davinci: edma: clear interrupt status for interrupt enabled channels only
[deliverable/linux.git] / arch / arm / mach-davinci / dma.c
CommitLineData
a4768d22
KH
1/*
2 * EDMA3 support for DaVinci
3 *
4 * Copyright (C) 2006-2009 Texas Instruments.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20#include <linux/kernel.h>
a4768d22
KH
21#include <linux/init.h>
22#include <linux/module.h>
23#include <linux/interrupt.h>
24#include <linux/platform_device.h>
a4768d22 25#include <linux/io.h>
5a0e3ad6 26#include <linux/slab.h>
a4768d22 27
a4768d22 28#include <mach/edma.h>
a4768d22
KH
29
30/* Offsets matching "struct edmacc_param" */
31#define PARM_OPT 0x00
32#define PARM_SRC 0x04
33#define PARM_A_B_CNT 0x08
34#define PARM_DST 0x0c
35#define PARM_SRC_DST_BIDX 0x10
36#define PARM_LINK_BCNTRLD 0x14
37#define PARM_SRC_DST_CIDX 0x18
38#define PARM_CCNT 0x1c
39
40#define PARM_SIZE 0x20
41
42/* Offsets for EDMA CC global channel registers and their shadows */
43#define SH_ER 0x00 /* 64 bits */
44#define SH_ECR 0x08 /* 64 bits */
45#define SH_ESR 0x10 /* 64 bits */
46#define SH_CER 0x18 /* 64 bits */
47#define SH_EER 0x20 /* 64 bits */
48#define SH_EECR 0x28 /* 64 bits */
49#define SH_EESR 0x30 /* 64 bits */
50#define SH_SER 0x38 /* 64 bits */
51#define SH_SECR 0x40 /* 64 bits */
52#define SH_IER 0x50 /* 64 bits */
53#define SH_IECR 0x58 /* 64 bits */
54#define SH_IESR 0x60 /* 64 bits */
55#define SH_IPR 0x68 /* 64 bits */
56#define SH_ICR 0x70 /* 64 bits */
57#define SH_IEVAL 0x78
58#define SH_QER 0x80
59#define SH_QEER 0x84
60#define SH_QEECR 0x88
61#define SH_QEESR 0x8c
62#define SH_QSER 0x90
63#define SH_QSECR 0x94
64#define SH_SIZE 0x200
65
66/* Offsets for EDMA CC global registers */
67#define EDMA_REV 0x0000
68#define EDMA_CCCFG 0x0004
69#define EDMA_QCHMAP 0x0200 /* 8 registers */
70#define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
71#define EDMA_QDMAQNUM 0x0260
72#define EDMA_QUETCMAP 0x0280
73#define EDMA_QUEPRI 0x0284
74#define EDMA_EMR 0x0300 /* 64 bits */
75#define EDMA_EMCR 0x0308 /* 64 bits */
76#define EDMA_QEMR 0x0310
77#define EDMA_QEMCR 0x0314
78#define EDMA_CCERR 0x0318
79#define EDMA_CCERRCLR 0x031c
80#define EDMA_EEVAL 0x0320
81#define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
82#define EDMA_QRAE 0x0380 /* 4 registers */
83#define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
84#define EDMA_QSTAT 0x0600 /* 2 registers */
85#define EDMA_QWMTHRA 0x0620
86#define EDMA_QWMTHRB 0x0624
87#define EDMA_CCSTAT 0x0640
88
89#define EDMA_M 0x1000 /* global channel registers */
90#define EDMA_ECR 0x1008
91#define EDMA_ECRH 0x100C
92#define EDMA_SHADOW0 0x2000 /* 4 regions shadowing global channels */
93#define EDMA_PARM 0x4000 /* 128 param entries */
94
a4768d22
KH
95#define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
96
60902a2c
SR
97#define EDMA_DCHMAP 0x0100 /* 64 registers */
98#define CHMAP_EXIST BIT(24)
99
a4768d22
KH
100#define EDMA_MAX_DMACH 64
101#define EDMA_MAX_PARAMENTRY 512
60902a2c 102#define EDMA_MAX_CC 2
a4768d22
KH
103
104
105/*****************************************************************************/
106
60902a2c 107static void __iomem *edmacc_regs_base[EDMA_MAX_CC];
a4768d22 108
60902a2c 109static inline unsigned int edma_read(unsigned ctlr, int offset)
a4768d22 110{
60902a2c 111 return (unsigned int)__raw_readl(edmacc_regs_base[ctlr] + offset);
a4768d22
KH
112}
113
60902a2c 114static inline void edma_write(unsigned ctlr, int offset, int val)
a4768d22 115{
60902a2c 116 __raw_writel(val, edmacc_regs_base[ctlr] + offset);
a4768d22 117}
60902a2c
SR
118static inline void edma_modify(unsigned ctlr, int offset, unsigned and,
119 unsigned or)
a4768d22 120{
60902a2c 121 unsigned val = edma_read(ctlr, offset);
a4768d22
KH
122 val &= and;
123 val |= or;
60902a2c 124 edma_write(ctlr, offset, val);
a4768d22 125}
60902a2c 126static inline void edma_and(unsigned ctlr, int offset, unsigned and)
a4768d22 127{
60902a2c 128 unsigned val = edma_read(ctlr, offset);
a4768d22 129 val &= and;
60902a2c 130 edma_write(ctlr, offset, val);
a4768d22 131}
60902a2c 132static inline void edma_or(unsigned ctlr, int offset, unsigned or)
a4768d22 133{
60902a2c 134 unsigned val = edma_read(ctlr, offset);
a4768d22 135 val |= or;
60902a2c 136 edma_write(ctlr, offset, val);
a4768d22 137}
60902a2c 138static inline unsigned int edma_read_array(unsigned ctlr, int offset, int i)
a4768d22 139{
60902a2c 140 return edma_read(ctlr, offset + (i << 2));
a4768d22 141}
60902a2c
SR
142static inline void edma_write_array(unsigned ctlr, int offset, int i,
143 unsigned val)
a4768d22 144{
60902a2c 145 edma_write(ctlr, offset + (i << 2), val);
a4768d22 146}
60902a2c 147static inline void edma_modify_array(unsigned ctlr, int offset, int i,
a4768d22
KH
148 unsigned and, unsigned or)
149{
60902a2c 150 edma_modify(ctlr, offset + (i << 2), and, or);
a4768d22 151}
60902a2c 152static inline void edma_or_array(unsigned ctlr, int offset, int i, unsigned or)
a4768d22 153{
60902a2c 154 edma_or(ctlr, offset + (i << 2), or);
a4768d22 155}
60902a2c
SR
156static inline void edma_or_array2(unsigned ctlr, int offset, int i, int j,
157 unsigned or)
a4768d22 158{
60902a2c 159 edma_or(ctlr, offset + ((i*2 + j) << 2), or);
a4768d22 160}
60902a2c
SR
161static inline void edma_write_array2(unsigned ctlr, int offset, int i, int j,
162 unsigned val)
a4768d22 163{
60902a2c 164 edma_write(ctlr, offset + ((i*2 + j) << 2), val);
a4768d22 165}
60902a2c 166static inline unsigned int edma_shadow0_read(unsigned ctlr, int offset)
a4768d22 167{
60902a2c 168 return edma_read(ctlr, EDMA_SHADOW0 + offset);
a4768d22 169}
60902a2c
SR
170static inline unsigned int edma_shadow0_read_array(unsigned ctlr, int offset,
171 int i)
a4768d22 172{
60902a2c 173 return edma_read(ctlr, EDMA_SHADOW0 + offset + (i << 2));
a4768d22 174}
60902a2c 175static inline void edma_shadow0_write(unsigned ctlr, int offset, unsigned val)
a4768d22 176{
60902a2c 177 edma_write(ctlr, EDMA_SHADOW0 + offset, val);
a4768d22 178}
60902a2c
SR
179static inline void edma_shadow0_write_array(unsigned ctlr, int offset, int i,
180 unsigned val)
a4768d22 181{
60902a2c 182 edma_write(ctlr, EDMA_SHADOW0 + offset + (i << 2), val);
a4768d22 183}
60902a2c
SR
184static inline unsigned int edma_parm_read(unsigned ctlr, int offset,
185 int param_no)
a4768d22 186{
60902a2c 187 return edma_read(ctlr, EDMA_PARM + offset + (param_no << 5));
a4768d22 188}
60902a2c
SR
189static inline void edma_parm_write(unsigned ctlr, int offset, int param_no,
190 unsigned val)
a4768d22 191{
60902a2c 192 edma_write(ctlr, EDMA_PARM + offset + (param_no << 5), val);
a4768d22 193}
60902a2c 194static inline void edma_parm_modify(unsigned ctlr, int offset, int param_no,
a4768d22
KH
195 unsigned and, unsigned or)
196{
60902a2c 197 edma_modify(ctlr, EDMA_PARM + offset + (param_no << 5), and, or);
a4768d22 198}
60902a2c
SR
199static inline void edma_parm_and(unsigned ctlr, int offset, int param_no,
200 unsigned and)
a4768d22 201{
60902a2c 202 edma_and(ctlr, EDMA_PARM + offset + (param_no << 5), and);
a4768d22 203}
60902a2c
SR
204static inline void edma_parm_or(unsigned ctlr, int offset, int param_no,
205 unsigned or)
a4768d22 206{
60902a2c 207 edma_or(ctlr, EDMA_PARM + offset + (param_no << 5), or);
a4768d22
KH
208}
209
210/*****************************************************************************/
211
212/* actual number of DMA channels and slots on this silicon */
60902a2c
SR
213struct edma {
214 /* how many dma resources of each type */
215 unsigned num_channels;
216 unsigned num_region;
217 unsigned num_slots;
218 unsigned num_tc;
219 unsigned num_cc;
a0f0202e 220 enum dma_event_q default_queue;
60902a2c
SR
221
222 /* list of channels with no even trigger; terminated by "-1" */
223 const s8 *noevent;
224
225 /* The edma_inuse bit for each PaRAM slot is clear unless the
226 * channel is in use ... by ARM or DSP, for QDMA, or whatever.
