i2c: fix broken ds1337 initialization
[deliverable/linux.git] / arch / arm / mach-versatile / core.c
CommitLineData
1da177e4
LT
1/*
2 * linux/arch/arm/mach-versatile/core.c
3 *
4 * Copyright (C) 1999 - 2003 ARM Limited
5 * Copyright (C) 2000 Deep Blue Solutions Ltd
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
1da177e4
LT
21#include <linux/init.h>
22#include <linux/device.h>
23#include <linux/dma-mapping.h>
d052d1be 24#include <linux/platform_device.h>
1da177e4
LT
25#include <linux/sysdev.h>
26#include <linux/interrupt.h>
a62c80e5
RK
27#include <linux/amba/bus.h>
28#include <linux/amba/clcd.h>
1da177e4 29
752bee17 30#include <asm/cnt32_to_63.h>
1da177e4
LT
31#include <asm/system.h>
32#include <asm/hardware.h>
33#include <asm/io.h>
34#include <asm/irq.h>
35#include <asm/leds.h>
b720f732 36#include <asm/hardware/arm_timer.h>
1da177e4 37#include <asm/hardware/icst307.h>
fa0fe48f 38#include <asm/hardware/vic.h>
dc5bc8f1 39#include <asm/mach-types.h>
1da177e4
LT
40
41#include <asm/mach/arch.h>
42#include <asm/mach/flash.h>
43#include <asm/mach/irq.h>
44#include <asm/mach/time.h>
45#include <asm/mach/map.h>
46#include <asm/mach/mmc.h>
47
48#include "core.h"
49#include "clock.h"
50
51/*
52 * All IO addresses are mapped onto VA 0xFFFx.xxxx, where x.xxxx
53 * is the (PA >> 12).
54 *
55 * Setup a VA for the Versatile Vectored Interrupt Controller.
56 */
2ad4f86b
AV
57#define __io_address(n) __io(IO_ADDRESS(n))
58#define VA_VIC_BASE __io_address(VERSATILE_VIC_BASE)
59#define VA_SIC_BASE __io_address(VERSATILE_SIC_BASE)
1da177e4 60
1da177e4
LT
61static void sic_mask_irq(unsigned int irq)
62{
63 irq -= IRQ_SIC_START;
64 writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
65}
66
67static void sic_unmask_irq(unsigned int irq)
68{
69 irq -= IRQ_SIC_START;
70 writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_SET);
71}
72
38c677cb
DB
73static struct irq_chip sic_chip = {
74 .name = "SIC",
1da177e4
LT
75 .ack = sic_mask_irq,
76 .mask = sic_mask_irq,
77 .unmask = sic_unmask_irq,
78};
79
80static void
10dd5ce2 81sic_handle_irq(unsigned int irq, struct irq_desc *desc)
1da177e4
LT
82{
83 unsigned long status = readl(VA_SIC_BASE + SIC_IRQ_STATUS);
84
85 if (status == 0) {
0cd61b68 86 do_bad_IRQ(irq, desc);
1da177e4
LT
87 return;
88 }
89
90 do {
91 irq = ffs(status) - 1;
92 status &= ~(1 << irq);
93
94 irq += IRQ_SIC_START;
95
96 desc = irq_desc + irq;
0cd61b68 97 desc_handle_irq(irq, desc);
1da177e4
LT
98 } while (status);
99}
100
101#if 1
102#define IRQ_MMCI0A IRQ_VICSOURCE22
103#define IRQ_AACI IRQ_VICSOURCE24
104#define IRQ_ETH IRQ_VICSOURCE25
105#define PIC_MASK 0xFFD00000
106#else
107#define IRQ_MMCI0A IRQ_SIC_MMCI0A
108#define IRQ_AACI IRQ_SIC_AACI
109#define IRQ_ETH IRQ_SIC_ETH
110#define PIC_MASK 0
111#endif
112
113void __init versatile_init_irq(void)
114{
fa0fe48f 115 unsigned int i;
1da177e4 116
56f1319e 117 vic_init(VA_VIC_BASE, IRQ_VIC_START, ~0);
1da177e4 118
56f1319e 119 set_irq_chained_handler(IRQ_VICSOURCE31, sic_handle_irq);
1da177e4
LT
120
121 /* Do second interrupt controller */
122 writel(~0, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
123
124 for (i = IRQ_SIC_START; i <= IRQ_SIC_END; i++) {
125 if ((PIC_MASK & (1 << (i - IRQ_SIC_START))) == 0) {
126 set_irq_chip(i, &sic_chip);
10dd5ce2 127 set_irq_handler(i, handle_level_irq);
1da177e4
LT
128 set_irq_flags(i, IRQF_VALID | IRQF_PROBE);
129 }
130 }
131
132 /*
133 * Interrupts on secondary controller from 0 to 8 are routed to
134 * source 31 on PIC.
