define KVM_S390_RESET_IPL 16
2663 __u64 s390_reset_flags;
2664
2665s390 specific.
2666
e168bf8d
CO
2667 /* KVM_EXIT_S390_UCONTROL */
2668 struct {
2669 __u64 trans_exc_code;
2670 __u32 pgm_code;
2671 } s390_ucontrol;
2672
2673s390 specific. A page fault has occurred for a user controlled virtual
2674machine (KVM_VM_S390_UNCONTROL) on it's host page table that cannot be
2675resolved by the kernel.
2676The program code and the translation exception code that were placed
2677in the cpu's lowcore are presented here as defined by the z Architecture
2678Principles of Operation Book in the Chapter for Dynamic Address Translation
2679(DAT)
2680
9c1b96e3
AK
2681 /* KVM_EXIT_DCR */
2682 struct {
2683 __u32 dcrn;
2684 __u32 data;
2685 __u8 is_write;
2686 } dcr;
2687
2688powerpc specific.
2689
ad0a048b
AG
2690 /* KVM_EXIT_OSI */
2691 struct {
2692 __u64 gprs[32];
2693 } osi;
2694
2695MOL uses a special hypercall interface it calls 'OSI'. To enable it, we catch
2696hypercalls and exit with this exit struct that contains all the guest gprs.
2697
2698If exit_reason is KVM_EXIT_OSI, then the vcpu has triggered such a hypercall.
2699Userspace can now handle the hypercall and when it's done modify the gprs as
2700necessary. Upon guest entry all guest GPRs will then be replaced by the values
2701in this struct.
2702
de56a948
PM
2703 /* KVM_EXIT_PAPR_HCALL */
2704 struct {
2705 __u64 nr;
2706 __u64 ret;
2707 __u64 args[9];
2708 } papr_hcall;
2709
2710This is used on 64-bit PowerPC when emulating a pSeries partition,
2711e.g. with the 'pseries' machine type in qemu. It occurs when the
2712guest does a hypercall using the 'sc 1' instruction. The 'nr' field
2713contains the hypercall number (from the guest R3), and 'args' contains
2714the arguments (from the guest R4 - R12). Userspace should put the
2715return code in 'ret' and any extra returned values in args[].
2716The possible hypercalls are defined in the Power Architecture Platform
2717Requirements (PAPR) document available from www.power.org (free
2718developer registration required to access it).
2719
fa6b7fe9
CH
2720 /* KVM_EXIT_S390_TSCH */
2721 struct {
2722 __u16 subchannel_id;
2723 __u16 subchannel_nr;
2724 __u32 io_int_parm;
2725 __u32 io_int_word;
2726 __u32 ipb;
2727 __u8 dequeued;
2728 } s390_tsch;
2729
2730s390 specific. This exit occurs when KVM_CAP_S390_CSS_SUPPORT has been enabled
2731and TEST SUBCHANNEL was intercepted. If dequeued is set, a pending I/O
2732interrupt for the target subchannel has been dequeued and subchannel_id,
2733subchannel_nr, io_int_parm and io_int_word contain the parameters for that
2734interrupt. ipb is needed for instruction parameter decoding.
2735
1c810636
AG
2736 /* KVM_EXIT_EPR */
2737 struct {
2738 __u32 epr;
2739 } epr;
2740
2741On FSL BookE PowerPC chips, the interrupt controller has a fast patch
2742interrupt acknowledge path to the core. When the core successfully
2743delivers an interrupt, it automatically populates the EPR register with
2744the interrupt vector number and acknowledges the interrupt inside
2745the interrupt controller.
2746
2747In case the interrupt controller lives in user space, we need to do
2748the interrupt acknowledge cycle through it to fetch the next to be
2749delivered interrupt vector using this exit.
2750
2751It gets triggered whenever both KVM_CAP_PPC_EPR are enabled and an
2752external interrupt has just been delivered into the guest. User space
2753should put the acknowledged interrupt vector into the 'epr' field.
