Merge branch 'i2c/for-current' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa...
[deliverable/linux.git] / arch / arm / mm / dma-mapping.c
CommitLineData
1da177e4 1/*
0ddbccd1 2 * linux/arch/arm/mm/dma-mapping.c
1da177e4
LT
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
11a5aa32 12#include <linux/bootmem.h>
1da177e4
LT
13#include <linux/module.h>
14#include <linux/mm.h>
36d0fd21 15#include <linux/genalloc.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/errno.h>
18#include <linux/list.h>
19#include <linux/init.h>
20#include <linux/device.h>
21#include <linux/dma-mapping.h>
c7909509 22#include <linux/dma-contiguous.h>
39af22a7 23#include <linux/highmem.h>
c7909509 24#include <linux/memblock.h>
99d1717d 25#include <linux/slab.h>
4ce63fcd 26#include <linux/iommu.h>
e9da6e99 27#include <linux/io.h>
4ce63fcd 28#include <linux/vmalloc.h>
158e8bfe 29#include <linux/sizes.h>
a254129e 30#include <linux/cma.h>
1da177e4 31
23759dc6 32#include <asm/memory.h>
43377453 33#include <asm/highmem.h>
1da177e4 34#include <asm/cacheflush.h>
1da177e4 35#include <asm/tlbflush.h>
99d1717d 36#include <asm/mach/arch.h>
4ce63fcd 37#include <asm/dma-iommu.h>
c7909509
MS
38#include <asm/mach/map.h>
39#include <asm/system_info.h>
40#include <asm/dma-contiguous.h>
37134cd5 41
1234e3fd 42#include "dma.h"
022ae537
RK
43#include "mm.h"
44
b4268676
RV
45struct arm_dma_alloc_args {
46 struct device *dev;
47 size_t size;
48 gfp_t gfp;
49 pgprot_t prot;
50 const void *caller;
51 bool want_vaddr;
52};
53
54struct arm_dma_free_args {
55 struct device *dev;
56 size_t size;
57 void *cpu_addr;
58 struct page *page;
59 bool want_vaddr;
60};
61
62struct arm_dma_allocator {
63 void *(*alloc)(struct arm_dma_alloc_args *args,
64 struct page **ret_page);
65 void (*free)(struct arm_dma_free_args *args);
66};
67
19e6e5e5
RV
68struct arm_dma_buffer {
69 struct list_head list;
70 void *virt;
b4268676 71 struct arm_dma_allocator *allocator;
19e6e5e5
RV
72};
73
74static LIST_HEAD(arm_dma_bufs);
75static DEFINE_SPINLOCK(arm_dma_bufs_lock);
76
77static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
78{
79 struct arm_dma_buffer *buf, *found = NULL;
80 unsigned long flags;
81
82 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
83 list_for_each_entry(buf, &arm_dma_bufs, list) {
84 if (buf->virt == virt) {
85 list_del(&buf->list);
86 found = buf;
87 break;
88 }
89 }
90 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
91 return found;
92}
93
15237e1f
MS
94/*
95 * The DMA API is built upon the notion of "buffer ownership". A buffer
96 * is either exclusively owned by the CPU (and therefore may be accessed
97 * by it) or exclusively owned by the DMA device. These helper functions
98 * represent the transitions between these two ownership states.
99 *
100 * Note, however, that on later ARMs, this notion does not work due to
101 * speculative prefetches. We model our approach on the assumption that
102 * the CPU does do speculative prefetches, which means we clean caches
103 * before transfers and delay cache invalidation until transfer completion.
104 *
15237e1f 105 */
51fde349 106static void __dma_page_cpu_to_dev(struct page *, unsigned long,
15237e1f 107 size_t, enum dma_data_direction);
51fde349 108static void __dma_page_dev_to_cpu(struct page *, unsigned long,
15237e1f
MS
109 size_t, enum dma_data_direction);
110
2dc6a016
MS
111/**
112 * arm_dma_map_page - map a portion of a page for streaming DMA
113 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
114 * @page: page that buffer resides in
115 * @offset: offset into page for start of buffer
116 * @size: size of buffer to map
117 * @dir: DMA transfer direction
118 *
119 * Ensure that any data held in the cache is appropriately discarded
120 * or written back.
121 *
122 * The device owns this memory once this call has completed. The CPU
123 * can regain ownership by calling dma_unmap_page().
124 */
51fde349 125static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
2dc6a016
MS
126 unsigned long offset, size_t size, enum dma_data_direction dir,
127 struct dma_attrs *attrs)
128{
dd37e940 129 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
51fde349
MS
130 __dma_page_cpu_to_dev(page, offset, size, dir);
131 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
2dc6a016
MS
132}
133
dd37e940
RH
134static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
135 unsigned long offset, size_t size, enum dma_data_direction dir,
136 struct dma_attrs *attrs)
137{
138 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
139}
140
2dc6a016
MS
141/**
142 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
143 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
144 * @handle: DMA address of buffer
145 * @size: size of buffer (same as passed to dma_map_page)
146 * @dir: DMA transfer direction (same as passed to dma_map_page)
147 *
148 * Unmap a page streaming mode DMA translation. The handle and size
149 * must match what was provided in the previous dma_map_page() call.
150 * All other usages are undefined.
151 *
152 * After this call, reads by the CPU to the buffer are guaranteed to see
153 * whatever the device wrote there.
154 */
51fde349 155static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
2dc6a016
MS
156 size_t size, enum dma_data_direction dir,
157 struct dma_attrs *attrs)
158{
dd37e940 159 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
51fde349
MS
160 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
161 handle & ~PAGE_MASK, size, dir);
2dc6a016
MS
162}
163
51fde349 164static void arm_dma_sync_single_for_cpu(struct device *dev,
2dc6a016
MS
165 dma_addr_t handle, size_t size, enum dma_data_direction dir)
166{
167 unsigned int offset = handle & (PAGE_SIZE - 1);
168 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
dd37e940 169 __dma_page_dev_to_cpu(page, offset, size, dir);
2dc6a016
MS
170}
171
51fde349 172static void arm_dma_sync_single_for_device(struct device *dev,
2dc6a016
MS
173 dma_addr_t handle, size_t size, enum dma_data_direction dir)
174{
175 unsigned int offset = handle & (PAGE_SIZE - 1);
176 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
dd37e940 177 __dma_page_cpu_to_dev(page, offset, size, dir);
2dc6a016
MS
178}
179
2dc6a016 180struct dma_map_ops arm_dma_ops = {
f99d6034
MS
181 .alloc = arm_dma_alloc,
182 .free = arm_dma_free,
183 .mmap = arm_dma_mmap,
dc2832e1 184 .get_sgtable = arm_dma_get_sgtable,
2dc6a016
MS
185 .map_page = arm_dma_map_page,
186 .unmap_page = arm_dma_unmap_page,
187 .map_sg = arm_dma_map_sg,
188 .unmap_sg = arm_dma_unmap_sg,
189 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
190 .sync_single_for_device = arm_dma_sync_single_for_device,
191 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
192 .sync_sg_for_device = arm_dma_sync_sg_for_device,
193 .set_dma_mask = arm_dma_set_mask,
194};
195EXPORT_SYMBOL(arm_dma_ops);
196
dd37e940
RH
197static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
198 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
199static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
200 dma_addr_t handle, struct dma_attrs *attrs);
55af8a91
ML
201static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
202 void *cpu_addr, dma_addr_t dma_addr, size_t size,
203 struct dma_attrs *attrs);
dd37e940
RH
204
205struct dma_map_ops arm_coherent_dma_ops = {
206 .alloc = arm_coherent_dma_alloc,
207 .free = arm_coherent_dma_free,
55af8a91 208 .mmap = arm_coherent_dma_mmap,
dd37e940
RH
209 .get_sgtable = arm_dma_get_sgtable,
210 .map_page = arm_coherent_dma_map_page,
211 .map_sg = arm_dma_map_sg,
212 .set_dma_mask = arm_dma_set_mask,
213};
214EXPORT_SYMBOL(arm_coherent_dma_ops);
215
9f28cde0
RK
216static int __dma_supported(struct device *dev, u64 mask, bool warn)
217{
218 unsigned long max_dma_pfn;
219
220 /*
221 * If the mask allows for more memory than we can address,
222 * and we actually have that much memory, then we must
223 * indicate that DMA to this device is not supported.
224 */
225 if (sizeof(mask) != sizeof(dma_addr_t) &&
226 mask > (dma_addr_t)~0 &&
8bf1268f 227 dma_to_pfn(dev, ~0) < max_pfn - 1) {
9f28cde0
RK
228 if (warn) {
229 dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
230 mask);
231 dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
232 }
233 return 0;
234 }
235
236 max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
237
238 /*
239 * Translate the device's DMA mask to a PFN limit. This
240 * PFN number includes the page which we can DMA to.
241 */
242 if (dma_to_pfn(dev, mask) < max_dma_pfn) {
243 if (warn)
244 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
245 mask,
246 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
247 max_dma_pfn + 1);
248 return 0;
249 }
250
251 return 1;
252}
253
ab6494f0
CM
254static u64 get_coherent_dma_mask(struct device *dev)
255{
4dcfa600 256 u64 mask = (u64)DMA_BIT_MASK(32);
ab6494f0
CM
257
258 if (dev) {
259 mask = dev->coherent_dma_mask;
260
261 /*
262 * Sanity check the DMA mask - it must be non-zero, and
263 * must be able to be satisfied by a DMA allocation.
