ARM: dma-mapping: fix coherent arch dma_alloc_coherent()
[deliverable/linux.git] / arch / arm / mm / dma-mapping.c
CommitLineData
1da177e4 1/*
0ddbccd1 2 * linux/arch/arm/mm/dma-mapping.c
1da177e4
LT
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12#include <linux/module.h>
13#include <linux/mm.h>
14#include <linux/slab.h>
15#include <linux/errno.h>
16#include <linux/list.h>
17#include <linux/init.h>
18#include <linux/device.h>
19#include <linux/dma-mapping.h>
20
23759dc6 21#include <asm/memory.h>
43377453 22#include <asm/highmem.h>
1da177e4 23#include <asm/cacheflush.h>
1da177e4 24#include <asm/tlbflush.h>
37134cd5
KH
25#include <asm/sizes.h>
26
27/* Sanity check size */
28#if (CONSISTENT_DMA_SIZE % SZ_2M)
29#error "CONSISTENT_DMA_SIZE must be multiple of 2MiB"
30#endif
1da177e4 31
1da177e4 32#define CONSISTENT_END (0xffe00000)
37134cd5
KH
33#define CONSISTENT_BASE (CONSISTENT_END - CONSISTENT_DMA_SIZE)
34
1da177e4 35#define CONSISTENT_OFFSET(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT)
37134cd5
KH
36#define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PGDIR_SHIFT)
37#define NUM_CONSISTENT_PTES (CONSISTENT_DMA_SIZE >> PGDIR_SHIFT)
38
ab6494f0
CM
39static u64 get_coherent_dma_mask(struct device *dev)
40{
41 u64 mask = ISA_DMA_THRESHOLD;
42
43 if (dev) {
44 mask = dev->coherent_dma_mask;
45
46 /*
47 * Sanity check the DMA mask - it must be non-zero, and
48 * must be able to be satisfied by a DMA allocation.
49 */
50 if (mask == 0) {
51 dev_warn(dev, "coherent DMA mask is unset\n");
52 return 0;
53 }
54
55 if ((~mask) & ISA_DMA_THRESHOLD) {
56 dev_warn(dev, "coherent DMA mask %#llx is smaller "
57 "than system GFP_DMA mask %#llx\n",
58 mask, (unsigned long long)ISA_DMA_THRESHOLD);
59 return 0;
60 }
61 }
1da177e4 62
ab6494f0
CM
63 return mask;
64}
65
7a9a32a9
RK
66/*
67 * Allocate a DMA buffer for 'dev' of size 'size' using the
68 * specified gfp mask. Note that 'size' must be page aligned.
69 */
70static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
71{
72 unsigned long order = get_order(size);
73 struct page *page, *p, *e;
74 void *ptr;
75 u64 mask = get_coherent_dma_mask(dev);
76
77#ifdef CONFIG_DMA_API_DEBUG
78 u64 limit = (mask + 1) & ~mask;
79 if (limit && size >= limit) {
80 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
81 size, mask);
82 return NULL;
83 }
84#endif
85
86 if (!mask)
87 return NULL;
88
89 if (mask < 0xffffffffULL)
90 gfp |= GFP_DMA;
91
92 page = alloc_pages(gfp, order);
93 if (!page)
94 return NULL;
95
96 /*
97 * Now split the huge page and free the excess pages
98 */
99 split_page(page, order);
100 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
101 __free_page(p);
102
103 /*
104 * Ensure that the allocated pages are zeroed, and that any data
105 * lurking in the kernel direct-mapped region is invalidated.
106 */
107 ptr = page_address(page);
108 memset(ptr, 0, size);
109 dmac_flush_range(ptr, ptr + size);
110 outer_flush_range(__pa(ptr), __pa(ptr) + size);
111
112 return page;
113}
114
115/*
116 * Free a DMA buffer. 'size' must be page aligned.