227 */
228 DECLARE_BITMAP(edma_inuse, EDMA_MAX_PARAMENTRY);
a4768d22 229
f900d552
SR
230 /* The edma_unused bit for each channel is clear unless
231 * it is not being used on this platform. It uses a bit
232 * of SOC-specific initialization code.
60902a2c 233 */
f900d552 234 DECLARE_BITMAP(edma_unused, EDMA_MAX_DMACH);
a4768d22 235
60902a2c
SR
236 unsigned irq_res_start;
237 unsigned irq_res_end;
a4768d22 238
60902a2c
SR
239 struct dma_interrupt_data {
240 void (*callback)(unsigned channel, unsigned short ch_status,
241 void *data);
242 void *data;
243 } intr_data[EDMA_MAX_DMACH];
244};
245
246static struct edma *edma_info[EDMA_MAX_CC];
2d517508 247static int arch_num_cc;
a4768d22
KH
248
249/* dummy param set used to (re)initialize parameter RAM slots */
250static const struct edmacc_param dummy_paramset = {
251 .link_bcntrld = 0xffff,
252 .ccnt = 1,
253};
254
a4768d22
KH
255/*****************************************************************************/
256
60902a2c
SR
257static void map_dmach_queue(unsigned ctlr, unsigned ch_no,
258 enum dma_event_q queue_no)
a4768d22
KH
259{
260 int bit = (ch_no & 0x7) * 4;
261
262 /* default to low priority queue */
263 if (queue_no == EVENTQ_DEFAULT)
a0f0202e 264 queue_no = edma_info[ctlr]->default_queue;
a4768d22
KH
265
266 queue_no &= 7;
60902a2c 267 edma_modify_array(ctlr, EDMA_DMAQNUM, (ch_no >> 3),
a4768d22
KH
268 ~(0x7 << bit), queue_no << bit);
269}
270
60902a2c 271static void __init map_queue_tc(unsigned ctlr, int queue_no, int tc_no)
a4768d22
KH
272{
273 int bit = queue_no * 4;
60902a2c 274 edma_modify(ctlr, EDMA_QUETCMAP, ~(0x7 << bit), ((tc_no & 0x7) << bit));
a4768d22
KH
275}
276
60902a2c
SR
277static void __init assign_priority_to_queue(unsigned ctlr, int queue_no,
278 int priority)
a4768d22
KH
279{
280 int bit = queue_no * 4;
60902a2c
SR
281 edma_modify(ctlr, EDMA_QUEPRI, ~(0x7 << bit),
282 ((priority & 0x7) << bit));
283}
284
285/**
286 * map_dmach_param - Maps channel number to param entry number
287 *
288 * This maps the dma channel number to param entry numberter. In
289 * other words using the DMA channel mapping registers a param entry
290 * can be mapped to any channel
291 *
292 * Callers are responsible for ensuring the channel mapping logic is
293 * included in that particular EDMA variant (Eg : dm646x)
294 *
295 */
296static void __init map_dmach_param(unsigned ctlr)
297{
298 int i;
299 for (i = 0; i < EDMA_MAX_DMACH; i++)
300 edma_write_array(ctlr, EDMA_DCHMAP , i , (i << 5));
a4768d22
KH
301}
302
303static inline void
304setup_dma_interrupt(unsigned lch,
305 void (*callback)(unsigned channel, u16 ch_status, void *data),
306 void *data)
307{
60902a2c
SR
308 unsigned ctlr;
309
310 ctlr = EDMA_CTLR(lch);
311 lch = EDMA_CHAN_SLOT(lch);
312
a4768d22 313 if (!callback) {
60902a2c 314 edma_shadow0_write_array(ctlr, SH_IECR, lch >> 5,
a4768d22
KH
315 (1 << (lch & 0x1f)));
316 }
317
60902a2c
SR
318 edma_info[ctlr]->intr_data[lch].callback = callback;
319 edma_info[ctlr]->intr_data[lch].data = data;
a4768d22
KH
320
321 if (callback) {
60902a2c 322 edma_shadow0_write_array(ctlr, SH_ICR, lch >> 5,
a4768d22 323 (1 << (lch & 0x1f)));
60902a2c 324 edma_shadow0_write_array(ctlr, SH_IESR, lch >> 5,
a4768d22
KH
325 (1 << (lch & 0x1f)));
326 }
327}
328
60902a2c
SR
329static int irq2ctlr(int irq)
330{
331 if (irq >= edma_info[0]->irq_res_start &&
332 irq <= edma_info[0]->irq_res_end)
333 return 0;
334 else if (irq >= edma_info[1]->irq_res_start &&
335 irq <= edma_info[1]->irq_res_end)
336 return 1;
337
338 return -1;
339}
340
a4768d22
KH
341/******************************************************************************
342 *
343 * DMA interrupt handler
344 *
345 *****************************************************************************/
346static irqreturn_t dma_irq_handler(int irq, void *data)
347{
348 int i;
60902a2c 349 unsigned ctlr;
a4768d22
KH
350 unsigned int cnt = 0;
351
60902a2c
SR
352 ctlr = irq2ctlr(irq);
353
a4768d22
KH
354 dev_dbg(data, "dma_irq_handler\n");
355
60902a2c
SR
356 if ((edma_shadow0_read_array(ctlr, SH_IPR, 0) == 0)
357 && (edma_shadow0_read_array(ctlr, SH_IPR, 1) == 0))
a4768d22
KH
358 return IRQ_NONE;
359
360 while (1) {
361 int j;
a7e05065
AA
362 if (edma_shadow0_read_array(ctlr, SH_IPR, 0) &
363 edma_shadow0_read_array(ctlr, SH_IER, 0))
a4768d22 364 j = 0;
a7e05065
AA
365 else if (edma_shadow0_read_array(ctlr, SH_IPR, 1) &
366 edma_shadow0_read_array(ctlr, SH_IER, 1))
a4768d22
KH
367 j = 1;
368 else
369 break;
370 dev_dbg(data, "IPR%d %08x\n", j,
60902a2c 371 edma_shadow0_read_array(ctlr, SH_IPR, j));
a4768d22
KH
372 for (i = 0; i < 32; i++) {
373 int k = (j << 5) + i;
a7e05065
AA
374 if ((edma_shadow0_read_array(ctlr, SH_IPR, j) & BIT(i))
375 && (edma_shadow0_read_array(ctlr,
376 SH_IER, j) & BIT(i))) {
a4768d22 377 /* Clear the corresponding IPR bits */
60902a2c
SR
378 edma_shadow0_write_array(ctlr, SH_ICR, j,
379 (1 << i));
380 if (edma_info[ctlr]->intr_data[k].callback) {
381 edma_info[ctlr]->intr_data[k].callback(
382 k, DMA_COMPLETE,
383 edma_info[ctlr]->intr_data[k].
