ARM: KVM: move kvm_handle_wfi to handle_exit.c
[deliverable/linux.git] / arch / arm / kvm / mmu.c
CommitLineData
749cf76c
CD
1/*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
342cd0ab
CD
18
19#include <linux/mman.h>
20#include <linux/kvm_host.h>
21#include <linux/io.h>
45e96ea6 22#include <trace/events/kvm.h>
342cd0ab 23#include <asm/pgalloc.h>
94f8e641 24#include <asm/cacheflush.h>
342cd0ab
CD
25#include <asm/kvm_arm.h>
26#include <asm/kvm_mmu.h>
45e96ea6 27#include <asm/kvm_mmio.h>
d5d8184d 28#include <asm/kvm_asm.h>
94f8e641 29#include <asm/kvm_emulate.h>
d5d8184d
CD
30
31#include "trace.h"
342cd0ab
CD
32
33extern char __hyp_idmap_text_start[], __hyp_idmap_text_end[];
34
35static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
36
48762767 37static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
d5d8184d 38{
48762767 39 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
d5d8184d
CD
40}
41
d5d8184d
CD
42static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
43 int min, int max)
44{
45 void *page;
46
47 BUG_ON(max > KVM_NR_MEM_OBJS);
48 if (cache->nobjs >= min)
49 return 0;
50 while (cache->nobjs < max) {
51 page = (void *)__get_free_page(PGALLOC_GFP);
52 if (!page)
53 return -ENOMEM;
54 cache->objects[cache->nobjs++] = page;
55 }
56 return 0;
57}
58
59static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
60{
61 while (mc->nobjs)
62 free_page((unsigned long)mc->objects[--mc->nobjs]);
63}
64
65static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
66{
67 void *p;
68
69 BUG_ON(!mc || !mc->nobjs);
70 p = mc->objects[--mc->nobjs];
71 return p;
72}
73
342cd0ab
CD
74static void free_ptes(pmd_t *pmd, unsigned long addr)
75{
76 pte_t *pte;
77 unsigned int i;
78
79 for (i = 0; i < PTRS_PER_PMD; i++, addr += PMD_SIZE) {
80 if (!pmd_none(*pmd) && pmd_table(*pmd)) {
81 pte = pte_offset_kernel(pmd, addr);
82 pte_free_kernel(NULL, pte);
83 }
84 pmd++;
85 }
86}
87
88/**
89 * free_hyp_pmds - free a Hyp-mode level-2 tables and child level-3 tables
90 *
91 * Assumes this is a page table used strictly in Hyp-mode and therefore contains
92 * only mappings in the kernel memory area, which is above PAGE_OFFSET.
93 */
94void free_hyp_pmds(void)
95{
96 pgd_t *pgd;
97 pud_t *pud;
98 pmd_t *pmd;
99 unsigned long addr;
100
101 mutex_lock(&kvm_hyp_pgd_mutex);
102 for (addr = PAGE_OFFSET; addr != 0; addr += PGDIR_SIZE) {
06e8c3b0
MZ
103 unsigned long hyp_addr = KERN_TO_HYP(addr);
104 pgd = hyp_pgd + pgd_index(hyp_addr);
105 pud = pud_offset(pgd, hyp_addr);
342cd0ab
CD
106
107 if (pud_none(*pud))
108 continue;
109 BUG_ON(pud_bad(*pud));
110
06e8c3b0 111 pmd = pmd_offset(pud, hyp_addr);
342cd0ab
CD
112 free_ptes(pmd, addr);
113 pmd_free(NULL, pmd);
114 pud_clear(pud);
115 }
116 mutex_unlock(&kvm_hyp_pgd_mutex);
117}
118
119static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
120 unsigned long end)
121{
122 pte_t *pte;
123 unsigned long addr;
124 struct page *page;
125
126 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
06e8c3b0
MZ
127 unsigned long hyp_addr = KERN_TO_HYP(addr);
128
129 pte = pte_offset_kernel(pmd, hyp_addr);
342cd0ab
CD
130 BUG_ON(!virt_addr_valid(addr));
131 page = virt_to_page(addr);
132 kvm_set_pte(pte, mk_pte(page, PAGE_HYP));
133 }
134}
135
136static void create_hyp_io_pte_mappings(pmd_t *pmd, unsigned long start,
137 unsigned long end,
138 unsigned long *pfn_base)
139{
140 pte_t *pte;
141 unsigned long addr;
142
143 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
06e8c3b0
MZ
144 unsigned long hyp_addr = KERN_TO_HYP(addr);