117 */
118static void __dma_free_buffer(struct page *page, size_t size)
119{
120 struct page *e = page + (size >> PAGE_SHIFT);
121
122 while (page < e) {
123 __free_page(page);
124 page++;
125 }
126}
127
ab6494f0 128#ifdef CONFIG_MMU
1da177e4 129/*
37134cd5 130 * These are the page tables (2MB each) covering uncached, DMA consistent allocations
1da177e4 131 */
37134cd5 132static pte_t *consistent_pte[NUM_CONSISTENT_PTES];
1da177e4 133
13ccf3ad 134#include "vmregion.h"
1da177e4 135
13ccf3ad
RK
136static struct arm_vmregion_head consistent_head = {
137 .vm_lock = __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
1da177e4
LT
138 .vm_list = LIST_HEAD_INIT(consistent_head.vm_list),
139 .vm_start = CONSISTENT_BASE,
140 .vm_end = CONSISTENT_END,
141};
142
1da177e4
LT
143#ifdef CONFIG_HUGETLB_PAGE
144#error ARM Coherent DMA allocator does not (yet) support huge TLB
145#endif
146
147static void *
f9e3214a 148__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
1da177e4
LT
149 pgprot_t prot)
150{
151 struct page *page;
13ccf3ad 152 struct arm_vmregion *c;
1da177e4 153
37134cd5 154 if (!consistent_pte[0]) {
1da177e4
LT
155 printk(KERN_ERR "%s: not initialised\n", __func__);
156 dump_stack();
157 return NULL;
158 }
159
1da177e4 160 size = PAGE_ALIGN(size);
1da177e4 161
7a9a32a9 162 page = __dma_alloc_buffer(dev, size, gfp);
1da177e4
LT
163 if (!page)
164 goto no_page;
165
1da177e4
LT
166 /*
167 * Allocate a virtual address in the consistent mapping region.
168 */
13ccf3ad 169 c = arm_vmregion_alloc(&consistent_head, size,
1da177e4
LT
170 gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
171 if (c) {
37134cd5 172 pte_t *pte;
37134cd5
KH
173 int idx = CONSISTENT_PTE_INDEX(c->vm_start);
174 u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
1da177e4 175
37134cd5 176 pte = consistent_pte[idx] + off;
1da177e4
LT
177 c->vm_pages = page;
178
179 /*
180 * Set the "dma handle"
181 */
182 *handle = page_to_dma(dev, page);
183
184 do {
185 BUG_ON(!pte_none(*pte));
186
1da177e4
LT
187 /*
188 * x86 does not mark the pages reserved...
189 */
190 SetPageReserved(page);
ad1ae2fe 191 set_pte_ext(pte, mk_pte(page, prot), 0);
1da177e4
LT
192 page++;
193 pte++;
37134cd5
KH
194 off++;
195 if (off >= PTRS_PER_PTE) {
196 off = 0;
197 pte = consistent_pte[++idx];
198 }
1da177e4
LT
199 } while (size -= PAGE_SIZE);
200
1da177e4
LT
201 return (void *)c->vm_start;
202 }
203
204 if (page)
7a9a32a9 205 __dma_free_buffer(page, size);
1da177e4
LT
206 no_page:
207 *handle = ~0;
208 return NULL;
209}
ab6494f0
CM
210#else /* !CONFIG_MMU */
211static void *
212__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
213 pgprot_t prot)
214{
215 void *virt;
216 u64 mask = get_coherent_dma_mask(dev);
217
218 if (!mask)
219 goto error;
220
c06e004c 221 if (mask < 0xffffffffULL)
ab6494f0
CM
222 gfp |= GFP_DMA;
223 virt = kmalloc(size, gfp);
224 if (!virt)
225 goto error;
226
227 *handle = virt_to_dma(dev, virt);
228 return virt;
229
230error:
231 *handle = ~0;
232 return NULL;
233}
234#endif /* CONFIG_MMU */
1da177e4
LT
235
236/*
237 * Allocate DMA-coherent memory space and return both the kernel remapped
238 * virtual and bus address for that space.
239 */
240void *
f9e3214a 241dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
1da177e4 242{
1fe53268
DB
243 void *memory;
244
245 if (dma_alloc_from_coherent(dev, size, handle, &memory))
246 return memory;
247
23759dc6 248 if (arch_is_coherent()) {
3e82d012 249 struct page *page;
23759dc6 250
3e82d012
RK
251 page = __dma_alloc_buffer(dev, PAGE_ALIGN(size), gfp);
252 if (!page) {
253 *handle = ~0;
23759dc6 254 return NULL;
3e82d012 255 }
23759dc6 256
3e82d012
RK
257 *handle = page_to_dma(dev, page);
258 return page_address(page);
23759dc6
LB
259 }
260
1da177e4
LT
261 return __dma_alloc(dev, size, handle, gfp,
262 pgprot_noncached(pgprot_kernel));
263}
264EXPORT_SYMBOL(dma_alloc_coherent);
265
266/*
267 * Allocate a writecombining region, in much the same way as
268 * dma_alloc_coherent above.
