ARM: dma-mapping: move all dma bounce code to separate dma ops structure
[deliverable/linux.git] / arch / arm / mm / dma-mapping.c
CommitLineData
1da177e4 1/*
0ddbccd1 2 * linux/arch/arm/mm/dma-mapping.c
1da177e4
LT
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12#include <linux/module.h>
13#include <linux/mm.h>
5a0e3ad6 14#include <linux/gfp.h>
1da177e4
LT
15#include <linux/errno.h>
16#include <linux/list.h>
17#include <linux/init.h>
18#include <linux/device.h>
19#include <linux/dma-mapping.h>
39af22a7 20#include <linux/highmem.h>
99d1717d 21#include <linux/slab.h>
1da177e4 22
23759dc6 23#include <asm/memory.h>
43377453 24#include <asm/highmem.h>
1da177e4 25#include <asm/cacheflush.h>
1da177e4 26#include <asm/tlbflush.h>
37134cd5 27#include <asm/sizes.h>
99d1717d 28#include <asm/mach/arch.h>
37134cd5 29
022ae537
RK
30#include "mm.h"
31
15237e1f
MS
32/*
33 * The DMA API is built upon the notion of "buffer ownership". A buffer
34 * is either exclusively owned by the CPU (and therefore may be accessed
35 * by it) or exclusively owned by the DMA device. These helper functions
36 * represent the transitions between these two ownership states.
37 *
38 * Note, however, that on later ARMs, this notion does not work due to
39 * speculative prefetches. We model our approach on the assumption that
40 * the CPU does do speculative prefetches, which means we clean caches
41 * before transfers and delay cache invalidation until transfer completion.
42 *
43 * Private support functions: these are not part of the API and are
44 * liable to change. Drivers must not use these.
45 */
46static inline void __dma_single_cpu_to_dev(const void *kaddr, size_t size,
47 enum dma_data_direction dir)
48{
49 extern void ___dma_single_cpu_to_dev(const void *, size_t,
50 enum dma_data_direction);
51
52 if (!arch_is_coherent())
53 ___dma_single_cpu_to_dev(kaddr, size, dir);
54}
55
56static inline void __dma_single_dev_to_cpu(const void *kaddr, size_t size,
57 enum dma_data_direction dir)
58{
59 extern void ___dma_single_dev_to_cpu(const void *, size_t,
60 enum dma_data_direction);
61
62 if (!arch_is_coherent())
63 ___dma_single_dev_to_cpu(kaddr, size, dir);
64}
65
66static inline void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
67 size_t size, enum dma_data_direction dir)
68{
69 extern void ___dma_page_cpu_to_dev(struct page *, unsigned long,
70 size_t, enum dma_data_direction);
71
72 if (!arch_is_coherent())
73 ___dma_page_cpu_to_dev(page, off, size, dir);
74}
75
76static inline void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
77 size_t size, enum dma_data_direction dir)
78{
79 extern void ___dma_page_dev_to_cpu(struct page *, unsigned long,
80 size_t, enum dma_data_direction);
81
82 if (!arch_is_coherent())
83 ___dma_page_dev_to_cpu(page, off, size, dir);
84}
85
86
87static inline dma_addr_t __dma_map_page(struct device *dev, struct page *page,
88 unsigned long offset, size_t size, enum dma_data_direction dir)
89{
90 __dma_page_cpu_to_dev(page, offset, size, dir);
91 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
92}
93
94static inline void __dma_unmap_page(struct device *dev, dma_addr_t handle,
95 size_t size, enum dma_data_direction dir)
96{
97 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
98 handle & ~PAGE_MASK, size, dir);
99}
100
2dc6a016
MS
101/**
102 * arm_dma_map_page - map a portion of a page for streaming DMA
103 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
104 * @page: page that buffer resides in
105 * @offset: offset into page for start of buffer
106 * @size: size of buffer to map
107 * @dir: DMA transfer direction
108 *
109 * Ensure that any data held in the cache is appropriately discarded
110 * or written back.
111 *
112 * The device owns this memory once this call has completed. The CPU
113 * can regain ownership by calling dma_unmap_page().