145
146 pte = pte_offset_kernel(pmd, hyp_addr);
342cd0ab
CD
147 BUG_ON(pfn_valid(*pfn_base));
148 kvm_set_pte(pte, pfn_pte(*pfn_base, PAGE_HYP_DEVICE));
149 (*pfn_base)++;
150 }
151}
152
153static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
154 unsigned long end, unsigned long *pfn_base)
155{
156 pmd_t *pmd;
157 pte_t *pte;
158 unsigned long addr, next;
159
160 for (addr = start; addr < end; addr = next) {
06e8c3b0
MZ
161 unsigned long hyp_addr = KERN_TO_HYP(addr);
162 pmd = pmd_offset(pud, hyp_addr);
342cd0ab
CD
163
164 BUG_ON(pmd_sect(*pmd));
165
166 if (pmd_none(*pmd)) {
06e8c3b0 167 pte = pte_alloc_one_kernel(NULL, hyp_addr);
342cd0ab
CD
168 if (!pte) {
169 kvm_err("Cannot allocate Hyp pte\n");
170 return -ENOMEM;
171 }
172 pmd_populate_kernel(NULL, pmd, pte);
173 }
174
175 next = pmd_addr_end(addr, end);
176
177 /*
178 * If pfn_base is NULL, we map kernel pages into HYP with the
179 * virtual address. Otherwise, this is considered an I/O
180 * mapping and we map the physical region starting at
181 * *pfn_base to [start, end[.
182 */
183 if (!pfn_base)
184 create_hyp_pte_mappings(pmd, addr, next);
185 else
186 create_hyp_io_pte_mappings(pmd, addr, next, pfn_base);
187 }
188
189 return 0;
190}
191
192static int __create_hyp_mappings(void *from, void *to, unsigned long *pfn_base)
193{
194 unsigned long start = (unsigned long)from;
195 unsigned long end = (unsigned long)to;
196 pgd_t *pgd;
197 pud_t *pud;
198 pmd_t *pmd;
199 unsigned long addr, next;
200 int err = 0;
201
b4034bde
MZ
202 if (start >= end)
203 return -EINVAL;
204 /* Check for a valid kernel memory mapping */
205 if (!pfn_base && (!virt_addr_valid(from) || !virt_addr_valid(to - 1)))
206 return -EINVAL;
207 /* Check for a valid kernel IO mapping */
208 if (pfn_base && (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1)))
342cd0ab
CD
209 return -EINVAL;
210
211 mutex_lock(&kvm_hyp_pgd_mutex);
212 for (addr = start; addr < end; addr = next) {
06e8c3b0
MZ
213 unsigned long hyp_addr = KERN_TO_HYP(addr);
214 pgd = hyp_pgd + pgd_index(hyp_addr);
215 pud = pud_offset(pgd, hyp_addr);
342cd0ab
CD
216
217 if (pud_none_or_clear_bad(pud)) {
06e8c3b0 218 pmd = pmd_alloc_one(NULL, hyp_addr);
342cd0ab
CD
219 if (!pmd) {
220 kvm_err("Cannot allocate Hyp pmd\n");
221 err = -ENOMEM;
222 goto out;
223 }
224 pud_populate(NULL, pud, pmd);
225 }
226
227 next = pgd_addr_end(addr, end);
228 err = create_hyp_pmd_mappings(pud, addr, next, pfn_base);
229 if (err)
230 goto out;
231 }
232out:
233 mutex_unlock(&kvm_hyp_pgd_mutex);
234 return err;
235}
236
237/**
06e8c3b0 238 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
342cd0ab
CD
239 * @from: The virtual kernel start address of the range
240 * @to: The virtual kernel end address of the range (exclusive)
241 *
06e8c3b0
MZ
242 * The same virtual address as the kernel virtual address is also used
243 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
244 * physical pages.
342cd0ab
CD
245 *
246 * Note: Wrapping around zero in the "to" address is not supported.
247 */
248int create_hyp_mappings(void *from, void *to)
249{
250 return __create_hyp_mappings(from, to, NULL);
251}
252
253/**
06e8c3b0
MZ
254 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
255 * @from: The kernel start VA of the range
256 * @to: The kernel end VA of the range (exclusive)
342cd0ab 257 * @addr: The physical start address which gets mapped
06e8c3b0
MZ
258 *
259 * The resulting HYP VA is the same as the kernel VA, modulo
260 * HYP_PAGE_OFFSET.