135 * Interrupts from 21 to 31 are routed directly to the VIC on
136 * the corresponding number on primary controller. This is controlled
137 * by setting PIC_ENABLEx.
138 */
139 writel(PIC_MASK, VA_SIC_BASE + SIC_INT_PIC_ENABLE);
140}
141
142static struct map_desc versatile_io_desc[] __initdata = {
1311521f
DS
143 {
144 .virtual = IO_ADDRESS(VERSATILE_SYS_BASE),
145 .pfn = __phys_to_pfn(VERSATILE_SYS_BASE),
146 .length = SZ_4K,
147 .type = MT_DEVICE
148 }, {
149 .virtual = IO_ADDRESS(VERSATILE_SIC_BASE),
150 .pfn = __phys_to_pfn(VERSATILE_SIC_BASE),
151 .length = SZ_4K,
152 .type = MT_DEVICE
153 }, {
154 .virtual = IO_ADDRESS(VERSATILE_VIC_BASE),
155 .pfn = __phys_to_pfn(VERSATILE_VIC_BASE),
156 .length = SZ_4K,
157 .type = MT_DEVICE
158 }, {
159 .virtual = IO_ADDRESS(VERSATILE_SCTL_BASE),
160 .pfn = __phys_to_pfn(VERSATILE_SCTL_BASE),
161 .length = SZ_4K * 9,
162 .type = MT_DEVICE
163 },
1da177e4 164#ifdef CONFIG_MACH_VERSATILE_AB
1311521f
DS
165 {
166 .virtual = IO_ADDRESS(VERSATILE_GPIO0_BASE),
167 .pfn = __phys_to_pfn(VERSATILE_GPIO0_BASE),
168 .length = SZ_4K,
169 .type = MT_DEVICE
170 }, {
171 .virtual = IO_ADDRESS(VERSATILE_IB2_BASE),
172 .pfn = __phys_to_pfn(VERSATILE_IB2_BASE),
173 .length = SZ_64M,
174 .type = MT_DEVICE
175 },
1da177e4
LT
176#endif
177#ifdef CONFIG_DEBUG_LL
1311521f
DS
178 {
179 .virtual = IO_ADDRESS(VERSATILE_UART0_BASE),
180 .pfn = __phys_to_pfn(VERSATILE_UART0_BASE),
181 .length = SZ_4K,
182 .type = MT_DEVICE
183 },
1da177e4 184#endif
c0da085a 185#ifdef CONFIG_PCI
1311521f
DS
186 {
187 .virtual = IO_ADDRESS(VERSATILE_PCI_CORE_BASE),
188 .pfn = __phys_to_pfn(VERSATILE_PCI_CORE_BASE),
189 .length = SZ_4K,
190 .type = MT_DEVICE
191 }, {
399ad77b 192 .virtual = (unsigned long)VERSATILE_PCI_VIRT_BASE,
1311521f
DS
193 .pfn = __phys_to_pfn(VERSATILE_PCI_BASE),
194 .length = VERSATILE_PCI_BASE_SIZE,
195 .type = MT_DEVICE
196 }, {
399ad77b 197 .virtual = (unsigned long)VERSATILE_PCI_CFG_VIRT_BASE,
1311521f
DS
198 .pfn = __phys_to_pfn(VERSATILE_PCI_CFG_BASE),
199 .length = VERSATILE_PCI_CFG_BASE_SIZE,
200 .type = MT_DEVICE
201 },
c0da085a 202#if 0
1311521f
DS
203 {
204 .virtual = VERSATILE_PCI_VIRT_MEM_BASE0,
205 .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE0),
206 .length = SZ_16M,
207 .type = MT_DEVICE
208 }, {
209 .virtual = VERSATILE_PCI_VIRT_MEM_BASE1,
210 .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE1),
211 .length = SZ_16M,
212 .type = MT_DEVICE
213 }, {
214 .virtual = VERSATILE_PCI_VIRT_MEM_BASE2,
215 .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE2),
216 .length = SZ_16M,
217 .type = MT_DEVICE
218 },
c0da085a 219#endif
1da177e4
LT
220#endif
221};
222
223void __init versatile_map_io(void)
224{
225 iotable_init(versatile_io_desc, ARRAY_SIZE(versatile_io_desc));
226}
227
2ad4f86b 228#define VERSATILE_REFCOUNTER (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_24MHz_OFFSET)
1da177e4
LT
229
230/*
231 * This is the Versatile sched_clock implementation. This has
752bee17
NP
232 * a resolution of 41.7ns, and a maximum value of about 35583 days.
