davinci: edma: use BIT() wherever possible
[deliverable/linux.git] / arch / arm / mach-davinci / dma.c
CommitLineData
a4768d22
KH
1/*
2 * EDMA3 support for DaVinci
3 *
4 * Copyright (C) 2006-2009 Texas Instruments.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20#include <linux/kernel.h>
a4768d22
KH
21#include <linux/init.h>
22#include <linux/module.h>
23#include <linux/interrupt.h>
24#include <linux/platform_device.h>
a4768d22 25#include <linux/io.h>
5a0e3ad6 26#include <linux/slab.h>
a4768d22 27
a4768d22 28#include <mach/edma.h>
a4768d22
KH
29
30/* Offsets matching "struct edmacc_param" */
31#define PARM_OPT 0x00
32#define PARM_SRC 0x04
33#define PARM_A_B_CNT 0x08
34#define PARM_DST 0x0c
35#define PARM_SRC_DST_BIDX 0x10
36#define PARM_LINK_BCNTRLD 0x14
37#define PARM_SRC_DST_CIDX 0x18
38#define PARM_CCNT 0x1c
39
40#define PARM_SIZE 0x20
41
42/* Offsets for EDMA CC global channel registers and their shadows */
43#define SH_ER 0x00 /* 64 bits */
44#define SH_ECR 0x08 /* 64 bits */
45#define SH_ESR 0x10 /* 64 bits */
46#define SH_CER 0x18 /* 64 bits */
47#define SH_EER 0x20 /* 64 bits */
48#define SH_EECR 0x28 /* 64 bits */
49#define SH_EESR 0x30 /* 64 bits */
50#define SH_SER 0x38 /* 64 bits */
51#define SH_SECR 0x40 /* 64 bits */
52#define SH_IER 0x50 /* 64 bits */
53#define SH_IECR 0x58 /* 64 bits */
54#define SH_IESR 0x60 /* 64 bits */
55#define SH_IPR 0x68 /* 64 bits */
56#define SH_ICR 0x70 /* 64 bits */
57#define SH_IEVAL 0x78
58#define SH_QER 0x80
59#define SH_QEER 0x84
60#define SH_QEECR 0x88
61#define SH_QEESR 0x8c
62#define SH_QSER 0x90
63#define SH_QSECR 0x94
64#define SH_SIZE 0x200
65
66/* Offsets for EDMA CC global registers */
67#define EDMA_REV 0x0000
68#define EDMA_CCCFG 0x0004
69#define EDMA_QCHMAP 0x0200 /* 8 registers */
70#define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
71#define EDMA_QDMAQNUM 0x0260
72#define EDMA_QUETCMAP 0x0280
73#define EDMA_QUEPRI 0x0284
74#define EDMA_EMR 0x0300 /* 64 bits */
75#define EDMA_EMCR 0x0308 /* 64 bits */
76#define EDMA_QEMR 0x0310
77#define EDMA_QEMCR 0x0314
78#define EDMA_CCERR 0x0318
79#define EDMA_CCERRCLR 0x031c
80#define EDMA_EEVAL 0x0320
81#define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
82#define EDMA_QRAE 0x0380 /* 4 registers */
83#define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
84#define EDMA_QSTAT 0x0600 /* 2 registers */
85#define EDMA_QWMTHRA 0x0620
86#define EDMA_QWMTHRB 0x0624
87#define EDMA_CCSTAT 0x0640
88
89#define EDMA_M 0x1000 /* global channel registers */
90#define EDMA_ECR 0x1008
91#define EDMA_ECRH 0x100C
92#define EDMA_SHADOW0 0x2000 /* 4 regions shadowing global channels */
93#define EDMA_PARM 0x4000 /* 128 param entries */
94
a4768d22
KH
95#define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
96
60902a2c
SR
97#define EDMA_DCHMAP 0x0100 /* 64 registers */
98#define CHMAP_EXIST BIT(24)
99
a4768d22
KH
100#define EDMA_MAX_DMACH 64
101#define EDMA_MAX_PARAMENTRY 512
60902a2c 102#define EDMA_MAX_CC 2
a4768d22
KH
103
104
105/*****************************************************************************/
106
60902a2c 107static void __iomem *edmacc_regs_base[EDMA_MAX_CC];
a4768d22 108
60902a2c 109static inline unsigned int edma_read(unsigned ctlr, int offset)
a4768d22 110{
60902a2c 111 return (unsigned int)__raw_readl(edmacc_regs_base[ctlr] + offset);
a4768d22
KH
112}
113
60902a2c 114static inline void edma_write(unsigned ctlr, int offset, int val)
a4768d22 115{
60902a2c 116 __raw_writel(val, edmacc_regs_base[ctlr] + offset);
a4768d22 117}
60902a2c
SR
118static inline void edma_modify(unsigned ctlr, int offset, unsigned and,
119 unsigned or)
a4768d22 120{
60902a2c 121 unsigned val = edma_read(ctlr, offset);
a4768d22
KH
122 val &= and;
123 val |= or;
60902a2c 124 edma_write(ctlr, offset, val);
a4768d22 125}
60902a2c 126static inline void edma_and(unsigned ctlr, int offset, unsigned and)
a4768d22 127{
60902a2c 128 unsigned val = edma_read(ctlr, offset);
a4768d22 129 val &= and;
60902a2c 130 edma_write(ctlr, offset, val);
a4768d22 131}
60902a2c 132static inline void edma_or(unsigned ctlr, int offset, unsigned or)
a4768d22 133{
60902a2c 134 unsigned val = edma_read(ctlr, offset);
a4768d22 135 val |= or;
60902a2c 136 edma_write(ctlr, offset, val);
a4768d22 137}
60902a2c 138static inline unsigned int edma_read_array(unsigned ctlr, int offset, int i)
a4768d22 139{
60902a2c 140 return edma_read(ctlr, offset + (i << 2));
a4768d22 141}
60902a2c
SR
142static inline void edma_write_array(unsigned ctlr, int offset, int i,
143 unsigned val)
a4768d22 144{
60902a2c 145 edma_write(ctlr, offset + (i << 2), val);
a4768d22 146}
60902a2c 147static inline void edma_modify_array(unsigned ctlr, int offset, int i,
a4768d22
KH
148 unsigned and, unsigned or)
149{
60902a2c 150 edma_modify(ctlr, offset + (i << 2), and, or);
a4768d22 151}
60902a2c 152static inline void edma_or_array(unsigned ctlr, int offset, int i, unsigned or)
a4768d22 153{
60902a2c 154 edma_or(ctlr, offset + (i << 2), or);
a4768d22 155}
60902a2c
SR
156static inline void edma_or_array2(unsigned ctlr, int offset, int i, int j,
157 unsigned or)
a4768d22 158{
60902a2c 159 edma_or(ctlr, offset + ((i*2 + j) << 2), or);
a4768d22 160}
60902a2c
SR
161static inline void edma_write_array2(unsigned ctlr, int offset, int i, int j,
162 unsigned val)
a4768d22 163{
60902a2c 164 edma_write(ctlr, offset + ((i*2 + j) << 2), val);
a4768d22 165}
60902a2c 166static inline unsigned int edma_shadow0_read(unsigned ctlr, int offset)
a4768d22 167{
60902a2c 168 return edma_read(ctlr, EDMA_SHADOW0 + offset);
a4768d22 169}
60902a2c
SR
170static inline unsigned int edma_shadow0_read_array(unsigned ctlr, int offset,
171 int i)
a4768d22 172{
60902a2c 173 return edma_read(ctlr, EDMA_SHADOW0 + offset + (i << 2));
a4768d22 174}
60902a2c 175static inline void edma_shadow0_write(unsigned ctlr, int offset, unsigned val)
a4768d22 176{
60902a2c 177 edma_write(ctlr, EDMA_SHADOW0 + offset, val);
a4768d22 178}
60902a2c
SR
179static inline void edma_shadow0_write_array(unsigned ctlr, int offset, int i,
180 unsigned val)
a4768d22 181{
60902a2c 182 edma_write(ctlr, EDMA_SHADOW0 + offset + (i << 2), val);
a4768d22 183}
60902a2c
SR
184static inline unsigned int edma_parm_read(unsigned ctlr, int offset,
185 int param_no)
a4768d22 186{
60902a2c 187 return edma_read(ctlr, EDMA_PARM + offset + (param_no << 5));
a4768d22 188}
60902a2c
SR
189static inline void edma_parm_write(unsigned ctlr, int offset, int param_no,
190 unsigned val)
a4768d22 191{
60902a2c 192 edma_write(ctlr, EDMA_PARM + offset + (param_no << 5), val);
a4768d22 193}
60902a2c 194static inline void edma_parm_modify(unsigned ctlr, int offset, int param_no,
a4768d22
KH
195 unsigned and, unsigned or)
196{
60902a2c 197 edma_modify(ctlr, EDMA_PARM + offset + (param_no << 5), and, or);
a4768d22 198}
60902a2c
SR
199static inline void edma_parm_and(unsigned ctlr, int offset, int param_no,
200 unsigned and)
a4768d22 201{
60902a2c 202 edma_and(ctlr, EDMA_PARM + offset + (param_no << 5), and);
a4768d22 203}
60902a2c
SR
204static inline void edma_parm_or(unsigned ctlr, int offset, int param_no,
205 unsigned or)
a4768d22 206{
60902a2c 207 edma_or(ctlr, EDMA_PARM + offset + (param_no << 5), or);
a4768d22
KH
208}
209
210/*****************************************************************************/
211
212/* actual number of DMA channels and slots on this silicon */
60902a2c
SR
213struct edma {
214 /* how many dma resources of each type */
215 unsigned num_channels;
216 unsigned num_region;
217 unsigned num_slots;
218 unsigned num_tc;
219 unsigned num_cc;
a0f0202e 220 enum dma_event_q default_queue;
60902a2c
SR
221
222 /* list of channels with no even trigger; terminated by "-1" */
223 const s8 *noevent;
224
225 /* The edma_inuse bit for each PaRAM slot is clear unless the
226 * channel is in use ... by ARM or DSP, for QDMA, or whatever.