342cd0ab
CD
261 */
262int create_hyp_io_mappings(void *from, void *to, phys_addr_t addr)
263{
264 unsigned long pfn = __phys_to_pfn(addr);
265 return __create_hyp_mappings(from, to, &pfn);
266}
267
d5d8184d
CD
268/**
269 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
270 * @kvm: The KVM struct pointer for the VM.
271 *
272 * Allocates the 1st level table only of size defined by S2_PGD_ORDER (can
273 * support either full 40-bit input addresses or limited to 32-bit input
274 * addresses). Clears the allocated pages.
275 *
276 * Note we don't need locking here as this is only called when the VM is
277 * created, which can only be done once.
278 */
279int kvm_alloc_stage2_pgd(struct kvm *kvm)
280{
281 pgd_t *pgd;
282
283 if (kvm->arch.pgd != NULL) {
284 kvm_err("kvm_arch already initialized?\n");
285 return -EINVAL;
286 }
287
288 pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, S2_PGD_ORDER);
289 if (!pgd)
290 return -ENOMEM;
291
292 /* stage-2 pgd must be aligned to its size */
293 VM_BUG_ON((unsigned long)pgd & (S2_PGD_SIZE - 1));
294
295 memset(pgd, 0, PTRS_PER_S2_PGD * sizeof(pgd_t));
c62ee2b2 296 kvm_clean_pgd(pgd);
d5d8184d
CD
297 kvm->arch.pgd = pgd;
298
299 return 0;
300}
301
302static void clear_pud_entry(pud_t *pud)
303{
304 pmd_t *pmd_table = pmd_offset(pud, 0);
305 pud_clear(pud);
306 pmd_free(NULL, pmd_table);
307 put_page(virt_to_page(pud));
308}
309
310static void clear_pmd_entry(pmd_t *pmd)
311{
312 pte_t *pte_table = pte_offset_kernel(pmd, 0);
313 pmd_clear(pmd);
314 pte_free_kernel(NULL, pte_table);
315 put_page(virt_to_page(pmd));
316}
317
318static bool pmd_empty(pmd_t *pmd)
319{
320 struct page *pmd_page = virt_to_page(pmd);
321 return page_count(pmd_page) == 1;
322}
323
324static void clear_pte_entry(pte_t *pte)
325{
326 if (pte_present(*pte)) {
327 kvm_set_pte(pte, __pte(0));
328 put_page(virt_to_page(pte));
329 }
330}
331
332static bool pte_empty(pte_t *pte)
333{
334 struct page *pte_page = virt_to_page(pte);
335 return page_count(pte_page) == 1;
336}
337
338/**
339 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
340 * @kvm: The VM pointer
341 * @start: The intermediate physical base address of the range to unmap
342 * @size: The size of the area to unmap
343 *
344 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
345 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
346 * destroying the VM), otherwise another faulting VCPU may come in and mess
347 * with things behind our backs.
348 */
349static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
350{
351 pgd_t *pgd;
352 pud_t *pud;
353 pmd_t *pmd;
354 pte_t *pte;
355 phys_addr_t addr = start, end = start + size;
356 u64 range;
357
358 while (addr < end) {
359 pgd = kvm->arch.pgd + pgd_index(addr);
360 pud = pud_offset(pgd, addr);
361 if (pud_none(*pud)) {
362 addr += PUD_SIZE;
363 continue;
364 }
365
366 pmd = pmd_offset(pud, addr);
367 if (pmd_none(*pmd)) {
368 addr += PMD_SIZE;
369 continue;
370 }
371
372 pte = pte_offset_kernel(pmd, addr);
373 clear_pte_entry(pte);
374 range = PAGE_SIZE;
375
376 /* If we emptied the pte, walk back up the ladder */
377 if (pte_empty(pte)) {
378 clear_pmd_entry(pmd);
379 range = PMD_SIZE;
380 if (pmd_empty(pmd)) {
381 clear_pud_entry(pud);
382 range = PUD_SIZE;
383 }
384 }
385
386 addr += range;
387 }
388}
389
390/**
391 * kvm_free_stage2_pgd - free all stage-2 tables
392 * @kvm: The KVM struct pointer for the VM.