233 *
234 * The return value is guaranteed to be monotonic in that range as
235 * long as there is always less than 89 seconds between successive
236 * calls to this function.
1da177e4
LT
237 */
238unsigned long long sched_clock(void)
239{
752bee17 240 unsigned long long v = cnt32_to_63(readl(VERSATILE_REFCOUNTER));
1da177e4 241
752bee17
NP
242 /* the <<1 gets rid of the cnt_32_to_63 top bit saving on a bic insn */
243 v *= 125<<1;
244 do_div(v, 3<<1);
1da177e4
LT
245
246 return v;
247}
248
249
2ad4f86b 250#define VERSATILE_FLASHCTRL (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_FLASH_OFFSET)
1da177e4
LT
251
252static int versatile_flash_init(void)
253{
254 u32 val;
255
256 val = __raw_readl(VERSATILE_FLASHCTRL);
257 val &= ~VERSATILE_FLASHPROG_FLVPPEN;
258 __raw_writel(val, VERSATILE_FLASHCTRL);
259
260 return 0;
261}
262
263static void versatile_flash_exit(void)
264{
265 u32 val;
266
267 val = __raw_readl(VERSATILE_FLASHCTRL);
268 val &= ~VERSATILE_FLASHPROG_FLVPPEN;
269 __raw_writel(val, VERSATILE_FLASHCTRL);
270}
271
272static void versatile_flash_set_vpp(int on)
273{
274 u32 val;
275
276 val = __raw_readl(VERSATILE_FLASHCTRL);
277 if (on)
278 val |= VERSATILE_FLASHPROG_FLVPPEN;
279 else
280 val &= ~VERSATILE_FLASHPROG_FLVPPEN;
281 __raw_writel(val, VERSATILE_FLASHCTRL);
282}
283
284static struct flash_platform_data versatile_flash_data = {
285 .map_name = "cfi_probe",
286 .width = 4,
287 .init = versatile_flash_init,
288 .exit = versatile_flash_exit,
289 .set_vpp = versatile_flash_set_vpp,
290};
291
292static struct resource versatile_flash_resource = {
293 .start = VERSATILE_FLASH_BASE,
a0c5a645 294 .end = VERSATILE_FLASH_BASE + VERSATILE_FLASH_SIZE - 1,
1da177e4
LT
295 .flags = IORESOURCE_MEM,
296};
297
298static struct platform_device versatile_flash_device = {
299 .name = "armflash",
300 .id = 0,
301 .dev = {
302 .platform_data = &versatile_flash_data,
303 },
304 .num_resources = 1,
305 .resource = &versatile_flash_resource,
306};
307
308static struct resource smc91x_resources[] = {
309 [0] = {
310 .start = VERSATILE_ETH_BASE,
311 .end = VERSATILE_ETH_BASE + SZ_64K - 1,
312 .flags = IORESOURCE_MEM,
313 },
314 [1] = {
315 .start = IRQ_ETH,
316 .end = IRQ_ETH,
317 .flags = IORESOURCE_IRQ,
318 },
319};
320
321static struct platform_device smc91x_device = {
322 .name = "smc91x",
323 .id = 0,
324 .num_resources = ARRAY_SIZE(smc91x_resources),
325 .resource = smc91x_resources,
326};
327
2ad4f86b 328#define VERSATILE_SYSMCI (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_MCI_OFFSET)
1da177e4
LT
329
330unsigned int mmc_status(struct device *dev)
331{
332 struct amba_device *adev = container_of(dev, struct amba_device, dev);
333 u32 mask;
334
335 if (adev->res.start == VERSATILE_MMCI0_BASE)
336 mask = 1;
337 else
338 mask = 2;
339
340 return readl(VERSATILE_SYSMCI) & mask;
341}
342
343static struct mmc_platform_data mmc0_plat_data = {
344 .ocr_mask = MMC_VDD_32_33|MMC_VDD_33_34,
345 .status = mmc_status,
346};
347
348/*
349 * Clock handling
350 */
351static const struct icst307_params versatile_oscvco_params = {
352 .ref = 24000,
353 .vco_max = 200000,
354 .vd_min = 4 + 8,
355 .vd_max = 511 + 8,
356 .rd_min = 1 + 2,
357 .rd_max = 127 + 2,
358};
359
360static void versatile_oscvco_set(struct clk *clk, struct icst307_vco vco)
361{
2ad4f86b 362 void __iomem *sys_lock = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_LOCK_OFFSET;
dc5bc8f1 363 void __iomem *sys_osc = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_OSCCLCD_OFFSET;
1da177e4
LT
364 u32 val;
365
366 val = readl(sys_osc) & ~0x7ffff;
367 val |= vco.v | (vco.r << 9) | (vco.s << 16);
368
369 writel(0xa05f, sys_lock);
370 writel(val, sys_osc);
371 writel(0, sys_lock);
372}
373
374static struct clk versatile_clcd_clk = {
375 .name = "CLCDCLK",
376 .params = &versatile_oscvco_params,
377 .setvco = versatile_oscvco_set,
378};
379
380/*
381 * CLCD support.