227 */
228 DECLARE_BITMAP(edma_inuse, EDMA_MAX_PARAMENTRY);
a4768d22 229
f900d552
SR
230 /* The edma_unused bit for each channel is clear unless
231 * it is not being used on this platform. It uses a bit
232 * of SOC-specific initialization code.
60902a2c 233 */
f900d552 234 DECLARE_BITMAP(edma_unused, EDMA_MAX_DMACH);
a4768d22 235
60902a2c
SR
236 unsigned irq_res_start;
237 unsigned irq_res_end;
a4768d22 238
60902a2c
SR
239 struct dma_interrupt_data {
240 void (*callback)(unsigned channel, unsigned short ch_status,
241 void *data);
242 void *data;
243 } intr_data[EDMA_MAX_DMACH];
244};
245
3f68b98a 246static struct edma *edma_cc[EDMA_MAX_CC];
2d517508 247static int arch_num_cc;
a4768d22
KH
248
249/* dummy param set used to (re)initialize parameter RAM slots */
250static const struct edmacc_param dummy_paramset = {
251 .link_bcntrld = 0xffff,
252 .ccnt = 1,
253};
254
a4768d22
KH
255/*****************************************************************************/
256
60902a2c
SR
257static void map_dmach_queue(unsigned ctlr, unsigned ch_no,
258 enum dma_event_q queue_no)
a4768d22
KH
259{
260 int bit = (ch_no & 0x7) * 4;
261
262 /* default to low priority queue */
263 if (queue_no == EVENTQ_DEFAULT)
3f68b98a 264 queue_no = edma_cc[ctlr]->default_queue;
a4768d22
KH
265
266 queue_no &= 7;
60902a2c 267 edma_modify_array(ctlr, EDMA_DMAQNUM, (ch_no >> 3),
a4768d22
KH
268 ~(0x7 << bit), queue_no << bit);
269}
270
60902a2c 271static void __init map_queue_tc(unsigned ctlr, int queue_no, int tc_no)
a4768d22
KH
272{
273 int bit = queue_no * 4;
60902a2c 274 edma_modify(ctlr, EDMA_QUETCMAP, ~(0x7 << bit), ((tc_no & 0x7) << bit));
a4768d22
KH
275}
276
60902a2c
SR
277static void __init assign_priority_to_queue(unsigned ctlr, int queue_no,
278 int priority)
a4768d22
KH
279{
280 int bit = queue_no * 4;
60902a2c
SR
281 edma_modify(ctlr, EDMA_QUEPRI, ~(0x7 << bit),
282 ((priority & 0x7) << bit));
283}
284
285/**
286 * map_dmach_param - Maps channel number to param entry number
287 *
288 * This maps the dma channel number to param entry numberter. In
289 * other words using the DMA channel mapping registers a param entry
290 * can be mapped to any channel
291 *
292 * Callers are responsible for ensuring the channel mapping logic is
293 * included in that particular EDMA variant (Eg : dm646x)
294 *
295 */
296static void __init map_dmach_param(unsigned ctlr)
297{
298 int i;
299 for (i = 0; i < EDMA_MAX_DMACH; i++)
300 edma_write_array(ctlr, EDMA_DCHMAP , i , (i << 5));
a4768d22
KH
301}
302
303static inline void
304setup_dma_interrupt(unsigned lch,
305 void (*callback)(unsigned channel, u16 ch_status, void *data),
306 void *data)
307{
60902a2c
SR
308 unsigned ctlr;
309
310 ctlr = EDMA_CTLR(lch);
311 lch = EDMA_CHAN_SLOT(lch);
312
243bc654 313 if (!callback)
60902a2c 314 edma_shadow0_write_array(ctlr, SH_IECR, lch >> 5,
d78a9494 315 BIT(lch & 0x1f));
a4768d22 316
3f68b98a
SN
317 edma_cc[ctlr]->intr_data[lch].callback = callback;
318 edma_cc[ctlr]->intr_data[lch].data = data;
a4768d22
KH
319
320 if (callback) {
60902a2c 321 edma_shadow0_write_array(ctlr, SH_ICR, lch >> 5,
d78a9494 322 BIT(lch & 0x1f));
60902a2c 323 edma_shadow0_write_array(ctlr, SH_IESR, lch >> 5,
d78a9494 324 BIT(lch & 0x1f));
a4768d22
KH
325 }
326}
327
60902a2c
SR
328static int irq2ctlr(int irq)
329{
3f68b98a 330 if (irq >= edma_cc[0]->irq_res_start && irq <= edma_cc[0]->irq_res_end)
60902a2c 331 return 0;
3f68b98a
SN
332 else if (irq >= edma_cc[1]->irq_res_start &&
333 irq <= edma_cc[1]->irq_res_end)
60902a2c
SR
334 return 1;
335
336 return -1;
337}
338
a4768d22
KH
339/******************************************************************************
340 *
341 * DMA interrupt handler
342 *
343 *****************************************************************************/
344static irqreturn_t dma_irq_handler(int irq, void *data)
345{
346 int i;
60902a2c 347 unsigned ctlr;
a4768d22
KH
348 unsigned int cnt = 0;
349
60902a2c
SR
350 ctlr = irq2ctlr(irq);
351
a4768d22
KH
352 dev_dbg(data, "dma_irq_handler\n");
353
60902a2c
SR
354 if ((edma_shadow0_read_array(ctlr, SH_IPR, 0) == 0)
355 && (edma_shadow0_read_array(ctlr, SH_IPR, 1) == 0))
a4768d22
KH
356 return IRQ_NONE;
357
358 while (1) {
359 int j;
a7e05065
AA
360 if (edma_shadow0_read_array(ctlr, SH_IPR, 0) &
361 edma_shadow0_read_array(ctlr, SH_IER, 0))
a4768d22 362 j = 0;
a7e05065
AA
363 else if (edma_shadow0_read_array(ctlr, SH_IPR, 1) &
364 edma_shadow0_read_array(ctlr, SH_IER, 1))
a4768d22
KH
365 j = 1;
366 else
367 break;
368 dev_dbg(data, "IPR%d %08x\n", j,
60902a2c 369 edma_shadow0_read_array(ctlr, SH_IPR, j));
a4768d22
KH
370 for (i = 0; i < 32; i++) {
371 int k = (j << 5) + i;
a7e05065
AA
372 if ((edma_shadow0_read_array(ctlr, SH_IPR, j) & BIT(i))
373 && (edma_shadow0_read_array(ctlr,
374 SH_IER, j) & BIT(i))) {
a4768d22 375 /* Clear the corresponding IPR bits */
60902a2c 376 edma_shadow0_write_array(ctlr, SH_ICR, j,
d78a9494 377 BIT(i));
243bc654 378 if (edma_cc[ctlr]->intr_data[k].callback)
3f68b98a 379 edma_cc[ctlr]->intr_data[k].callback(
60902a2c 380 k, DMA_COMPLETE,
3f68b98a 381 edma_cc[ctlr]->intr_data[k].
