ARM: pgtable: introduce pteval_t to represent a pte value
[deliverable/linux.git] / arch / arm / include / asm / pgtable.h
CommitLineData
1da177e4 1/*
4baa9922 2 * arch/arm/include/asm/pgtable.h
1da177e4
LT
3 *
4 * Copyright (C) 1995-2002 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10#ifndef _ASMARM_PGTABLE_H
11#define _ASMARM_PGTABLE_H
12
f6e3354d 13#include <linux/const.h>
1da177e4 14#include <asm-generic/4level-fixup.h>
002547b4
RK
15#include <asm/proc-fns.h>
16
17#ifndef CONFIG_MMU
18
19#include "pgtable-nommu.h"
20
21#else
1da177e4
LT
22
23#include <asm/memory.h>
a09e64fb 24#include <mach/vmalloc.h>
ad1ae2fe 25#include <asm/pgtable-hwdef.h>
1da177e4 26
5c3073e6
RK
27/*
28 * Just any arbitrary offset to the start of the vmalloc VM area: the
29 * current 8MB value just means that there will be a 8MB "hole" after the
30 * physical memory until the kernel virtual memory starts. That means that
31 * any out-of-bounds memory accesses will hopefully be caught.
32 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
33 * area for the same reason. ;)
34 *
35 * Note that platforms may override VMALLOC_START, but they must provide
36 * VMALLOC_END. VMALLOC_END defines the (exclusive) limit of this space,
37 * which may not overlap IO space.
38 */
39#ifndef VMALLOC_START
40#define VMALLOC_OFFSET (8*1024*1024)
41#define VMALLOC_START (((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
42#endif
43
1da177e4
LT
44/*
45 * Hardware-wise, we have a two level page table structure, where the first
46 * level has 4096 entries, and the second level has 256 entries. Each entry
47 * is one 32-bit word. Most of the bits in the second level entry are used
48 * by hardware, and there aren't any "accessed" and "dirty" bits.
49 *
50 * Linux on the other hand has a three level page table structure, which can
51 * be wrapped to fit a two level page table structure easily - using the PGD
52 * and PTE only. However, Linux also expects one "PTE" table per page, and
53 * at least a "dirty" bit.
54 *
55 * Therefore, we tweak the implementation slightly - we tell Linux that we
56 * have 2048 entries in the first level, each of which is 8 bytes (iow, two
57 * hardware pointers to the second level.) The second level contains two
58 * hardware PTE tables arranged contiguously, followed by Linux versions
59 * which contain the state information Linux needs. We, therefore, end up
60 * with 512 entries in the "PTE" level.
61 *
62 * This leads to the page tables having the following layout:
63 *
64 * pgd pte
65 * | |
66 * +--------+ +0
67 * | |-----> +------------+ +0
68 * +- - - - + +4 | h/w pt 0 |
69 * | |-----> +------------+ +1024
70 * +--------+ +8 | h/w pt 1 |
71 * | | +------------+ +2048
72 * +- - - - + | Linux pt 0 |
73 * | | +------------+ +3072
74 * +--------+ | Linux pt 1 |
75 * | | +------------+ +4096
76 *
77 * See L_PTE_xxx below for definitions of bits in the "Linux pt", and
78 * PTE_xxx for definitions of bits appearing in the "h/w pt".
79 *
80 * PMD_xxx definitions refer to bits in the first level page table.
81 *
82 * The "dirty" bit is emulated by only granting hardware write permission
83 * iff the page is marked "writable" and "dirty" in the Linux PTE. This
84 * means that a write to a clean page will cause a permission fault, and
85 * the Linux MM layer will mark the page dirty via handle_pte_fault().
86 * For the hardware to notice the permission change, the TLB entry must
f0e47c22 87 * be flushed, and ptep_set_access_flags() does that for us.
1da177e4
LT
88 *
89 * The "accessed" or "young" bit is emulated by a similar method; we only
90 * allow accesses to the page if the "young" bit is set. Accesses to the
91 * page will cause a fault, and handle_pte_fault() will set the young bit
92 * for us as long as the page is marked present in the corresponding Linux
f0e47c22
MS
93 * PTE entry. Again, ptep_set_access_flags() will ensure that the TLB is
94 * up to date.
1da177e4
LT
95 *
96 * However, when the "young" bit is cleared, we deny access to the page
97 * by clearing the hardware PTE. Currently Linux does not flush the TLB
98 * for us in this case, which means the TLB will retain the transation
99 * until either the TLB entry is evicted under pressure, or a context
100 * switch which changes the user space mapping occurs.