382 */
383#define SYS_CLCD_MODE_MASK (3 << 0)
384#define SYS_CLCD_MODE_888 (0 << 0)
385#define SYS_CLCD_MODE_5551 (1 << 0)
386#define SYS_CLCD_MODE_565_RLSB (2 << 0)
387#define SYS_CLCD_MODE_565_BLSB (3 << 0)
388#define SYS_CLCD_NLCDIOON (1 << 2)
389#define SYS_CLCD_VDDPOSSWITCH (1 << 3)
390#define SYS_CLCD_PWR3V5SWITCH (1 << 4)
391#define SYS_CLCD_ID_MASK (0x1f << 8)
392#define SYS_CLCD_ID_SANYO_3_8 (0x00 << 8)
393#define SYS_CLCD_ID_UNKNOWN_8_4 (0x01 << 8)
394#define SYS_CLCD_ID_EPSON_2_2 (0x02 << 8)
395#define SYS_CLCD_ID_SANYO_2_5 (0x07 << 8)
396#define SYS_CLCD_ID_VGA (0x1f << 8)
397
398static struct clcd_panel vga = {
399 .mode = {
400 .name = "VGA",
401 .refresh = 60,
402 .xres = 640,
403 .yres = 480,
404 .pixclock = 39721,
405 .left_margin = 40,
406 .right_margin = 24,
407 .upper_margin = 32,
408 .lower_margin = 11,
409 .hsync_len = 96,
410 .vsync_len = 2,
411 .sync = 0,
412 .vmode = FB_VMODE_NONINTERLACED,
413 },
414 .width = -1,
415 .height = -1,
416 .tim2 = TIM2_BCD | TIM2_IPC,
417 .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
418 .bpp = 16,
419};
420
421static struct clcd_panel sanyo_3_8_in = {
422 .mode = {
423 .name = "Sanyo QVGA",
424 .refresh = 116,
425 .xres = 320,
426 .yres = 240,
427 .pixclock = 100000,
428 .left_margin = 6,
429 .right_margin = 6,
430 .upper_margin = 5,
431 .lower_margin = 5,
432 .hsync_len = 6,
433 .vsync_len = 6,
434 .sync = 0,
435 .vmode = FB_VMODE_NONINTERLACED,
436 },
437 .width = -1,
438 .height = -1,
439 .tim2 = TIM2_BCD,
440 .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
441 .bpp = 16,
442};
443
444static struct clcd_panel sanyo_2_5_in = {
445 .mode = {
446 .name = "Sanyo QVGA Portrait",
447 .refresh = 116,
448 .xres = 240,
449 .yres = 320,
450 .pixclock = 100000,
451 .left_margin = 20,
452 .right_margin = 10,
453 .upper_margin = 2,
454 .lower_margin = 2,
455 .hsync_len = 10,
456 .vsync_len = 2,
457 .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
458 .vmode = FB_VMODE_NONINTERLACED,
459 },
460 .width = -1,
461 .height = -1,
462 .tim2 = TIM2_IVS | TIM2_IHS | TIM2_IPC,
463 .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
464 .bpp = 16,
465};
466
467static struct clcd_panel epson_2_2_in = {
468 .mode = {
469 .name = "Epson QCIF",
470 .refresh = 390,
471 .xres = 176,
472 .yres = 220,
473 .pixclock = 62500,
474 .left_margin = 3,
475 .right_margin = 2,
476 .upper_margin = 1,
477 .lower_margin = 0,
478 .hsync_len = 3,
479 .vsync_len = 2,
480 .sync = 0,
481 .vmode = FB_VMODE_NONINTERLACED,
482 },
483 .width = -1,
484 .height = -1,
485 .tim2 = TIM2_BCD | TIM2_IPC,
486 .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
487 .bpp = 16,
488};
489
490/*
491 * Detect which LCD panel is connected, and return the appropriate
492 * clcd_panel structure. Note: we do not have any information on
493 * the required timings for the 8.4in panel, so we presently assume
494 * VGA timings.