264 */
265 if (mask == 0) {
266 dev_warn(dev, "coherent DMA mask is unset\n");
267 return 0;
268 }
269
9f28cde0 270 if (!__dma_supported(dev, mask, true))
ab6494f0 271 return 0;
ab6494f0 272 }
1da177e4 273
ab6494f0
CM
274 return mask;
275}
276
c7909509
MS
277static void __dma_clear_buffer(struct page *page, size_t size)
278{
c7909509
MS
279 /*
280 * Ensure that the allocated pages are zeroed, and that any data
281 * lurking in the kernel direct-mapped region is invalidated.
282 */
9848e48f
MS
283 if (PageHighMem(page)) {
284 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
285 phys_addr_t end = base + size;
286 while (size > 0) {
287 void *ptr = kmap_atomic(page);
288 memset(ptr, 0, PAGE_SIZE);
289 dmac_flush_range(ptr, ptr + PAGE_SIZE);
290 kunmap_atomic(ptr);
291 page++;
292 size -= PAGE_SIZE;
293 }
294 outer_flush_range(base, end);
295 } else {
296 void *ptr = page_address(page);
4ce63fcd
MS
297 memset(ptr, 0, size);
298 dmac_flush_range(ptr, ptr + size);
299 outer_flush_range(__pa(ptr), __pa(ptr) + size);
300 }
c7909509
MS
301}
302
7a9a32a9
RK
303/*
304 * Allocate a DMA buffer for 'dev' of size 'size' using the
305 * specified gfp mask. Note that 'size' must be page aligned.
306 */
307static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
308{
309 unsigned long order = get_order(size);
310 struct page *page, *p, *e;
7a9a32a9
RK
311
312 page = alloc_pages(gfp, order);
313 if (!page)
314 return NULL;
315
316 /*
317 * Now split the huge page and free the excess pages
318 */
319 split_page(page, order);
320 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
321 __free_page(p);
322
c7909509 323 __dma_clear_buffer(page, size);
7a9a32a9
RK
324
325 return page;
326}
327
328/*
329 * Free a DMA buffer. 'size' must be page aligned.
330 */
331static void __dma_free_buffer(struct page *page, size_t size)
332{
333 struct page *e = page + (size >> PAGE_SHIFT);
334
335 while (page < e) {
336 __free_page(page);
337 page++;
338 }
339}
340
ab6494f0 341#ifdef CONFIG_MMU
a5e9d38b 342
e9da6e99 343static void *__alloc_from_contiguous(struct device *dev, size_t size,
9848e48f 344 pgprot_t prot, struct page **ret_page,
6e8266e3 345 const void *caller, bool want_vaddr);
99d1717d 346
e9da6e99
MS
347static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
348 pgprot_t prot, struct page **ret_page,
6e8266e3 349 const void *caller, bool want_vaddr);
99d1717d 350
e9da6e99
MS
351static void *
352__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
353 const void *caller)
99d1717d 354{
e9da6e99
MS
355 /*
356 * DMA allocation can be mapped to user space, so lets
357 * set VM_USERMAP flags too.
358 */
513510dd
LA
359 return dma_common_contiguous_remap(page, size,
360 VM_ARM_DMA_CONSISTENT | VM_USERMAP,
361 prot, caller);
99d1717d 362}
1da177e4 363
e9da6e99 364static void __dma_free_remap(void *cpu_addr, size_t size)
88c58f3b 365{
513510dd
LA
366 dma_common_free_remap(cpu_addr, size,
367 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
88c58f3b 368}
88c58f3b 369
6e5267aa 370#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
36d0fd21 371static struct gen_pool *atomic_pool;
6e5267aa 372
36d0fd21 373static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
c7909509
MS
374
375static int __init early_coherent_pool(char *p)
376{
36d0fd21 377 atomic_pool_size = memparse(p, &p);
c7909509
MS
378 return 0;
379}
380early_param("coherent_pool", early_coherent_pool);
381
6e5267aa
MS
382void __init init_dma_coherent_pool_size(unsigned long size)
383{
384 /*
385 * Catch any attempt to set the pool size too late.
386 */
36d0fd21 387 BUG_ON(atomic_pool);
6e5267aa
MS
388
389 /*
390 * Set architecture specific coherent pool size only if
391 * it has not been changed by kernel command line parameter.
392 */
36d0fd21
LA
393 if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE)
394 atomic_pool_size = size;
6e5267aa
MS
395}
396
c7909509
MS
397/*
398 * Initialise the coherent pool for atomic allocations.
399 */
e9da6e99 400static int __init atomic_pool_init(void)
c7909509 401{
71b55663 402 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
9d1400cf 403 gfp_t gfp = GFP_KERNEL | GFP_DMA;
c7909509
MS
404 struct page *page;
405 void *ptr;
c7909509 406
36d0fd21
LA
407 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
408 if (!atomic_pool)
409 goto out;
6b3fe472 410
e464ef16 411 if (dev_get_cma_area(NULL))
36d0fd21 412 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
6e8266e3 413 &page, atomic_pool_init, true);
e9da6e99 414 else
36d0fd21 415 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
6e8266e3 416 &page, atomic_pool_init, true);
c7909509 417 if (ptr) {
36d0fd21
LA
418 int ret;
419
420 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
421 page_to_phys(page),
422 atomic_pool_size, -1);
423 if (ret)
424 goto destroy_genpool;
425
426 gen_pool_set_algo(atomic_pool,
427 gen_pool_first_fit_order_align,
428 (void *)PAGE_SHIFT);
429 pr_info("DMA: preallocated %zd KiB pool for atomic coherent allocations\n",
430 atomic_pool_size / 1024);
c7909509
MS
431 return 0;
432 }
ec10665c 433
36d0fd21
LA
434destroy_genpool:
435 gen_pool_destroy(atomic_pool);
436 atomic_pool = NULL;
437out:
438 pr_err("DMA: failed to allocate %zx KiB pool for atomic coherent allocation\n",
439 atomic_pool_size / 1024);
c7909509
MS
440 return -ENOMEM;
441}
442/*
443 * CMA is activated by core_initcall, so we must be called after it.
444 */
e9da6e99 445postcore_initcall(atomic_pool_init);
c7909509
MS
446
447struct dma_contig_early_reserve {
448 phys_addr_t base;
449 unsigned long size;
450};
451
452static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
453
454static int dma_mmu_remap_num __initdata;
455
456void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
457{
458 dma_mmu_remap[dma_mmu_remap_num].base = base;
459 dma_mmu_remap[dma_mmu_remap_num].size = size;
460 dma_mmu_remap_num++;
461}
462
463void __init dma_contiguous_remap(void)
464{
465 int i;
466 for (i = 0; i < dma_mmu_remap_num; i++) {
467 phys_addr_t start = dma_mmu_remap[i].base;
468 phys_addr_t end = start + dma_mmu_remap[i].size;
469 struct map_desc map;
470 unsigned long addr;
471
472 if (end > arm_lowmem_limit)
473 end = arm_lowmem_limit;
474 if (start >= end)
39f78e70 475 continue;
c7909509
MS
476
477 map.pfn = __phys_to_pfn(start);
478 map.virtual = __phys_to_virt(start);
479 map.length = end - start;
480 map.type = MT_MEMORY_DMA_READY;
481
482 /*
6b076991
RK
483 * Clear previous low-memory mapping to ensure that the
484 * TLB does not see any conflicting entries, then flush
485 * the TLB of the old entries before creating new mappings.
486 *
487 * This ensures that any speculatively loaded TLB entries
488 * (even though they may be rare) can not cause any problems,
489 * and ensures that this code is architecturally compliant.