269 */
270void *
f9e3214a 271dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
1da177e4
LT
272{
273 return __dma_alloc(dev, size, handle, gfp,
274 pgprot_writecombine(pgprot_kernel));
275}
276EXPORT_SYMBOL(dma_alloc_writecombine);
277
278static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
279 void *cpu_addr, dma_addr_t dma_addr, size_t size)
280{
ab6494f0
CM
281 int ret = -ENXIO;
282#ifdef CONFIG_MMU
13ccf3ad
RK
283 unsigned long user_size, kern_size;
284 struct arm_vmregion *c;
1da177e4
LT
285
286 user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
287
13ccf3ad 288 c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
1da177e4
LT
289 if (c) {
290 unsigned long off = vma->vm_pgoff;
291
292 kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
293
294 if (off < kern_size &&
295 user_size <= (kern_size - off)) {
1da177e4
LT
296 ret = remap_pfn_range(vma, vma->vm_start,
297 page_to_pfn(c->vm_pages) + off,
298 user_size << PAGE_SHIFT,
299 vma->vm_page_prot);
300 }
301 }
ab6494f0 302#endif /* CONFIG_MMU */
1da177e4
LT
303
304 return ret;
305}
306
307int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
308 void *cpu_addr, dma_addr_t dma_addr, size_t size)
309{
310 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
311 return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
312}
313EXPORT_SYMBOL(dma_mmap_coherent);
314
315int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
316 void *cpu_addr, dma_addr_t dma_addr, size_t size)
317{
318 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
319 return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
320}
321EXPORT_SYMBOL(dma_mmap_writecombine);
322
323/*
324 * free a page as defined by the above mapping.
5edf71ae 325 * Must not be called with IRQs disabled.
1da177e4 326 */
ab6494f0 327#ifdef CONFIG_MMU
1da177e4
LT
328void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
329{
13ccf3ad
RK
330 struct arm_vmregion *c;
331 unsigned long addr;
1da177e4 332 pte_t *ptep;
37134cd5
KH
333 int idx;
334 u32 off;
1da177e4 335
5edf71ae
RK
336 WARN_ON(irqs_disabled());
337
1fe53268
DB
338 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
339 return;
340
3e82d012
RK
341 size = PAGE_ALIGN(size);
342
23759dc6 343 if (arch_is_coherent()) {
3e82d012 344 __dma_free_buffer(dma_to_page(dev, handle), size);
23759dc6
LB
345 return;
346 }
347
13ccf3ad 348 c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
1da177e4
LT
349 if (!c)
350 goto no_area;
351
352 if ((c->vm_end - c->vm_start) != size) {
353 printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
354 __func__, c->vm_end - c->vm_start, size);
355 dump_stack();
356 size = c->vm_end - c->vm_start;
357 }
358
37134cd5
KH
359 idx = CONSISTENT_PTE_INDEX(c->vm_start);
360 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
361 ptep = consistent_pte[idx] + off;
1da177e4
LT
362 addr = c->vm_start;
363 do {
364 pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
365 unsigned long pfn;
366
367 ptep++;
368 addr += PAGE_SIZE;
37134cd5
KH
369 off++;
370 if (off >= PTRS_PER_PTE) {
371 off = 0;
372 ptep = consistent_pte[++idx];
373 }
1da177e4
LT
374
375 if (!pte_none(pte) && pte_present(pte)) {
376 pfn = pte_pfn(pte);
377
378 if (pfn_valid(pfn)) {
379 struct page *page = pfn_to_page(pfn);
380
381 /*
382 * x86 does not mark the pages reserved...
383 */
384 ClearPageReserved(page);
1da177e4
LT
385 continue;
386 }
387 }
1da177e4
LT
388 printk(KERN_CRIT "%s: bad page in kernel page table\n",
389 __func__);
390 } while (size -= PAGE_SIZE);
391
392 flush_tlb_kernel_range(c->vm_start, c->vm_end);
393
13ccf3ad 394 arm_vmregion_free(&consistent_head, c);
7a9a32a9
RK
395
396 __dma_free_buffer(dma_to_page(dev, handle), size);
1da177e4
LT
397 return;
398
399 no_area:
1da177e4
LT
400 printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
401 __func__, cpu_addr);
402 dump_stack();
403}
ab6494f0
CM
404#else /* !CONFIG_MMU */
405void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
406{
407 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
408 return;
409 kfree(cpu_addr);
410}
411#endif /* CONFIG_MMU */
1da177e4
LT
412EXPORT_SYMBOL(dma_free_coherent);
413
414/*
415 * Initialise the consistent memory allocation.