114 */
115static inline dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
116 unsigned long offset, size_t size, enum dma_data_direction dir,
117 struct dma_attrs *attrs)
118{
119 return __dma_map_page(dev, page, offset, size, dir);
120}
121
122/**
123 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
124 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
125 * @handle: DMA address of buffer
126 * @size: size of buffer (same as passed to dma_map_page)
127 * @dir: DMA transfer direction (same as passed to dma_map_page)
128 *
129 * Unmap a page streaming mode DMA translation. The handle and size
130 * must match what was provided in the previous dma_map_page() call.
131 * All other usages are undefined.
132 *
133 * After this call, reads by the CPU to the buffer are guaranteed to see
134 * whatever the device wrote there.
135 */
136static inline void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
137 size_t size, enum dma_data_direction dir,
138 struct dma_attrs *attrs)
139{
140 __dma_unmap_page(dev, handle, size, dir);
141}
142
143static inline void arm_dma_sync_single_for_cpu(struct device *dev,
144 dma_addr_t handle, size_t size, enum dma_data_direction dir)
145{
146 unsigned int offset = handle & (PAGE_SIZE - 1);
147 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
2dc6a016
MS
148 __dma_page_dev_to_cpu(page, offset, size, dir);
149}
150
151static inline void arm_dma_sync_single_for_device(struct device *dev,
152 dma_addr_t handle, size_t size, enum dma_data_direction dir)
153{
154 unsigned int offset = handle & (PAGE_SIZE - 1);
155 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
2dc6a016
MS
156 __dma_page_cpu_to_dev(page, offset, size, dir);
157}
158
159static int arm_dma_set_mask(struct device *dev, u64 dma_mask);
160
161struct dma_map_ops arm_dma_ops = {
162 .map_page = arm_dma_map_page,
163 .unmap_page = arm_dma_unmap_page,
164 .map_sg = arm_dma_map_sg,
165 .unmap_sg = arm_dma_unmap_sg,
166 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
167 .sync_single_for_device = arm_dma_sync_single_for_device,
168 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
169 .sync_sg_for_device = arm_dma_sync_sg_for_device,
170 .set_dma_mask = arm_dma_set_mask,
171};
172EXPORT_SYMBOL(arm_dma_ops);
173
ab6494f0
CM
174static u64 get_coherent_dma_mask(struct device *dev)
175{
022ae537 176 u64 mask = (u64)arm_dma_limit;
ab6494f0
CM
177
178 if (dev) {
179 mask = dev->coherent_dma_mask;
180
181 /*
182 * Sanity check the DMA mask - it must be non-zero, and
183 * must be able to be satisfied by a DMA allocation.
184 */
185 if (mask == 0) {
186 dev_warn(dev, "coherent DMA mask is unset\n");
187 return 0;
188 }
189
022ae537 190 if ((~mask) & (u64)arm_dma_limit) {
ab6494f0
CM
191 dev_warn(dev, "coherent DMA mask %#llx is smaller "
192 "than system GFP_DMA mask %#llx\n",
022ae537 193 mask, (u64)arm_dma_limit);
ab6494f0
CM
194 return 0;
195 }
196 }
1da177e4 197
ab6494f0
CM
198 return mask;
199}
200
7a9a32a9
RK
201/*
202 * Allocate a DMA buffer for 'dev' of size 'size' using the
203 * specified gfp mask. Note that 'size' must be page aligned.
204 */
205static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
206{
207 unsigned long order = get_order(size);
208 struct page *page, *p, *e;
209 void *ptr;
210 u64 mask = get_coherent_dma_mask(dev);
211
212#ifdef CONFIG_DMA_API_DEBUG
213 u64 limit = (mask + 1) & ~mask;
214 if (limit && size >= limit) {
215 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
216 size, mask);
217 return NULL;
218 }
219#endif
220
221 if (!mask)
222 return NULL;
223
224 if (mask < 0xffffffffULL)
225 gfp |= GFP_DMA;
226
227 page = alloc_pages(gfp, order);
228 if (!page)
229 return NULL;
230
231 /*
232 * Now split the huge page and free the excess pages
233 */
234 split_page(page, order);
235 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
236 __free_page(p);
237
238 /*
239 * Ensure that the allocated pages are zeroed, and that any data
240 * lurking in the kernel direct-mapped region is invalidated.