495 */
496static struct clcd_panel *versatile_clcd_panel(void)
497{
2ad4f86b 498 void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
1da177e4
LT
499 struct clcd_panel *panel = &vga;
500 u32 val;
501
502 val = readl(sys_clcd) & SYS_CLCD_ID_MASK;
503 if (val == SYS_CLCD_ID_SANYO_3_8)
504 panel = &sanyo_3_8_in;
505 else if (val == SYS_CLCD_ID_SANYO_2_5)
506 panel = &sanyo_2_5_in;
507 else if (val == SYS_CLCD_ID_EPSON_2_2)
508 panel = &epson_2_2_in;
509 else if (val == SYS_CLCD_ID_VGA)
510 panel = &vga;
511 else {
512 printk(KERN_ERR "CLCD: unknown LCD panel ID 0x%08x, using VGA\n",
513 val);
514 panel = &vga;
515 }
516
517 return panel;
518}
519
520/*
521 * Disable all display connectors on the interface module.
522 */
523static void versatile_clcd_disable(struct clcd_fb *fb)
524{
2ad4f86b 525 void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
1da177e4
LT
526 u32 val;
527
528 val = readl(sys_clcd);
529 val &= ~SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
530 writel(val, sys_clcd);
531
532#ifdef CONFIG_MACH_VERSATILE_AB
533 /*
534 * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light off
535 */
dc5bc8f1 536 if (machine_is_versatile_ab() && fb->panel == &sanyo_2_5_in) {
2ad4f86b 537 void __iomem *versatile_ib2_ctrl = __io_address(VERSATILE_IB2_CTRL);
1da177e4
LT
538 unsigned long ctrl;
539
540 ctrl = readl(versatile_ib2_ctrl);
541 ctrl &= ~0x01;
542 writel(ctrl, versatile_ib2_ctrl);
543 }
544#endif
545}
546
547/*
548 * Enable the relevant connector on the interface module.
549 */
550static void versatile_clcd_enable(struct clcd_fb *fb)
551{
2ad4f86b 552 void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
1da177e4
LT
553 u32 val;
554
555 val = readl(sys_clcd);
556 val &= ~SYS_CLCD_MODE_MASK;
557
558 switch (fb->fb.var.green.length) {
559 case 5:
560 val |= SYS_CLCD_MODE_5551;
561 break;
562 case 6:
90ef713b 563 val |= SYS_CLCD_MODE_565_RLSB;
1da177e4
LT
564 break;
565 case 8:
566 val |= SYS_CLCD_MODE_888;
567 break;
568 }
569
570 /*
571 * Set the MUX
572 */
573 writel(val, sys_clcd);
574
575 /*
576 * And now enable the PSUs
577 */
578 val |= SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
579 writel(val, sys_clcd);
580
581#ifdef CONFIG_MACH_VERSATILE_AB
582 /*
583 * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light on
584 */
dc5bc8f1 585 if (machine_is_versatile_ab() && fb->panel == &sanyo_2_5_in) {
2ad4f86b 586 void __iomem *versatile_ib2_ctrl = __io_address(VERSATILE_IB2_CTRL);
1da177e4
LT
587 unsigned long ctrl;
588
589 ctrl = readl(versatile_ib2_ctrl);
590 ctrl |= 0x01;
591 writel(ctrl, versatile_ib2_ctrl);
592 }
593#endif
594}
595
596static unsigned long framesize = SZ_1M;
597
598static int versatile_clcd_setup(struct clcd_fb *fb)
599{
600 dma_addr_t dma;
601
602 fb->panel = versatile_clcd_panel();
603
604 fb->fb.screen_base = dma_alloc_writecombine(&fb->dev->dev, framesize,
605 &dma, GFP_KERNEL);
606 if (!fb->fb.screen_base) {
607 printk(KERN_ERR "CLCD: unable to map framebuffer\n");
608 return -ENOMEM;
609 }
610
611 fb->fb.fix.smem_start = dma;
612 fb->fb.fix.smem_len = framesize;
613
614 return 0;
615}
616
617static int versatile_clcd_mmap(struct clcd_fb *fb, struct vm_area_struct *vma)
