ARM: BCM: modify Broadcom CPU enable method
[deliverable/linux.git] / arch / arm / mach-bcm / platsmp.c
CommitLineData
9a5a110e 1/*
84320e1a 2 * Copyright (C) 2014-2015 Broadcom Corporation
9a5a110e
AE
3 * Copyright 2014 Linaro Limited
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation version 2.
8 *
9 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
10 * kind, whether express or implied; without even the implied warranty
11 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 */
14
97890821
KH
15#include <linux/cpumask.h>
16#include <linux/delay.h>
9a5a110e 17#include <linux/errno.h>
97890821 18#include <linux/init.h>
9a5a110e 19#include <linux/io.h>
97890821 20#include <linux/jiffies.h>
9a5a110e
AE
21#include <linux/of.h>
22#include <linux/sched.h>
97890821 23#include <linux/smp.h>
9a5a110e 24
97890821 25#include <asm/cacheflush.h>
9a5a110e
AE
26#include <asm/smp.h>
27#include <asm/smp_plat.h>
28#include <asm/smp_scu.h>
29
30/* Size of mapped Cortex A9 SCU address space */
31#define CORTEX_A9_SCU_SIZE 0x58
32
33#define SECONDARY_TIMEOUT_NS NSEC_PER_MSEC /* 1 msec (in nanoseconds) */
34#define BOOT_ADDR_CPUID_MASK 0x3
35
36/* Name of device node property defining secondary boot register location */
37#define OF_SECONDARY_BOOT "secondary-boot-reg"
84320e1a 38#define MPIDR_CPUID_BITMASK 0x3
9a5a110e 39
9a5a110e
AE
40/*
41 * Enable the Cortex A9 Snoop Control Unit
42 *
43 * By the time this is called we already know there are multiple
44 * cores present. We assume we're running on a Cortex A9 processor,
45 * so any trouble getting the base address register or getting the
46 * SCU base is a problem.
47 *
48 * Return 0 if successful or an error code otherwise.
49 */
50static int __init scu_a9_enable(void)
51{
52 unsigned long config_base;
53 void __iomem *scu_base;
54
55 if (!scu_a9_has_base()) {
56 pr_err("no configuration base address register!\n");
57 return -ENXIO;
58 }
59
60 /* Config base address register value is zero for uniprocessor */
61 config_base = scu_a9_get_base();
62 if (!config_base) {
63 pr_err("hardware reports only one core\n");
64 return -ENOENT;
65 }
66
67 scu_base = ioremap((phys_addr_t)config_base, CORTEX_A9_SCU_SIZE);
68 if (!scu_base) {
69 pr_err("failed to remap config base (%lu/%u) for SCU\n",
70 config_base, CORTEX_A9_SCU_SIZE);
71 return -ENOMEM;
72 }
73
74 scu_enable(scu_base);
75
76 iounmap(scu_base); /* That's the last we'll need of this */
77
78 return 0;
79}
80
6585cb5a
CB
81static u32 secondary_boot_addr_for(unsigned int cpu)
82{
83 u32 secondary_boot_addr = 0;
84 struct device_node *cpu_node = of_get_cpu_node(cpu, NULL);
85
86 if (!cpu_node) {
87 pr_err("Failed to find device tree node for CPU%u\n", cpu);
88 return 0;
89 }
90
91 if (of_property_read_u32(cpu_node,
92 OF_SECONDARY_BOOT,
93 &secondary_boot_addr))
94 pr_err("required secondary boot register not specified for CPU%u\n",
95 cpu);
96
97 of_node_put(cpu_node);
98
99 return secondary_boot_addr;
100}
101
102static int nsp_write_lut(unsigned int cpu)
97890821
KH
103{
104 void __iomem *sku_rom_lut;
105 phys_addr_t secondary_startup_phy;
6585cb5a 106 const u32 secondary_boot_addr = secondary_boot_addr_for(cpu);
97890821 107
6585cb5a 108 if (!secondary_boot_addr)
97890821 109 return -EINVAL;
97890821
KH
110
111 sku_rom_lut = ioremap_nocache((phys_addr_t)secondary_boot_addr,
6585cb5a 112 sizeof(phys_addr_t));
97890821 113 if (!sku_rom_lut) {
6585cb5a 114 pr_warn("unable to ioremap SKU-ROM LUT register for cpu %u\n", cpu);
97890821
KH
115 return -ENOMEM;
116 }
117
118 secondary_startup_phy = virt_to_phys(secondary_startup);
119 BUG_ON(secondary_startup_phy > (phys_addr_t)U32_MAX);
120
121 writel_relaxed(secondary_startup_phy, sku_rom_lut);
122
123 /* Ensure the write is visible to the secondary core */
124 smp_wmb();
125
126 iounmap(sku_rom_lut);
127
128 return 0;
129}
130
9a5a110e
AE
131static void __init bcm_smp_prepare_cpus(unsigned int max_cpus)
132{
6585cb5a 133 const cpumask_t only_cpu_0 = { CPU_BITS_CPU0 };
84320e1a 134
6585cb5a
CB
135 /* Enable the SCU on Cortex A9 based SoCs */
136 if (scu_a9_enable()) {
9a5a110e 137 /* Update the CPU present map to reflect uniprocessor mode */
6585cb5a 138 pr_warn("failed to enable A9 SCU - disabling SMP\n");
9a5a110e
AE
139 init_cpu_present(&only_cpu_0);
140 }
141}
142
143/*
144 * The ROM code has the secondary cores looping, waiting for an event.