384 data);
a4768d22
KH
385 }
386 }
387 }
388 cnt++;
389 if (cnt > 10)
390 break;
391 }
60902a2c 392 edma_shadow0_write(ctlr, SH_IEVAL, 1);
a4768d22
KH
393 return IRQ_HANDLED;
394}
395
396/******************************************************************************
397 *
398 * DMA error interrupt handler
399 *
400 *****************************************************************************/
401static irqreturn_t dma_ccerr_handler(int irq, void *data)
402{
403 int i;
60902a2c 404 unsigned ctlr;
a4768d22
KH
405 unsigned int cnt = 0;
406
60902a2c
SR
407 ctlr = irq2ctlr(irq);
408
a4768d22
KH
409 dev_dbg(data, "dma_ccerr_handler\n");
410
60902a2c
SR
411 if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
412 (edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
413 (edma_read(ctlr, EDMA_QEMR) == 0) &&
414 (edma_read(ctlr, EDMA_CCERR) == 0))
a4768d22
KH
415 return IRQ_NONE;
416
417 while (1) {
418 int j = -1;
60902a2c 419 if (edma_read_array(ctlr, EDMA_EMR, 0))
a4768d22 420 j = 0;
60902a2c 421 else if (edma_read_array(ctlr, EDMA_EMR, 1))
a4768d22
KH
422 j = 1;
423 if (j >= 0) {
424 dev_dbg(data, "EMR%d %08x\n", j,
60902a2c 425 edma_read_array(ctlr, EDMA_EMR, j));
a4768d22
KH
426 for (i = 0; i < 32; i++) {
427 int k = (j << 5) + i;
60902a2c
SR
428 if (edma_read_array(ctlr, EDMA_EMR, j) &
429 (1 << i)) {
a4768d22 430 /* Clear the corresponding EMR bits */
60902a2c
SR
431 edma_write_array(ctlr, EDMA_EMCR, j,
432 1 << i);
a4768d22 433 /* Clear any SER */
60902a2c
SR
434 edma_shadow0_write_array(ctlr, SH_SECR,
435 j, (1 << i));
436 if (edma_info[ctlr]->intr_data[k].
437 callback) {
438 edma_info[ctlr]->intr_data[k].
439 callback(k,
440 DMA_CC_ERROR,
441 edma_info[ctlr]->intr_data
442 [k].data);
a4768d22
KH
443 }
444 }
445 }
60902a2c 446 } else if (edma_read(ctlr, EDMA_QEMR)) {
a4768d22 447 dev_dbg(data, "QEMR %02x\n",
60902a2c 448 edma_read(ctlr, EDMA_QEMR));
a4768d22 449 for (i = 0; i < 8; i++) {
60902a2c 450 if (edma_read(ctlr, EDMA_QEMR) & (1 << i)) {
a4768d22 451 /* Clear the corresponding IPR bits */
60902a2c
SR
452 edma_write(ctlr, EDMA_QEMCR, 1 << i);
453 edma_shadow0_write(ctlr, SH_QSECR,
454 (1 << i));
a4768d22
KH
455
456 /* NOTE: not reported!! */
457 }
458 }
60902a2c 459 } else if (edma_read(ctlr, EDMA_CCERR)) {
a4768d22 460 dev_dbg(data, "CCERR %08x\n",
60902a2c 461 edma_read(ctlr, EDMA_CCERR));
a4768d22
KH
462 /* FIXME: CCERR.BIT(16) ignored! much better
463 * to just write CCERRCLR with CCERR value...
464 */
465 for (i = 0; i < 8; i++) {
60902a2c 466 if (edma_read(ctlr, EDMA_CCERR) & (1 << i)) {
a4768d22 467 /* Clear the corresponding IPR bits */
60902a2c 468 edma_write(ctlr, EDMA_CCERRCLR, 1 << i);
a4768d22
KH
469
470 /* NOTE: not reported!! */
471 }
472 }
473 }
60902a2c
SR
474 if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0)
475 && (edma_read_array(ctlr, EDMA_EMR, 1) == 0)
476 && (edma_read(ctlr, EDMA_QEMR) == 0)
477 && (edma_read(ctlr, EDMA_CCERR) == 0)) {
a4768d22
KH
478 break;
479 }
480 cnt++;
481 if (cnt > 10)
482 break;
483 }
60902a2c 484 edma_write(ctlr, EDMA_EEVAL, 1);
a4768d22
KH
485 return IRQ_HANDLED;
486}
487
488/******************************************************************************
489 *
490 * Transfer controller error interrupt handlers
491 *
492 *****************************************************************************/
493
494#define tc_errs_handled false /* disabled as long as they're NOPs */
495
496static irqreturn_t dma_tc0err_handler(int irq, void *data)
497{
498 dev_dbg(data, "dma_tc0err_handler\n");
499 return IRQ_HANDLED;
500}
501
502static irqreturn_t dma_tc1err_handler(int irq, void *data)
503{
504 dev_dbg(data, "dma_tc1err_handler\n");
505 return IRQ_HANDLED;
506}
507
134ce221
SP
508static int reserve_contiguous_slots(int ctlr, unsigned int id,
509 unsigned int num_slots,
510 unsigned int start_slot)
213765d7
SP
511{
512 int i, j;
134ce221
SP
513 unsigned int count = num_slots;
514 int stop_slot = start_slot;
cc93fc3f 515 DECLARE_BITMAP(tmp_inuse, EDMA_MAX_PARAMENTRY);
213765d7 516
134ce221 517 for (i = start_slot; i < edma_info[ctlr]->num_slots; ++i) {
213765d7 518 j = EDMA_CHAN_SLOT(i);
cc93fc3f
SP
519 if (!test_and_set_bit(j, edma_info[ctlr]->edma_inuse)) {
520 /* Record our current beginning slot */
134ce221
SP
521 if (count == num_slots)
522 stop_slot = i;
cc93fc3f 523
213765d7 524 count--;
cc93fc3f
SP
525 set_bit(j, tmp_inuse);
526
213765d7
SP
527 if (count == 0)
528 break;
cc93fc3f
SP
529 } else {
530 clear_bit(j, tmp_inuse);
531
532 if (id == EDMA_CONT_PARAMS_FIXED_EXACT) {
134ce221 533 stop_slot = i;
cc93fc3f
SP
534 break;
535 } else
134ce221 536 count = num_slots;
cc93fc3f 537 }
213765d7
SP
538 }
539
540 /*
541 * We have to clear any bits that we set
134ce221
SP
542 * if we run out parameter RAM slots, i.e we do find a set
543 * of contiguous parameter RAM slots but do not find the exact number
544 * requested as we may reach the total number of parameter RAM slots
213765d7 545 */
cc93fc3f 546 if (i == edma_info[ctlr]->num_slots)
134ce221 547 stop_slot = i;
cc93fc3f 548
134ce221 549 for (j = start_slot; j < stop_slot; j++)
cc93fc3f 550 if (test_bit(j, tmp_inuse))
213765d7
SP
551 clear_bit(j, edma_info[ctlr]->edma_inuse);
552
cc93fc3f 553 if (count)
213765d7 554 return -EBUSY;
213765d7 555
134ce221 556 for (j = i - num_slots + 1; j <= i; ++j)
213765d7
SP
557 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(j),
558 &dummy_paramset, PARM_SIZE);
559
134ce221 560 return EDMA_CTLR_CHAN(ctlr, i - num_slots + 1);
213765d7
SP
561}
562
f900d552
SR
563static int prepare_unused_channel_list(struct device *dev, void *data)
564{
565 struct platform_device *pdev = to_platform_device(dev);
566 int i, ctlr;
567
568 for (i = 0; i < pdev->num_resources; i++) {
569 if ((pdev->resource[i].flags & IORESOURCE_DMA) &&
570 (int)pdev->resource[i].start >= 0) {
571 ctlr = EDMA_CTLR(pdev->resource[i].start);
572 clear_bit(EDMA_CHAN_SLOT(pdev->resource[i].start),
573 edma_info[ctlr]->edma_unused);
574 }
575 }
576
577 return 0;
578}
579
a4768d22
KH
580/*-----------------------------------------------------------------------*/
581
f900d552
SR
582static bool unused_chan_list_done;
583
a4768d22
KH
584/* Resource alloc/free: dma channels, parameter RAM slots */
585
586/**
587 * edma_alloc_channel - allocate DMA channel and paired parameter RAM
588 * @channel: specific channel to allocate; negative for "any unmapped channel"
589 * @callback: optional; to be issued on DMA completion or errors
590 * @data: passed to callback
591 * @eventq_no: an EVENTQ_* constant, used to choose which Transfer
592 * Controller (TC) executes requests using this channel. Use
593 * EVENTQ_DEFAULT unless you really need a high priority queue.