101 */
102#define PTRS_PER_PTE 512
103#define PTRS_PER_PMD 1
104#define PTRS_PER_PGD 2048
105
106/*
107 * PMD_SHIFT determines the size of the area a second-level page table can map
108 * PGDIR_SHIFT determines what a third-level page table entry can map
109 */
110#define PMD_SHIFT 21
111#define PGDIR_SHIFT 21
112
113#define LIBRARY_TEXT_START 0x0c000000
114
115#ifndef __ASSEMBLY__
69529c0e
RK
116extern void __pte_error(const char *file, int line, pte_t);
117extern void __pmd_error(const char *file, int line, pmd_t);
118extern void __pgd_error(const char *file, int line, pgd_t);
1da177e4 119
69529c0e
RK
120#define pte_ERROR(pte) __pte_error(__FILE__, __LINE__, pte)
121#define pmd_ERROR(pmd) __pmd_error(__FILE__, __LINE__, pmd)
122#define pgd_ERROR(pgd) __pgd_error(__FILE__, __LINE__, pgd)
1da177e4
LT
123#endif /* !__ASSEMBLY__ */
124
125#define PMD_SIZE (1UL << PMD_SHIFT)
126#define PMD_MASK (~(PMD_SIZE-1))
127#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
128#define PGDIR_MASK (~(PGDIR_SIZE-1))
129
6119be0b
HD
130/*
131 * This is the lowest virtual address we can permit any user space
132 * mapping to be mapped at. This is particularly important for
133 * non-high vector CPUs.
134 */
135#define FIRST_USER_ADDRESS PAGE_SIZE
136
1da177e4
LT
137#define FIRST_USER_PGD_NR 1
138#define USER_PTRS_PER_PGD ((TASK_SIZE/PGDIR_SIZE) - FIRST_USER_PGD_NR)
139
4052ebb7
GD
140/*
141 * section address mask and size definitions.
142 */
143#define SECTION_SHIFT 20
144#define SECTION_SIZE (1UL << SECTION_SHIFT)
145#define SECTION_MASK (~(SECTION_SIZE-1))
146
1da177e4
LT
147/*
148 * ARMv6 supersection address mask and size definitions.
149 */
150#define SUPERSECTION_SHIFT 24
151#define SUPERSECTION_SIZE (1UL << SUPERSECTION_SHIFT)
152#define SUPERSECTION_MASK (~(SUPERSECTION_SIZE-1))
153
1da177e4
LT
154/*
155 * "Linux" PTE definitions.
156 *
157 * We keep two sets of PTEs - the hardware and the linux version.
158 * This allows greater flexibility in the way we map the Linux bits
159 * onto the hardware tables, and allows us to have YOUNG and DIRTY
160 * bits.
161 *
162 * The PTE table pointer refers to the hardware entries; the "Linux"
163 * entries are stored 1024 bytes below.
164 */
f6e3354d
RK
165#define L_PTE_PRESENT (_AT(pteval_t, 1) << 0)
166#define L_PTE_YOUNG (_AT(pteval_t, 1) << 1)
167#define L_PTE_FILE (_AT(pteval_t, 1) << 2) /* only when !PRESENT */
168#define L_PTE_DIRTY (_AT(pteval_t, 1) << 6)
169#define L_PTE_WRITE (_AT(pteval_t, 1) << 7)
170#define L_PTE_USER (_AT(pteval_t, 1) << 8)
171#define L_PTE_EXEC (_AT(pteval_t, 1) << 9)
172#define L_PTE_SHARED (_AT(pteval_t, 1) << 10) /* shared(v6), coherent(xsc3) */
1da177e4 173
bb30f36f
RK
174/*
175 * These are the memory types, defined to be compatible with
176 * pre-ARMv6 CPUs cacheable and bufferable bits: XXCB
bb30f36f 177 */
f6e3354d
RK
178#define L_PTE_MT_UNCACHED (_AT(pteval_t, 0x00) << 2) /* 0000 */
179#define L_PTE_MT_BUFFERABLE (_AT(pteval_t, 0x01) << 2) /* 0001 */
180#define L_PTE_MT_WRITETHROUGH (_AT(pteval_t, 0x02) << 2) /* 0010 */
181#define L_PTE_MT_WRITEBACK (_AT(pteval_t, 0x03) << 2) /* 0011 */
182#define L_PTE_MT_MINICACHE (_AT(pteval_t, 0x06) << 2) /* 0110 (sa1100, xscale) */
183#define L_PTE_MT_WRITEALLOC (_AT(pteval_t, 0x07) << 2) /* 0111 */
184#define L_PTE_MT_DEV_SHARED (_AT(pteval_t, 0x04) << 2) /* 0100 */
185#define L_PTE_MT_DEV_NONSHARED (_AT(pteval_t, 0x0c) << 2) /* 1100 */
186#define L_PTE_MT_DEV_WC (_AT(pteval_t, 0x09) << 2) /* 1001 */
187#define L_PTE_MT_DEV_CACHED (_AT(pteval_t, 0x0b) << 2) /* 1011 */
188#define L_PTE_MT_MASK (_AT(pteval_t, 0x0f) << 2)
bb30f36f 189
1da177e4
LT
190#ifndef __ASSEMBLY__
191
1da177e4 192/*
44b18693
I
193 * The pgprot_* and protection_map entries will be fixed up in runtime
194 * to include the cachable and bufferable bits based on memory policy,
195 * as well as any architecture dependent bits like global/ASID and SMP
196 * shared mapping bits.