60902a2c 382 data);
a4768d22
KH
383 }
384 }
385 cnt++;
386 if (cnt > 10)
387 break;
388 }
60902a2c 389 edma_shadow0_write(ctlr, SH_IEVAL, 1);
a4768d22
KH
390 return IRQ_HANDLED;
391}
392
393/******************************************************************************
394 *
395 * DMA error interrupt handler
396 *
397 *****************************************************************************/
398static irqreturn_t dma_ccerr_handler(int irq, void *data)
399{
400 int i;
60902a2c 401 unsigned ctlr;
a4768d22
KH
402 unsigned int cnt = 0;
403
60902a2c
SR
404 ctlr = irq2ctlr(irq);
405
a4768d22
KH
406 dev_dbg(data, "dma_ccerr_handler\n");
407
60902a2c
SR
408 if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
409 (edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
410 (edma_read(ctlr, EDMA_QEMR) == 0) &&
411 (edma_read(ctlr, EDMA_CCERR) == 0))
a4768d22
KH
412 return IRQ_NONE;
413
414 while (1) {
415 int j = -1;
60902a2c 416 if (edma_read_array(ctlr, EDMA_EMR, 0))
a4768d22 417 j = 0;
60902a2c 418 else if (edma_read_array(ctlr, EDMA_EMR, 1))
a4768d22
KH
419 j = 1;
420 if (j >= 0) {
421 dev_dbg(data, "EMR%d %08x\n", j,
60902a2c 422 edma_read_array(ctlr, EDMA_EMR, j));
a4768d22
KH
423 for (i = 0; i < 32; i++) {
424 int k = (j << 5) + i;
60902a2c 425 if (edma_read_array(ctlr, EDMA_EMR, j) &
d78a9494 426 BIT(i)) {
a4768d22 427 /* Clear the corresponding EMR bits */
60902a2c 428 edma_write_array(ctlr, EDMA_EMCR, j,
d78a9494 429 BIT(i));
a4768d22 430 /* Clear any SER */
60902a2c 431 edma_shadow0_write_array(ctlr, SH_SECR,
d78a9494 432 j, BIT(i));
3f68b98a 433 if (edma_cc[ctlr]->intr_data[k].
60902a2c 434 callback) {
3f68b98a 435 edma_cc[ctlr]->intr_data[k].
60902a2c
SR
436 callback(k,
437 DMA_CC_ERROR,
3f68b98a 438 edma_cc[ctlr]->intr_data
60902a2c 439 [k].data);
a4768d22
KH
440 }
441 }
442 }
60902a2c 443 } else if (edma_read(ctlr, EDMA_QEMR)) {
a4768d22 444 dev_dbg(data, "QEMR %02x\n",
60902a2c 445 edma_read(ctlr, EDMA_QEMR));
a4768d22 446 for (i = 0; i < 8; i++) {
d78a9494 447 if (edma_read(ctlr, EDMA_QEMR) & BIT(i)) {
a4768d22 448 /* Clear the corresponding IPR bits */
d78a9494 449 edma_write(ctlr, EDMA_QEMCR, BIT(i));
60902a2c 450 edma_shadow0_write(ctlr, SH_QSECR,
d78a9494 451 BIT(i));
a4768d22
KH
452
453 /* NOTE: not reported!! */
454 }
455 }
60902a2c 456 } else if (edma_read(ctlr, EDMA_CCERR)) {
a4768d22 457 dev_dbg(data, "CCERR %08x\n",
60902a2c 458 edma_read(ctlr, EDMA_CCERR));
a4768d22
KH
459 /* FIXME: CCERR.BIT(16) ignored! much better
460 * to just write CCERRCLR with CCERR value...
461 */
462 for (i = 0; i < 8; i++) {
d78a9494 463 if (edma_read(ctlr, EDMA_CCERR) & BIT(i)) {
a4768d22 464 /* Clear the corresponding IPR bits */
d78a9494 465 edma_write(ctlr, EDMA_CCERRCLR, BIT(i));
a4768d22
KH
466
467 /* NOTE: not reported!! */
468 }
469 }
470 }
60902a2c
SR
471 if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0)
472 && (edma_read_array(ctlr, EDMA_EMR, 1) == 0)
473 && (edma_read(ctlr, EDMA_QEMR) == 0)
243bc654 474 && (edma_read(ctlr, EDMA_CCERR) == 0))
a4768d22 475 break;
a4768d22
KH
476 cnt++;
477 if (cnt > 10)
478 break;
479 }
60902a2c 480 edma_write(ctlr, EDMA_EEVAL, 1);
a4768d22
KH
481 return IRQ_HANDLED;
482}
483
484/******************************************************************************
485 *
486 * Transfer controller error interrupt handlers
487 *
488 *****************************************************************************/
489
490#define tc_errs_handled false /* disabled as long as they're NOPs */
491
492static irqreturn_t dma_tc0err_handler(int irq, void *data)
493{
494 dev_dbg(data, "dma_tc0err_handler\n");
495 return IRQ_HANDLED;
496}
497
498static irqreturn_t dma_tc1err_handler(int irq, void *data)
499{
500 dev_dbg(data, "dma_tc1err_handler\n");
501 return IRQ_HANDLED;
502}
503
134ce221
SP
504static int reserve_contiguous_slots(int ctlr, unsigned int id,
505 unsigned int num_slots,
506 unsigned int start_slot)
213765d7
SP
507{
508 int i, j;
134ce221
SP
509 unsigned int count = num_slots;
510 int stop_slot = start_slot;
cc93fc3f 511 DECLARE_BITMAP(tmp_inuse, EDMA_MAX_PARAMENTRY);
213765d7 512
3f68b98a 513 for (i = start_slot; i < edma_cc[ctlr]->num_slots; ++i) {
213765d7 514 j = EDMA_CHAN_SLOT(i);
3f68b98a 515 if (!test_and_set_bit(j, edma_cc[ctlr]->edma_inuse)) {
cc93fc3f 516 /* Record our current beginning slot */
134ce221
SP
517 if (count == num_slots)
518 stop_slot = i;
cc93fc3f 519
213765d7 520 count--;
cc93fc3f
SP
521 set_bit(j, tmp_inuse);
522
213765d7
SP
523 if (count == 0)
524 break;
cc93fc3f
SP
525 } else {
526 clear_bit(j, tmp_inuse);
527
528 if (id == EDMA_CONT_PARAMS_FIXED_EXACT) {
134ce221 529 stop_slot = i;
cc93fc3f 530 break;
243bc654 531 } else {
134ce221 532 count = num_slots;
243bc654 533 }
cc93fc3f 534 }
213765d7
SP
535 }
536
537 /*
538 * We have to clear any bits that we set
134ce221
SP
539 * if we run out parameter RAM slots, i.e we do find a set
540 * of contiguous parameter RAM slots but do not find the exact number
541 * requested as we may reach the total number of parameter RAM slots
213765d7 542 */
3f68b98a 543 if (i == edma_cc[ctlr]->num_slots)
134ce221 544 stop_slot = i;
cc93fc3f 545
134ce221 546 for (j = start_slot; j < stop_slot; j++)
cc93fc3f 547 if (test_bit(j, tmp_inuse))
3f68b98a 548 clear_bit(j, edma_cc[ctlr]->edma_inuse);
213765d7 549
cc93fc3f 550 if (count)
213765d7 551 return -EBUSY;
213765d7 552
134ce221 553 for (j = i - num_slots + 1; j <= i; ++j)
213765d7
SP
554 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(j),
555 &dummy_paramset, PARM_SIZE);
556
134ce221 557 return EDMA_CTLR_CHAN(ctlr, i - num_slots + 1);
213765d7
SP
558}
559
f900d552
SR
560static int prepare_unused_channel_list(struct device *dev, void *data)
561{
562 struct platform_device *pdev = to_platform_device(dev);
563 int i, ctlr;
564
565 for (i = 0; i < pdev->num_resources; i++) {
566 if ((pdev->resource[i].flags & IORESOURCE_DMA) &&
567 (int)pdev->resource[i].start >= 0) {
568 ctlr = EDMA_CTLR(pdev->resource[i].start);
569 clear_bit(EDMA_CHAN_SLOT(pdev->resource[i].start),
3f68b98a 570 edma_cc[ctlr]->edma_unused);
f900d552
SR
571 }
572 }
573
574 return 0;
575}
576
a4768d22
KH
577/*-----------------------------------------------------------------------*/
578
f900d552
SR
579static bool unused_chan_list_done;
580
a4768d22
KH
581/* Resource alloc/free: dma channels, parameter RAM slots */
582
583/**
584 * edma_alloc_channel - allocate DMA channel and paired parameter RAM
585 * @channel: specific channel to allocate; negative for "any unmapped channel"
586 * @callback: optional; to be issued on DMA completion or errors
587 * @data: passed to callback
588 * @eventq_no: an EVENTQ_* constant, used to choose which Transfer
589 * Controller (TC) executes requests using this channel. Use
590 * EVENTQ_DEFAULT unless you really need a high priority queue.