618{
619 return dma_mmap_writecombine(&fb->dev->dev, vma,
620 fb->fb.screen_base,
621 fb->fb.fix.smem_start,
622 fb->fb.fix.smem_len);
623}
624
625static void versatile_clcd_remove(struct clcd_fb *fb)
626{
627 dma_free_writecombine(&fb->dev->dev, fb->fb.fix.smem_len,
628 fb->fb.screen_base, fb->fb.fix.smem_start);
629}
630
631static struct clcd_board clcd_plat_data = {
632 .name = "Versatile",
633 .check = clcdfb_check,
634 .decode = clcdfb_decode,
635 .disable = versatile_clcd_disable,
636 .enable = versatile_clcd_enable,
637 .setup = versatile_clcd_setup,
638 .mmap = versatile_clcd_mmap,
639 .remove = versatile_clcd_remove,
640};
641
642#define AACI_IRQ { IRQ_AACI, NO_IRQ }
643#define AACI_DMA { 0x80, 0x81 }
644#define MMCI0_IRQ { IRQ_MMCI0A,IRQ_SIC_MMCI0B }
645#define MMCI0_DMA { 0x84, 0 }
646#define KMI0_IRQ { IRQ_SIC_KMI0, NO_IRQ }
647#define KMI0_DMA { 0, 0 }
648#define KMI1_IRQ { IRQ_SIC_KMI1, NO_IRQ }
649#define KMI1_DMA { 0, 0 }
650
651/*
652 * These devices are connected directly to the multi-layer AHB switch
653 */
654#define SMC_IRQ { NO_IRQ, NO_IRQ }
655#define SMC_DMA { 0, 0 }
656#define MPMC_IRQ { NO_IRQ, NO_IRQ }
657#define MPMC_DMA { 0, 0 }
658#define CLCD_IRQ { IRQ_CLCDINT, NO_IRQ }
659#define CLCD_DMA { 0, 0 }
660#define DMAC_IRQ { IRQ_DMAINT, NO_IRQ }
661#define DMAC_DMA { 0, 0 }
662
663/*
664 * These devices are connected via the core APB bridge
665 */
666#define SCTL_IRQ { NO_IRQ, NO_IRQ }
667#define SCTL_DMA { 0, 0 }
668#define WATCHDOG_IRQ { IRQ_WDOGINT, NO_IRQ }
669#define WATCHDOG_DMA { 0, 0 }
670#define GPIO0_IRQ { IRQ_GPIOINT0, NO_IRQ }
671#define GPIO0_DMA { 0, 0 }
672#define GPIO1_IRQ { IRQ_GPIOINT1, NO_IRQ }
673#define GPIO1_DMA { 0, 0 }
674#define RTC_IRQ { IRQ_RTCINT, NO_IRQ }
675#define RTC_DMA { 0, 0 }
676
677/*
678 * These devices are connected via the DMA APB bridge
679 */
680#define SCI_IRQ { IRQ_SCIINT, NO_IRQ }
681#define SCI_DMA { 7, 6 }
682#define UART0_IRQ { IRQ_UARTINT0, NO_IRQ }
683#define UART0_DMA { 15, 14 }
684#define UART1_IRQ { IRQ_UARTINT1, NO_IRQ }
685#define UART1_DMA { 13, 12 }
686#define UART2_IRQ { IRQ_UARTINT2, NO_IRQ }
687#define UART2_DMA { 11, 10 }
688#define SSP_IRQ { IRQ_SSPINT, NO_IRQ }
689#define SSP_DMA { 9, 8 }
690
691/* FPGA Primecells */
692AMBA_DEVICE(aaci, "fpga:04", AACI, NULL);
693AMBA_DEVICE(mmc0, "fpga:05", MMCI0, &mmc0_plat_data);
694AMBA_DEVICE(kmi0, "fpga:06", KMI0, NULL);
695AMBA_DEVICE(kmi1, "fpga:07", KMI1, NULL);
696
697/* DevChip Primecells */
698AMBA_DEVICE(smc, "dev:00", SMC, NULL);
699AMBA_DEVICE(mpmc, "dev:10", MPMC, NULL);
700AMBA_DEVICE(clcd, "dev:20", CLCD, &clcd_plat_data);
701AMBA_DEVICE(dmac, "dev:30", DMAC, NULL);
702AMBA_DEVICE(sctl, "dev:e0", SCTL, NULL);
703AMBA_DEVICE(wdog, "dev:e1", WATCHDOG, NULL);
704AMBA_DEVICE(gpio0, "dev:e4", GPIO0, NULL);
705AMBA_DEVICE(gpio1, "dev:e5", GPIO1, NULL);
706AMBA_DEVICE(rtc, "dev:e8", RTC, NULL);
707AMBA_DEVICE(sci0, "dev:f0", SCI, NULL);
708AMBA_DEVICE(uart0, "dev:f1", UART0, NULL);
709AMBA_DEVICE(uart1, "dev:f2", UART1, NULL);
710AMBA_DEVICE(uart2, "dev:f3", UART2, NULL);
711AMBA_DEVICE(ssp0, "dev:f4", SSP, NULL);
712