c7909509
MS
490 */
491 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
61f6c7a4 492 addr += PMD_SIZE)
c7909509
MS
493 pmd_clear(pmd_off_k(addr));
494
6b076991
RK
495 flush_tlb_kernel_range(__phys_to_virt(start),
496 __phys_to_virt(end));
497
c7909509
MS
498 iotable_init(&map, 1);
499 }
500}
501
c7909509
MS
502static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
503 void *data)
504{
505 struct page *page = virt_to_page(addr);
506 pgprot_t prot = *(pgprot_t *)data;
507
508 set_pte_ext(pte, mk_pte(page, prot), 0);
509 return 0;
510}
511
512static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
513{
514 unsigned long start = (unsigned long) page_address(page);
515 unsigned end = start + size;
516
517 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
c7909509
MS
518 flush_tlb_kernel_range(start, end);
519}
520
521static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
522 pgprot_t prot, struct page **ret_page,
6e8266e3 523 const void *caller, bool want_vaddr)
c7909509
MS
524{
525 struct page *page;
6e8266e3 526 void *ptr = NULL;
c7909509
MS
527 page = __dma_alloc_buffer(dev, size, gfp);
528 if (!page)
529 return NULL;
6e8266e3
CC
530 if (!want_vaddr)
531 goto out;
c7909509
MS
532
533 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
534 if (!ptr) {
535 __dma_free_buffer(page, size);
536 return NULL;
537 }
538
6e8266e3 539 out:
c7909509
MS
540 *ret_page = page;
541 return ptr;
542}
543
e9da6e99 544static void *__alloc_from_pool(size_t size, struct page **ret_page)
c7909509 545{
36d0fd21 546 unsigned long val;
e9da6e99 547 void *ptr = NULL;
c7909509 548
36d0fd21 549 if (!atomic_pool) {
e9da6e99 550 WARN(1, "coherent pool not initialised!\n");
c7909509
MS
551 return NULL;
552 }
553
36d0fd21
LA
554 val = gen_pool_alloc(atomic_pool, size);
555 if (val) {
556 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
557
558 *ret_page = phys_to_page(phys);
559 ptr = (void *)val;
c7909509 560 }
e9da6e99
MS
561
562 return ptr;
c7909509
MS
563}
564
21d0a759
HD
565static bool __in_atomic_pool(void *start, size_t size)
566{
36d0fd21 567 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
21d0a759
HD
568}
569
e9da6e99 570static int __free_from_pool(void *start, size_t size)
c7909509 571{
21d0a759 572 if (!__in_atomic_pool(start, size))
c7909509
MS
573 return 0;
574
36d0fd21 575 gen_pool_free(atomic_pool, (unsigned long)start, size);
e9da6e99 576
c7909509
MS
577 return 1;
578}
579
580static void *__alloc_from_contiguous(struct device *dev, size_t size,
9848e48f 581 pgprot_t prot, struct page **ret_page,
6e8266e3 582 const void *caller, bool want_vaddr)
c7909509
MS
583{
584 unsigned long order = get_order(size);
585 size_t count = size >> PAGE_SHIFT;
586 struct page *page;
6e8266e3 587 void *ptr = NULL;
c7909509
MS
588
589 page = dma_alloc_from_contiguous(dev, count, order);
590 if (!page)
591 return NULL;
592
593 __dma_clear_buffer(page, size);
c7909509 594
6e8266e3
CC
595 if (!want_vaddr)
596 goto out;
597
9848e48f
MS
598 if (PageHighMem(page)) {
599 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
600 if (!ptr) {
601 dma_release_from_contiguous(dev, page, count);
602 return NULL;
603 }
604 } else {
605 __dma_remap(page, size, prot);
606 ptr = page_address(page);
607 }
6e8266e3
CC
608
609 out:
c7909509 610 *ret_page = page;
9848e48f 611 return ptr;
c7909509
MS
612}
613
614static void __free_from_contiguous(struct device *dev, struct page *page,
6e8266e3 615 void *cpu_addr, size_t size, bool want_vaddr)
c7909509 616{
6e8266e3
CC
617 if (want_vaddr) {
618 if (PageHighMem(page))
619 __dma_free_remap(cpu_addr, size);
620 else
621 __dma_remap(page, size, PAGE_KERNEL);
622 }
c7909509
MS
623 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
624}
625
f99d6034
MS
626static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
627{
628 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
629 pgprot_writecombine(prot) :
630 pgprot_dmacoherent(prot);
631 return prot;
632}
633
c7909509
MS
634#define nommu() 0
635
ab6494f0 636#else /* !CONFIG_MMU */
695ae0af 637
c7909509
MS
638#define nommu() 1
639
6e8266e3
CC
640#define __get_dma_pgprot(attrs, prot) __pgprot(0)
641#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c, wv) NULL
e9da6e99 642#define __alloc_from_pool(size, ret_page) NULL
6e8266e3 643#define __alloc_from_contiguous(dev, size, prot, ret, c, wv) NULL
b4268676 644#define __free_from_pool(cpu_addr, size) do { } while (0)
6e8266e3 645#define __free_from_contiguous(dev, page, cpu_addr, size, wv) do { } while (0)
c7909509 646#define __dma_free_remap(cpu_addr, size) do { } while (0)
31ebf944
RK
647
648#endif /* CONFIG_MMU */
649
c7909509
MS
650static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
651 struct page **ret_page)
ab6494f0 652{
c7909509
MS
653 struct page *page;
654 page = __dma_alloc_buffer(dev, size, gfp);
655 if (!page)
656 return NULL;
657
658 *ret_page = page;
659 return page_address(page);
660}
661
b4268676
RV
662static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
663 struct page **ret_page)
664{
665 return __alloc_simple_buffer(args->dev, args->size, args->gfp,
666 ret_page);
667}
c7909509 668
b4268676
RV
669static void simple_allocator_free(struct arm_dma_free_args *args)
670{
671 __dma_free_buffer(args->page, args->size);
672}
673
674static struct arm_dma_allocator simple_allocator = {
675 .alloc = simple_allocator_alloc,
676 .free = simple_allocator_free,
677};
678
679static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
680 struct page **ret_page)
681{
682 return __alloc_from_contiguous(args->dev, args->size, args->prot,
683 ret_page, args->caller,
684 args->want_vaddr);
685}
686
687static void cma_allocator_free(struct arm_dma_free_args *args)
688{
689 __free_from_contiguous(args->dev, args->page, args->cpu_addr,
690 args->size, args->want_vaddr);
691}
692
693static struct arm_dma_allocator cma_allocator = {
694 .alloc = cma_allocator_alloc,
695 .free = cma_allocator_free,
696};
697
698static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
699 struct page **ret_page)
700{
701 return __alloc_from_pool(args->size, ret_page);
702}
703
704static void pool_allocator_free(struct arm_dma_free_args *args)
705{
706 __free_from_pool(args->cpu_addr, args->size);
707}
708
709static struct arm_dma_allocator pool_allocator = {
710 .alloc = pool_allocator_alloc,
711 .free = pool_allocator_free,
712};
713
714static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
715 struct page **ret_page)
716{
717 return __alloc_remap_buffer(args->dev, args->size, args->gfp,
718 args->prot, ret_page, args->caller,
719 args->want_vaddr);
720}
721
722static void remap_allocator_free(struct arm_dma_free_args *args)
723{
724 if (args->want_vaddr)
725 __dma_free_remap(args->cpu_addr, args->size);
726
727 __dma_free_buffer(args->page, args->size);
728}
729
730static struct arm_dma_allocator remap_allocator = {
731 .alloc = remap_allocator_alloc,
732 .free = remap_allocator_free,
733};
c7909509
MS
734
735static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
6e8266e3
CC
736 gfp_t gfp, pgprot_t prot, bool is_coherent,
737 struct dma_attrs *attrs, const void *caller)
c7909509
MS
738{
739 u64 mask = get_coherent_dma_mask(dev);
3dd7ea92 740 struct page *page = NULL;
31ebf944 741 void *addr;
b4268676 742 bool allowblock, cma;
19e6e5e5 743 struct arm_dma_buffer *buf;
b4268676
RV
744 struct arm_dma_alloc_args args = {
745 .dev = dev,
746 .size = PAGE_ALIGN(size),
747 .gfp = gfp,
748 .prot = prot,
749 .caller = caller,
750 .want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs),
751 };
ab6494f0 752
c7909509
MS
753#ifdef CONFIG_DMA_API_DEBUG
754 u64 limit = (mask + 1) & ~mask;
755 if (limit && size >= limit) {
756 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
757 size, mask);
758 return NULL;
759 }
760#endif
761
762 if (!mask)
763 return NULL;
764
19e6e5e5
RV
765 buf = kzalloc(sizeof(*buf), gfp);
766 if (!buf)
767 return NULL;
768
c7909509
MS
769 if (mask < 0xffffffffULL)
770 gfp |= GFP_DMA;
771
ea2e7057
SB
772 /*
773 * Following is a work-around (a.k.a. hack) to prevent pages
774 * with __GFP_COMP being passed to split_page() which cannot
775 * handle them. The real problem is that this flag probably
776 * should be 0 on ARM as it is not supported on this
777 * platform; see CONFIG_HUGETLBFS.
778 */
779 gfp &= ~(__GFP_COMP);
b4268676 780 args.gfp = gfp;
ea2e7057 781
553ac788 782 *handle = DMA_ERROR_CODE;
b4268676
RV
783 allowblock = gfpflags_allow_blocking(gfp);
784 cma = allowblock ? dev_get_cma_area(dev) : false;
785
786 if (cma)
787 buf->allocator = &cma_allocator;
788 else if (nommu() || is_coherent)
789 buf->allocator = &simple_allocator;
790 else if (allowblock)
791 buf->allocator = &remap_allocator;
31ebf944 792 else
b4268676
RV
793 buf->allocator = &pool_allocator;
794
795 addr = buf->allocator->alloc(&args, &page);
695ae0af 796
19e6e5e5
RV
797 if (page) {
798 unsigned long flags;
799
9eedd963 800 *handle = pfn_to_dma(dev, page_to_pfn(page));
b4268676 801 buf->virt = args.want_vaddr ? addr : page;
19e6e5e5
RV
802
803 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
804 list_add(&buf->list, &arm_dma_bufs);
805 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
806 } else {
807 kfree(buf);
808 }
695ae0af 809
b4268676 810 return args.want_vaddr ? addr : page;
31ebf944 811}
1da177e4
LT
812
813/*
814 * Allocate DMA-coherent memory space and return both the kernel remapped
815 * virtual and bus address for that space.
816 */
f99d6034
MS
817void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
818 gfp_t gfp, struct dma_attrs *attrs)
1da177e4 819{
0ea1ec71 820 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1fe53268 821
dd37e940 822 return __dma_alloc(dev, size, handle, gfp, prot, false,
6e8266e3 823 attrs, __builtin_return_address(0));
dd37e940
RH
824}
825
826static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
827 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
828{
21caf3a7 829 return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
6e8266e3 830 attrs, __builtin_return_address(0));
1da177e4 831}
1da177e4 832
55af8a91 833static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
f99d6034
MS
834 void *cpu_addr, dma_addr_t dma_addr, size_t size,
835 struct dma_attrs *attrs)
1da177e4 836{
ab6494f0
CM
837 int ret = -ENXIO;
838#ifdef CONFIG_MMU
50262a4b
MS
839 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
840 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
c7909509 841 unsigned long pfn = dma_to_pfn(dev, dma_addr);
50262a4b
MS
842 unsigned long off = vma->vm_pgoff;
843
47142f07
MS
844 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
845 return ret;
846
50262a4b
MS
847 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
848 ret = remap_pfn_range(vma, vma->vm_start,
849 pfn + off,
850 vma->vm_end - vma->vm_start,
851 vma->vm_page_prot);
852 }
ab6494f0 853#endif /* CONFIG_MMU */
1da177e4
LT
854
855 return ret;
856}
857
55af8a91
ML
858/*
859 * Create userspace mapping for the DMA-coherent memory.