591 *
592 * This allocates a DMA channel and its associated parameter RAM slot.
593 * The parameter RAM is initialized to hold a dummy transfer.
594 *
595 * Normal use is to pass a specific channel number as @channel, to make
596 * use of hardware events mapped to that channel. When the channel will
597 * be used only for software triggering or event chaining, channels not
598 * mapped to hardware events (or mapped to unused events) are preferable.
599 *
600 * DMA transfers start from a channel using edma_start(), or by
601 * chaining. When the transfer described in that channel's parameter RAM
602 * slot completes, that slot's data may be reloaded through a link.
603 *
604 * DMA errors are only reported to the @callback associated with the
605 * channel driving that transfer, but transfer completion callbacks can
606 * be sent to another channel under control of the TCC field in
607 * the option word of the transfer's parameter RAM set. Drivers must not
608 * use DMA transfer completion callbacks for channels they did not allocate.
609 * (The same applies to TCC codes used in transfer chaining.)
610 *
611 * Returns the number of the channel, else negative errno.
612 */
613int edma_alloc_channel(int channel,
614 void (*callback)(unsigned channel, u16 ch_status, void *data),
615 void *data,
616 enum dma_event_q eventq_no)
617{
447f18f1 618 unsigned i, done = 0, ctlr = 0;
f900d552
SR
619 int ret = 0;
620
621 if (!unused_chan_list_done) {
622 /*
623 * Scan all the platform devices to find out the EDMA channels
624 * used and clear them in the unused list, making the rest
625 * available for ARM usage.
626 */
627 ret = bus_for_each_dev(&platform_bus_type, NULL, NULL,
628 prepare_unused_channel_list);
629 if (ret < 0)
630 return ret;
631
632 unused_chan_list_done = true;
633 }
60902a2c
SR
634
635 if (channel >= 0) {
636 ctlr = EDMA_CTLR(channel);
637 channel = EDMA_CHAN_SLOT(channel);
638 }
639
a4768d22 640 if (channel < 0) {
2d517508 641 for (i = 0; i < arch_num_cc; i++) {
60902a2c
SR
642 channel = 0;
643 for (;;) {
3f68b98a
SN
644 channel = find_next_bit(edma_cc[i]->edma_unused,
645 edma_cc[i]->num_channels,
60902a2c 646 channel);
3f68b98a 647 if (channel == edma_cc[i]->num_channels)
447f18f1 648 break;
60902a2c 649 if (!test_and_set_bit(channel,
3f68b98a 650 edma_cc[i]->edma_inuse)) {
60902a2c
SR
651 done = 1;
652 ctlr = i;
653 break;
654 }
655 channel++;
656 }
657 if (done)
a4768d22 658 break;
a4768d22 659 }
447f18f1
SR
660 if (!done)
661 return -ENOMEM;
3f68b98a 662 } else if (channel >= edma_cc[ctlr]->num_channels) {
a4768d22 663 return -EINVAL;
3f68b98a 664 } else if (test_and_set_bit(channel, edma_cc[ctlr]->edma_inuse)) {
a4768d22
KH
665 return -EBUSY;
666 }
667
668 /* ensure access through shadow region 0 */
d78a9494 669 edma_or_array2(ctlr, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
a4768d22
KH
670
671 /* ensure no events are pending */
60902a2c
SR
672 edma_stop(EDMA_CTLR_CHAN(ctlr, channel));
673 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
a4768d22
KH
674 &dummy_paramset, PARM_SIZE);
675
676 if (callback)
60902a2c
SR
677 setup_dma_interrupt(EDMA_CTLR_CHAN(ctlr, channel),
678 callback, data);
a4768d22 679
60902a2c 680 map_dmach_queue(ctlr, channel, eventq_no);
a4768d22 681
0e6cb8d2 682 return EDMA_CTLR_CHAN(ctlr, channel);
a4768d22
KH
683}
684EXPORT_SYMBOL(edma_alloc_channel);
685
686
687/**
688 * edma_free_channel - deallocate DMA channel
689 * @channel: dma channel returned from edma_alloc_channel()
690 *
691 * This deallocates the DMA channel and associated parameter RAM slot
692 * allocated by edma_alloc_channel().
693 *
694 * Callers are responsible for ensuring the channel is inactive, and
695 * will not be reactivated by linking, chaining, or software calls to
696 * edma_start().
697 */
698void edma_free_channel(unsigned channel)
699{
60902a2c
SR
700 unsigned ctlr;
701
702 ctlr = EDMA_CTLR(channel);
703 channel = EDMA_CHAN_SLOT(channel);
704
3f68b98a 705 if (channel >= edma_cc[ctlr]->num_channels)
a4768d22
KH
706 return;
707
708 setup_dma_interrupt(channel, NULL, NULL);
709 /* REVISIT should probably take out of shadow region 0 */
710
60902a2c 711 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
a4768d22 712 &dummy_paramset, PARM_SIZE);
3f68b98a 713 clear_bit(channel, edma_cc[ctlr]->edma_inuse);
a4768d22
KH
714}
715EXPORT_SYMBOL(edma_free_channel);
716
717/**
718 * edma_alloc_slot - allocate DMA parameter RAM
719 * @slot: specific slot to allocate; negative for "any unused slot"
720 *
721 * This allocates a parameter RAM slot, initializing it to hold a
722 * dummy transfer. Slots allocated using this routine have not been
723 * mapped to a hardware DMA channel, and will normally be used by
724 * linking to them from a slot associated with a DMA channel.
725 *
726 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
727 * slots may be allocated on behalf of DSP firmware.
728 *
729 * Returns the number of the slot, else negative errno.
730 */
60902a2c 731int edma_alloc_slot(unsigned ctlr, int slot)
a4768d22 732{
60902a2c
SR
733 if (slot >= 0)
734 slot = EDMA_CHAN_SLOT(slot);
735
a4768d22 736 if (slot < 0) {
3f68b98a 737 slot = edma_cc[ctlr]->num_channels;
a4768d22 738 for (;;) {
3f68b98a
SN
739 slot = find_next_zero_bit(edma_cc[ctlr]->edma_inuse,
740 edma_cc[ctlr]->num_slots, slot);
741 if (slot == edma_cc[ctlr]->num_slots)
a4768d22 742 return -ENOMEM;
3f68b98a 743 if (!test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse))
a4768d22
KH
744 break;
745 }
3f68b98a
SN
746 } else if (slot < edma_cc[ctlr]->num_channels ||
747 slot >= edma_cc[ctlr]->num_slots) {
a4768d22 748 return -EINVAL;
3f68b98a 749 } else if (test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse)) {
a4768d22
KH
750 return -EBUSY;
751 }
752
60902a2c 753 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
a4768d22
KH
754 &dummy_paramset, PARM_SIZE);
755
60902a2c 756 return EDMA_CTLR_CHAN(ctlr, slot);
a4768d22
KH
757}
758EXPORT_SYMBOL(edma_alloc_slot);
759
760/**
761 * edma_free_slot - deallocate DMA parameter RAM
762 * @slot: parameter RAM slot returned from edma_alloc_slot()
763 *
764 * This deallocates the parameter RAM slot allocated by edma_alloc_slot().
765 * Callers are responsible for ensuring the slot is inactive, and will
766 * not be activated.