1da177e4 197 */
bb30f36f 198#define _L_PTE_DEFAULT L_PTE_PRESENT | L_PTE_YOUNG
1da177e4 199
44b18693 200extern pgprot_t pgprot_user;
1da177e4
LT
201extern pgprot_t pgprot_kernel;
202
8ec53663 203#define _MOD_PROT(p, b) __pgprot(pgprot_val(p) | (b))
1da177e4 204
8ec53663
RK
205#define PAGE_NONE pgprot_user
206#define PAGE_SHARED _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_WRITE)
207#define PAGE_SHARED_EXEC _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_WRITE | L_PTE_EXEC)
208#define PAGE_COPY _MOD_PROT(pgprot_user, L_PTE_USER)
209#define PAGE_COPY_EXEC _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_EXEC)
210#define PAGE_READONLY _MOD_PROT(pgprot_user, L_PTE_USER)
211#define PAGE_READONLY_EXEC _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_EXEC)
212#define PAGE_KERNEL pgprot_kernel
213#define PAGE_KERNEL_EXEC _MOD_PROT(pgprot_kernel, L_PTE_EXEC)
214
215#define __PAGE_NONE __pgprot(_L_PTE_DEFAULT)
216#define __PAGE_SHARED __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_WRITE)
217#define __PAGE_SHARED_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_WRITE | L_PTE_EXEC)
218#define __PAGE_COPY __pgprot(_L_PTE_DEFAULT | L_PTE_USER)
219#define __PAGE_COPY_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_EXEC)
220#define __PAGE_READONLY __pgprot(_L_PTE_DEFAULT | L_PTE_USER)
221#define __PAGE_READONLY_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_EXEC)
44b18693 222
eb9b2b69
RK
223#define __pgprot_modify(prot,mask,bits) \
224 __pgprot((pgprot_val(prot) & ~(mask)) | (bits))
225
226#define pgprot_noncached(prot) \
227 __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
228
229#define pgprot_writecombine(prot) \
230 __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE)
231
232#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
233#define pgprot_dmacoherent(prot) \
234 __pgprot_modify(prot, L_PTE_MT_MASK|L_PTE_EXEC, L_PTE_MT_BUFFERABLE)
235#define __HAVE_PHYS_MEM_ACCESS_PROT
236struct file;
237extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
238 unsigned long size, pgprot_t vma_prot);
239#else
240#define pgprot_dmacoherent(prot) \
241 __pgprot_modify(prot, L_PTE_MT_MASK|L_PTE_EXEC, L_PTE_MT_UNCACHED)
242#endif
243
1da177e4
LT
244#endif /* __ASSEMBLY__ */
245
246/*
247 * The table below defines the page protection levels that we insert into our
248 * Linux page table version. These get translated into the best that the
249 * architecture can perform. Note that on most ARM hardware:
250 * 1) We cannot do execute protection
251 * 2) If we could do execute protection, then read is implied
252 * 3) write implies read permissions
253 */
44b18693
I
254#define __P000 __PAGE_NONE
255#define __P001 __PAGE_READONLY
256#define __P010 __PAGE_COPY
257#define __P011 __PAGE_COPY
8ec53663
RK
258#define __P100 __PAGE_READONLY_EXEC
259#define __P101 __PAGE_READONLY_EXEC
260#define __P110 __PAGE_COPY_EXEC
261#define __P111 __PAGE_COPY_EXEC
44b18693
I
262
263#define __S000 __PAGE_NONE
264#define __S001 __PAGE_READONLY
265#define __S010 __PAGE_SHARED
266#define __S011 __PAGE_SHARED
8ec53663
RK
267#define __S100 __PAGE_READONLY_EXEC
268#define __S101 __PAGE_READONLY_EXEC
269#define __S110 __PAGE_SHARED_EXEC
270#define __S111 __PAGE_SHARED_EXEC
1da177e4
LT
271
272#ifndef __ASSEMBLY__
273/*
274 * ZERO_PAGE is a global shared page that is always zero: used
275 * for zero-mapped memory areas etc..