594 *
595 * This allocates a DMA channel and its associated parameter RAM slot.
596 * The parameter RAM is initialized to hold a dummy transfer.
597 *
598 * Normal use is to pass a specific channel number as @channel, to make
599 * use of hardware events mapped to that channel. When the channel will
600 * be used only for software triggering or event chaining, channels not
601 * mapped to hardware events (or mapped to unused events) are preferable.
602 *
603 * DMA transfers start from a channel using edma_start(), or by
604 * chaining. When the transfer described in that channel's parameter RAM
605 * slot completes, that slot's data may be reloaded through a link.
606 *
607 * DMA errors are only reported to the @callback associated with the
608 * channel driving that transfer, but transfer completion callbacks can
609 * be sent to another channel under control of the TCC field in
610 * the option word of the transfer's parameter RAM set. Drivers must not
611 * use DMA transfer completion callbacks for channels they did not allocate.
612 * (The same applies to TCC codes used in transfer chaining.)
613 *
614 * Returns the number of the channel, else negative errno.
615 */
616int edma_alloc_channel(int channel,
617 void (*callback)(unsigned channel, u16 ch_status, void *data),
618 void *data,
619 enum dma_event_q eventq_no)
620{
447f18f1 621 unsigned i, done = 0, ctlr = 0;
f900d552
SR
622 int ret = 0;
623
624 if (!unused_chan_list_done) {
625 /*
626 * Scan all the platform devices to find out the EDMA channels
627 * used and clear them in the unused list, making the rest
628 * available for ARM usage.
629 */
630 ret = bus_for_each_dev(&platform_bus_type, NULL, NULL,
631 prepare_unused_channel_list);
632 if (ret < 0)
633 return ret;
634
635 unused_chan_list_done = true;
636 }
60902a2c
SR
637
638 if (channel >= 0) {
639 ctlr = EDMA_CTLR(channel);
640 channel = EDMA_CHAN_SLOT(channel);
641 }
642
a4768d22 643 if (channel < 0) {
2d517508 644 for (i = 0; i < arch_num_cc; i++) {
60902a2c
SR
645 channel = 0;
646 for (;;) {
647 channel = find_next_bit(edma_info[i]->
f900d552 648 edma_unused,
60902a2c
SR
649 edma_info[i]->num_channels,
650 channel);
651 if (channel == edma_info[i]->num_channels)
447f18f1 652 break;
60902a2c
SR
653 if (!test_and_set_bit(channel,
654 edma_info[i]->edma_inuse)) {
655 done = 1;
656 ctlr = i;
657 break;
658 }
659 channel++;
660 }
661 if (done)
a4768d22 662 break;
a4768d22 663 }
447f18f1
SR
664 if (!done)
665 return -ENOMEM;
60902a2c 666 } else if (channel >= edma_info[ctlr]->num_channels) {
a4768d22 667 return -EINVAL;
60902a2c 668 } else if (test_and_set_bit(channel, edma_info[ctlr]->edma_inuse)) {
a4768d22
KH
669 return -EBUSY;
670 }
671
672 /* ensure access through shadow region 0 */
60902a2c 673 edma_or_array2(ctlr, EDMA_DRAE, 0, channel >> 5, 1 << (channel & 0x1f));
a4768d22
KH
674
675 /* ensure no events are pending */
60902a2c
SR
676 edma_stop(EDMA_CTLR_CHAN(ctlr, channel));
677 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
a4768d22
KH
678 &dummy_paramset, PARM_SIZE);
679
680 if (callback)
60902a2c
SR
681 setup_dma_interrupt(EDMA_CTLR_CHAN(ctlr, channel),
682 callback, data);
a4768d22 683
60902a2c 684 map_dmach_queue(ctlr, channel, eventq_no);
a4768d22 685
0e6cb8d2 686 return EDMA_CTLR_CHAN(ctlr, channel);
a4768d22
KH
687}
688EXPORT_SYMBOL(edma_alloc_channel);
689
690
691/**
692 * edma_free_channel - deallocate DMA channel
693 * @channel: dma channel returned from edma_alloc_channel()
694 *
695 * This deallocates the DMA channel and associated parameter RAM slot
696 * allocated by edma_alloc_channel().
697 *
698 * Callers are responsible for ensuring the channel is inactive, and
699 * will not be reactivated by linking, chaining, or software calls to
700 * edma_start().
701 */
702void edma_free_channel(unsigned channel)
703{
60902a2c
SR
704 unsigned ctlr;
705
706 ctlr = EDMA_CTLR(channel);
707 channel = EDMA_CHAN_SLOT(channel);
708
709 if (channel >= edma_info[ctlr]->num_channels)
a4768d22
KH
710 return;
711
712 setup_dma_interrupt(channel, NULL, NULL);
713 /* REVISIT should probably take out of shadow region 0 */
714
60902a2c 715 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
a4768d22 716 &dummy_paramset, PARM_SIZE);
60902a2c 717 clear_bit(channel, edma_info[ctlr]->edma_inuse);
a4768d22
KH
718}
719EXPORT_SYMBOL(edma_free_channel);
720
721/**
722 * edma_alloc_slot - allocate DMA parameter RAM
723 * @slot: specific slot to allocate; negative for "any unused slot"
724 *
725 * This allocates a parameter RAM slot, initializing it to hold a
726 * dummy transfer. Slots allocated using this routine have not been
727 * mapped to a hardware DMA channel, and will normally be used by
728 * linking to them from a slot associated with a DMA channel.
729 *
730 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
731 * slots may be allocated on behalf of DSP firmware.
732 *
733 * Returns the number of the slot, else negative errno.
734 */
60902a2c 735int edma_alloc_slot(unsigned ctlr, int slot)
a4768d22 736{
60902a2c
SR
737 if (slot >= 0)
738 slot = EDMA_CHAN_SLOT(slot);
739
a4768d22 740 if (slot < 0) {
60902a2c 741 slot = edma_info[ctlr]->num_channels;
a4768d22 742 for (;;) {
60902a2c
SR
743 slot = find_next_zero_bit(edma_info[ctlr]->edma_inuse,
744 edma_info[ctlr]->num_slots, slot);
745 if (slot == edma_info[ctlr]->num_slots)
a4768d22 746 return -ENOMEM;
60902a2c
SR
747 if (!test_and_set_bit(slot,
748 edma_info[ctlr]->edma_inuse))
a4768d22
KH
749 break;
750 }
60902a2c
SR
751 } else if (slot < edma_info[ctlr]->num_channels ||
752 slot >= edma_info[ctlr]->num_slots) {
a4768d22 753 return -EINVAL;
60902a2c 754 } else if (test_and_set_bit(slot, edma_info[ctlr]->edma_inuse)) {
a4768d22
KH
755 return -EBUSY;
756 }
757
60902a2c 758 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
a4768d22
KH
759 &dummy_paramset, PARM_SIZE);
760
60902a2c 761 return EDMA_CTLR_CHAN(ctlr, slot);
a4768d22
KH
762}
763EXPORT_SYMBOL(edma_alloc_slot);
764
765/**
766 * edma_free_slot - deallocate DMA parameter RAM
767 * @slot: parameter RAM slot returned from edma_alloc_slot()
768 *
769 * This deallocates the parameter RAM slot allocated by edma_alloc_slot().
770 * Callers are responsible for ensuring the slot is inactive, and will
771 * not be activated.