767 */
768void edma_free_slot(unsigned slot)
769{
60902a2c
SR
770 unsigned ctlr;
771
772 ctlr = EDMA_CTLR(slot);
773 slot = EDMA_CHAN_SLOT(slot);
774
3f68b98a
SN
775 if (slot < edma_cc[ctlr]->num_channels ||
776 slot >= edma_cc[ctlr]->num_slots)
a4768d22
KH
777 return;
778
60902a2c 779 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
a4768d22 780 &dummy_paramset, PARM_SIZE);
3f68b98a 781 clear_bit(slot, edma_cc[ctlr]->edma_inuse);
a4768d22
KH
782}
783EXPORT_SYMBOL(edma_free_slot);
784
213765d7
SP
785
786/**
787 * edma_alloc_cont_slots- alloc contiguous parameter RAM slots
788 * The API will return the starting point of a set of
134ce221 789 * contiguous parameter RAM slots that have been requested
213765d7
SP
790 *
791 * @id: can only be EDMA_CONT_PARAMS_ANY or EDMA_CONT_PARAMS_FIXED_EXACT
792 * or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
134ce221
SP
793 * @count: number of contiguous Paramter RAM slots
794 * @slot - the start value of Parameter RAM slot that should be passed if id
213765d7
SP
795 * is EDMA_CONT_PARAMS_FIXED_EXACT or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
796 *
797 * If id is EDMA_CONT_PARAMS_ANY then the API starts looking for a set of
134ce221
SP
798 * contiguous Parameter RAM slots from parameter RAM 64 in the case of
799 * DaVinci SOCs and 32 in the case of DA8xx SOCs.
213765d7
SP
800 *
801 * If id is EDMA_CONT_PARAMS_FIXED_EXACT then the API starts looking for a
134ce221 802 * set of contiguous parameter RAM slots from the "slot" that is passed as an
213765d7
SP
803 * argument to the API.
804 *
805 * If id is EDMA_CONT_PARAMS_FIXED_NOT_EXACT then the API initially tries
134ce221 806 * starts looking for a set of contiguous parameter RAMs from the "slot"
213765d7 807 * that is passed as an argument to the API. On failure the API will try to
134ce221
SP
808 * find a set of contiguous Parameter RAM slots from the remaining Parameter
809 * RAM slots
213765d7
SP
810 */
811int edma_alloc_cont_slots(unsigned ctlr, unsigned int id, int slot, int count)
812{
813 /*
814 * The start slot requested should be greater than
815 * the number of channels and lesser than the total number
816 * of slots
817 */
6b0cf4e9 818 if ((id != EDMA_CONT_PARAMS_ANY) &&
3f68b98a
SN
819 (slot < edma_cc[ctlr]->num_channels ||
820 slot >= edma_cc[ctlr]->num_slots))
213765d7
SP
821 return -EINVAL;
822
823 /*
134ce221 824 * The number of parameter RAM slots requested cannot be less than 1
213765d7
SP
825 * and cannot be more than the number of slots minus the number of
826 * channels
827 */
828 if (count < 1 || count >
3f68b98a 829 (edma_cc[ctlr]->num_slots - edma_cc[ctlr]->num_channels))
213765d7
SP
830 return -EINVAL;
831
832 switch (id) {
833 case EDMA_CONT_PARAMS_ANY:
134ce221 834 return reserve_contiguous_slots(ctlr, id, count,
3f68b98a 835 edma_cc[ctlr]->num_channels);
213765d7
SP
836 case EDMA_CONT_PARAMS_FIXED_EXACT:
837 case EDMA_CONT_PARAMS_FIXED_NOT_EXACT:
134ce221 838 return reserve_contiguous_slots(ctlr, id, count, slot);
213765d7
SP
839 default:
840 return -EINVAL;
841 }
842
843}
844EXPORT_SYMBOL(edma_alloc_cont_slots);
845
846/**
134ce221
SP
847 * edma_free_cont_slots - deallocate DMA parameter RAM slots
848 * @slot: first parameter RAM of a set of parameter RAM slots to be freed
849 * @count: the number of contiguous parameter RAM slots to be freed
213765d7
SP
850 *
851 * This deallocates the parameter RAM slots allocated by
852 * edma_alloc_cont_slots.
853 * Callers/applications need to keep track of sets of contiguous
134ce221 854 * parameter RAM slots that have been allocated using the edma_alloc_cont_slots
213765d7
SP
855 * API.
856 * Callers are responsible for ensuring the slots are inactive, and will
857 * not be activated.
858 */
859int edma_free_cont_slots(unsigned slot, int count)
860{
51c99e04 861 unsigned ctlr, slot_to_free;
213765d7
SP
862 int i;
863
864 ctlr = EDMA_CTLR(slot);
865 slot = EDMA_CHAN_SLOT(slot);
866
3f68b98a
SN
867 if (slot < edma_cc[ctlr]->num_channels ||
868 slot >= edma_cc[ctlr]->num_slots ||
213765d7
SP
869 count < 1)
870 return -EINVAL;
871
872 for (i = slot; i < slot + count; ++i) {
873 ctlr = EDMA_CTLR(i);
51c99e04 874 slot_to_free = EDMA_CHAN_SLOT(i);
213765d7 875
51c99e04 876 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot_to_free),
213765d7 877 &dummy_paramset, PARM_SIZE);
3f68b98a 878 clear_bit(slot_to_free, edma_cc[ctlr]->edma_inuse);
213765d7
SP
879 }
880
881 return 0;
882}
883EXPORT_SYMBOL(edma_free_cont_slots);
884
a4768d22
KH
885/*-----------------------------------------------------------------------*/
886
887/* Parameter RAM operations (i) -- read/write partial slots */
888
889/**
890 * edma_set_src - set initial DMA source address in parameter RAM slot
891 * @slot: parameter RAM slot being configured
892 * @src_port: physical address of source (memory, controller FIFO, etc)
893 * @addressMode: INCR, except in very rare cases
894 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
895 * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
896 *
897 * Note that the source address is modified during the DMA transfer
898 * according to edma_set_src_index().
899 */
900void edma_set_src(unsigned slot, dma_addr_t src_port,
901 enum address_mode mode, enum fifo_width width)
902{
60902a2c
SR
903 unsigned ctlr;
904
905 ctlr = EDMA_CTLR(slot);
906 slot = EDMA_CHAN_SLOT(slot);
907
3f68b98a 908 if (slot < edma_cc[ctlr]->num_slots) {
60902a2c 909 unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
a4768d22
KH
910
911 if (mode) {
912 /* set SAM and program FWID */
913 i = (i & ~(EDMA_FWID)) | (SAM | ((width & 0x7) << 8));
914 } else {
915 /* clear SAM */
916 i &= ~SAM;
917 }
60902a2c 918 edma_parm_write(ctlr, PARM_OPT, slot, i);
a4768d22
KH
919
920 /* set the source port address
921 in source register of param structure */
60902a2c 922 edma_parm_write(ctlr, PARM_SRC, slot, src_port);
a4768d22
KH
923 }
924}
925EXPORT_SYMBOL(edma_set_src);
926
927/**
928 * edma_set_dest - set initial DMA destination address in parameter RAM slot
929 * @slot: parameter RAM slot being configured
930 * @dest_port: physical address of destination (memory, controller FIFO, etc)
931 * @addressMode: INCR, except in very rare cases
932 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
933 * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
934 *
935 * Note that the destination address is modified during the DMA transfer
936 * according to edma_set_dest_index().
937 */
938void edma_set_dest(unsigned slot, dma_addr_t dest_port,
939 enum address_mode mode, enum fifo_width width)
940{
60902a2c
SR
941 unsigned ctlr;
942
943 ctlr = EDMA_CTLR(slot);
944 slot = EDMA_CHAN_SLOT(slot);
945
3f68b98a 946 if (slot < edma_cc[ctlr]->num_slots) {
60902a2c 947 unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
a4768d22
KH
948
949 if (mode) {
950 /* set DAM and program FWID */
951 i = (i & ~(EDMA_FWID)) | (DAM | ((width & 0x7) << 8));
952 } else {
953 /* clear DAM */
954 i &= ~DAM;
955 }
60902a2c 956 edma_parm_write(ctlr, PARM_OPT, slot, i);
a4768d22
KH
957 /* set the destination port address
958 in dest register of param structure */
60902a2c 959 edma_parm_write(ctlr, PARM_DST, slot, dest_port);
a4768d22
KH
960 }
961}
962EXPORT_SYMBOL(edma_set_dest);
963
964/**
965 * edma_get_position - returns the current transfer points
966 * @slot: parameter RAM slot being examined
967 * @src: pointer to source port position
968 * @dst: pointer to destination port position
969 *
970 * Returns current source and destination addresses for a particular
971 * parameter RAM slot. Its channel should not be active when this is called.