860 */
861static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
862 void *cpu_addr, dma_addr_t dma_addr, size_t size,
863 struct dma_attrs *attrs)
864{
865 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
866}
867
868int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
869 void *cpu_addr, dma_addr_t dma_addr, size_t size,
870 struct dma_attrs *attrs)
871{
872#ifdef CONFIG_MMU
873 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
874#endif /* CONFIG_MMU */
875 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
876}
877
1da177e4 878/*
c7909509 879 * Free a buffer as defined by the above mapping.
1da177e4 880 */
dd37e940
RH
881static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
882 dma_addr_t handle, struct dma_attrs *attrs,
883 bool is_coherent)
1da177e4 884{
c7909509 885 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
19e6e5e5 886 struct arm_dma_buffer *buf;
b4268676
RV
887 struct arm_dma_free_args args = {
888 .dev = dev,
889 .size = PAGE_ALIGN(size),
890 .cpu_addr = cpu_addr,
891 .page = page,
892 .want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs),
893 };
19e6e5e5
RV
894
895 buf = arm_dma_buffer_find(cpu_addr);
896 if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
897 return;
5edf71ae 898
b4268676 899 buf->allocator->free(&args);
19e6e5e5 900 kfree(buf);
1da177e4 901}
afd1a321 902
dd37e940
RH
903void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
904 dma_addr_t handle, struct dma_attrs *attrs)
905{
906 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
907}
908
909static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
910 dma_addr_t handle, struct dma_attrs *attrs)
911{
912 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
913}
914
dc2832e1
MS
915int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
916 void *cpu_addr, dma_addr_t handle, size_t size,
917 struct dma_attrs *attrs)
918{
919 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
920 int ret;
921
922 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
923 if (unlikely(ret))
924 return ret;
925
926 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
927 return 0;
928}
929
4ea0d737 930static void dma_cache_maint_page(struct page *page, unsigned long offset,
a9c9147e
RK
931 size_t size, enum dma_data_direction dir,
932 void (*op)(const void *, size_t, int))
43377453 933{
15653371
RK
934 unsigned long pfn;
935 size_t left = size;
936
937 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
938 offset %= PAGE_SIZE;
939
43377453
NP
940 /*
941 * A single sg entry may refer to multiple physically contiguous
942 * pages. But we still need to process highmem pages individually.
943 * If highmem is not configured then the bulk of this loop gets
944 * optimized out.
945 */
43377453
NP
946 do {
947 size_t len = left;
93f1d629
RK
948 void *vaddr;
949
15653371
RK
950 page = pfn_to_page(pfn);
951
93f1d629 952 if (PageHighMem(page)) {
15653371 953 if (len + offset > PAGE_SIZE)
93f1d629 954 len = PAGE_SIZE - offset;
dd0f67f4
JK
955
956 if (cache_is_vipt_nonaliasing()) {
39af22a7 957 vaddr = kmap_atomic(page);
7e5a69e8 958 op(vaddr + offset, len, dir);
39af22a7 959 kunmap_atomic(vaddr);
dd0f67f4
JK
960 } else {
961 vaddr = kmap_high_get(page);
962 if (vaddr) {
963 op(vaddr + offset, len, dir);
964 kunmap_high(page);
965 }
43377453 966 }
93f1d629
RK
967 } else {
968 vaddr = page_address(page) + offset;
a9c9147e 969 op(vaddr, len, dir);
43377453 970 }
43377453 971 offset = 0;
15653371 972 pfn++;
43377453
NP
973 left -= len;
974 } while (left);
975}
4ea0d737 976
51fde349
MS
977/*
978 * Make an area consistent for devices.
979 * Note: Drivers should NOT use this function directly, as it will break
980 * platforms with CONFIG_DMABOUNCE.
981 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
982 */
983static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
4ea0d737
RK
984 size_t size, enum dma_data_direction dir)
985{
2161c248 986 phys_addr_t paddr;
65af191a 987
a9c9147e 988 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
65af191a
RK
989
990 paddr = page_to_phys(page) + off;
2ffe2da3
RK
991 if (dir == DMA_FROM_DEVICE) {
992 outer_inv_range(paddr, paddr + size);
993 } else {
994 outer_clean_range(paddr, paddr + size);
995 }
996 /* FIXME: non-speculating: flush on bidirectional mappings? */
4ea0d737 997}
4ea0d737 998
51fde349 999static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
4ea0d737
RK
1000 size_t size, enum dma_data_direction dir)
1001{
2161c248 1002 phys_addr_t paddr = page_to_phys(page) + off;
2ffe2da3
RK
1003
1004 /* FIXME: non-speculating: not required */
deace4a6
RK
1005 /* in any case, don't bother invalidating if DMA to device */
1006 if (dir != DMA_TO_DEVICE) {
2ffe2da3
RK
1007 outer_inv_range(paddr, paddr + size);
1008
deace4a6
RK
1009 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
1010 }
c0177800
CM
1011
1012 /*
b2a234ed 1013 * Mark the D-cache clean for these pages to avoid extra flushing.
c0177800 1014 */
b2a234ed
ML
1015 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
1016 unsigned long pfn;
1017 size_t left = size;
1018
1019 pfn = page_to_pfn(page) + off / PAGE_SIZE;
1020 off %= PAGE_SIZE;
1021 if (off) {
1022 pfn++;
1023 left -= PAGE_SIZE - off;
1024 }
1025 while (left >= PAGE_SIZE) {
1026 page = pfn_to_page(pfn++);
1027 set_bit(PG_dcache_clean, &page->flags);
1028 left -= PAGE_SIZE;
1029 }
1030 }
4ea0d737 1031}
43377453 1032
afd1a321 1033/**
2a550e73 1034 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
afd1a321
RK
1035 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1036 * @sg: list of buffers
1037 * @nents: number of buffers to map
1038 * @dir: DMA transfer direction
1039 *
1040 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1041 * This is the scatter-gather version of the dma_map_single interface.
1042 * Here the scatter gather list elements are each tagged with the
1043 * appropriate dma address and length. They are obtained via
1044 * sg_dma_{address,length}.
1045 *
1046 * Device ownership issues as mentioned for dma_map_single are the same
1047 * here.
1048 */
2dc6a016
MS
1049int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1050 enum dma_data_direction dir, struct dma_attrs *attrs)
afd1a321 1051{
2a550e73 1052 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321 1053 struct scatterlist *s;
01135d92 1054 int i, j;
afd1a321
RK
1055
1056 for_each_sg(sg, s, nents, i) {
4ce63fcd
MS
1057#ifdef CONFIG_NEED_SG_DMA_LENGTH
1058 s->dma_length = s->length;
1059#endif
2a550e73
MS
1060 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
1061 s->length, dir, attrs);
01135d92
RK
1062 if (dma_mapping_error(dev, s->dma_address))
1063 goto bad_mapping;
afd1a321 1064 }
afd1a321 1065 return nents;
01135d92
RK
1066
1067 bad_mapping:
1068 for_each_sg(sg, s, i, j)
2a550e73 1069 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
01135d92 1070 return 0;
afd1a321 1071}
afd1a321
RK
1072
1073/**
2a550e73 1074 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
afd1a321
RK
1075 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1076 * @sg: list of buffers
0adfca6f 1077 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
afd1a321
RK
1078 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1079 *
1080 * Unmap a set of streaming mode DMA translations. Again, CPU access
1081 * rules concerning calls here are the same as for dma_unmap_single().
1082 */
2dc6a016
MS
1083void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1084 enum dma_data_direction dir, struct dma_attrs *attrs)
afd1a321 1085{
2a550e73 1086 struct dma_map_ops *ops = get_dma_ops(dev);
01135d92 1087 struct scatterlist *s;
01135d92 1088
01135d92 1089 int i;
24056f52 1090
01135d92 1091 for_each_sg(sg, s, nents, i)
2a550e73 1092 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
afd1a321 1093}
afd1a321
RK
1094
1095/**
2a550e73 1096 * arm_dma_sync_sg_for_cpu
afd1a321
RK
1097 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1098 * @sg: list of buffers
1099 * @nents: number of buffers to map (returned from dma_map_sg)
1100 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1101 */
2dc6a016 1102void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
afd1a321
RK
1103 int nents, enum dma_data_direction dir)
1104{
2a550e73 1105 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321
RK
1106 struct scatterlist *s;
1107 int i;
1108
2a550e73
MS
1109 for_each_sg(sg, s, nents, i)
1110 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1111 dir);
afd1a321 1112}
afd1a321
RK
1113
1114/**
2a550e73 1115 * arm_dma_sync_sg_for_device
afd1a321
RK
1116 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1117 * @sg: list of buffers
1118 * @nents: number of buffers to map (returned from dma_map_sg)
1119 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1120 */
2dc6a016 1121void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
afd1a321
RK
1122 int nents, enum dma_data_direction dir)
1123{
2a550e73 1124 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321
RK
1125 struct scatterlist *s;
1126 int i;
1127
2a550e73
MS
1128 for_each_sg(sg, s, nents, i)
1129 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1130 dir);
afd1a321 1131}
24056f52 1132
022ae537
RK
1133/*
1134 * Return whether the given device DMA address mask can be supported
1135 * properly. For example, if your device can only drive the low 24-bits
1136 * during bus mastering, then you would pass 0x00ffffff as the mask
1137 * to this function.