2754
8ad6b634
AP
2755 /* KVM_EXIT_SYSTEM_EVENT */
2756 struct {
2757#define KVM_SYSTEM_EVENT_SHUTDOWN 1
2758#define KVM_SYSTEM_EVENT_RESET 2
2759 __u32 type;
2760 __u64 flags;
2761 } system_event;
2762
2763If exit_reason is KVM_EXIT_SYSTEM_EVENT then the vcpu has triggered
2764a system-level event using some architecture specific mechanism (hypercall
2765or some special instruction). In case of ARM/ARM64, this is triggered using
2766HVC instruction based PSCI call from the vcpu. The 'type' field describes
2767the system-level event type. The 'flags' field describes architecture
2768specific flags for the system-level event.
2769
9c1b96e3
AK
2770 /* Fix the size of the union. */
2771 char padding[256];
2772 };
b9e5dc8d
CB
2773
2774 /*
2775 * shared registers between kvm and userspace.
2776 * kvm_valid_regs specifies the register classes set by the host
2777 * kvm_dirty_regs specified the register classes dirtied by userspace
2778 * struct kvm_sync_regs is architecture specific, as well as the
2779 * bits for kvm_valid_regs and kvm_dirty_regs
2780 */
2781 __u64 kvm_valid_regs;
2782 __u64 kvm_dirty_regs;
2783 union {
2784 struct kvm_sync_regs regs;
2785 char padding[1024];
2786 } s;
2787
2788If KVM_CAP_SYNC_REGS is defined, these fields allow userspace to access
2789certain guest registers without having to call SET/GET_*REGS. Thus we can
2790avoid some system call overhead if userspace has to handle the exit.
2791Userspace can query the validity of the structure by checking
2792kvm_valid_regs for specific bits. These bits are architecture specific
2793and usually define the validity of a groups of registers. (e.g. one bit
2794 for general purpose registers)
2795
9c1b96e3 2796};
821246a5 2797
414fa985 2798
9c15bb1d
BP
27994.81 KVM_GET_EMULATED_CPUID
2800
2801Capability: KVM_CAP_EXT_EMUL_CPUID
2802Architectures: x86
2803Type: system ioctl
2804Parameters: struct kvm_cpuid2 (in/out)
2805Returns: 0 on success, -1 on error
2806
2807struct kvm_cpuid2 {
2808 __u32 nent;
2809 __u32 flags;
2810 struct kvm_cpuid_entry2 entries[0];
2811};
2812
2813The member 'flags' is used for passing flags from userspace.
2814
2815#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX BIT(0)
2816#define KVM_CPUID_FLAG_STATEFUL_FUNC BIT(1)
2817#define KVM_CPUID_FLAG_STATE_READ_NEXT BIT(2)
2818
2819struct kvm_cpuid_entry2 {
2820 __u32 function;
2821 __u32 index;
2822 __u32 flags;
2823 __u32 eax;
2824 __u32 ebx;
2825 __u32 ecx;
2826 __u32 edx;
2827 __u32 padding[3];
2828};
2829
2830This ioctl returns x86 cpuid features which are emulated by
2831kvm.Userspace can use the information returned by this ioctl to query
2832which features are emulated by kvm instead of being present natively.
2833
2834Userspace invokes KVM_GET_EMULATED_CPUID by passing a kvm_cpuid2
2835structure with the 'nent' field indicating the number of entries in
2836the variable-size array 'entries'. If the number of entries is too low
2837to describe the cpu capabilities, an error (E2BIG) is returned. If the
2838number is too high, the 'nent' field is adjusted and an error (ENOMEM)
2839is returned. If the number is just right, the 'nent' field is adjusted
2840to the number of valid entries in the 'entries' array, which is then
2841filled.
2842
2843The entries returned are the set CPUID bits of the respective features
2844which kvm emulates, as returned by the CPUID instruction, with unknown
2845or unsupported feature bits cleared.
2846
2847Features like x2apic, for example, may not be present in the host cpu
2848but are exposed by kvm in KVM_GET_SUPPORTED_CPUID because they can be
2849emulated efficiently and thus not included here.