972 */
973void edma_get_position(unsigned slot, dma_addr_t *src, dma_addr_t *dst)
974{
975 struct edmacc_param temp;
60902a2c
SR
976 unsigned ctlr;
977
978 ctlr = EDMA_CTLR(slot);
979 slot = EDMA_CHAN_SLOT(slot);
a4768d22 980
60902a2c 981 edma_read_slot(EDMA_CTLR_CHAN(ctlr, slot), &temp);
a4768d22
KH
982 if (src != NULL)
983 *src = temp.src;
984 if (dst != NULL)
985 *dst = temp.dst;
986}
987EXPORT_SYMBOL(edma_get_position);
988
989/**
990 * edma_set_src_index - configure DMA source address indexing
991 * @slot: parameter RAM slot being configured
992 * @src_bidx: byte offset between source arrays in a frame
993 * @src_cidx: byte offset between source frames in a block
994 *
995 * Offsets are specified to support either contiguous or discontiguous
996 * memory transfers, or repeated access to a hardware register, as needed.
997 * When accessing hardware registers, both offsets are normally zero.
998 */
999void edma_set_src_index(unsigned slot, s16 src_bidx, s16 src_cidx)
1000{
60902a2c
SR
1001 unsigned ctlr;
1002
1003 ctlr = EDMA_CTLR(slot);
1004 slot = EDMA_CHAN_SLOT(slot);
1005
3f68b98a 1006 if (slot < edma_cc[ctlr]->num_slots) {
60902a2c 1007 edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
a4768d22 1008 0xffff0000, src_bidx);
60902a2c 1009 edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
a4768d22
KH
1010 0xffff0000, src_cidx);
1011 }
1012}
1013EXPORT_SYMBOL(edma_set_src_index);
1014
1015/**
1016 * edma_set_dest_index - configure DMA destination address indexing
1017 * @slot: parameter RAM slot being configured
1018 * @dest_bidx: byte offset between destination arrays in a frame
1019 * @dest_cidx: byte offset between destination frames in a block
1020 *
1021 * Offsets are specified to support either contiguous or discontiguous
1022 * memory transfers, or repeated access to a hardware register, as needed.
1023 * When accessing hardware registers, both offsets are normally zero.
1024 */
1025void edma_set_dest_index(unsigned slot, s16 dest_bidx, s16 dest_cidx)
1026{
60902a2c
SR
1027 unsigned ctlr;
1028
1029 ctlr = EDMA_CTLR(slot);
1030 slot = EDMA_CHAN_SLOT(slot);
1031
3f68b98a 1032 if (slot < edma_cc[ctlr]->num_slots) {
60902a2c 1033 edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
a4768d22 1034 0x0000ffff, dest_bidx << 16);
60902a2c 1035 edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
a4768d22
KH
1036 0x0000ffff, dest_cidx << 16);
1037 }
1038}
1039EXPORT_SYMBOL(edma_set_dest_index);
1040
1041/**
1042 * edma_set_transfer_params - configure DMA transfer parameters
1043 * @slot: parameter RAM slot being configured
1044 * @acnt: how many bytes per array (at least one)
1045 * @bcnt: how many arrays per frame (at least one)
1046 * @ccnt: how many frames per block (at least one)
1047 * @bcnt_rld: used only for A-Synchronized transfers; this specifies
1048 * the value to reload into bcnt when it decrements to zero
1049 * @sync_mode: ASYNC or ABSYNC
1050 *
1051 * See the EDMA3 documentation to understand how to configure and link
1052 * transfers using the fields in PaRAM slots. If you are not doing it
1053 * all at once with edma_write_slot(), you will use this routine
1054 * plus two calls each for source and destination, setting the initial
1055 * address and saying how to index that address.
1056 *
1057 * An example of an A-Synchronized transfer is a serial link using a
1058 * single word shift register. In that case, @acnt would be equal to
1059 * that word size; the serial controller issues a DMA synchronization
1060 * event to transfer each word, and memory access by the DMA transfer
1061 * controller will be word-at-a-time.
1062 *
1063 * An example of an AB-Synchronized transfer is a device using a FIFO.
1064 * In that case, @acnt equals the FIFO width and @bcnt equals its depth.
1065 * The controller with the FIFO issues DMA synchronization events when
1066 * the FIFO threshold is reached, and the DMA transfer controller will
1067 * transfer one frame to (or from) the FIFO. It will probably use
1068 * efficient burst modes to access memory.
1069 */
1070void edma_set_transfer_params(unsigned slot,
1071 u16 acnt, u16 bcnt, u16 ccnt,
1072 u16 bcnt_rld, enum sync_dimension sync_mode)
1073{
60902a2c
SR
1074 unsigned ctlr;
1075
1076 ctlr = EDMA_CTLR(slot);
1077 slot = EDMA_CHAN_SLOT(slot);
1078
3f68b98a 1079 if (slot < edma_cc[ctlr]->num_slots) {
60902a2c 1080 edma_parm_modify(ctlr, PARM_LINK_BCNTRLD, slot,
a4768d22
KH
1081 0x0000ffff, bcnt_rld << 16);
1082 if (sync_mode == ASYNC)
60902a2c 1083 edma_parm_and(ctlr, PARM_OPT, slot, ~SYNCDIM);
a4768d22 1084 else
60902a2c 1085 edma_parm_or(ctlr, PARM_OPT, slot, SYNCDIM);
a4768d22 1086 /* Set the acount, bcount, ccount registers */
60902a2c
SR
1087 edma_parm_write(ctlr, PARM_A_B_CNT, slot, (bcnt << 16) | acnt);
1088 edma_parm_write(ctlr, PARM_CCNT, slot, ccnt);
a4768d22
KH
1089 }
1090}
1091EXPORT_SYMBOL(edma_set_transfer_params);
1092
1093/**
1094 * edma_link - link one parameter RAM slot to another
1095 * @from: parameter RAM slot originating the link
1096 * @to: parameter RAM slot which is the link target
1097 *
1098 * The originating slot should not be part of any active DMA transfer.
1099 */
1100void edma_link(unsigned from, unsigned to)
1101{
60902a2c
SR
1102 unsigned ctlr_from, ctlr_to;
1103
1104 ctlr_from = EDMA_CTLR(from);
1105 from = EDMA_CHAN_SLOT(from);
1106 ctlr_to = EDMA_CTLR(to);
1107 to = EDMA_CHAN_SLOT(to);
1108
3f68b98a 1109 if (from >= edma_cc[ctlr_from]->num_slots)
a4768d22 1110 return;
3f68b98a 1111 if (to >= edma_cc[ctlr_to]->num_slots)
a4768d22 1112 return;
60902a2c
SR
1113 edma_parm_modify(ctlr_from, PARM_LINK_BCNTRLD, from, 0xffff0000,
1114 PARM_OFFSET(to));
a4768d22
KH
1115}
1116EXPORT_SYMBOL(edma_link);
1117
1118/**
1119 * edma_unlink - cut link from one parameter RAM slot
1120 * @from: parameter RAM slot originating the link
1121 *
1122 * The originating slot should not be part of any active DMA transfer.
1123 * Its link is set to 0xffff.
1124 */
1125void edma_unlink(unsigned from)
1126{
60902a2c
SR
1127 unsigned ctlr;
1128
1129 ctlr = EDMA_CTLR(from);
1130 from = EDMA_CHAN_SLOT(from);
1131
3f68b98a 1132 if (from >= edma_cc[ctlr]->num_slots)
a4768d22 1133 return;
60902a2c 1134 edma_parm_or(ctlr, PARM_LINK_BCNTRLD, from, 0xffff);
a4768d22
KH
1135}
1136EXPORT_SYMBOL(edma_unlink);
1137
1138/*-----------------------------------------------------------------------*/
1139
1140/* Parameter RAM operations (ii) -- read/write whole parameter sets */
1141
1142/**
1143 * edma_write_slot - write parameter RAM data for slot
1144 * @slot: number of parameter RAM slot being modified
1145 * @param: data to be written into parameter RAM slot
1146 *
1147 * Use this to assign all parameters of a transfer at once. This
1148 * allows more efficient setup of transfers than issuing multiple
1149 * calls to set up those parameters in small pieces, and provides
1150 * complete control over all transfer options.
1151 */
1152void edma_write_slot(unsigned slot, const struct edmacc_param *param)
1153{
60902a2c
SR
1154 unsigned ctlr;
1155
1156 ctlr = EDMA_CTLR(slot);
1157 slot = EDMA_CHAN_SLOT(slot);
1158
3f68b98a 1159 if (slot >= edma_cc[ctlr]->num_slots)
a4768d22 1160 return;
60902a2c
SR
1161 memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot), param,
1162 PARM_SIZE);
a4768d22
KH
1163}
1164EXPORT_SYMBOL(edma_write_slot);
1165
1166/**
1167 * edma_read_slot - read parameter RAM data from slot
1168 * @slot: number of parameter RAM slot being copied
1169 * @param: where to store copy of parameter RAM data
1170 *
1171 * Use this to read data from a parameter RAM slot, perhaps to
1172 * save them as a template for later reuse.