276 */
277extern struct page *empty_zero_page;
278#define ZERO_PAGE(vaddr) (empty_zero_page)
279
4eec4b13
RK
280
281extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
282
283/* to find an entry in a page-table-directory */
284#define pgd_index(addr) ((addr) >> PGDIR_SHIFT)
285
286#define pgd_offset(mm, addr) ((mm)->pgd + pgd_index(addr))
287
288/* to find an entry in a kernel page-table-directory */
289#define pgd_offset_k(addr) pgd_offset(&init_mm, addr)
290
291/*
292 * The "pgd_xxx()" functions here are trivial for a folded two-level
293 * setup: the pgd is never bad, and a pmd always exists (as it's folded
294 * into the pgd entry)
295 */
296#define pgd_none(pgd) (0)
297#define pgd_bad(pgd) (0)
298#define pgd_present(pgd) (1)
299#define pgd_clear(pgdp) do { } while (0)
300#define set_pgd(pgd,pgdp) do { } while (0)
301
302
b510b049
RK
303/* Find an entry in the second-level page table.. */
304#define pmd_offset(dir, addr) ((pmd_t *)(dir))
1da177e4 305
b510b049
RK
306#define pmd_none(pmd) (!pmd_val(pmd))
307#define pmd_present(pmd) (pmd_val(pmd))
308#define pmd_bad(pmd) (pmd_val(pmd) & 2)
309
310#define copy_pmd(pmdpd,pmdps) \
311 do { \
312 pmdpd[0] = pmdps[0]; \
313 pmdpd[1] = pmdps[1]; \
314 flush_pmd_entry(pmdpd); \
315 } while (0)
316
317#define pmd_clear(pmdp) \
318 do { \
319 pmdp[0] = __pmd(0); \
320 pmdp[1] = __pmd(0); \
321 clean_pmd_entry(pmdp); \
322 } while (0)
323
324static inline pte_t *pmd_page_vaddr(pmd_t pmd)
325{
97092e0c 326 phys_addr_t ptr;
b510b049
RK
327
328 ptr = pmd_val(pmd) & ~(PTRS_PER_PTE * sizeof(void *) - 1);
329 ptr += PTRS_PER_PTE * sizeof(void *);
330
331 return __va(ptr);
332}
333
334#define pmd_page(pmd) pfn_to_page(__phys_to_pfn(pmd_val(pmd)))
335
336/* we don't need complex calculations here as the pmd is folded into the pgd */
337#define pmd_addr_end(addr,end) (end)
65cec8e3 338
65cec8e3
RK
339
340#ifndef CONFIG_HIGHPTE
b510b049 341#define __pte_map(pmd) pmd_page_vaddr(*(pmd))
ece0e2b6 342#define __pte_unmap(pte) do { } while (0)
65cec8e3 343#else
b510b049 344#define __pte_map(pmd) ((pte_t *)kmap_atomic(pmd_page(*(pmd))) + PTRS_PER_PTE)
ece0e2b6 345#define __pte_unmap(pte) kunmap_atomic((pte - PTRS_PER_PTE))
65cec8e3 346#endif
1da177e4 347
b510b049
RK
348#define pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
349
350#define pte_offset_kernel(pmd,addr) (pmd_page_vaddr(*(pmd)) + pte_index(addr))
351
352#define pte_offset_map(pmd,addr) (__pte_map(pmd) + pte_index(addr))
353#define pte_unmap(pte) __pte_unmap(pte)
354
355#define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
356#define pfn_pte(pfn,prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
357
358#define pte_page(pte) pfn_to_page(pte_pfn(pte))
359#define mk_pte(page,prot) pfn_pte(page_to_pfn(page), prot)
360
ad1ae2fe 361#define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,pte,ext)
b510b049 362#define pte_clear(mm,addr,ptep) set_pte_ext(ptep, __pte(0), 0)
ad1ae2fe 363
6012191a
CM
364#if __LINUX_ARM_ARCH__ < 6
365static inline void __sync_icache_dcache(pte_t pteval)
366{
367}
368#else
369extern void __sync_icache_dcache(pte_t pteval);
370#endif
371
372static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
373 pte_t *ptep, pte_t pteval)
374{
375 if (addr >= TASK_SIZE)
376 set_pte_ext(ptep, pteval, 0);
377 else {
378 __sync_icache_dcache(pteval);
379 set_pte_ext(ptep, pteval, PTE_EXT_NG);
380 }
381}
1da177e4 382
b510b049 383#define pte_none(pte) (!pte_val(pte))
1da177e4 384#define pte_present(pte) (pte_val(pte) & L_PTE_PRESENT)
1da177e4 385#define pte_write(pte) (pte_val(pte) & L_PTE_WRITE)
1da177e4
LT
386#define pte_dirty(pte) (pte_val(pte) & L_PTE_DIRTY)
387#define pte_young(pte) (pte_val(pte) & L_PTE_YOUNG)