713static struct amba_device *amba_devs[] __initdata = {
714 &dmac_device,
715 &uart0_device,
716 &uart1_device,
717 &uart2_device,
718 &smc_device,
719 &mpmc_device,
720 &clcd_device,
721 &sctl_device,
722 &wdog_device,
723 &gpio0_device,
724 &gpio1_device,
725 &rtc_device,
726 &sci0_device,
727 &ssp0_device,
728 &aaci_device,
729 &mmc0_device,
730 &kmi0_device,
731 &kmi1_device,
732};
733
734#ifdef CONFIG_LEDS
2ad4f86b 735#define VA_LEDS_BASE (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_LED_OFFSET)
1da177e4
LT
736
737static void versatile_leds_event(led_event_t ledevt)
738{
739 unsigned long flags;
740 u32 val;
741
742 local_irq_save(flags);
743 val = readl(VA_LEDS_BASE);
744
745 switch (ledevt) {
746 case led_idle_start:
747 val = val & ~VERSATILE_SYS_LED0;
748 break;
749
750 case led_idle_end:
751 val = val | VERSATILE_SYS_LED0;
752 break;
753
754 case led_timer:
755 val = val ^ VERSATILE_SYS_LED1;
756 break;
757
758 case led_halted:
759 val = 0;
760 break;
761
762 default:
763 break;
764 }
765
766 writel(val, VA_LEDS_BASE);
767 local_irq_restore(flags);
768}
769#endif /* CONFIG_LEDS */
770
771void __init versatile_init(void)
772{
773 int i;
774
775 clk_register(&versatile_clcd_clk);
776
777 platform_device_register(&versatile_flash_device);
778 platform_device_register(&smc91x_device);
779
780 for (i = 0; i < ARRAY_SIZE(amba_devs); i++) {
781 struct amba_device *d = amba_devs[i];
782 amba_device_register(d, &iomem_resource);
783 }
784
785#ifdef CONFIG_LEDS
786 leds_event = versatile_leds_event;
787#endif
788}
789
790/*
791 * Where is the timer (VA)?
792 */
2ad4f86b
AV
793#define TIMER0_VA_BASE __io_address(VERSATILE_TIMER0_1_BASE)
794#define TIMER1_VA_BASE (__io_address(VERSATILE_TIMER0_1_BASE) + 0x20)
795#define TIMER2_VA_BASE __io_address(VERSATILE_TIMER2_3_BASE)
796#define TIMER3_VA_BASE (__io_address(VERSATILE_TIMER2_3_BASE) + 0x20)
797#define VA_IC_BASE __io_address(VERSATILE_VIC_BASE)
1da177e4
LT
798
799/*
800 * How long is the timer interval?
801 */
802#define TIMER_INTERVAL (TICKS_PER_uSEC * mSEC_10)
803#if TIMER_INTERVAL >= 0x100000
b720f732
RK
804#define TIMER_RELOAD (TIMER_INTERVAL >> 8)
805#define TIMER_DIVISOR (TIMER_CTRL_DIV256)
1da177e4
LT
806#define TICKS2USECS(x) (256 * (x) / TICKS_PER_uSEC)
807#elif TIMER_INTERVAL >= 0x10000
808#define TIMER_RELOAD (TIMER_INTERVAL >> 4) /* Divide by 16 */
b720f732 809#define TIMER_DIVISOR (TIMER_CTRL_DIV16)
1da177e4
LT
810#define TICKS2USECS(x) (16 * (x) / TICKS_PER_uSEC)
811#else
812#define TIMER_RELOAD (TIMER_INTERVAL)
b720f732 813#define TIMER_DIVISOR (TIMER_CTRL_DIV1)
1da177e4
LT
814#define TICKS2USECS(x) ((x) / TICKS_PER_uSEC)
815#endif
816
1da177e4
LT
817/*
818 * Returns number of ms since last clock interrupt. Note that interrupts
819 * will have been disabled by do_gettimeoffset()
820 */
821static unsigned long versatile_gettimeoffset(void)
822{
1da177e4
LT
823 unsigned long ticks1, ticks2, status;
824
825 /*
826 * Get the current number of ticks. Note that there is a race
827 * condition between us reading the timer and checking for
828 * an interrupt. We get around this by ensuring that the
829 * counter has not reloaded between our two reads.