772 */
773void edma_free_slot(unsigned slot)
774{
60902a2c
SR
775 unsigned ctlr;
776
777 ctlr = EDMA_CTLR(slot);
778 slot = EDMA_CHAN_SLOT(slot);
779
780 if (slot < edma_info[ctlr]->num_channels ||
781 slot >= edma_info[ctlr]->num_slots)
a4768d22
KH
782 return;
783
60902a2c 784 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
a4768d22 785 &dummy_paramset, PARM_SIZE);
60902a2c 786 clear_bit(slot, edma_info[ctlr]->edma_inuse);
a4768d22
KH
787}
788EXPORT_SYMBOL(edma_free_slot);
789
213765d7
SP
790
791/**
792 * edma_alloc_cont_slots- alloc contiguous parameter RAM slots
793 * The API will return the starting point of a set of
134ce221 794 * contiguous parameter RAM slots that have been requested
213765d7
SP
795 *
796 * @id: can only be EDMA_CONT_PARAMS_ANY or EDMA_CONT_PARAMS_FIXED_EXACT
797 * or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
134ce221
SP
798 * @count: number of contiguous Paramter RAM slots
799 * @slot - the start value of Parameter RAM slot that should be passed if id
213765d7
SP
800 * is EDMA_CONT_PARAMS_FIXED_EXACT or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
801 *
802 * If id is EDMA_CONT_PARAMS_ANY then the API starts looking for a set of
134ce221
SP
803 * contiguous Parameter RAM slots from parameter RAM 64 in the case of
804 * DaVinci SOCs and 32 in the case of DA8xx SOCs.
213765d7
SP
805 *
806 * If id is EDMA_CONT_PARAMS_FIXED_EXACT then the API starts looking for a
134ce221 807 * set of contiguous parameter RAM slots from the "slot" that is passed as an
213765d7
SP
808 * argument to the API.
809 *
810 * If id is EDMA_CONT_PARAMS_FIXED_NOT_EXACT then the API initially tries
134ce221 811 * starts looking for a set of contiguous parameter RAMs from the "slot"
213765d7 812 * that is passed as an argument to the API. On failure the API will try to
134ce221
SP
813 * find a set of contiguous Parameter RAM slots from the remaining Parameter
814 * RAM slots
213765d7
SP
815 */
816int edma_alloc_cont_slots(unsigned ctlr, unsigned int id, int slot, int count)
817{
818 /*
819 * The start slot requested should be greater than
820 * the number of channels and lesser than the total number
821 * of slots
822 */
6b0cf4e9
SP
823 if ((id != EDMA_CONT_PARAMS_ANY) &&
824 (slot < edma_info[ctlr]->num_channels ||
825 slot >= edma_info[ctlr]->num_slots))
213765d7
SP
826 return -EINVAL;
827
828 /*
134ce221 829 * The number of parameter RAM slots requested cannot be less than 1
213765d7
SP
830 * and cannot be more than the number of slots minus the number of
831 * channels
832 */
833 if (count < 1 || count >
834 (edma_info[ctlr]->num_slots - edma_info[ctlr]->num_channels))
835 return -EINVAL;
836
837 switch (id) {
838 case EDMA_CONT_PARAMS_ANY:
134ce221 839 return reserve_contiguous_slots(ctlr, id, count,
213765d7
SP
840 edma_info[ctlr]->num_channels);
841 case EDMA_CONT_PARAMS_FIXED_EXACT:
842 case EDMA_CONT_PARAMS_FIXED_NOT_EXACT:
134ce221 843 return reserve_contiguous_slots(ctlr, id, count, slot);
213765d7
SP
844 default:
845 return -EINVAL;
846 }
847
848}
849EXPORT_SYMBOL(edma_alloc_cont_slots);
850
851/**
134ce221
SP
852 * edma_free_cont_slots - deallocate DMA parameter RAM slots
853 * @slot: first parameter RAM of a set of parameter RAM slots to be freed
854 * @count: the number of contiguous parameter RAM slots to be freed
213765d7
SP
855 *
856 * This deallocates the parameter RAM slots allocated by
857 * edma_alloc_cont_slots.
858 * Callers/applications need to keep track of sets of contiguous
134ce221 859 * parameter RAM slots that have been allocated using the edma_alloc_cont_slots
213765d7
SP
860 * API.
861 * Callers are responsible for ensuring the slots are inactive, and will
862 * not be activated.
863 */
864int edma_free_cont_slots(unsigned slot, int count)
865{
51c99e04 866 unsigned ctlr, slot_to_free;
213765d7
SP
867 int i;
868
869 ctlr = EDMA_CTLR(slot);
870 slot = EDMA_CHAN_SLOT(slot);
871
872 if (slot < edma_info[ctlr]->num_channels ||
873 slot >= edma_info[ctlr]->num_slots ||
874 count < 1)
875 return -EINVAL;
876
877 for (i = slot; i < slot + count; ++i) {
878 ctlr = EDMA_CTLR(i);
51c99e04 879 slot_to_free = EDMA_CHAN_SLOT(i);
213765d7 880
51c99e04 881 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot_to_free),
213765d7 882 &dummy_paramset, PARM_SIZE);
51c99e04 883 clear_bit(slot_to_free, edma_info[ctlr]->edma_inuse);
213765d7
SP
884 }
885
886 return 0;
887}
888EXPORT_SYMBOL(edma_free_cont_slots);
889
a4768d22
KH
890/*-----------------------------------------------------------------------*/
891
892/* Parameter RAM operations (i) -- read/write partial slots */
893
894/**
895 * edma_set_src - set initial DMA source address in parameter RAM slot
896 * @slot: parameter RAM slot being configured
897 * @src_port: physical address of source (memory, controller FIFO, etc)
898 * @addressMode: INCR, except in very rare cases
899 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
900 * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
901 *
902 * Note that the source address is modified during the DMA transfer
903 * according to edma_set_src_index().
904 */
905void edma_set_src(unsigned slot, dma_addr_t src_port,
906 enum address_mode mode, enum fifo_width width)
907{
60902a2c
SR
908 unsigned ctlr;
909
910 ctlr = EDMA_CTLR(slot);
911 slot = EDMA_CHAN_SLOT(slot);
912
913 if (slot < edma_info[ctlr]->num_slots) {
914 unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
a4768d22
KH
915
916 if (mode) {
917 /* set SAM and program FWID */
918 i = (i & ~(EDMA_FWID)) | (SAM | ((width & 0x7) << 8));
919 } else {
920 /* clear SAM */
921 i &= ~SAM;
922 }
60902a2c 923 edma_parm_write(ctlr, PARM_OPT, slot, i);
a4768d22
KH
924
925 /* set the source port address
926 in source register of param structure */
60902a2c 927 edma_parm_write(ctlr, PARM_SRC, slot, src_port);
a4768d22
KH
928 }
929}
930EXPORT_SYMBOL(edma_set_src);
931
932/**
933 * edma_set_dest - set initial DMA destination address in parameter RAM slot
934 * @slot: parameter RAM slot being configured
935 * @dest_port: physical address of destination (memory, controller FIFO, etc)
936 * @addressMode: INCR, except in very rare cases
937 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
938 * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
939 *
940 * Note that the destination address is modified during the DMA transfer
941 * according to edma_set_dest_index().
942 */
943void edma_set_dest(unsigned slot, dma_addr_t dest_port,
944 enum address_mode mode, enum fifo_width width)
945{
60902a2c
SR
946 unsigned ctlr;
947
948 ctlr = EDMA_CTLR(slot);
949 slot = EDMA_CHAN_SLOT(slot);
950
951 if (slot < edma_info[ctlr]->num_slots) {
952 unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
a4768d22
KH
953
954 if (mode) {
955 /* set DAM and program FWID */
956 i = (i & ~(EDMA_FWID)) | (DAM | ((width & 0x7) << 8));
957 } else {
958 /* clear DAM */
959 i &= ~DAM;
960 }
60902a2c 961 edma_parm_write(ctlr, PARM_OPT, slot, i);
a4768d22
KH
962 /* set the destination port address
963 in dest register of param structure */
60902a2c 964 edma_parm_write(ctlr, PARM_DST, slot, dest_port);
a4768d22
KH
965 }
966}
967EXPORT_SYMBOL(edma_set_dest);
968
969/**
970 * edma_get_position - returns the current transfer points
971 * @slot: parameter RAM slot being examined
972 * @src: pointer to source port position
973 * @dst: pointer to destination port position
974 *
975 * Returns current source and destination addresses for a particular
976 * parameter RAM slot. Its channel should not be active when this is called.