145 * When an event occurs each core examines the bottom two bits of the
146 * secondary boot register. When a core finds those bits contain its
147 * own core id, it performs initialization, including computing its boot
148 * address by clearing the boot register value's bottom two bits. The
149 * core signals that it is beginning its execution by writing its boot
150 * address back to the secondary boot register, and finally jumps to
151 * that address.
152 *
153 * So to start a core executing we need to:
154 * - Encode the (hardware) CPU id with the bottom bits of the secondary
155 * start address.
156 * - Write that value into the secondary boot register.
157 * - Generate an event to wake up the secondary CPU(s).
158 * - Wait for the secondary boot register to be re-written, which
159 * indicates the secondary core has started.
160 */
84320e1a 161static int kona_boot_secondary(unsigned int cpu, struct task_struct *idle)
9a5a110e
AE
162{
163 void __iomem *boot_reg;
164 phys_addr_t boot_func;
165 u64 start_clock;
166 u32 cpu_id;
167 u32 boot_val;
168 bool timeout = false;
6585cb5a 169 const u32 secondary_boot_addr = secondary_boot_addr_for(cpu);
9a5a110e
AE
170
171 cpu_id = cpu_logical_map(cpu);
172 if (cpu_id & ~BOOT_ADDR_CPUID_MASK) {
173 pr_err("bad cpu id (%u > %u)\n", cpu_id, BOOT_ADDR_CPUID_MASK);
174 return -EINVAL;
175 }
176
6585cb5a 177 if (!secondary_boot_addr)
9a5a110e 178 return -EINVAL;
9a5a110e 179
6585cb5a
CB
180 boot_reg = ioremap_nocache((phys_addr_t)secondary_boot_addr,
181 sizeof(phys_addr_t));
9a5a110e
AE
182 if (!boot_reg) {
183 pr_err("unable to map boot register for cpu %u\n", cpu_id);
84320e1a 184 return -ENOMEM;
9a5a110e
AE
185 }
186
187 /*
188 * Secondary cores will start in secondary_startup(),
189 * defined in "arch/arm/kernel/head.S"
190 */
191 boot_func = virt_to_phys(secondary_startup);
192 BUG_ON(boot_func & BOOT_ADDR_CPUID_MASK);
193 BUG_ON(boot_func > (phys_addr_t)U32_MAX);
194
195 /* The core to start is encoded in the low bits */
196 boot_val = (u32)boot_func | cpu_id;
197 writel_relaxed(boot_val, boot_reg);
198
199 sev();
200
201 /* The low bits will be cleared once the core has started */
202 start_clock = local_clock();
203 while (!timeout && readl_relaxed(boot_reg) == boot_val)
204 timeout = local_clock() - start_clock > SECONDARY_TIMEOUT_NS;
205
206 iounmap(boot_reg);
207
208 if (!timeout)
209 return 0;
210
211 pr_err("timeout waiting for cpu %u to start\n", cpu_id);
212
84320e1a 213 return -ENXIO;
9a5a110e
AE
214}
215
97890821
KH
216static int nsp_boot_secondary(unsigned int cpu, struct task_struct *idle)
217{
218 int ret;
219
220 /*
221 * After wake up, secondary core branches to the startup
222 * address programmed at SKU ROM LUT location.
223 */
6585cb5a 224 ret = nsp_write_lut(cpu);
97890821
KH
225 if (ret) {
226 pr_err("unable to write startup addr to SKU ROM LUT\n");
227 goto out;
228 }
229
230 /* Send a CPU wakeup interrupt to the secondary core */
231 arch_send_wakeup_ipi_mask(cpumask_of(cpu));
232
233out:
234 return ret;
235}
236
6585cb5a 237static const struct smp_operations kona_smp_ops __initconst = {
9a5a110e 238 .smp_prepare_cpus = bcm_smp_prepare_cpus,
84320e1a 239 .smp_boot_secondary = kona_boot_secondary,
9a5a110e
AE
240};
241CPU_METHOD_OF_DECLARE(bcm_smp_bcm281xx, "brcm,bcm11351-cpu-method",
6585cb5a 242 &kona_smp_ops);
97890821 243
9480e085 244static const struct smp_operations nsp_smp_ops __initconst = {
97890821
KH
245 .smp_prepare_cpus = bcm_smp_prepare_cpus,
246 .smp_boot_secondary = nsp_boot_secondary,
247};
248CPU_METHOD_OF_DECLARE(bcm_smp_nsp, "brcm,bcm-nsp-smp", &nsp_smp_ops);
This page took 0.104774 seconds and 5 git commands to generate.