1138 */
1139int dma_supported(struct device *dev, u64 mask)
1140{
9f28cde0 1141 return __dma_supported(dev, mask, false);
022ae537
RK
1142}
1143EXPORT_SYMBOL(dma_supported);
1144
87b54e78 1145int arm_dma_set_mask(struct device *dev, u64 dma_mask)
022ae537
RK
1146{
1147 if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1148 return -EIO;
1149
022ae537 1150 *dev->dma_mask = dma_mask;
022ae537
RK
1151
1152 return 0;
1153}
022ae537 1154
24056f52
RK
1155#define PREALLOC_DMA_DEBUG_ENTRIES 4096
1156
1157static int __init dma_debug_do_init(void)
1158{
1159 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1160 return 0;
1161}
1162fs_initcall(dma_debug_do_init);
4ce63fcd
MS
1163
1164#ifdef CONFIG_ARM_DMA_USE_IOMMU
1165
1166/* IOMMU */
1167
4d852ef8
AH
1168static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1169
4ce63fcd
MS
1170static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1171 size_t size)
1172{
1173 unsigned int order = get_order(size);
1174 unsigned int align = 0;
1175 unsigned int count, start;
006f841d 1176 size_t mapping_size = mapping->bits << PAGE_SHIFT;
4ce63fcd 1177 unsigned long flags;
4d852ef8
AH
1178 dma_addr_t iova;
1179 int i;
4ce63fcd 1180
60460abf
SWK
1181 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1182 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1183
68efd7d2
MS
1184 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1185 align = (1 << order) - 1;
4ce63fcd
MS
1186
1187 spin_lock_irqsave(&mapping->lock, flags);
4d852ef8
AH
1188 for (i = 0; i < mapping->nr_bitmaps; i++) {
1189 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1190 mapping->bits, 0, count, align);
1191
1192 if (start > mapping->bits)
1193 continue;
1194
1195 bitmap_set(mapping->bitmaps[i], start, count);
1196 break;
4ce63fcd
MS
1197 }
1198
4d852ef8
AH
1199 /*
1200 * No unused range found. Try to extend the existing mapping
1201 * and perform a second attempt to reserve an IO virtual
1202 * address range of size bytes.
1203 */
1204 if (i == mapping->nr_bitmaps) {
1205 if (extend_iommu_mapping(mapping)) {
1206 spin_unlock_irqrestore(&mapping->lock, flags);
1207 return DMA_ERROR_CODE;
1208 }
1209
1210 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1211 mapping->bits, 0, count, align);
1212
1213 if (start > mapping->bits) {
1214 spin_unlock_irqrestore(&mapping->lock, flags);
1215 return DMA_ERROR_CODE;
1216 }
1217
1218 bitmap_set(mapping->bitmaps[i], start, count);
1219 }
4ce63fcd
MS
1220 spin_unlock_irqrestore(&mapping->lock, flags);
1221
006f841d 1222 iova = mapping->base + (mapping_size * i);
68efd7d2 1223 iova += start << PAGE_SHIFT;
4d852ef8
AH
1224
1225 return iova;
4ce63fcd
MS
1226}
1227
1228static inline void __free_iova(struct dma_iommu_mapping *mapping,
1229 dma_addr_t addr, size_t size)
1230{
4d852ef8 1231 unsigned int start, count;
006f841d 1232 size_t mapping_size = mapping->bits << PAGE_SHIFT;
4ce63fcd 1233 unsigned long flags;
4d852ef8
AH
1234 dma_addr_t bitmap_base;
1235 u32 bitmap_index;
1236
1237 if (!size)
1238 return;
1239
006f841d 1240 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
4d852ef8
AH
1241 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1242
006f841d 1243 bitmap_base = mapping->base + mapping_size * bitmap_index;
4d852ef8 1244
68efd7d2 1245 start = (addr - bitmap_base) >> PAGE_SHIFT;
4d852ef8 1246
006f841d 1247 if (addr + size > bitmap_base + mapping_size) {
4d852ef8
AH
1248 /*
1249 * The address range to be freed reaches into the iova
1250 * range of the next bitmap. This should not happen as
1251 * we don't allow this in __alloc_iova (at the
1252 * moment).
1253 */
1254 BUG();
1255 } else
68efd7d2 1256 count = size >> PAGE_SHIFT;
4ce63fcd
MS
1257
1258 spin_lock_irqsave(&mapping->lock, flags);
4d852ef8 1259 bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
4ce63fcd
MS
1260 spin_unlock_irqrestore(&mapping->lock, flags);
1261}
1262
33298ef6
DA
1263/* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1264static const int iommu_order_array[] = { 9, 8, 4, 0 };
1265
549a17e4
MS
1266static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1267 gfp_t gfp, struct dma_attrs *attrs)
4ce63fcd
MS
1268{
1269 struct page **pages;
1270 int count = size >> PAGE_SHIFT;
1271 int array_size = count * sizeof(struct page *);
1272 int i = 0;
33298ef6 1273 int order_idx = 0;
4ce63fcd
MS
1274
1275 if (array_size <= PAGE_SIZE)
23be7fda 1276 pages = kzalloc(array_size, GFP_KERNEL);
4ce63fcd
MS
1277 else
1278 pages = vzalloc(array_size);
1279 if (!pages)
1280 return NULL;
1281
549a17e4
MS
1282 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1283 {
1284 unsigned long order = get_order(size);
1285 struct page *page;
1286
1287 page = dma_alloc_from_contiguous(dev, count, order);
1288 if (!page)
1289 goto error;
1290
1291 __dma_clear_buffer(page, size);
1292
1293 for (i = 0; i < count; i++)
1294 pages[i] = page + i;
1295
1296 return pages;
1297 }
1298
14d3ae2e
DA
1299 /* Go straight to 4K chunks if caller says it's OK. */
1300 if (dma_get_attr(DMA_ATTR_ALLOC_SINGLE_PAGES, attrs))
1301 order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1302
f8669bef
MS
1303 /*
1304 * IOMMU can map any pages, so himem can also be used here
1305 */
1306 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1307
4ce63fcd 1308 while (count) {
49f28aa6
TF
1309 int j, order;
1310
33298ef6
DA
1311 order = iommu_order_array[order_idx];
1312
1313 /* Drop down when we get small */
1314 if (__fls(count) < order) {
1315 order_idx++;
1316 continue;
49f28aa6 1317 }
4ce63fcd 1318
33298ef6
DA
1319 if (order) {
1320 /* See if it's easy to allocate a high-order chunk */
1321 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1322
1323 /* Go down a notch at first sign of pressure */
1324 if (!pages[i]) {
1325 order_idx++;
1326 continue;
1327 }
1328 } else {
49f28aa6
TF
1329 pages[i] = alloc_pages(gfp, 0);
1330 if (!pages[i])
1331 goto error;
1332 }
4ce63fcd 1333
5a796eeb 1334 if (order) {
4ce63fcd 1335 split_page(pages[i], order);
5a796eeb
HD
1336 j = 1 << order;
1337 while (--j)
1338 pages[i + j] = pages[i] + j;
1339 }
4ce63fcd
MS
1340
1341 __dma_clear_buffer(pages[i], PAGE_SIZE << order);
1342 i += 1 << order;
1343 count -= 1 << order;
1344 }
1345
1346 return pages;
1347error:
9fa8af91 1348 while (i--)
4ce63fcd
MS
1349 if (pages[i])
1350 __free_pages(pages[i], 0);
1d5cfdb0 1351 kvfree(pages);
4ce63fcd
MS
1352 return NULL;
1353}
1354
549a17e4
MS
1355static int __iommu_free_buffer(struct device *dev, struct page **pages,
1356 size_t size, struct dma_attrs *attrs)
4ce63fcd
MS
1357{
1358 int count = size >> PAGE_SHIFT;
4ce63fcd 1359 int i;
549a17e4
MS
1360
1361 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1362 dma_release_from_contiguous(dev, pages[0], count);
1363 } else {
1364 for (i = 0; i < count; i++)
1365 if (pages[i])
1366 __free_pages(pages[i], 0);
1367 }
1368
1d5cfdb0 1369 kvfree(pages);
4ce63fcd
MS
1370 return 0;
1371}
1372
1373/*
1374 * Create a CPU mapping for a specified pages
1375 */
1376static void *
e9da6e99
MS
1377__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1378 const void *caller)
4ce63fcd 1379{
513510dd
LA
1380 return dma_common_pages_remap(pages, size,
1381 VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
4ce63fcd
MS
1382}
1383
1384/*
1385 * Create a mapping in device IO address space for specified pages
1386 */
1387static dma_addr_t
1388__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1389{
89cfdb19 1390 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
1391 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1392 dma_addr_t dma_addr, iova;
90cde558 1393 int i;
4ce63fcd
MS
1394
1395 dma_addr = __alloc_iova(mapping, size);
1396 if (dma_addr == DMA_ERROR_CODE)
1397 return dma_addr;
1398
1399 iova = dma_addr;
1400 for (i = 0; i < count; ) {
90cde558
AP
1401 int ret;
1402
4ce63fcd
MS
1403 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1404 phys_addr_t phys = page_to_phys(pages[i]);
1405 unsigned int len, j;
1406
1407 for (j = i + 1; j < count; j++, next_pfn++)
1408 if (page_to_pfn(pages[j]) != next_pfn)
1409 break;
1410
1411 len = (j - i) << PAGE_SHIFT;
c9b24996
AH
1412 ret = iommu_map(mapping->domain, iova, phys, len,
1413 IOMMU_READ|IOMMU_WRITE);
4ce63fcd
MS
1414 if (ret < 0)
1415 goto fail;
1416 iova += len;
1417 i = j;
1418 }
1419 return dma_addr;
1420fail:
1421 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1422 __free_iova(mapping, dma_addr, size);
1423 return DMA_ERROR_CODE;
1424}
1425
1426static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1427{
89cfdb19 1428 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
1429
1430 /*
1431 * add optional in-page offset from iova to size and align
1432 * result to page size
1433 */
1434 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1435 iova &= PAGE_MASK;
1436
1437 iommu_unmap(mapping->domain, iova, size);
1438 __free_iova(mapping, iova, size);
1439 return 0;
1440}
1441
665bad7b
HD
1442static struct page **__atomic_get_pages(void *addr)
1443{
36d0fd21
LA
1444 struct page *page;
1445 phys_addr_t phys;
1446