977 */
978void edma_get_position(unsigned slot, dma_addr_t *src, dma_addr_t *dst)
979{
980 struct edmacc_param temp;
60902a2c
SR
981 unsigned ctlr;
982
983 ctlr = EDMA_CTLR(slot);
984 slot = EDMA_CHAN_SLOT(slot);
a4768d22 985
60902a2c 986 edma_read_slot(EDMA_CTLR_CHAN(ctlr, slot), &temp);
a4768d22
KH
987 if (src != NULL)
988 *src = temp.src;
989 if (dst != NULL)
990 *dst = temp.dst;
991}
992EXPORT_SYMBOL(edma_get_position);
993
994/**
995 * edma_set_src_index - configure DMA source address indexing
996 * @slot: parameter RAM slot being configured
997 * @src_bidx: byte offset between source arrays in a frame
998 * @src_cidx: byte offset between source frames in a block
999 *
1000 * Offsets are specified to support either contiguous or discontiguous
1001 * memory transfers, or repeated access to a hardware register, as needed.
1002 * When accessing hardware registers, both offsets are normally zero.
1003 */
1004void edma_set_src_index(unsigned slot, s16 src_bidx, s16 src_cidx)
1005{
60902a2c
SR
1006 unsigned ctlr;
1007
1008 ctlr = EDMA_CTLR(slot);
1009 slot = EDMA_CHAN_SLOT(slot);
1010
1011 if (slot < edma_info[ctlr]->num_slots) {
1012 edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
a4768d22 1013 0xffff0000, src_bidx);
60902a2c 1014 edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
a4768d22
KH
1015 0xffff0000, src_cidx);
1016 }
1017}
1018EXPORT_SYMBOL(edma_set_src_index);
1019
1020/**
1021 * edma_set_dest_index - configure DMA destination address indexing
1022 * @slot: parameter RAM slot being configured
1023 * @dest_bidx: byte offset between destination arrays in a frame
1024 * @dest_cidx: byte offset between destination frames in a block
1025 *
1026 * Offsets are specified to support either contiguous or discontiguous
1027 * memory transfers, or repeated access to a hardware register, as needed.
1028 * When accessing hardware registers, both offsets are normally zero.
1029 */
1030void edma_set_dest_index(unsigned slot, s16 dest_bidx, s16 dest_cidx)
1031{
60902a2c
SR
1032 unsigned ctlr;
1033
1034 ctlr = EDMA_CTLR(slot);
1035 slot = EDMA_CHAN_SLOT(slot);
1036
1037 if (slot < edma_info[ctlr]->num_slots) {
1038 edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
a4768d22 1039 0x0000ffff, dest_bidx << 16);
60902a2c 1040 edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
a4768d22
KH
1041 0x0000ffff, dest_cidx << 16);
1042 }
1043}
1044EXPORT_SYMBOL(edma_set_dest_index);
1045
1046/**
1047 * edma_set_transfer_params - configure DMA transfer parameters
1048 * @slot: parameter RAM slot being configured
1049 * @acnt: how many bytes per array (at least one)
1050 * @bcnt: how many arrays per frame (at least one)
1051 * @ccnt: how many frames per block (at least one)
1052 * @bcnt_rld: used only for A-Synchronized transfers; this specifies
1053 * the value to reload into bcnt when it decrements to zero
1054 * @sync_mode: ASYNC or ABSYNC
1055 *
1056 * See the EDMA3 documentation to understand how to configure and link
1057 * transfers using the fields in PaRAM slots. If you are not doing it
1058 * all at once with edma_write_slot(), you will use this routine
1059 * plus two calls each for source and destination, setting the initial
1060 * address and saying how to index that address.
1061 *
1062 * An example of an A-Synchronized transfer is a serial link using a
1063 * single word shift register. In that case, @acnt would be equal to
1064 * that word size; the serial controller issues a DMA synchronization
1065 * event to transfer each word, and memory access by the DMA transfer
1066 * controller will be word-at-a-time.
1067 *
1068 * An example of an AB-Synchronized transfer is a device using a FIFO.
1069 * In that case, @acnt equals the FIFO width and @bcnt equals its depth.
1070 * The controller with the FIFO issues DMA synchronization events when
1071 * the FIFO threshold is reached, and the DMA transfer controller will
1072 * transfer one frame to (or from) the FIFO. It will probably use
1073 * efficient burst modes to access memory.
1074 */
1075void edma_set_transfer_params(unsigned slot,
1076 u16 acnt, u16 bcnt, u16 ccnt,
1077 u16 bcnt_rld, enum sync_dimension sync_mode)
1078{
60902a2c
SR
1079 unsigned ctlr;
1080
1081 ctlr = EDMA_CTLR(slot);
1082 slot = EDMA_CHAN_SLOT(slot);
1083
1084 if (slot < edma_info[ctlr]->num_slots) {
1085 edma_parm_modify(ctlr, PARM_LINK_BCNTRLD, slot,
a4768d22
KH
1086 0x0000ffff, bcnt_rld << 16);
1087 if (sync_mode == ASYNC)
60902a2c 1088 edma_parm_and(ctlr, PARM_OPT, slot, ~SYNCDIM);
a4768d22 1089 else
60902a2c 1090 edma_parm_or(ctlr, PARM_OPT, slot, SYNCDIM);
a4768d22 1091 /* Set the acount, bcount, ccount registers */
60902a2c
SR
1092 edma_parm_write(ctlr, PARM_A_B_CNT, slot, (bcnt << 16) | acnt);
1093 edma_parm_write(ctlr, PARM_CCNT, slot, ccnt);
a4768d22
KH
1094 }
1095}
1096EXPORT_SYMBOL(edma_set_transfer_params);
1097
1098/**
1099 * edma_link - link one parameter RAM slot to another
1100 * @from: parameter RAM slot originating the link
1101 * @to: parameter RAM slot which is the link target
1102 *
1103 * The originating slot should not be part of any active DMA transfer.
1104 */
1105void edma_link(unsigned from, unsigned to)
1106{
60902a2c
SR
1107 unsigned ctlr_from, ctlr_to;
1108
1109 ctlr_from = EDMA_CTLR(from);
1110 from = EDMA_CHAN_SLOT(from);
1111 ctlr_to = EDMA_CTLR(to);
1112 to = EDMA_CHAN_SLOT(to);
1113
1114 if (from >= edma_info[ctlr_from]->num_slots)
a4768d22 1115 return;
60902a2c 1116 if (to >= edma_info[ctlr_to]->num_slots)
a4768d22 1117 return;
60902a2c
SR
1118 edma_parm_modify(ctlr_from, PARM_LINK_BCNTRLD, from, 0xffff0000,
1119 PARM_OFFSET(to));
a4768d22
KH
1120}
1121EXPORT_SYMBOL(edma_link);
1122
1123/**
1124 * edma_unlink - cut link from one parameter RAM slot
1125 * @from: parameter RAM slot originating the link
1126 *
1127 * The originating slot should not be part of any active DMA transfer.
1128 * Its link is set to 0xffff.
1129 */
1130void edma_unlink(unsigned from)
1131{
60902a2c
SR
1132 unsigned ctlr;
1133
1134 ctlr = EDMA_CTLR(from);
1135 from = EDMA_CHAN_SLOT(from);
1136
1137 if (from >= edma_info[ctlr]->num_slots)
a4768d22 1138 return;
60902a2c 1139 edma_parm_or(ctlr, PARM_LINK_BCNTRLD, from, 0xffff);
a4768d22
KH
1140}
1141EXPORT_SYMBOL(edma_unlink);
1142
1143/*-----------------------------------------------------------------------*/
1144
1145/* Parameter RAM operations (ii) -- read/write whole parameter sets */
1146
1147/**
1148 * edma_write_slot - write parameter RAM data for slot
1149 * @slot: number of parameter RAM slot being modified
1150 * @param: data to be written into parameter RAM slot
1151 *
1152 * Use this to assign all parameters of a transfer at once. This
1153 * allows more efficient setup of transfers than issuing multiple
1154 * calls to set up those parameters in small pieces, and provides
1155 * complete control over all transfer options.