241 */
242 ptr = page_address(page);
243 memset(ptr, 0, size);
244 dmac_flush_range(ptr, ptr + size);
245 outer_flush_range(__pa(ptr), __pa(ptr) + size);
246
247 return page;
248}
249
250/*
251 * Free a DMA buffer. 'size' must be page aligned.
252 */
253static void __dma_free_buffer(struct page *page, size_t size)
254{
255 struct page *e = page + (size >> PAGE_SHIFT);
256
257 while (page < e) {
258 __free_page(page);
259 page++;
260 }
261}
262
ab6494f0 263#ifdef CONFIG_MMU
a5e9d38b 264
99d1717d 265#define CONSISTENT_OFFSET(x) (((unsigned long)(x) - consistent_base) >> PAGE_SHIFT)
1fdb24e9 266#define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - consistent_base) >> PMD_SHIFT)
a5e9d38b 267
1da177e4 268/*
37134cd5 269 * These are the page tables (2MB each) covering uncached, DMA consistent allocations
1da177e4 270 */
99d1717d
JM
271static pte_t **consistent_pte;
272
99d1717d 273#define DEFAULT_CONSISTENT_DMA_SIZE SZ_2M
99d1717d
JM
274
275unsigned long consistent_base = CONSISTENT_END - DEFAULT_CONSISTENT_DMA_SIZE;
276
277void __init init_consistent_dma_size(unsigned long size)
278{
279 unsigned long base = CONSISTENT_END - ALIGN(size, SZ_2M);
280
281 BUG_ON(consistent_pte); /* Check we're called before DMA region init */
282 BUG_ON(base < VMALLOC_END);
283
284 /* Grow region to accommodate specified size */
285 if (base < consistent_base)
286 consistent_base = base;
287}
1da177e4 288
13ccf3ad 289#include "vmregion.h"
1da177e4 290
13ccf3ad
RK
291static struct arm_vmregion_head consistent_head = {
292 .vm_lock = __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
1da177e4 293 .vm_list = LIST_HEAD_INIT(consistent_head.vm_list),
1da177e4
LT
294 .vm_end = CONSISTENT_END,
295};
296
1da177e4
LT
297#ifdef CONFIG_HUGETLB_PAGE
298#error ARM Coherent DMA allocator does not (yet) support huge TLB
299#endif
300
88c58f3b
RK
301/*
302 * Initialise the consistent memory allocation.
303 */
304static int __init consistent_init(void)
305{
306 int ret = 0;
307 pgd_t *pgd;
516295e5 308 pud_t *pud;
88c58f3b
RK
309 pmd_t *pmd;
310 pte_t *pte;
311 int i = 0;
99d1717d 312 unsigned long base = consistent_base;
53cbcbcf 313 unsigned long num_ptes = (CONSISTENT_END - base) >> PMD_SHIFT;
99d1717d
JM
314
315 consistent_pte = kmalloc(num_ptes * sizeof(pte_t), GFP_KERNEL);
316 if (!consistent_pte) {
317 pr_err("%s: no memory\n", __func__);
318 return -ENOMEM;
319 }
320
321 pr_debug("DMA memory: 0x%08lx - 0x%08lx:\n", base, CONSISTENT_END);
322 consistent_head.vm_start = base;
88c58f3b
RK
323
324 do {
325 pgd = pgd_offset(&init_mm, base);
516295e5
RK
326
327 pud = pud_alloc(&init_mm, pgd, base);
328 if (!pud) {
6b6f770b 329 pr_err("%s: no pud tables\n", __func__);
516295e5
RK
330 ret = -ENOMEM;
331 break;
332 }
333
334 pmd = pmd_alloc(&init_mm, pud, base);
88c58f3b 335 if (!pmd) {
6b6f770b 336 pr_err("%s: no pmd tables\n", __func__);
88c58f3b
RK
337 ret = -ENOMEM;
338 break;
339 }
340 WARN_ON(!pmd_none(*pmd));
341
342 pte = pte_alloc_kernel(pmd, base);
343 if (!pte) {
6b6f770b 344 pr_err("%s: no pte tables\n", __func__);
88c58f3b
RK
345 ret = -ENOMEM;
346 break;
347 }
348
349 consistent_pte[i++] = pte;
e73fc88e 350 base += PMD_SIZE;
88c58f3b
RK
351 } while (base < CONSISTENT_END);
352
353 return ret;
354}
355
356core_initcall(consistent_init);
357
1da177e4 358static void *
45cd5290
RK
359__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
360 const void *caller)
1da177e4 361{
13ccf3ad 362 struct arm_vmregion *c;
5bc23d32
RK
363 size_t align;
364 int bit;
1da177e4 365
99d1717d 366 if (!consistent_pte) {
6b6f770b 367 pr_err("%s: not initialised\n", __func__);
ebd7a845 368 dump_stack();
ebd7a845
RK
369 return NULL;
370 }
371
5bc23d32
RK
372 /*
373 * Align the virtual region allocation - maximum alignment is
374 * a section size, minimum is a page size. This helps reduce
375 * fragmentation of the DMA space, and also prevents allocations
376 * smaller than a section from crossing a section boundary.