6012191a 388#define pte_exec(pte) (pte_val(pte) & L_PTE_EXEC)
7e675137 389#define pte_special(pte) (0)
1da177e4 390
6012191a
CM
391#define pte_present_user(pte) \
392 ((pte_val(pte) & (L_PTE_PRESENT | L_PTE_USER)) == \
393 (L_PTE_PRESENT | L_PTE_USER))
394
1da177e4
LT
395#define PTE_BIT_FUNC(fn,op) \
396static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; }
397
1da177e4
LT
398PTE_BIT_FUNC(wrprotect, &= ~L_PTE_WRITE);
399PTE_BIT_FUNC(mkwrite, |= L_PTE_WRITE);
1da177e4
LT
400PTE_BIT_FUNC(mkclean, &= ~L_PTE_DIRTY);
401PTE_BIT_FUNC(mkdirty, |= L_PTE_DIRTY);
402PTE_BIT_FUNC(mkold, &= ~L_PTE_YOUNG);
403PTE_BIT_FUNC(mkyoung, |= L_PTE_YOUNG);
404
7e675137
NP
405static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
406
1da177e4
LT
407static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
408{
f6e3354d 409 const pteval_t mask = L_PTE_EXEC | L_PTE_WRITE | L_PTE_USER;
1da177e4
LT
410 pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
411 return pte;
412}
413
fb93a1c7
RK
414/*
415 * Encode and decode a swap entry. Swap entries are stored in the Linux
416 * page tables as follows:
417 *
418 * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
419 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
6a00cded 420 * <--------------- offset --------------------> <- type --> 0 0 0
1da177e4 421 *
6a00cded 422 * This gives us up to 63 swap files and 32GB per swap file. Note that
fb93a1c7 423 * the offset field is always non-zero.
1da177e4 424 */
6a00cded
RK
425#define __SWP_TYPE_SHIFT 3
426#define __SWP_TYPE_BITS 6
fb93a1c7
RK
427#define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1)
428#define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
429
430#define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
431#define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT)
432#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
433
1da177e4
LT
434#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
435#define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
436
fb93a1c7
RK
437/*
438 * It is an error for the kernel to have more swap files than we can
439 * encode in the PTEs. This ensures that we know when MAX_SWAPFILES
440 * is increased beyond what we presently support.
441 */
442#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
443
65b1bfc1
RK
444/*
445 * Encode and decode a file entry. File entries are stored in the Linux
446 * page tables as follows:
447 *
448 * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
449 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
6a00cded 450 * <----------------------- offset ------------------------> 1 0 0
65b1bfc1
RK
451 */
452#define pte_file(pte) (pte_val(pte) & L_PTE_FILE)
6a00cded
RK
453#define pte_to_pgoff(x) (pte_val(x) >> 3)
454#define pgoff_to_pte(x) __pte(((x) << 3) | L_PTE_FILE)
65b1bfc1 455
6a00cded 456#define PTE_FILE_MAX_BITS 29
65b1bfc1 457
1da177e4
LT
458/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
459/* FIXME: this is not correct */
460#define kern_addr_valid(addr) (1)
461
462#include <asm-generic/pgtable.h>
463
464/*
465 * We provide our own arch_get_unmapped_area to cope with VIPT caches.
466 */
467#define HAVE_ARCH_UNMAPPED_AREA
468
469/*
33bf5610 470 * remap a physical page `pfn' of size `size' with page protection `prot'
1da177e4
LT
471 * into virtual address `from'
472 */
1da177e4
LT
473#define io_remap_pfn_range(vma,from,pfn,size,prot) \
474 remap_pfn_range(vma, from, pfn, size, prot)
475
1da177e4
LT
476#define pgtable_cache_init() do { } while (0)
477
478#endif /* !__ASSEMBLY__ */
479
002547b4
RK
480#endif /* CONFIG_MMU */
481
1da177e4 482#endif /* _ASMARM_PGTABLE_H */
This page took 0.542011 seconds and 5 git commands to generate.