393 *
394 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
395 * underlying level-2 and level-3 tables before freeing the actual level-1 table
396 * and setting the struct pointer to NULL.
397 *
398 * Note we don't need locking here as this is only called when the VM is
399 * destroyed, which can only be done once.
400 */
401void kvm_free_stage2_pgd(struct kvm *kvm)
402{
403 if (kvm->arch.pgd == NULL)
404 return;
405
406 unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
407 free_pages((unsigned long)kvm->arch.pgd, S2_PGD_ORDER);
408 kvm->arch.pgd = NULL;
409}
410
411
412static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
413 phys_addr_t addr, const pte_t *new_pte, bool iomap)
414{
415 pgd_t *pgd;
416 pud_t *pud;
417 pmd_t *pmd;
418 pte_t *pte, old_pte;
419
420 /* Create 2nd stage page table mapping - Level 1 */
421 pgd = kvm->arch.pgd + pgd_index(addr);
422 pud = pud_offset(pgd, addr);
423 if (pud_none(*pud)) {
424 if (!cache)
425 return 0; /* ignore calls from kvm_set_spte_hva */
426 pmd = mmu_memory_cache_alloc(cache);
427 pud_populate(NULL, pud, pmd);
d5d8184d 428 get_page(virt_to_page(pud));
c62ee2b2
MZ
429 }
430
431 pmd = pmd_offset(pud, addr);
d5d8184d
CD
432
433 /* Create 2nd stage page table mapping - Level 2 */
434 if (pmd_none(*pmd)) {
435 if (!cache)
436 return 0; /* ignore calls from kvm_set_spte_hva */
437 pte = mmu_memory_cache_alloc(cache);
c62ee2b2 438 kvm_clean_pte(pte);
d5d8184d 439 pmd_populate_kernel(NULL, pmd, pte);
d5d8184d 440 get_page(virt_to_page(pmd));
c62ee2b2
MZ
441 }
442
443 pte = pte_offset_kernel(pmd, addr);
d5d8184d
CD
444
445 if (iomap && pte_present(*pte))
446 return -EFAULT;
447
448 /* Create 2nd stage page table mapping - Level 3 */
449 old_pte = *pte;
450 kvm_set_pte(pte, *new_pte);
451 if (pte_present(old_pte))
48762767 452 kvm_tlb_flush_vmid_ipa(kvm, addr);
d5d8184d
CD
453 else
454 get_page(virt_to_page(pte));
455
456 return 0;
457}
458
459/**
460 * kvm_phys_addr_ioremap - map a device range to guest IPA
461 *
462 * @kvm: The KVM pointer
463 * @guest_ipa: The IPA at which to insert the mapping
464 * @pa: The physical address of the device
465 * @size: The size of the mapping
466 */
467int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
468 phys_addr_t pa, unsigned long size)
469{
470 phys_addr_t addr, end;
471 int ret = 0;
472 unsigned long pfn;
473 struct kvm_mmu_memory_cache cache = { 0, };
474
475 end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
476 pfn = __phys_to_pfn(pa);
477
478 for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
c62ee2b2
MZ
479 pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
480 kvm_set_s2pte_writable(&pte);
d5d8184d
CD
481
482 ret = mmu_topup_memory_cache(&cache, 2, 2);
483 if (ret)
484 goto out;
485 spin_lock(&kvm->mmu_lock);
486 ret = stage2_set_pte(kvm, &cache, addr, &pte, true);
487 spin_unlock(&kvm->mmu_lock);
488 if (ret)
489 goto out;
490
491 pfn++;
492 }
493
494out:
495 mmu_free_memory_cache(&cache);
496 return ret;
497}
498
94f8e641
CD
499static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
500 gfn_t gfn, struct kvm_memory_slot *memslot,
501 unsigned long fault_status)
502{
503 pte_t new_pte;
504 pfn_t pfn;
505 int ret;
506 bool write_fault, writable;
507 unsigned long mmu_seq;
508 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
509
7393b599 510 write_fault = kvm_is_write_fault(kvm_vcpu_get_hsr(vcpu));
94f8e641
CD
511 if (fault_status == FSC_PERM && !write_fault) {
512 kvm_err("Unexpected L2 read permission error\n");
513 return -EFAULT;
514 }
515
516 /* We need minimum second+third level pages */
517 ret = mmu_topup_memory_cache(memcache, 2, KVM_NR_MEM_OBJS);
518 if (ret)
519 return ret;
520
521 mmu_seq = vcpu->kvm->mmu_notifier_seq;
522 /*
523 * Ensure the read of mmu_notifier_seq happens before we call
524 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
525 * the page we just got a reference to gets unmapped before we have a
526 * chance to grab the mmu_lock, which ensure that if the page gets
527 * unmapped afterwards, the call to kvm_unmap_hva will take it away
528 * from us again properly. This smp_rmb() interacts with the smp_wmb()
529 * in kvm_mmu_notifier_invalidate_<page|range_end>.