2850
2851The fields in each entry are defined as follows:
2852
2853 function: the eax value used to obtain the entry
2854 index: the ecx value used to obtain the entry (for entries that are
2855 affected by ecx)
2856 flags: an OR of zero or more of the following:
2857 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
2858 if the index field is valid
2859 KVM_CPUID_FLAG_STATEFUL_FUNC:
2860 if cpuid for this function returns different values for successive
2861 invocations; there will be several entries with the same function,
2862 all with this flag set
2863 KVM_CPUID_FLAG_STATE_READ_NEXT:
2864 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
2865 the first entry to be read by a cpu
2866 eax, ebx, ecx, edx: the values returned by the cpuid instruction for
2867 this function/index combination
2868
2869
699a0ea0
PM
28706. Capabilities that can be enabled on vCPUs
2871--------------------------------------------
821246a5
AG
2872
2873There are certain capabilities that change the behavior of the virtual CPU when
2874enabled. To enable them, please see section 4.37. Below you can find a list of
2875capabilities and what their effect on the vCPU is when enabling them.
2876
2877The following information is provided along with the description:
2878
2879 Architectures: which instruction set architectures provide this ioctl.
2880 x86 includes both i386 and x86_64.
2881
2882 Parameters: what parameters are accepted by the capability.
2883
2884 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
2885 are not detailed, but errors with specific meanings are.
2886
414fa985 2887
821246a5
AG
28886.1 KVM_CAP_PPC_OSI
2889
2890Architectures: ppc
2891Parameters: none
2892Returns: 0 on success; -1 on error
2893
2894This capability enables interception of OSI hypercalls that otherwise would
2895be treated as normal system calls to be injected into the guest. OSI hypercalls
2896were invented by Mac-on-Linux to have a standardized communication mechanism
2897between the guest and the host.
2898
2899When this capability is enabled, KVM_EXIT_OSI can occur.
2900
414fa985 2901
821246a5
AG
29026.2 KVM_CAP_PPC_PAPR
2903
2904Architectures: ppc
2905Parameters: none
2906Returns: 0 on success; -1 on error
2907
2908This capability enables interception of PAPR hypercalls. PAPR hypercalls are
2909done using the hypercall instruction "sc 1".
2910
2911It also sets the guest privilege level to "supervisor" mode. Usually the guest
2912runs in "hypervisor" privilege mode with a few missing features.
2913
2914In addition to the above, it changes the semantics of SDR1. In this mode, the
2915HTAB address part of SDR1 contains an HVA instead of a GPA, as PAPR keeps the
2916HTAB invisible to the guest.
2917
2918When this capability is enabled, KVM_EXIT_PAPR_HCALL can occur.
dc83b8bc 2919
414fa985 2920
dc83b8bc
SW
29216.3 KVM_CAP_SW_TLB
2922
2923Architectures: ppc
2924Parameters: args[0] is the address of a struct kvm_config_tlb
2925Returns: 0 on success; -1 on error
2926
2927struct kvm_config_tlb {
2928 __u64 params;
2929 __u64 array;
2930 __u32 mmu_type;
2931 __u32 array_len;
2932};
2933
2934Configures the virtual CPU's TLB array, establishing a shared memory area
2935between userspace and KVM. The "params" and "array" fields are userspace
2936addresses of mmu-type-specific data structures. The "array_len" field is an
2937safety mechanism, and should be set to the size in bytes of the memory that
2938userspace has reserved for the array. It must be at least the size dictated
2939by "mmu_type" and "params".
2940
2941While KVM_RUN is active, the shared region is under control of KVM. Its
2942contents are undefined, and any modification by userspace results in
2943boundedly undefined behavior.
2944
2945On return from KVM_RUN, the shared region will reflect the current state of
2946the guest's TLB. If userspace makes any changes, it must call KVM_DIRTY_TLB
2947to tell KVM which entries have been changed, prior to calling KVM_RUN again
2948on this vcpu.
2949
2950For mmu types KVM_MMU_FSL_BOOKE_NOHV and KVM_MMU_FSL_BOOKE_HV:
2951 - The "params" field is of type "struct kvm_book3e_206_tlb_params".
2952 - The "array" field points to an array of type "struct
2953 kvm_book3e_206_tlb_entry".