377 */
c947f69f 378 bit = fls(size - 1);
5bc23d32
RK
379 if (bit > SECTION_SHIFT)
380 bit = SECTION_SHIFT;
381 align = 1 << bit;
382
1da177e4
LT
383 /*
384 * Allocate a virtual address in the consistent mapping region.
385 */
5bc23d32 386 c = arm_vmregion_alloc(&consistent_head, align, size,
45cd5290 387 gfp & ~(__GFP_DMA | __GFP_HIGHMEM), caller);
1da177e4 388 if (c) {
37134cd5 389 pte_t *pte;
37134cd5
KH
390 int idx = CONSISTENT_PTE_INDEX(c->vm_start);
391 u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
1da177e4 392
37134cd5 393 pte = consistent_pte[idx] + off;
1da177e4
LT
394 c->vm_pages = page;
395
1da177e4
LT
396 do {
397 BUG_ON(!pte_none(*pte));
398
ad1ae2fe 399 set_pte_ext(pte, mk_pte(page, prot), 0);
1da177e4
LT
400 page++;
401 pte++;
37134cd5
KH
402 off++;
403 if (off >= PTRS_PER_PTE) {
404 off = 0;
405 pte = consistent_pte[++idx];
406 }
1da177e4
LT
407 } while (size -= PAGE_SIZE);
408
2be23c47
RK
409 dsb();
410
1da177e4
LT
411 return (void *)c->vm_start;
412 }
1da177e4
LT
413 return NULL;
414}
695ae0af
RK
415
416static void __dma_free_remap(void *cpu_addr, size_t size)
417{
418 struct arm_vmregion *c;
419 unsigned long addr;
420 pte_t *ptep;
421 int idx;
422 u32 off;
423
424 c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
425 if (!c) {
6b6f770b 426 pr_err("%s: trying to free invalid coherent area: %p\n",
695ae0af
RK
427 __func__, cpu_addr);
428 dump_stack();
429 return;
430 }
431
432 if ((c->vm_end - c->vm_start) != size) {
6b6f770b 433 pr_err("%s: freeing wrong coherent size (%ld != %d)\n",
695ae0af
RK
434 __func__, c->vm_end - c->vm_start, size);
435 dump_stack();
436 size = c->vm_end - c->vm_start;
437 }
438
439 idx = CONSISTENT_PTE_INDEX(c->vm_start);
440 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
441 ptep = consistent_pte[idx] + off;
442 addr = c->vm_start;
443 do {
444 pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
695ae0af
RK
445
446 ptep++;
447 addr += PAGE_SIZE;
448 off++;
449 if (off >= PTRS_PER_PTE) {
450 off = 0;
451 ptep = consistent_pte[++idx];
452 }
453
acaac256 454 if (pte_none(pte) || !pte_present(pte))
6b6f770b
MS
455 pr_crit("%s: bad page in kernel page table\n",
456 __func__);
695ae0af
RK
457 } while (size -= PAGE_SIZE);
458
459 flush_tlb_kernel_range(c->vm_start, c->vm_end);
460
461 arm_vmregion_free(&consistent_head, c);
462}
463
ab6494f0 464#else /* !CONFIG_MMU */
695ae0af 465
45cd5290 466#define __dma_alloc_remap(page, size, gfp, prot, c) page_address(page)
31ebf944
RK
467#define __dma_free_remap(addr, size) do { } while (0)
468
469#endif /* CONFIG_MMU */
470
ab6494f0
CM
471static void *
472__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
45cd5290 473 pgprot_t prot, const void *caller)
ab6494f0 474{
04da5694 475 struct page *page;
31ebf944 476 void *addr;
ab6494f0 477
ea2e7057
SB
478 /*
479 * Following is a work-around (a.k.a. hack) to prevent pages
480 * with __GFP_COMP being passed to split_page() which cannot
481 * handle them. The real problem is that this flag probably
482 * should be 0 on ARM as it is not supported on this
483 * platform; see CONFIG_HUGETLBFS.