1156 */
1157void edma_write_slot(unsigned slot, const struct edmacc_param *param)
1158{
60902a2c
SR
1159 unsigned ctlr;
1160
1161 ctlr = EDMA_CTLR(slot);
1162 slot = EDMA_CHAN_SLOT(slot);
1163
1164 if (slot >= edma_info[ctlr]->num_slots)
a4768d22 1165 return;
60902a2c
SR
1166 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot), param,
1167 PARM_SIZE);
a4768d22
KH
1168}
1169EXPORT_SYMBOL(edma_write_slot);
1170
1171/**
1172 * edma_read_slot - read parameter RAM data from slot
1173 * @slot: number of parameter RAM slot being copied
1174 * @param: where to store copy of parameter RAM data
1175 *
1176 * Use this to read data from a parameter RAM slot, perhaps to
1177 * save them as a template for later reuse.
1178 */
1179void edma_read_slot(unsigned slot, struct edmacc_param *param)
1180{
60902a2c
SR
1181 unsigned ctlr;
1182
1183 ctlr = EDMA_CTLR(slot);
1184 slot = EDMA_CHAN_SLOT(slot);
1185
1186 if (slot >= edma_info[ctlr]->num_slots)
a4768d22 1187 return;
60902a2c
SR
1188 memcpy_fromio(param, edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
1189 PARM_SIZE);
a4768d22
KH
1190}
1191EXPORT_SYMBOL(edma_read_slot);
1192
1193/*-----------------------------------------------------------------------*/
1194
1195/* Various EDMA channel control operations */
1196
1197/**
1198 * edma_pause - pause dma on a channel
1199 * @channel: on which edma_start() has been called
1200 *
1201 * This temporarily disables EDMA hardware events on the specified channel,
1202 * preventing them from triggering new transfers on its behalf
1203 */
1204void edma_pause(unsigned channel)
1205{
60902a2c
SR
1206 unsigned ctlr;
1207
1208 ctlr = EDMA_CTLR(channel);
1209 channel = EDMA_CHAN_SLOT(channel);
1210
1211 if (channel < edma_info[ctlr]->num_channels) {
a4768d22
KH
1212 unsigned int mask = (1 << (channel & 0x1f));
1213
60902a2c 1214 edma_shadow0_write_array(ctlr, SH_EECR, channel >> 5, mask);
a4768d22
KH
1215 }
1216}
1217EXPORT_SYMBOL(edma_pause);
1218
1219/**
1220 * edma_resume - resumes dma on a paused channel
1221 * @channel: on which edma_pause() has been called
1222 *
1223 * This re-enables EDMA hardware events on the specified channel.
1224 */
1225void edma_resume(unsigned channel)
1226{
60902a2c
SR
1227 unsigned ctlr;
1228
1229 ctlr = EDMA_CTLR(channel);
1230 channel = EDMA_CHAN_SLOT(channel);
1231
1232 if (channel < edma_info[ctlr]->num_channels) {
a4768d22
KH
1233 unsigned int mask = (1 << (channel & 0x1f));
1234
60902a2c 1235 edma_shadow0_write_array(ctlr, SH_EESR, channel >> 5, mask);
a4768d22
KH
1236 }
1237}
1238EXPORT_SYMBOL(edma_resume);
1239
1240/**
1241 * edma_start - start dma on a channel
1242 * @channel: channel being activated
1243 *
1244 * Channels with event associations will be triggered by their hardware
1245 * events, and channels without such associations will be triggered by
1246 * software. (At this writing there is no interface for using software
1247 * triggers except with channels that don't support hardware triggers.)
1248 *
1249 * Returns zero on success, else negative errno.
1250 */
1251int edma_start(unsigned channel)
1252{
60902a2c
SR
1253 unsigned ctlr;
1254
1255 ctlr = EDMA_CTLR(channel);
1256 channel = EDMA_CHAN_SLOT(channel);
1257
1258 if (channel < edma_info[ctlr]->num_channels) {
a4768d22
KH
1259 int j = channel >> 5;
1260 unsigned int mask = (1 << (channel & 0x1f));
1261
1262 /* EDMA channels without event association */
f900d552 1263 if (test_bit(channel, edma_info[ctlr]->edma_unused)) {
a4768d22 1264 pr_debug("EDMA: ESR%d %08x\n", j,
60902a2c
SR
1265 edma_shadow0_read_array(ctlr, SH_ESR, j));
1266 edma_shadow0_write_array(ctlr, SH_ESR, j, mask);
a4768d22
KH
1267 return 0;
1268 }
1269
1270 /* EDMA channel with event association */
1271 pr_debug("EDMA: ER%d %08x\n", j,
60902a2c 1272 edma_shadow0_read_array(ctlr, SH_ER, j));
bb17ef10
BN
1273 /* Clear any pending event or error */
1274 edma_write_array(ctlr, EDMA_ECR, j, mask);
60902a2c 1275 edma_write_array(ctlr, EDMA_EMCR, j, mask);
a4768d22 1276 /* Clear any SER */
60902a2c
SR
1277 edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1278 edma_shadow0_write_array(ctlr, SH_EESR, j, mask);
a4768d22 1279 pr_debug("EDMA: EER%d %08x\n", j,
60902a2c 1280 edma_shadow0_read_array(ctlr, SH_EER, j));
a4768d22
KH
1281 return 0;
1282 }
1283
1284 return -EINVAL;
1285}
1286EXPORT_SYMBOL(edma_start);
1287
1288/**
1289 * edma_stop - stops dma on the channel passed
1290 * @channel: channel being deactivated
1291 *
1292 * When @lch is a channel, any active transfer is paused and
1293 * all pending hardware events are cleared. The current transfer
1294 * may not be resumed, and the channel's Parameter RAM should be
1295 * reinitialized before being reused.
1296 */
1297void edma_stop(unsigned channel)
1298{
60902a2c
SR
1299 unsigned ctlr;
1300
1301 ctlr = EDMA_CTLR(channel);
1302 channel = EDMA_CHAN_SLOT(channel);
1303
1304 if (channel < edma_info[ctlr]->num_channels) {
a4768d22
KH
1305 int j = channel >> 5;
1306 unsigned int mask = (1 << (channel & 0x1f));
1307
60902a2c
SR
1308 edma_shadow0_write_array(ctlr, SH_EECR, j, mask);
1309 edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
1310 edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1311 edma_write_array(ctlr, EDMA_EMCR, j, mask);
a4768d22
KH
1312
1313 pr_debug("EDMA: EER%d %08x\n", j,
60902a2c 1314 edma_shadow0_read_array(ctlr, SH_EER, j));
a4768d22
KH
1315
1316 /* REVISIT: consider guarding against inappropriate event
1317 * chaining by overwriting with dummy_paramset.
1318 */
1319 }
1320}
1321EXPORT_SYMBOL(edma_stop);
1322
1323/******************************************************************************
1324 *
1325 * It cleans ParamEntry qand bring back EDMA to initial state if media has
1326 * been removed before EDMA has finished.It is usedful for removable media.
1327 * Arguments:
1328 * ch_no - channel no
1329 *
1330 * Return: zero on success, or corresponding error no on failure
1331 *
1332 * FIXME this should not be needed ... edma_stop() should suffice.