530 */
531 smp_rmb();
532
533 pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write_fault, &writable);
534 if (is_error_pfn(pfn))
535 return -EFAULT;
536
537 new_pte = pfn_pte(pfn, PAGE_S2);
538 coherent_icache_guest_page(vcpu->kvm, gfn);
539
540 spin_lock(&vcpu->kvm->mmu_lock);
541 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
542 goto out_unlock;
543 if (writable) {
c62ee2b2 544 kvm_set_s2pte_writable(&new_pte);
94f8e641
CD
545 kvm_set_pfn_dirty(pfn);
546 }
547 stage2_set_pte(vcpu->kvm, memcache, fault_ipa, &new_pte, false);
548
549out_unlock:
550 spin_unlock(&vcpu->kvm->mmu_lock);
551 kvm_release_pfn_clean(pfn);
552 return 0;
553}
554
555/**
556 * kvm_handle_guest_abort - handles all 2nd stage aborts
557 * @vcpu: the VCPU pointer
558 * @run: the kvm_run structure
559 *
560 * Any abort that gets to the host is almost guaranteed to be caused by a
561 * missing second stage translation table entry, which can mean that either the
562 * guest simply needs more memory and we must allocate an appropriate page or it
563 * can mean that the guest tried to access I/O memory, which is emulated by user
564 * space. The distinction is based on the IPA causing the fault and whether this
565 * memory region has been registered as standard RAM by user space.
566 */
342cd0ab
CD
567int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
568{
94f8e641
CD
569 unsigned long fault_status;
570 phys_addr_t fault_ipa;
571 struct kvm_memory_slot *memslot;
572 bool is_iabt;
573 gfn_t gfn;
574 int ret, idx;
575
52d1dba9 576 is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
7393b599 577 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
94f8e641 578
7393b599
MZ
579 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
580 kvm_vcpu_get_hfar(vcpu), fault_ipa);
94f8e641
CD
581
582 /* Check the stage-2 fault is trans. fault or write fault */
1cc287dd 583 fault_status = kvm_vcpu_trap_get_fault(vcpu);
94f8e641 584 if (fault_status != FSC_FAULT && fault_status != FSC_PERM) {
52d1dba9
MZ
585 kvm_err("Unsupported fault status: EC=%#x DFCS=%#lx\n",
586 kvm_vcpu_trap_get_class(vcpu), fault_status);
94f8e641
CD
587 return -EFAULT;
588 }
589
590 idx = srcu_read_lock(&vcpu->kvm->srcu);
591
592 gfn = fault_ipa >> PAGE_SHIFT;
593 if (!kvm_is_visible_gfn(vcpu->kvm, gfn)) {
594 if (is_iabt) {
595 /* Prefetch Abort on I/O address */
7393b599 596 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
94f8e641
CD
597 ret = 1;
598 goto out_unlock;
599 }
600
601 if (fault_status != FSC_FAULT) {
602 kvm_err("Unsupported fault status on io memory: %#lx\n",
603 fault_status);
604 ret = -EFAULT;
605 goto out_unlock;
606 }
607
cfe3950c
MZ
608 /*
609 * The IPA is reported as [MAX:12], so we need to
610 * complement it with the bottom 12 bits from the
611 * faulting VA. This is always 12 bits, irrespective
612 * of the page size.