484 */
485 gfp &= ~(__GFP_COMP);
486
553ac788 487 *handle = DMA_ERROR_CODE;
04da5694 488 size = PAGE_ALIGN(size);
ab6494f0 489
04da5694
RK
490 page = __dma_alloc_buffer(dev, size, gfp);
491 if (!page)
492 return NULL;
ab6494f0 493
31ebf944 494 if (!arch_is_coherent())
45cd5290 495 addr = __dma_alloc_remap(page, size, gfp, prot, caller);
31ebf944
RK
496 else
497 addr = page_address(page);
695ae0af 498
31ebf944 499 if (addr)
9eedd963 500 *handle = pfn_to_dma(dev, page_to_pfn(page));
d8e89b47
RK
501 else
502 __dma_free_buffer(page, size);
695ae0af 503
31ebf944
RK
504 return addr;
505}
1da177e4
LT
506
507/*
508 * Allocate DMA-coherent memory space and return both the kernel remapped
509 * virtual and bus address for that space.
510 */
511void *
f9e3214a 512dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
1da177e4 513{
1fe53268
DB
514 void *memory;
515
516 if (dma_alloc_from_coherent(dev, size, handle, &memory))
517 return memory;
518
1da177e4 519 return __dma_alloc(dev, size, handle, gfp,
45cd5290
RK
520 pgprot_dmacoherent(pgprot_kernel),
521 __builtin_return_address(0));
1da177e4
LT
522}
523EXPORT_SYMBOL(dma_alloc_coherent);
524
525/*
526 * Allocate a writecombining region, in much the same way as
527 * dma_alloc_coherent above.
528 */
529void *
f9e3214a 530dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
1da177e4
LT
531{
532 return __dma_alloc(dev, size, handle, gfp,
45cd5290
RK
533 pgprot_writecombine(pgprot_kernel),
534 __builtin_return_address(0));
1da177e4
LT
535}
536EXPORT_SYMBOL(dma_alloc_writecombine);
537
538static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
539 void *cpu_addr, dma_addr_t dma_addr, size_t size)
540{
ab6494f0
CM
541 int ret = -ENXIO;
542#ifdef CONFIG_MMU
13ccf3ad
RK
543 unsigned long user_size, kern_size;
544 struct arm_vmregion *c;
1da177e4 545
47142f07
MS
546 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
547 return ret;
548
1da177e4
LT
549 user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
550
13ccf3ad 551 c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
1da177e4
LT
552 if (c) {
553 unsigned long off = vma->vm_pgoff;
554
555 kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
556
557 if (off < kern_size &&
558 user_size <= (kern_size - off)) {
1da177e4
LT
559 ret = remap_pfn_range(vma, vma->vm_start,
560 page_to_pfn(c->vm_pages) + off,
561 user_size << PAGE_SHIFT,
562 vma->vm_page_prot);
563 }
564 }
ab6494f0 565#endif /* CONFIG_MMU */
1da177e4
LT
566
567 return ret;
568}
569
570int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
571 void *cpu_addr, dma_addr_t dma_addr, size_t size)
572{
26a26d32 573 vma->vm_page_prot = pgprot_dmacoherent(vma->vm_page_prot);
1da177e4
LT
574 return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
575}
576EXPORT_SYMBOL(dma_mmap_coherent);
577
578int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
579 void *cpu_addr, dma_addr_t dma_addr, size_t size)
580{
581 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
582 return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
583}
584EXPORT_SYMBOL(dma_mmap_writecombine);
585
586/*
587 * free a page as defined by the above mapping.