1333 *
1334 *****************************************************************************/
1335
1336void edma_clean_channel(unsigned channel)
1337{
60902a2c
SR
1338 unsigned ctlr;
1339
1340 ctlr = EDMA_CTLR(channel);
1341 channel = EDMA_CHAN_SLOT(channel);
1342
1343 if (channel < edma_info[ctlr]->num_channels) {
a4768d22
KH
1344 int j = (channel >> 5);
1345 unsigned int mask = 1 << (channel & 0x1f);
1346
1347 pr_debug("EDMA: EMR%d %08x\n", j,
60902a2c
SR
1348 edma_read_array(ctlr, EDMA_EMR, j));
1349 edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
a4768d22 1350 /* Clear the corresponding EMR bits */
60902a2c 1351 edma_write_array(ctlr, EDMA_EMCR, j, mask);
a4768d22 1352 /* Clear any SER */
60902a2c
SR
1353 edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1354 edma_write(ctlr, EDMA_CCERRCLR, (1 << 16) | 0x3);
a4768d22
KH
1355 }
1356}
1357EXPORT_SYMBOL(edma_clean_channel);
1358
1359/*
1360 * edma_clear_event - clear an outstanding event on the DMA channel
1361 * Arguments:
1362 * channel - channel number
1363 */
1364void edma_clear_event(unsigned channel)
1365{
60902a2c
SR
1366 unsigned ctlr;
1367
1368 ctlr = EDMA_CTLR(channel);
1369 channel = EDMA_CHAN_SLOT(channel);
1370
1371 if (channel >= edma_info[ctlr]->num_channels)
a4768d22
KH
1372 return;
1373 if (channel < 32)
60902a2c 1374 edma_write(ctlr, EDMA_ECR, 1 << channel);
a4768d22 1375 else
60902a2c 1376 edma_write(ctlr, EDMA_ECRH, 1 << (channel - 32));
a4768d22
KH
1377}
1378EXPORT_SYMBOL(edma_clear_event);
1379
1380/*-----------------------------------------------------------------------*/
1381
1382static int __init edma_probe(struct platform_device *pdev)
1383{
1384 struct edma_soc_info *info = pdev->dev.platform_data;
60902a2c
SR
1385 const s8 (*queue_priority_mapping)[2];
1386 const s8 (*queue_tc_mapping)[2];
1387 int i, j, found = 0;
1388 int status = -1;
60902a2c
SR
1389 int irq[EDMA_MAX_CC] = {0, 0};
1390 int err_irq[EDMA_MAX_CC] = {0, 0};
1391 struct resource *r[EDMA_MAX_CC] = {NULL};
1392 resource_size_t len[EDMA_MAX_CC];
1393 char res_name[10];
1394 char irq_name[10];
a4768d22
KH
1395
1396 if (!info)
1397 return -ENODEV;
1398
60902a2c
SR
1399 for (j = 0; j < EDMA_MAX_CC; j++) {
1400 sprintf(res_name, "edma_cc%d", j);
1401 r[j] = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1402 res_name);
1403 if (!r[j]) {
1404 if (found)
1405 break;
1406 else
1407 return -ENODEV;
1408 } else
1409 found = 1;
1410
1411 len[j] = resource_size(r[j]);
1412
1413 r[j] = request_mem_region(r[j]->start, len[j],
1414 dev_name(&pdev->dev));
1415 if (!r[j]) {
1416 status = -EBUSY;
1417 goto fail1;
1418 }
a4768d22 1419
60902a2c
SR
1420 edmacc_regs_base[j] = ioremap(r[j]->start, len[j]);
1421 if (!edmacc_regs_base[j]) {
1422 status = -EBUSY;
1423 goto fail1;
1424 }
a4768d22 1425
60902a2c
SR
1426 edma_info[j] = kmalloc(sizeof(struct edma), GFP_KERNEL);
1427 if (!edma_info[j]) {
1428 status = -ENOMEM;
1429 goto fail1;
1430 }
1431 memset(edma_info[j], 0, sizeof(struct edma));
1432
1433 edma_info[j]->num_channels = min_t(unsigned, info[j].n_channel,
1434 EDMA_MAX_DMACH);
1435 edma_info[j]->num_slots = min_t(unsigned, info[j].n_slot,
1436 EDMA_MAX_PARAMENTRY);
1437 edma_info[j]->num_cc = min_t(unsigned, info[j].n_cc,
1438 EDMA_MAX_CC);
1439
a0f0202e
SP
1440 edma_info[j]->default_queue = info[j].default_queue;
1441 if (!edma_info[j]->default_queue)
1442 edma_info[j]->default_queue = EVENTQ_1;
1443
60902a2c
SR
1444 dev_dbg(&pdev->dev, "DMA REG BASE ADDR=%p\n",
1445 edmacc_regs_base[j]);
1446
1447 for (i = 0; i < edma_info[j]->num_slots; i++)
1448 memcpy_toio(edmacc_regs_base[j] + PARM_OFFSET(i),
1449 &dummy_paramset, PARM_SIZE);
1450
f900d552
SR
1451 /* Mark all channels as unused */
1452 memset(edma_info[j]->edma_unused, 0xff,
1453 sizeof(edma_info[j]->edma_unused));
a4768d22 1454
60902a2c
SR
1455 sprintf(irq_name, "edma%d", j);
1456 irq[j] = platform_get_irq_byname(pdev, irq_name);
1457 edma_info[j]->irq_res_start = irq[j];
1458 status = request_irq(irq[j], dma_irq_handler, 0, "edma",
1459 &pdev->dev);
1460 if (status < 0) {
1461 dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
1462 irq[j], status);
1463 goto fail;
1464 }
a4768d22 1465
60902a2c
SR
1466 sprintf(irq_name, "edma%d_err", j);
1467 err_irq[j] = platform_get_irq_byname(pdev, irq_name);
1468 edma_info[j]->irq_res_end = err_irq[j];
1469 status = request_irq(err_irq[j], dma_ccerr_handler, 0,
1470 "edma_error", &pdev->dev);
1471 if (status < 0) {
1472 dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
1473 err_irq[j], status);
1474 goto fail;
1475 }
a4768d22 1476
60902a2c
SR
1477 /* Everything lives on transfer controller 1 until otherwise
1478 * specified. This way, long transfers on the low priority queue
1479 * started by the codec engine will not cause audio defects.
1480 */
1481 for (i = 0; i < edma_info[j]->num_channels; i++)
1482 map_dmach_queue(j, i, EVENTQ_1);
a4768d22 1483
60902a2c
SR
1484 queue_tc_mapping = info[j].queue_tc_mapping;
1485 queue_priority_mapping = info[j].queue_priority_mapping;
a4768d22 1486
60902a2c
SR
1487 /* Event queue to TC mapping */
1488 for (i = 0; queue_tc_mapping[i][0] != -1; i++)
1489 map_queue_tc(j, queue_tc_mapping[i][0],
1490 queue_tc_mapping[i][1]);
a4768d22 1491
60902a2c
SR
1492 /* Event queue priority mapping */
1493 for (i = 0; queue_priority_mapping[i][0] != -1; i++)
1494 assign_priority_to_queue(j,
1495 queue_priority_mapping[i][0],
1496 queue_priority_mapping[i][1]);
1497
1498 /* Map the channel to param entry if channel mapping logic
1499 * exist
1500 */
1501 if (edma_read(j, EDMA_CCCFG) & CHMAP_EXIST)
1502 map_dmach_param(j);
a4768d22 1503
60902a2c
SR
1504 for (i = 0; i < info[j].n_region; i++) {
1505 edma_write_array2(j, EDMA_DRAE, i, 0, 0x0);
1506 edma_write_array2(j, EDMA_DRAE, i, 1, 0x0);
1507 edma_write_array(j, EDMA_QRAE, i, 0x0);
1508 }
2d517508 1509 arch_num_cc++;
a4768d22
KH
1510 }
1511
1512 if (tc_errs_handled) {
1513 status = request_irq(IRQ_TCERRINT0, dma_tc0err_handler, 0,
1514 "edma_tc0", &pdev->dev);
1515 if (status < 0) {
1516 dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
1517 IRQ_TCERRINT0, status);
1518 return status;
1519 }
1520 status = request_irq(IRQ_TCERRINT, dma_tc1err_handler, 0,
1521 "edma_tc1", &pdev->dev);
1522 if (status < 0) {
1523 dev_dbg(&pdev->dev, "request_irq %d --> %d\n",
1524 IRQ_TCERRINT, status);
1525 return status;
1526 }
1527 }
1528
a4768d22
KH
1529 return 0;
1530
1531fail:
60902a2c
SR
1532 for (i = 0; i < EDMA_MAX_CC; i++) {
1533 if (err_irq[i])
1534 free_irq(err_irq[i], &pdev->dev);
1535 if (irq[i])
1536 free_irq(irq[i], &pdev->dev);
1537 }
a4768d22 1538fail1:
60902a2c
SR
1539 for (i = 0; i < EDMA_MAX_CC; i++) {
1540 if (r[i])
1541 release_mem_region(r[i]->start, len[i]);
1542 if (edmacc_regs_base[i])
1543 iounmap(edmacc_regs_base[i]);
1544 kfree(edma_info[i]);
1545 }
a4768d22
KH
1546 return status;
1547}
1548
1549
1550static struct platform_driver edma_driver = {
1551 .driver.name = "edma",
1552};
1553
1554static int __init edma_init(void)
1555{
1556 return platform_driver_probe(&edma_driver, edma_probe);
1557}
1558arch_initcall(edma_init);
1559
This page took 0.164335 seconds and 5 git commands to generate.