613 */
614 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
45e96ea6 615 ret = io_mem_abort(vcpu, run, fault_ipa);
94f8e641
CD
616 goto out_unlock;
617 }
618
619 memslot = gfn_to_memslot(vcpu->kvm, gfn);
94f8e641
CD
620
621 ret = user_mem_abort(vcpu, fault_ipa, gfn, memslot, fault_status);
622 if (ret == 0)
623 ret = 1;
624out_unlock:
625 srcu_read_unlock(&vcpu->kvm->srcu, idx);
626 return ret;
342cd0ab
CD
627}
628
d5d8184d
CD
629static void handle_hva_to_gpa(struct kvm *kvm,
630 unsigned long start,
631 unsigned long end,
632 void (*handler)(struct kvm *kvm,
633 gpa_t gpa, void *data),
634 void *data)
635{
636 struct kvm_memslots *slots;
637 struct kvm_memory_slot *memslot;
638
639 slots = kvm_memslots(kvm);
640
641 /* we only care about the pages that the guest sees */
642 kvm_for_each_memslot(memslot, slots) {
643 unsigned long hva_start, hva_end;
644 gfn_t gfn, gfn_end;
645
646 hva_start = max(start, memslot->userspace_addr);
647 hva_end = min(end, memslot->userspace_addr +
648 (memslot->npages << PAGE_SHIFT));
649 if (hva_start >= hva_end)
650 continue;
651
652 /*
653 * {gfn(page) | page intersects with [hva_start, hva_end)} =
654 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
655 */
656 gfn = hva_to_gfn_memslot(hva_start, memslot);
657 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
658
659 for (; gfn < gfn_end; ++gfn) {
660 gpa_t gpa = gfn << PAGE_SHIFT;
661 handler(kvm, gpa, data);
662 }
663 }
664}
665
666static void kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
667{
668 unmap_stage2_range(kvm, gpa, PAGE_SIZE);
48762767 669 kvm_tlb_flush_vmid_ipa(kvm, gpa);
d5d8184d
CD
670}
671
672int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
673{
674 unsigned long end = hva + PAGE_SIZE;
675
676 if (!kvm->arch.pgd)
677 return 0;
678
679 trace_kvm_unmap_hva(hva);
680 handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
681 return 0;
682}
683
684int kvm_unmap_hva_range(struct kvm *kvm,
685 unsigned long start, unsigned long end)
686{
687 if (!kvm->arch.pgd)
688 return 0;
689
690 trace_kvm_unmap_hva_range(start, end);
691 handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
692 return 0;
693}
694
695static void kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
696{
697 pte_t *pte = (pte_t *)data;
698
699 stage2_set_pte(kvm, NULL, gpa, pte, false);
700}
701
702
703void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
704{
705 unsigned long end = hva + PAGE_SIZE;
706 pte_t stage2_pte;
707
708 if (!kvm->arch.pgd)
709 return;
710
711 trace_kvm_set_spte_hva(hva);
712 stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
713 handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
714}
715
716void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
717{
718 mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
719}
720
342cd0ab
CD
721phys_addr_t kvm_mmu_get_httbr(void)
722{
723 VM_BUG_ON(!virt_addr_valid(hyp_pgd));
724 return virt_to_phys(hyp_pgd);
725}
726
727int kvm_mmu_init(void)
728{
d5d8184d
CD
729 if (!hyp_pgd) {
730 kvm_err("Hyp mode PGD not allocated\n");
731 return -ENOMEM;
732 }
733
734 return 0;
342cd0ab
CD
735}
736
737/**
738 * kvm_clear_idmap - remove all idmaps from the hyp pgd
739 *
740 * Free the underlying pmds for all pgds in range and clear the pgds (but
741 * don't free them) afterwards.
742 */
743void kvm_clear_hyp_idmap(void)
744{
745 unsigned long addr, end;
746 unsigned long next;
747 pgd_t *pgd = hyp_pgd;
748 pud_t *pud;
749 pmd_t *pmd;
750
751 addr = virt_to_phys(__hyp_idmap_text_start);
752 end = virt_to_phys(__hyp_idmap_text_end);
753
754 pgd += pgd_index(addr);
755 do {
756 next = pgd_addr_end(addr, end);
757 if (pgd_none_or_clear_bad(pgd))
758 continue;
759 pud = pud_offset(pgd, addr);
760 pmd = pmd_offset(pud, addr);
761
762 pud_clear(pud);
c62ee2b2 763 kvm_clean_pmd_entry(pmd);
342cd0ab
CD
764 pmd_free(NULL, (pmd_t *)((unsigned long)pmd & PAGE_MASK));
765 } while (pgd++, addr = next, addr < end);
766}
This page took 0.104672 seconds and 5 git commands to generate.