5edf71ae 588 * Must not be called with IRQs disabled.
1da177e4
LT
589 */
590void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
591{
5edf71ae
RK
592 WARN_ON(irqs_disabled());
593
1fe53268
DB
594 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
595 return;
596
3e82d012
RK
597 size = PAGE_ALIGN(size);
598
695ae0af
RK
599 if (!arch_is_coherent())
600 __dma_free_remap(cpu_addr, size);
7a9a32a9 601
9eedd963 602 __dma_free_buffer(pfn_to_page(dma_to_pfn(dev, handle)), size);
1da177e4
LT
603}
604EXPORT_SYMBOL(dma_free_coherent);
605
4ea0d737 606static void dma_cache_maint_page(struct page *page, unsigned long offset,
a9c9147e
RK
607 size_t size, enum dma_data_direction dir,
608 void (*op)(const void *, size_t, int))
43377453
NP
609{
610 /*
611 * A single sg entry may refer to multiple physically contiguous
612 * pages. But we still need to process highmem pages individually.
613 * If highmem is not configured then the bulk of this loop gets
614 * optimized out.
615 */
616 size_t left = size;
617 do {
618 size_t len = left;
93f1d629
RK
619 void *vaddr;
620
621 if (PageHighMem(page)) {
622 if (len + offset > PAGE_SIZE) {
623 if (offset >= PAGE_SIZE) {
624 page += offset / PAGE_SIZE;
625 offset %= PAGE_SIZE;
626 }
627 len = PAGE_SIZE - offset;
628 }
629 vaddr = kmap_high_get(page);
630 if (vaddr) {
631 vaddr += offset;
a9c9147e 632 op(vaddr, len, dir);
93f1d629 633 kunmap_high(page);
7e5a69e8 634 } else if (cache_is_vipt()) {
39af22a7
NP
635 /* unmapped pages might still be cached */
636 vaddr = kmap_atomic(page);
7e5a69e8 637 op(vaddr + offset, len, dir);
39af22a7 638 kunmap_atomic(vaddr);
43377453 639 }
93f1d629
RK
640 } else {
641 vaddr = page_address(page) + offset;
a9c9147e 642 op(vaddr, len, dir);
43377453 643 }
43377453
NP
644 offset = 0;
645 page++;
646 left -= len;
647 } while (left);
648}
4ea0d737
RK
649
650void ___dma_page_cpu_to_dev(struct page *page, unsigned long off,
651 size_t size, enum dma_data_direction dir)
652{
65af191a 653 unsigned long paddr;
65af191a 654
a9c9147e 655 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
65af191a
RK
656
657 paddr = page_to_phys(page) + off;
2ffe2da3
RK
658 if (dir == DMA_FROM_DEVICE) {
659 outer_inv_range(paddr, paddr + size);
660 } else {
661 outer_clean_range(paddr, paddr + size);
662 }
663 /* FIXME: non-speculating: flush on bidirectional mappings? */
4ea0d737 664}
4ea0d737
RK
665
666void ___dma_page_dev_to_cpu(struct page *page, unsigned long off,
667 size_t size, enum dma_data_direction dir)
668{
2ffe2da3
RK
669 unsigned long paddr = page_to_phys(page) + off;
670
671 /* FIXME: non-speculating: not required */
672 /* don't bother invalidating if DMA to device */
673 if (dir != DMA_TO_DEVICE)
674 outer_inv_range(paddr, paddr + size);
675
a9c9147e 676 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
c0177800
CM
677
678 /*
679 * Mark the D-cache clean for this page to avoid extra flushing.
680 */
681 if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
682 set_bit(PG_dcache_clean, &page->flags);
4ea0d737 683}
43377453 684
afd1a321 685/**
2a550e73 686 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
afd1a321
RK
687 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
688 * @sg: list of buffers
689 * @nents: number of buffers to map
690 * @dir: DMA transfer direction
691 *
692 * Map a set of buffers described by scatterlist in streaming mode for DMA.
693 * This is the scatter-gather version of the dma_map_single interface.