1173 */
1174void edma_read_slot(unsigned slot, struct edmacc_param *param)
1175{
60902a2c
SR
1176 unsigned ctlr;
1177
1178 ctlr = EDMA_CTLR(slot);
1179 slot = EDMA_CHAN_SLOT(slot);
1180
3f68b98a 1181 if (slot >= edma_cc[ctlr]->num_slots)
a4768d22 1182 return;
60902a2c
SR
1183 memcpy_fromio(param, edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
1184 PARM_SIZE);
a4768d22
KH
1185}
1186EXPORT_SYMBOL(edma_read_slot);
1187
1188/*-----------------------------------------------------------------------*/
1189
1190/* Various EDMA channel control operations */
1191
1192/**
1193 * edma_pause - pause dma on a channel
1194 * @channel: on which edma_start() has been called
1195 *
1196 * This temporarily disables EDMA hardware events on the specified channel,
1197 * preventing them from triggering new transfers on its behalf
1198 */
1199void edma_pause(unsigned channel)
1200{
60902a2c
SR
1201 unsigned ctlr;
1202
1203 ctlr = EDMA_CTLR(channel);
1204 channel = EDMA_CHAN_SLOT(channel);
1205
3f68b98a 1206 if (channel < edma_cc[ctlr]->num_channels) {
d78a9494 1207 unsigned int mask = BIT(channel & 0x1f);
a4768d22 1208
60902a2c 1209 edma_shadow0_write_array(ctlr, SH_EECR, channel >> 5, mask);
a4768d22
KH
1210 }
1211}
1212EXPORT_SYMBOL(edma_pause);
1213
1214/**
1215 * edma_resume - resumes dma on a paused channel
1216 * @channel: on which edma_pause() has been called
1217 *
1218 * This re-enables EDMA hardware events on the specified channel.
1219 */
1220void edma_resume(unsigned channel)
1221{
60902a2c
SR
1222 unsigned ctlr;
1223
1224 ctlr = EDMA_CTLR(channel);
1225 channel = EDMA_CHAN_SLOT(channel);
1226
3f68b98a 1227 if (channel < edma_cc[ctlr]->num_channels) {
d78a9494 1228 unsigned int mask = BIT(channel & 0x1f);
a4768d22 1229
60902a2c 1230 edma_shadow0_write_array(ctlr, SH_EESR, channel >> 5, mask);
a4768d22
KH
1231 }
1232}
1233EXPORT_SYMBOL(edma_resume);
1234
1235/**
1236 * edma_start - start dma on a channel
1237 * @channel: channel being activated
1238 *
1239 * Channels with event associations will be triggered by their hardware
1240 * events, and channels without such associations will be triggered by
1241 * software. (At this writing there is no interface for using software
1242 * triggers except with channels that don't support hardware triggers.)
1243 *
1244 * Returns zero on success, else negative errno.
1245 */
1246int edma_start(unsigned channel)
1247{
60902a2c
SR
1248 unsigned ctlr;
1249
1250 ctlr = EDMA_CTLR(channel);
1251 channel = EDMA_CHAN_SLOT(channel);
1252
3f68b98a 1253 if (channel < edma_cc[ctlr]->num_channels) {
a4768d22 1254 int j = channel >> 5;
d78a9494 1255 unsigned int mask = BIT(channel & 0x1f);
a4768d22
KH
1256
1257 /* EDMA channels without event association */
3f68b98a 1258 if (test_bit(channel, edma_cc[ctlr]->edma_unused)) {
a4768d22 1259 pr_debug("EDMA: ESR%d %08x\n", j,
60902a2c
SR
1260 edma_shadow0_read_array(ctlr, SH_ESR, j));
1261 edma_shadow0_write_array(ctlr, SH_ESR, j, mask);
a4768d22
KH
1262 return 0;
1263 }
1264
1265 /* EDMA channel with event association */
1266 pr_debug("EDMA: ER%d %08x\n", j,
60902a2c 1267 edma_shadow0_read_array(ctlr, SH_ER, j));
bb17ef10
BN
1268 /* Clear any pending event or error */
1269 edma_write_array(ctlr, EDMA_ECR, j, mask);
60902a2c 1270 edma_write_array(ctlr, EDMA_EMCR, j, mask);
a4768d22 1271 /* Clear any SER */
60902a2c
SR
1272 edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1273 edma_shadow0_write_array(ctlr, SH_EESR, j, mask);
a4768d22 1274 pr_debug("EDMA: EER%d %08x\n", j,
60902a2c 1275 edma_shadow0_read_array(ctlr, SH_EER, j));
a4768d22
KH
1276 return 0;
1277 }
1278
1279 return -EINVAL;
1280}
1281EXPORT_SYMBOL(edma_start);
1282
1283/**
1284 * edma_stop - stops dma on the channel passed
1285 * @channel: channel being deactivated
1286 *
1287 * When @lch is a channel, any active transfer is paused and
1288 * all pending hardware events are cleared. The current transfer
1289 * may not be resumed, and the channel's Parameter RAM should be
1290 * reinitialized before being reused.
1291 */
1292void edma_stop(unsigned channel)
1293{
60902a2c
SR
1294 unsigned ctlr;
1295
1296 ctlr = EDMA_CTLR(channel);
1297 channel = EDMA_CHAN_SLOT(channel);
1298
3f68b98a 1299 if (channel < edma_cc[ctlr]->num_channels) {
a4768d22 1300 int j = channel >> 5;
d78a9494 1301 unsigned int mask = BIT(channel & 0x1f);
a4768d22 1302
60902a2c
SR
1303 edma_shadow0_write_array(ctlr, SH_EECR, j, mask);
1304 edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
1305 edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
1306 edma_write_array(ctlr, EDMA_EMCR, j, mask);
a4768d22
KH
1307
1308 pr_debug("EDMA: EER%d %08x\n", j,
60902a2c 1309 edma_shadow0_read_array(ctlr, SH_EER, j));
a4768d22
KH
1310
1311 /* REVISIT: consider guarding against inappropriate event
1312 * chaining by overwriting with dummy_paramset.
1313 */
1314 }
1315}
1316EXPORT_SYMBOL(edma_stop);
1317
1318/******************************************************************************
1319 *
1320 * It cleans ParamEntry qand bring back EDMA to initial state if media has
1321 * been removed before EDMA has finished.It is usedful for removable media.
1322 * Arguments:
1323 * ch_no - channel no
1324 *
1325 * Return: zero on success, or corresponding error no on failure
1326 *
1327 * FIXME this should not be needed ... edma_stop() should suffice.