1447 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1448 page = phys_to_page(phys);
665bad7b 1449
36d0fd21 1450 return (struct page **)page;
665bad7b
HD
1451}
1452
955c757e 1453static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
e9da6e99
MS
1454{
1455 struct vm_struct *area;
1456
665bad7b
HD
1457 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1458 return __atomic_get_pages(cpu_addr);
1459
955c757e
MS
1460 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1461 return cpu_addr;
1462
e9da6e99
MS
1463 area = find_vm_area(cpu_addr);
1464 if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1465 return area->pages;
1466 return NULL;
1467}
1468
479ed93a
HD
1469static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1470 dma_addr_t *handle)
1471{
1472 struct page *page;
1473 void *addr;
1474
1475 addr = __alloc_from_pool(size, &page);
1476 if (!addr)
1477 return NULL;
1478
1479 *handle = __iommu_create_mapping(dev, &page, size);
1480 if (*handle == DMA_ERROR_CODE)
1481 goto err_mapping;
1482
1483 return addr;
1484
1485err_mapping:
1486 __free_from_pool(addr, size);
1487 return NULL;
1488}
1489
d5898291 1490static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
479ed93a
HD
1491 dma_addr_t handle, size_t size)
1492{
1493 __iommu_remove_mapping(dev, handle, size);
d5898291 1494 __free_from_pool(cpu_addr, size);
479ed93a
HD
1495}
1496
4ce63fcd
MS
1497static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1498 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1499{
71b55663 1500 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
4ce63fcd
MS
1501 struct page **pages;
1502 void *addr = NULL;
1503
1504 *handle = DMA_ERROR_CODE;
1505 size = PAGE_ALIGN(size);
1506
d0164adc 1507 if (!gfpflags_allow_blocking(gfp))
479ed93a
HD
1508 return __iommu_alloc_atomic(dev, size, handle);
1509
5b91a98c
RZ
1510 /*
1511 * Following is a work-around (a.k.a. hack) to prevent pages
1512 * with __GFP_COMP being passed to split_page() which cannot
1513 * handle them. The real problem is that this flag probably
1514 * should be 0 on ARM as it is not supported on this
1515 * platform; see CONFIG_HUGETLBFS.
1516 */
1517 gfp &= ~(__GFP_COMP);
1518
549a17e4 1519 pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
4ce63fcd
MS
1520 if (!pages)
1521 return NULL;
1522
1523 *handle = __iommu_create_mapping(dev, pages, size);
1524 if (*handle == DMA_ERROR_CODE)
1525 goto err_buffer;
1526
955c757e
MS
1527 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1528 return pages;
1529
e9da6e99
MS
1530 addr = __iommu_alloc_remap(pages, size, gfp, prot,
1531 __builtin_return_address(0));
4ce63fcd
MS
1532 if (!addr)
1533 goto err_mapping;
1534
1535 return addr;
1536
1537err_mapping:
1538 __iommu_remove_mapping(dev, *handle, size);
1539err_buffer:
549a17e4 1540 __iommu_free_buffer(dev, pages, size, attrs);
4ce63fcd
MS
1541 return NULL;
1542}
1543
1544static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1545 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1546 struct dma_attrs *attrs)
1547{
e9da6e99
MS
1548 unsigned long uaddr = vma->vm_start;
1549 unsigned long usize = vma->vm_end - vma->vm_start;
955c757e 1550 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
371f0f08
MS
1551 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1552 unsigned long off = vma->vm_pgoff;
4ce63fcd
MS
1553
1554 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
4ce63fcd 1555
e9da6e99
MS
1556 if (!pages)
1557 return -ENXIO;
4ce63fcd 1558
371f0f08
MS
1559 if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off)
1560 return -ENXIO;
1561
7e312103
MS
1562 pages += off;
1563
e9da6e99
MS
1564 do {
1565 int ret = vm_insert_page(vma, uaddr, *pages++);
1566 if (ret) {
1567 pr_err("Remapping memory failed: %d\n", ret);
1568 return ret;
1569 }
1570 uaddr += PAGE_SIZE;
1571 usize -= PAGE_SIZE;
1572 } while (usize > 0);
4ce63fcd 1573
4ce63fcd
MS
1574 return 0;
1575}
1576
1577/*
1578 * free a page as defined by the above mapping.
1579 * Must not be called with IRQs disabled.
1580 */
1581void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1582 dma_addr_t handle, struct dma_attrs *attrs)
1583{
836bfa0d 1584 struct page **pages;
4ce63fcd
MS
1585 size = PAGE_ALIGN(size);
1586
836bfa0d
YC
1587 if (__in_atomic_pool(cpu_addr, size)) {
1588 __iommu_free_atomic(dev, cpu_addr, handle, size);
e9da6e99 1589 return;
4ce63fcd 1590 }
e9da6e99 1591
836bfa0d
YC
1592 pages = __iommu_get_pages(cpu_addr, attrs);
1593 if (!pages) {
1594 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
479ed93a
HD
1595 return;
1596 }
1597
955c757e 1598 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
513510dd
LA
1599 dma_common_free_remap(cpu_addr, size,
1600 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
955c757e 1601 }
e9da6e99
MS
1602
1603 __iommu_remove_mapping(dev, handle, size);
549a17e4 1604 __iommu_free_buffer(dev, pages, size, attrs);
4ce63fcd
MS
1605}
1606
dc2832e1
MS
1607static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1608 void *cpu_addr, dma_addr_t dma_addr,
1609 size_t size, struct dma_attrs *attrs)
1610{
1611 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1612 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1613
1614 if (!pages)
1615 return -ENXIO;
1616
1617 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1618 GFP_KERNEL);
4ce63fcd
MS
1619}
1620
c9b24996
AH
1621static int __dma_direction_to_prot(enum dma_data_direction dir)
1622{
1623 int prot;
1624
1625 switch (dir) {
1626 case DMA_BIDIRECTIONAL:
1627 prot = IOMMU_READ | IOMMU_WRITE;
1628 break;
1629 case DMA_TO_DEVICE:
1630 prot = IOMMU_READ;
1631 break;
1632 case DMA_FROM_DEVICE:
1633 prot = IOMMU_WRITE;
1634 break;
1635 default:
1636 prot = 0;
1637 }
1638
1639 return prot;
1640}
1641
4ce63fcd
MS
1642/*
1643 * Map a part of the scatter-gather list into contiguous io address space
1644 */
1645static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1646 size_t size, dma_addr_t *handle,
0fa478df
RH
1647 enum dma_data_direction dir, struct dma_attrs *attrs,
1648 bool is_coherent)
4ce63fcd 1649{
89cfdb19 1650 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
1651 dma_addr_t iova, iova_base;
1652 int ret = 0;
1653 unsigned int count;
1654 struct scatterlist *s;
c9b24996 1655 int prot;
4ce63fcd
MS
1656
1657 size = PAGE_ALIGN(size);
1658 *handle = DMA_ERROR_CODE;
1659
1660 iova_base = iova = __alloc_iova(mapping, size);
1661 if (iova == DMA_ERROR_CODE)
1662 return -ENOMEM;
1663
1664 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
3e6110fd 1665 phys_addr_t phys = page_to_phys(sg_page(s));
4ce63fcd
MS
1666 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1667
0fa478df
RH
1668 if (!is_coherent &&
1669 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1670 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1671
c9b24996
AH
1672 prot = __dma_direction_to_prot(dir);
1673
1674 ret = iommu_map(mapping->domain, iova, phys, len, prot);
4ce63fcd
MS
1675 if (ret < 0)
1676 goto fail;
1677 count += len >> PAGE_SHIFT;
1678 iova += len;
1679 }
1680 *handle = iova_base;
1681
1682 return 0;
1683fail:
1684 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1685 __free_iova(mapping, iova_base, size);
1686 return ret;
1687}
1688
0fa478df
RH
1689static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1690 enum dma_data_direction dir, struct dma_attrs *attrs,
1691 bool is_coherent)
4ce63fcd
MS
1692{
1693 struct scatterlist *s = sg, *dma = sg, *start = sg;
1694 int i, count = 0;
1695 unsigned int offset = s->offset;
1696 unsigned int size = s->offset + s->length;
1697 unsigned int max = dma_get_max_seg_size(dev);
1698
1699 for (i = 1; i < nents; i++) {
1700 s = sg_next(s);
1701
1702 s->dma_address = DMA_ERROR_CODE;
1703 s->dma_length = 0;
1704
1705 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1706 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
0fa478df 1707 dir, attrs, is_coherent) < 0)
4ce63fcd
MS
1708 goto bad_mapping;
1709
1710 dma->dma_address += offset;
1711 dma->dma_length = size - offset;
1712
1713 size = offset = s->offset;
1714 start = s;
1715 dma = sg_next(dma);
1716 count += 1;
1717 }
1718 size += s->length;
1719 }
0fa478df
RH
1720 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1721 is_coherent) < 0)
4ce63fcd
MS
1722 goto bad_mapping;
1723
1724 dma->dma_address += offset;
1725 dma->dma_length = size - offset;
1726
1727 return count+1;
1728
1729bad_mapping:
1730 for_each_sg(sg, s, count, i)
1731 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1732 return 0;
1733}
1734
1735/**
0fa478df 1736 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
4ce63fcd
MS
1737 * @dev: valid struct device pointer
1738 * @sg: list of buffers
0fa478df
RH
1739 * @nents: number of buffers to map
1740 * @dir: DMA transfer direction
4ce63fcd 1741 *
0fa478df
RH
1742 * Map a set of i/o coherent buffers described by scatterlist in streaming
1743 * mode for DMA. The scatter gather list elements are merged together (if
1744 * possible) and tagged with the appropriate dma address and length. They are
1745 * obtained via sg_dma_{address,length}.