2954 - The array consists of all entries in the first TLB, followed by all
2955 entries in the second TLB.
2956 - Within a TLB, entries are ordered first by increasing set number. Within a
2957 set, entries are ordered by way (increasing ESEL).
2958 - The hash for determining set number in TLB0 is: (MAS2 >> 12) & (num_sets - 1)
2959 where "num_sets" is the tlb_sizes[] value divided by the tlb_ways[] value.
2960 - The tsize field of mas1 shall be set to 4K on TLB0, even though the
2961 hardware ignores this value for TLB0.
fa6b7fe9
CH
2962
29636.4 KVM_CAP_S390_CSS_SUPPORT
2964
2965Architectures: s390
2966Parameters: none
2967Returns: 0 on success; -1 on error
2968
2969This capability enables support for handling of channel I/O instructions.
2970
2971TEST PENDING INTERRUPTION and the interrupt portion of TEST SUBCHANNEL are
2972handled in-kernel, while the other I/O instructions are passed to userspace.
2973
2974When this capability is enabled, KVM_EXIT_S390_TSCH will occur on TEST
2975SUBCHANNEL intercepts.
1c810636
AG
2976
29776.5 KVM_CAP_PPC_EPR
2978
2979Architectures: ppc
2980Parameters: args[0] defines whether the proxy facility is active
2981Returns: 0 on success; -1 on error
2982
2983This capability enables or disables the delivery of interrupts through the
2984external proxy facility.
2985
2986When enabled (args[0] != 0), every time the guest gets an external interrupt
2987delivered, it automatically exits into user space with a KVM_EXIT_EPR exit
2988to receive the topmost interrupt vector.
2989
2990When disabled (args[0] == 0), behavior is as if this facility is unsupported.
2991
2992When this capability is enabled, KVM_EXIT_EPR can occur.
eb1e4f43
SW
2993
29946.6 KVM_CAP_IRQ_MPIC
2995
2996Architectures: ppc
2997Parameters: args[0] is the MPIC device fd
2998 args[1] is the MPIC CPU number for this vcpu
2999
3000This capability connects the vcpu to an in-kernel MPIC device.
5975a2e0
PM
3001
30026.7 KVM_CAP_IRQ_XICS
3003
3004Architectures: ppc
3005Parameters: args[0] is the XICS device fd
3006 args[1] is the XICS CPU number (server ID) for this vcpu
3007
3008This capability connects the vcpu to an in-kernel XICS device.
699a0ea0
PM
3009
3010
30117. Capabilities that can be enabled on VMs
3012------------------------------------------
3013
3014There are certain capabilities that change the behavior of the virtual
3015machine when enabled. To enable them, please see section 4.37. Below
3016you can find a list of capabilities and what their effect on the VM
3017is when enabling them.
3018
3019The following information is provided along with the description:
3020
3021 Architectures: which instruction set architectures provide this ioctl.
3022 x86 includes both i386 and x86_64.
3023
3024 Parameters: what parameters are accepted by the capability.
3025
3026 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
3027 are not detailed, but errors with specific meanings are.
3028
3029
30307.1 KVM_CAP_PPC_ENABLE_HCALL
3031
3032Architectures: ppc
3033Parameters: args[0] is the sPAPR hcall number
3034 args[1] is 0 to disable, 1 to enable in-kernel handling
3035
3036This capability controls whether individual sPAPR hypercalls (hcalls)
3037get handled by the kernel or not. Enabling or disabling in-kernel
3038handling of an hcall is effective across the VM. On creation, an
3039initial set of hcalls are enabled for in-kernel handling, which
3040consists of those hcalls for which in-kernel handlers were implemented
3041before this capability was implemented. If disabled, the kernel will
3042not to attempt to handle the hcall, but will always exit to userspace
3043to handle it. Note that it may not make sense to enable some and
3044disable others of a group of related hcalls, but KVM does not prevent
3045userspace from doing that.
ae2113a4
PM
3046
3047If the hcall number specified is not one that has an in-kernel
3048implementation, the KVM_ENABLE_CAP ioctl will fail with an EINVAL
3049error.
This page took 0.404737 seconds and 5 git commands to generate.