830 */
b720f732 831 ticks2 = readl(TIMER0_VA_BASE + TIMER_VALUE) & 0xffff;
1da177e4
LT
832 do {
833 ticks1 = ticks2;
fa0fe48f 834 status = __raw_readl(VA_IC_BASE + VIC_RAW_STATUS);
b720f732 835 ticks2 = readl(TIMER0_VA_BASE + TIMER_VALUE) & 0xffff;
1da177e4
LT
836 } while (ticks2 > ticks1);
837
838 /*
839 * Number of ticks since last interrupt.
840 */
841 ticks1 = TIMER_RELOAD - ticks2;
842
843 /*
844 * Interrupt pending? If so, we've reloaded once already.
845 *
846 * FIXME: Need to check this is effectively timer 0 that expires
847 */
848 if (status & IRQMASK_TIMERINT0_1)
849 ticks1 += TIMER_RELOAD;
850
851 /*
852 * Convert the ticks to usecs
853 */
854 return TICKS2USECS(ticks1);
855}
856
857/*
858 * IRQ handler for the timer
859 */
0cd61b68 860static irqreturn_t versatile_timer_interrupt(int irq, void *dev_id)
1da177e4 861{
1da177e4
LT
862 write_seqlock(&xtime_lock);
863
864 // ...clear the interrupt
b720f732 865 writel(1, TIMER0_VA_BASE + TIMER_INTCLR);
1da177e4 866
0cd61b68 867 timer_tick();
1da177e4
LT
868
869 write_sequnlock(&xtime_lock);
870
871 return IRQ_HANDLED;
872}
873
874static struct irqaction versatile_timer_irq = {
875 .name = "Versatile Timer Tick",
52e405ea 876 .flags = IRQF_DISABLED | IRQF_TIMER,
09b8b5f8 877 .handler = versatile_timer_interrupt,
1da177e4
LT
878};
879
880/*
881 * Set up timer interrupt, and return the current time in seconds.
882 */
883static void __init versatile_timer_init(void)
884{
b720f732 885 u32 val;
1da177e4
LT
886
887 /*
888 * set clock frequency:
889 * VERSATILE_REFCLK is 32KHz
890 * VERSATILE_TIMCLK is 1MHz
891 */
2ad4f86b 892 val = readl(__io_address(VERSATILE_SCTL_BASE));
b720f732
RK
893 writel((VERSATILE_TIMCLK << VERSATILE_TIMER1_EnSel) |
894 (VERSATILE_TIMCLK << VERSATILE_TIMER2_EnSel) |
895 (VERSATILE_TIMCLK << VERSATILE_TIMER3_EnSel) |
896 (VERSATILE_TIMCLK << VERSATILE_TIMER4_EnSel) | val,
2ad4f86b 897 __io_address(VERSATILE_SCTL_BASE));
1da177e4
LT
898
899 /*
900 * Initialise to a known state (all timers off)
901 */
b720f732
RK
902 writel(0, TIMER0_VA_BASE + TIMER_CTRL);
903 writel(0, TIMER1_VA_BASE + TIMER_CTRL);
904 writel(0, TIMER2_VA_BASE + TIMER_CTRL);
905 writel(0, TIMER3_VA_BASE + TIMER_CTRL);
906
907 writel(TIMER_RELOAD, TIMER0_VA_BASE + TIMER_LOAD);
908 writel(TIMER_RELOAD, TIMER0_VA_BASE + TIMER_VALUE);
909 writel(TIMER_DIVISOR | TIMER_CTRL_ENABLE | TIMER_CTRL_PERIODIC |
910 TIMER_CTRL_IE, TIMER0_VA_BASE + TIMER_CTRL);
1da177e4
LT
911
912 /*
913 * Make irqs happen for the system timer
914 */
915 setup_irq(IRQ_TIMERINT0_1, &versatile_timer_irq);
916}
917
918struct sys_timer versatile_timer = {
919 .init = versatile_timer_init,
920 .offset = versatile_gettimeoffset,
921};
This page took 0.23378 seconds and 5 git commands to generate.