4ce63fcd 1746 */
0fa478df
RH
1747int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1748 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1749{
1750 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1751}
1752
1753/**
1754 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1755 * @dev: valid struct device pointer
1756 * @sg: list of buffers
1757 * @nents: number of buffers to map
1758 * @dir: DMA transfer direction
1759 *
1760 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1761 * The scatter gather list elements are merged together (if possible) and
1762 * tagged with the appropriate dma address and length. They are obtained via
1763 * sg_dma_{address,length}.
1764 */
1765int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1766 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1767{
1768 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1769}
1770
1771static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1772 int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1773 bool is_coherent)
4ce63fcd
MS
1774{
1775 struct scatterlist *s;
1776 int i;
1777
1778 for_each_sg(sg, s, nents, i) {
1779 if (sg_dma_len(s))
1780 __iommu_remove_mapping(dev, sg_dma_address(s),
1781 sg_dma_len(s));
0fa478df 1782 if (!is_coherent &&
97ef952a 1783 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1784 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1785 s->length, dir);
1786 }
1787}
1788
0fa478df
RH
1789/**
1790 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1791 * @dev: valid struct device pointer
1792 * @sg: list of buffers
1793 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1794 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1795 *
1796 * Unmap a set of streaming mode DMA translations. Again, CPU access
1797 * rules concerning calls here are the same as for dma_unmap_single().
1798 */
1799void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1800 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1801{
1802 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1803}
1804
1805/**
1806 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1807 * @dev: valid struct device pointer
1808 * @sg: list of buffers
1809 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1810 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1811 *
1812 * Unmap a set of streaming mode DMA translations. Again, CPU access
1813 * rules concerning calls here are the same as for dma_unmap_single().
1814 */
1815void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1816 enum dma_data_direction dir, struct dma_attrs *attrs)
1817{
1818 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1819}
1820
4ce63fcd
MS
1821/**
1822 * arm_iommu_sync_sg_for_cpu
1823 * @dev: valid struct device pointer
1824 * @sg: list of buffers
1825 * @nents: number of buffers to map (returned from dma_map_sg)
1826 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1827 */
1828void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1829 int nents, enum dma_data_direction dir)
1830{
1831 struct scatterlist *s;
1832 int i;
1833
1834 for_each_sg(sg, s, nents, i)
0fa478df 1835 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
4ce63fcd
MS
1836
1837}
1838
1839/**
1840 * arm_iommu_sync_sg_for_device
1841 * @dev: valid struct device pointer
1842 * @sg: list of buffers
1843 * @nents: number of buffers to map (returned from dma_map_sg)
1844 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1845 */
1846void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1847 int nents, enum dma_data_direction dir)
1848{
1849 struct scatterlist *s;
1850 int i;
1851
1852 for_each_sg(sg, s, nents, i)
0fa478df 1853 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
4ce63fcd
MS
1854}
1855
1856
1857/**
0fa478df 1858 * arm_coherent_iommu_map_page
4ce63fcd
MS
1859 * @dev: valid struct device pointer
1860 * @page: page that buffer resides in
1861 * @offset: offset into page for start of buffer
1862 * @size: size of buffer to map
1863 * @dir: DMA transfer direction
1864 *
0fa478df 1865 * Coherent IOMMU aware version of arm_dma_map_page()
4ce63fcd 1866 */
0fa478df 1867static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
4ce63fcd
MS
1868 unsigned long offset, size_t size, enum dma_data_direction dir,
1869 struct dma_attrs *attrs)
1870{
89cfdb19 1871 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd 1872 dma_addr_t dma_addr;
13987d68 1873 int ret, prot, len = PAGE_ALIGN(size + offset);
4ce63fcd 1874
4ce63fcd
MS
1875 dma_addr = __alloc_iova(mapping, len);
1876 if (dma_addr == DMA_ERROR_CODE)
1877 return dma_addr;
1878
c9b24996 1879 prot = __dma_direction_to_prot(dir);
13987d68
WD
1880
1881 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
4ce63fcd
MS
1882 if (ret < 0)
1883 goto fail;
1884
1885 return dma_addr + offset;
1886fail:
1887 __free_iova(mapping, dma_addr, len);
1888 return DMA_ERROR_CODE;
1889}
1890
0fa478df
RH
1891/**
1892 * arm_iommu_map_page
1893 * @dev: valid struct device pointer
1894 * @page: page that buffer resides in
1895 * @offset: offset into page for start of buffer
1896 * @size: size of buffer to map
1897 * @dir: DMA transfer direction
1898 *
1899 * IOMMU aware version of arm_dma_map_page()
1900 */
1901static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1902 unsigned long offset, size_t size, enum dma_data_direction dir,
1903 struct dma_attrs *attrs)
1904{
1905 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1906 __dma_page_cpu_to_dev(page, offset, size, dir);
1907
1908 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1909}
1910
1911/**
1912 * arm_coherent_iommu_unmap_page
1913 * @dev: valid struct device pointer
1914 * @handle: DMA address of buffer
1915 * @size: size of buffer (same as passed to dma_map_page)
1916 * @dir: DMA transfer direction (same as passed to dma_map_page)
1917 *
1918 * Coherent IOMMU aware version of arm_dma_unmap_page()
1919 */
1920static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1921 size_t size, enum dma_data_direction dir,
1922 struct dma_attrs *attrs)
1923{
89cfdb19 1924 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
0fa478df 1925 dma_addr_t iova = handle & PAGE_MASK;
0fa478df
RH
1926 int offset = handle & ~PAGE_MASK;
1927 int len = PAGE_ALIGN(size + offset);
1928
1929 if (!iova)
1930 return;
1931
1932 iommu_unmap(mapping->domain, iova, len);
1933 __free_iova(mapping, iova, len);
1934}
1935
4ce63fcd
MS
1936/**
1937 * arm_iommu_unmap_page
1938 * @dev: valid struct device pointer
1939 * @handle: DMA address of buffer
1940 * @size: size of buffer (same as passed to dma_map_page)
1941 * @dir: DMA transfer direction (same as passed to dma_map_page)
1942 *
1943 * IOMMU aware version of arm_dma_unmap_page()
1944 */
1945static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1946 size_t size, enum dma_data_direction dir,
1947 struct dma_attrs *attrs)
1948{
89cfdb19 1949 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
1950 dma_addr_t iova = handle & PAGE_MASK;
1951 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1952 int offset = handle & ~PAGE_MASK;
1953 int len = PAGE_ALIGN(size + offset);
1954
1955 if (!iova)
1956 return;
1957
0fa478df 1958 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
4ce63fcd
MS
1959 __dma_page_dev_to_cpu(page, offset, size, dir);
1960
1961 iommu_unmap(mapping->domain, iova, len);
1962 __free_iova(mapping, iova, len);
1963}
1964
1965static void arm_iommu_sync_single_for_cpu(struct device *dev,
1966 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1967{
89cfdb19 1968 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
1969 dma_addr_t iova = handle & PAGE_MASK;
1970 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1971 unsigned int offset = handle & ~PAGE_MASK;
1972
1973 if (!iova)
1974 return;
1975
0fa478df 1976 __dma_page_dev_to_cpu(page, offset, size, dir);
4ce63fcd
MS
1977}
1978
1979static void arm_iommu_sync_single_for_device(struct device *dev,
1980 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1981{
89cfdb19 1982 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4ce63fcd
MS
1983 dma_addr_t iova = handle & PAGE_MASK;
1984 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1985 unsigned int offset = handle & ~PAGE_MASK;
1986
1987 if (!iova)
1988 return;
1989
1990 __dma_page_cpu_to_dev(page, offset, size, dir);
1991}
1992
1993struct dma_map_ops iommu_ops = {
1994 .alloc = arm_iommu_alloc_attrs,
1995 .free = arm_iommu_free_attrs,
1996 .mmap = arm_iommu_mmap_attrs,
dc2832e1 1997 .get_sgtable = arm_iommu_get_sgtable,
4ce63fcd
MS
1998
1999 .map_page = arm_iommu_map_page,
2000 .unmap_page = arm_iommu_unmap_page,
2001 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
2002 .sync_single_for_device = arm_iommu_sync_single_for_device,
2003
2004 .map_sg = arm_iommu_map_sg,
2005 .unmap_sg = arm_iommu_unmap_sg,
2006 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
2007 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
d09e1333
HD
2008
2009 .set_dma_mask = arm_dma_set_mask,
4ce63fcd
MS
2010};
2011
0fa478df
RH
2012struct dma_map_ops iommu_coherent_ops = {
2013 .alloc = arm_iommu_alloc_attrs,
2014 .free = arm_iommu_free_attrs,
2015 .mmap = arm_iommu_mmap_attrs,
2016 .get_sgtable = arm_iommu_get_sgtable,
2017
2018 .map_page = arm_coherent_iommu_map_page,
2019 .unmap_page = arm_coherent_iommu_unmap_page,
2020
2021 .map_sg = arm_coherent_iommu_map_sg,
2022 .unmap_sg = arm_coherent_iommu_unmap_sg,
d09e1333
HD
2023
2024 .set_dma_mask = arm_dma_set_mask,
0fa478df
RH
2025};
2026
4ce63fcd
MS
2027/**
2028 * arm_iommu_create_mapping
2029 * @bus: pointer to the bus holding the client device (for IOMMU calls)
2030 * @base: start address of the valid IO address space
68efd7d2 2031 * @size: maximum size of the valid IO address space
4ce63fcd
MS
2032 *
2033 * Creates a mapping structure which holds information about used/unused
2034 * IO address ranges, which is required to perform memory allocation and
2035 * mapping with IOMMU aware functions.