1328 *
1329 *****************************************************************************/
1330
1331void edma_clean_channel(unsigned channel)
1332{
60902a2c
SR
1333 unsigned ctlr;
1334
1335 ctlr = EDMA_CTLR(channel);
1336 channel = EDMA_CHAN_SLOT(channel);
1337
3f68b98a 1338 if (channel < edma_cc[ctlr]->num_channels) {
a4768d22 1339 int j = (channel >> 5);
d78a9494 1340 unsigned int mask = BIT(channel & 0x1f);
a4768d22
KH
1341
1342 pr_debug("EDMA: EMR%d %08x\n", j,
60902a2c
SR
1343 edma_read_array(ctlr, EDMA_EMR, j));
1344 edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
a4768d22 1345 /* Clear the corresponding EMR bits */
60902a2c 1346 edma_write_array(ctlr, EDMA_EMCR, j, mask);
a4768d22 1347 /* Clear any SER */
60902a2c 1348 edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
d78a9494 1349 edma_write(ctlr, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
a4768d22
KH
1350 }
1351}
1352EXPORT_SYMBOL(edma_clean_channel);
1353
1354/*
1355 * edma_clear_event - clear an outstanding event on the DMA channel
1356 * Arguments:
1357 * channel - channel number
1358 */
1359void edma_clear_event(unsigned channel)
1360{
60902a2c
SR
1361 unsigned ctlr;
1362
1363 ctlr = EDMA_CTLR(channel);
1364 channel = EDMA_CHAN_SLOT(channel);
1365
3f68b98a 1366 if (channel >= edma_cc[ctlr]->num_channels)
a4768d22
KH
1367 return;
1368 if (channel < 32)
d78a9494 1369 edma_write(ctlr, EDMA_ECR, BIT(channel));
a4768d22 1370 else
d78a9494 1371 edma_write(ctlr, EDMA_ECRH, BIT(channel - 32));
a4768d22
KH
1372}
1373EXPORT_SYMBOL(edma_clear_event);
1374
1375/*-----------------------------------------------------------------------*/
1376
1377static int __init edma_probe(struct platform_device *pdev)
1378{
1379 struct edma_soc_info *info = pdev->dev.platform_data;
60902a2c
SR
1380 const s8 (*queue_priority_mapping)[2];
1381 const s8 (*queue_tc_mapping)[2];
1382 int i, j, found = 0;
1383 int status = -1;
60902a2c
SR
1384 int irq[EDMA_MAX_CC] = {0, 0};
1385 int err_irq[EDMA_MAX_CC] = {0, 0};
1386 struct resource *r[EDMA_MAX_CC] = {NULL};
1387 resource_size_t len[EDMA_MAX_CC];
1388 char res_name[10];
1389 char irq_name[10];
a4768d22
KH
1390
1391 if (!info)
1392 return -ENODEV;
1393
60902a2c
SR
1394 for (j = 0; j < EDMA_MAX_CC; j++) {
1395 sprintf(res_name, "edma_cc%d", j);
1396 r[j] = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1397 res_name);
1398 if (!r[j]) {
1399 if (found)
1400 break;
1401 else
1402 return -ENODEV;
243bc654 1403 } else {
60902a2c 1404 found = 1;
243bc654 1405 }
60902a2c
SR
1406
1407 len[j] = resource_size(r[j]);
1408
1409 r[j] = request_mem_region(r[j]->start, len[j],
1410 dev_name(&pdev->dev));
1411 if (!r[j]) {
1412 status = -EBUSY;
1413 goto fail1;
1414 }
a4768d22 1415
60902a2c
SR
1416 edmacc_regs_base[j] = ioremap(r[j]->start, len[j]);
1417 if (!edmacc_regs_base[j]) {
1418 status = -EBUSY;
1419 goto fail1;
1420 }
a4768d22 1421
3f68b98a
SN
1422 edma_cc[j] = kmalloc(sizeof(struct edma), GFP_KERNEL);
1423 if (!edma_cc[j]) {
60902a2c
SR
1424 status = -ENOMEM;
1425 goto fail1;
1426 }
3f68b98a 1427 memset(edma_cc[j], 0, sizeof(struct edma));
60902a2c 1428
3f68b98a 1429 edma_cc[j]->num_channels = min_t(unsigned, info[j].n_channel,
60902a2c 1430 EDMA_MAX_DMACH);
3f68b98a 1431 edma_cc[j]->num_slots = min_t(unsigned, info[j].n_slot,
60902a2c 1432 EDMA_MAX_PARAMENTRY);
3f68b98a 1433 edma_cc[j]->num_cc = min_t(unsigned, info[j].n_cc, EDMA_MAX_CC);
60902a2c 1434
3f68b98a
SN
1435 edma_cc[j]->default_queue = info[j].default_queue;
1436 if (!edma_cc[j]->default_queue)
1437 edma_cc[j]->default_queue = EVENTQ_1;
a0f0202e 1438
60902a2c
SR
1439 dev_dbg(&pdev->dev, "DMA REG BASE ADDR=%p\n",
1440 edmacc_regs_base[j]);
1441
3f68b98a 1442 for (i = 0; i < edma_cc[j]->num_slots; i++)
60902a2c
SR
1443 memcpy_toio(edmacc_regs_base[j] + PARM_OFFSET(i),
1444 &dummy_paramset, PARM_SIZE);
1445
f900d552 1446 /* Mark all channels as unused */
3f68b98a
SN
1447 memset(edma_cc[j]->edma_unused, 0xff,
1448 sizeof(edma_cc[j]->edma_unused));
a4768d22 1449
60902a2c
SR
1450 sprintf(irq_name, "edma%d", j);
1451 irq[j] = platform_get_irq_byname(pdev, irq_name);
3f68b98a 1452 edma_cc[j]->irq_res_start = irq[j];
60902a2c
SR
1453 status = request_irq(irq[j], dma_irq_handler, 0, "edma",
1454 &pdev->dev);
1455 if (status < 0) {
1456 dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
1457 irq[j], status);
1458 goto fail;
1459 }
a4768d22 1460
60902a2c
SR
1461 sprintf(irq_name, "edma%d_err", j);
1462 err_irq[j] = platform_get_irq_byname(pdev, irq_name);
3f68b98a 1463 edma_cc[j]->irq_res_end = err_irq[j];
60902a2c
SR
1464 status = request_irq(err_irq[j], dma_ccerr_handler, 0,
1465 "edma_error", &pdev->dev);
1466 if (status < 0) {
1467 dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
1468 err_irq[j], status);
1469 goto fail;
1470 }
a4768d22 1471
60902a2c
SR
1472 /* Everything lives on transfer controller 1 until otherwise
1473 * specified. This way, long transfers on the low priority queue
1474 * started by the codec engine will not cause audio defects.
1475 */
3f68b98a 1476 for (i = 0; i < edma_cc[j]->num_channels; i++)
60902a2c 1477 map_dmach_queue(j, i, EVENTQ_1);
a4768d22 1478
60902a2c
SR
1479 queue_tc_mapping = info[j].queue_tc_mapping;
1480 queue_priority_mapping = info[j].queue_priority_mapping;
a4768d22 1481
60902a2c
SR
1482 /* Event queue to TC mapping */
1483 for (i = 0; queue_tc_mapping[i][0] != -1; i++)
1484 map_queue_tc(j, queue_tc_mapping[i][0],
1485 queue_tc_mapping[i][1]);
a4768d22 1486
60902a2c
SR
1487 /* Event queue priority mapping */
1488 for (i = 0; queue_priority_mapping[i][0] != -1; i++)
1489 assign_priority_to_queue(j,
1490 queue_priority_mapping[i][0],
1491 queue_priority_mapping[i][1]);
1492
1493 /* Map the channel to param entry if channel mapping logic
1494 * exist
1495 */
1496 if (edma_read(j, EDMA_CCCFG) & CHMAP_EXIST)
1497 map_dmach_param(j);
a4768d22 1498
60902a2c
SR
1499 for (i = 0; i < info[j].n_region; i++) {
1500 edma_write_array2(j, EDMA_DRAE, i, 0, 0x0);
1501 edma_write_array2(j, EDMA_DRAE, i, 1, 0x0);
1502 edma_write_array(j, EDMA_QRAE, i, 0x0);
1503 }
2d517508 1504 arch_num_cc++;
a4768d22
KH
1505 }
1506
1507 if (tc_errs_handled) {
1508 status = request_irq(IRQ_TCERRINT0, dma_tc0err_handler, 0,
1509 "edma_tc0", &pdev->dev);
1510 if (status < 0) {
1511 dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
1512 IRQ_TCERRINT0, status);
1513 return status;
1514 }
1515 status = request_irq(IRQ_TCERRINT, dma_tc1err_handler, 0,
1516 "edma_tc1", &pdev->dev);
1517 if (status < 0) {
1518 dev_dbg(&pdev->dev, "request_irq %d --> %d\n",
1519 IRQ_TCERRINT, status);
1520 return status;
1521 }
1522 }
1523
a4768d22
KH
1524 return 0;
1525
1526fail:
60902a2c
SR
1527 for (i = 0; i < EDMA_MAX_CC; i++) {
1528 if (err_irq[i])
1529 free_irq(err_irq[i], &pdev->dev);
1530 if (irq[i])
1531 free_irq(irq[i], &pdev->dev);
1532 }
a4768d22 1533fail1:
60902a2c
SR
1534 for (i = 0; i < EDMA_MAX_CC; i++) {
1535 if (r[i])
1536 release_mem_region(r[i]->start, len[i]);
1537 if (edmacc_regs_base[i])
1538 iounmap(edmacc_regs_base[i]);
3f68b98a 1539 kfree(edma_cc[i]);
60902a2c 1540 }
a4768d22
KH
1541 return status;
1542}
1543
1544
1545static struct platform_driver edma_driver = {
1546 .driver.name = "edma",
1547};
1548
1549static int __init edma_init(void)
1550{
1551 return platform_driver_probe(&edma_driver, edma_probe);
1552}
1553arch_initcall(edma_init);
1554
This page took 0.179743 seconds and 5 git commands to generate.