694 * Here the scatter gather list elements are each tagged with the
695 * appropriate dma address and length. They are obtained via
696 * sg_dma_{address,length}.
697 *
698 * Device ownership issues as mentioned for dma_map_single are the same
699 * here.
700 */
2dc6a016
MS
701int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
702 enum dma_data_direction dir, struct dma_attrs *attrs)
afd1a321 703{
2a550e73 704 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321 705 struct scatterlist *s;
01135d92 706 int i, j;
afd1a321
RK
707
708 for_each_sg(sg, s, nents, i) {
2a550e73
MS
709 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
710 s->length, dir, attrs);
01135d92
RK
711 if (dma_mapping_error(dev, s->dma_address))
712 goto bad_mapping;
afd1a321 713 }
afd1a321 714 return nents;
01135d92
RK
715
716 bad_mapping:
717 for_each_sg(sg, s, i, j)
2a550e73 718 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
01135d92 719 return 0;
afd1a321 720}
afd1a321
RK
721
722/**
2a550e73 723 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
afd1a321
RK
724 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
725 * @sg: list of buffers
0adfca6f 726 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
afd1a321
RK
727 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
728 *
729 * Unmap a set of streaming mode DMA translations. Again, CPU access
730 * rules concerning calls here are the same as for dma_unmap_single().
731 */
2dc6a016
MS
732void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
733 enum dma_data_direction dir, struct dma_attrs *attrs)
afd1a321 734{
2a550e73 735 struct dma_map_ops *ops = get_dma_ops(dev);
01135d92 736 struct scatterlist *s;
2a550e73 737
01135d92
RK
738 int i;
739
740 for_each_sg(sg, s, nents, i)
2a550e73 741 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
afd1a321 742}
afd1a321
RK
743
744/**
2a550e73 745 * arm_dma_sync_sg_for_cpu
afd1a321
RK
746 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
747 * @sg: list of buffers
748 * @nents: number of buffers to map (returned from dma_map_sg)
749 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
750 */
2dc6a016 751void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
afd1a321
RK
752 int nents, enum dma_data_direction dir)
753{
2a550e73 754 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321
RK
755 struct scatterlist *s;
756 int i;
757
2a550e73
MS
758 for_each_sg(sg, s, nents, i)
759 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
760 dir);
afd1a321 761}
afd1a321
RK
762
763/**
2a550e73 764 * arm_dma_sync_sg_for_device
afd1a321
RK
765 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
766 * @sg: list of buffers
767 * @nents: number of buffers to map (returned from dma_map_sg)
768 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
769 */
2dc6a016 770void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
afd1a321
RK
771 int nents, enum dma_data_direction dir)
772{
2a550e73 773 struct dma_map_ops *ops = get_dma_ops(dev);
afd1a321
RK
774 struct scatterlist *s;
775 int i;
776
2a550e73
MS
777 for_each_sg(sg, s, nents, i)
778 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
779 dir);
afd1a321 780}
24056f52 781
022ae537
RK
782/*
783 * Return whether the given device DMA address mask can be supported
784 * properly. For example, if your device can only drive the low 24-bits
785 * during bus mastering, then you would pass 0x00ffffff as the mask
786 * to this function.
787 */
788int dma_supported(struct device *dev, u64 mask)
789{
790 if (mask < (u64)arm_dma_limit)
791 return 0;
792 return 1;
793}
794EXPORT_SYMBOL(dma_supported);
795
2dc6a016 796static int arm_dma_set_mask(struct device *dev, u64 dma_mask)
022ae537
RK
797{
798 if (!dev->dma_mask || !dma_supported(dev, dma_mask))
799 return -EIO;
800
022ae537 801 *dev->dma_mask = dma_mask;
022ae537
RK
802
803 return 0;
804}
022ae537 805
24056f52
RK
806#define PREALLOC_DMA_DEBUG_ENTRIES 4096
807
808static int __init dma_debug_do_init(void)
809{
45cd5290
RK
810#ifdef CONFIG_MMU
811 arm_vmregion_create_proc("dma-mappings", &consistent_head);
812#endif
24056f52
RK
813 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
814 return 0;
815}
816fs_initcall(dma_debug_do_init);
This page took 1.887228 seconds and 5 git commands to generate.