2036 *
2037 * The client device need to be attached to the mapping with
2038 * arm_iommu_attach_device function.
2039 */
2040struct dma_iommu_mapping *
1424532b 2041arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
4ce63fcd 2042{
68efd7d2
MS
2043 unsigned int bits = size >> PAGE_SHIFT;
2044 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
4ce63fcd 2045 struct dma_iommu_mapping *mapping;
68efd7d2 2046 int extensions = 1;
4ce63fcd
MS
2047 int err = -ENOMEM;
2048
1424532b
MS
2049 /* currently only 32-bit DMA address space is supported */
2050 if (size > DMA_BIT_MASK(32) + 1)
2051 return ERR_PTR(-ERANGE);
2052
68efd7d2 2053 if (!bitmap_size)
4ce63fcd
MS
2054 return ERR_PTR(-EINVAL);
2055
68efd7d2
MS
2056 if (bitmap_size > PAGE_SIZE) {
2057 extensions = bitmap_size / PAGE_SIZE;
2058 bitmap_size = PAGE_SIZE;
2059 }
2060
4ce63fcd
MS
2061 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2062 if (!mapping)
2063 goto err;
2064
68efd7d2
MS
2065 mapping->bitmap_size = bitmap_size;
2066 mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
4d852ef8
AH
2067 GFP_KERNEL);
2068 if (!mapping->bitmaps)
4ce63fcd
MS
2069 goto err2;
2070
68efd7d2 2071 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
4d852ef8
AH
2072 if (!mapping->bitmaps[0])
2073 goto err3;
2074
2075 mapping->nr_bitmaps = 1;
2076 mapping->extensions = extensions;
4ce63fcd 2077 mapping->base = base;
68efd7d2 2078 mapping->bits = BITS_PER_BYTE * bitmap_size;
4d852ef8 2079
4ce63fcd
MS
2080 spin_lock_init(&mapping->lock);
2081
2082 mapping->domain = iommu_domain_alloc(bus);
2083 if (!mapping->domain)
4d852ef8 2084 goto err4;
4ce63fcd
MS
2085
2086 kref_init(&mapping->kref);
2087 return mapping;
4d852ef8
AH
2088err4:
2089 kfree(mapping->bitmaps[0]);
4ce63fcd 2090err3:
4d852ef8 2091 kfree(mapping->bitmaps);
4ce63fcd
MS
2092err2:
2093 kfree(mapping);
2094err:
2095 return ERR_PTR(err);
2096}
18177d12 2097EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
4ce63fcd
MS
2098
2099static void release_iommu_mapping(struct kref *kref)
2100{
4d852ef8 2101 int i;
4ce63fcd
MS
2102 struct dma_iommu_mapping *mapping =
2103 container_of(kref, struct dma_iommu_mapping, kref);
2104
2105 iommu_domain_free(mapping->domain);
4d852ef8
AH
2106 for (i = 0; i < mapping->nr_bitmaps; i++)
2107 kfree(mapping->bitmaps[i]);
2108 kfree(mapping->bitmaps);
4ce63fcd
MS
2109 kfree(mapping);
2110}
2111
4d852ef8
AH
2112static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2113{
2114 int next_bitmap;
2115
462859aa 2116 if (mapping->nr_bitmaps >= mapping->extensions)
4d852ef8
AH
2117 return -EINVAL;
2118
2119 next_bitmap = mapping->nr_bitmaps;
2120 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2121 GFP_ATOMIC);
2122 if (!mapping->bitmaps[next_bitmap])
2123 return -ENOMEM;
2124
2125 mapping->nr_bitmaps++;
2126
2127 return 0;
2128}
2129
4ce63fcd
MS
2130void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2131{
2132 if (mapping)
2133 kref_put(&mapping->kref, release_iommu_mapping);
2134}
18177d12 2135EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
4ce63fcd 2136
eab8d653
LP
2137static int __arm_iommu_attach_device(struct device *dev,
2138 struct dma_iommu_mapping *mapping)
2139{
2140 int err;
2141
2142 err = iommu_attach_device(mapping->domain, dev);
2143 if (err)
2144 return err;
2145
2146 kref_get(&mapping->kref);
89cfdb19 2147 to_dma_iommu_mapping(dev) = mapping;
eab8d653
LP
2148
2149 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2150 return 0;
2151}
2152
4ce63fcd
MS
2153/**
2154 * arm_iommu_attach_device
2155 * @dev: valid struct device pointer
2156 * @mapping: io address space mapping structure (returned from
2157 * arm_iommu_create_mapping)
2158 *
eab8d653
LP
2159 * Attaches specified io address space mapping to the provided device.
2160 * This replaces the dma operations (dma_map_ops pointer) with the
2161 * IOMMU aware version.
2162 *
4bb25789
WD
2163 * More than one client might be attached to the same io address space
2164 * mapping.
4ce63fcd
MS
2165 */
2166int arm_iommu_attach_device(struct device *dev,
2167 struct dma_iommu_mapping *mapping)
2168{
2169 int err;
2170
eab8d653 2171 err = __arm_iommu_attach_device(dev, mapping);
4ce63fcd
MS
2172 if (err)
2173 return err;
2174
eab8d653 2175 set_dma_ops(dev, &iommu_ops);
4ce63fcd
MS
2176 return 0;
2177}
18177d12 2178EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
4ce63fcd 2179
eab8d653 2180static void __arm_iommu_detach_device(struct device *dev)
6fe36758
HD
2181{
2182 struct dma_iommu_mapping *mapping;
2183
2184 mapping = to_dma_iommu_mapping(dev);
2185 if (!mapping) {
2186 dev_warn(dev, "Not attached\n");
2187 return;
2188 }
2189
2190 iommu_detach_device(mapping->domain, dev);
2191 kref_put(&mapping->kref, release_iommu_mapping);
89cfdb19 2192 to_dma_iommu_mapping(dev) = NULL;
6fe36758
HD
2193
2194 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2195}
eab8d653
LP
2196
2197/**
2198 * arm_iommu_detach_device
2199 * @dev: valid struct device pointer
2200 *
2201 * Detaches the provided device from a previously attached map.
2202 * This voids the dma operations (dma_map_ops pointer)
2203 */
2204void arm_iommu_detach_device(struct device *dev)
2205{
2206 __arm_iommu_detach_device(dev);
2207 set_dma_ops(dev, NULL);
2208}
18177d12 2209EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
6fe36758 2210
4bb25789
WD
2211static struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2212{
2213 return coherent ? &iommu_coherent_ops : &iommu_ops;
2214}
2215
2216static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2217 struct iommu_ops *iommu)
2218{
2219 struct dma_iommu_mapping *mapping;
2220
2221 if (!iommu)
2222 return false;
2223
2224 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2225 if (IS_ERR(mapping)) {
2226 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2227 size, dev_name(dev));
2228 return false;
2229 }
2230
eab8d653 2231 if (__arm_iommu_attach_device(dev, mapping)) {
4bb25789
WD
2232 pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2233 dev_name(dev));
2234 arm_iommu_release_mapping(mapping);
2235 return false;
2236 }
2237
2238 return true;
2239}
2240
2241static void arm_teardown_iommu_dma_ops(struct device *dev)
2242{
89cfdb19 2243 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
4bb25789 2244
c2273a18
WD
2245 if (!mapping)
2246 return;
2247
eab8d653 2248 __arm_iommu_detach_device(dev);
4bb25789
WD
2249 arm_iommu_release_mapping(mapping);
2250}
2251
2252#else
2253
2254static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2255 struct iommu_ops *iommu)
2256{
2257 return false;
2258}
2259
2260static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2261
2262#define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2263
2264#endif /* CONFIG_ARM_DMA_USE_IOMMU */
2265
2266static struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
2267{
2268 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
2269}
2270
2271void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2272 struct iommu_ops *iommu, bool coherent)
2273{
2274 struct dma_map_ops *dma_ops;
2275
6f51ee70 2276 dev->archdata.dma_coherent = coherent;
4bb25789
WD
2277 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2278 dma_ops = arm_get_iommu_dma_map_ops(coherent);
2279 else
2280 dma_ops = arm_get_dma_map_ops(coherent);
2281
2282 set_dma_ops(dev, dma_ops);
2283}
2284
2285void arch_teardown_dma_ops(struct device *dev)
2286{
2287 arm_teardown_iommu_dma_ops(dev);
2288}
This page took 0.91983 seconds and 5 git commands to generate.