416 */
417static int __init consistent_init(void)
418{
ab6494f0
CM
419 int ret = 0;
420#ifdef CONFIG_MMU
1da177e4
LT
421 pgd_t *pgd;
422 pmd_t *pmd;
423 pte_t *pte;
ab6494f0 424 int i = 0;
37134cd5 425 u32 base = CONSISTENT_BASE;
1da177e4 426
1da177e4 427 do {
37134cd5
KH
428 pgd = pgd_offset(&init_mm, base);
429 pmd = pmd_alloc(&init_mm, pgd, base);
1da177e4
LT
430 if (!pmd) {
431 printk(KERN_ERR "%s: no pmd tables\n", __func__);
432 ret = -ENOMEM;
433 break;
434 }
435 WARN_ON(!pmd_none(*pmd));
436
37134cd5 437 pte = pte_alloc_kernel(pmd, base);
1da177e4
LT
438 if (!pte) {
439 printk(KERN_ERR "%s: no pte tables\n", __func__);
440 ret = -ENOMEM;
441 break;
442 }
443
37134cd5
KH
444 consistent_pte[i++] = pte;
445 base += (1 << PGDIR_SHIFT);
446 } while (base < CONSISTENT_END);
ab6494f0 447#endif /* !CONFIG_MMU */
1da177e4 448
1da177e4
LT
449 return ret;
450}
451
452core_initcall(consistent_init);
453
454/*
455 * Make an area consistent for devices.
105ef9a0
DW
456 * Note: Drivers should NOT use this function directly, as it will break
457 * platforms with CONFIG_DMABOUNCE.
458 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
1da177e4 459 */
84aa462e 460void dma_cache_maint(const void *start, size_t size, int direction)
1da177e4 461{
1522ac3e
RK
462 void (*inner_op)(const void *, const void *);
463 void (*outer_op)(unsigned long, unsigned long);
1da177e4 464
1522ac3e 465 BUG_ON(!virt_addr_valid(start) || !virt_addr_valid(start + size - 1));
953233dc 466
1da177e4
LT
467 switch (direction) {
468 case DMA_FROM_DEVICE: /* invalidate only */
1522ac3e
RK
469 inner_op = dmac_inv_range;
470 outer_op = outer_inv_range;
1da177e4
LT
471 break;
472 case DMA_TO_DEVICE: /* writeback only */
1522ac3e
RK
473 inner_op = dmac_clean_range;
474 outer_op = outer_clean_range;
1da177e4
LT
475 break;
476 case DMA_BIDIRECTIONAL: /* writeback and invalidate */
1522ac3e
RK
477 inner_op = dmac_flush_range;
478 outer_op = outer_flush_range;
1da177e4
LT
479 break;
480 default:
481 BUG();
482 }
1522ac3e
RK
483
484 inner_op(start, start + size);
485 outer_op(__pa(start), __pa(start) + size);
1da177e4 486}
84aa462e 487EXPORT_SYMBOL(dma_cache_maint);
afd1a321 488
43377453
NP
489static void dma_cache_maint_contiguous(struct page *page, unsigned long offset,
490 size_t size, int direction)
491{
492 void *vaddr;
493 unsigned long paddr;
494 void (*inner_op)(const void *, const void *);
495 void (*outer_op)(unsigned long, unsigned long);
496
497 switch (direction) {
498 case DMA_FROM_DEVICE: /* invalidate only */
499 inner_op = dmac_inv_range;
500 outer_op = outer_inv_range;
501 break;
502 case DMA_TO_DEVICE: /* writeback only */
503 inner_op = dmac_clean_range;
504 outer_op = outer_clean_range;
505 break;
506 case DMA_BIDIRECTIONAL: /* writeback and invalidate */
507 inner_op = dmac_flush_range;
508 outer_op = outer_flush_range;
509 break;
510 default:
511 BUG();
512 }
513
514 if (!PageHighMem(page)) {
515 vaddr = page_address(page) + offset;
516 inner_op(vaddr, vaddr + size);
517 } else {
518 vaddr = kmap_high_get(page);
519 if (vaddr) {
520 vaddr += offset;
521 inner_op(vaddr, vaddr + size);
522 kunmap_high(page);
523 }
524 }
525
526 paddr = page_to_phys(page) + offset;
527 outer_op(paddr, paddr + size);
528}
529
530void dma_cache_maint_page(struct page *page, unsigned long offset,
531 size_t size, int dir)
532{
533 /*
534 * A single sg entry may refer to multiple physically contiguous
535 * pages. But we still need to process highmem pages individually.
536 * If highmem is not configured then the bulk of this loop gets
537 * optimized out.
538 */
539 size_t left = size;
540 do {
541 size_t len = left;
542 if (PageHighMem(page) && len + offset > PAGE_SIZE) {
543 if (offset >= PAGE_SIZE) {
544 page += offset / PAGE_SIZE;
545 offset %= PAGE_SIZE;
546 }
547 len = PAGE_SIZE - offset;
548 }
549 dma_cache_maint_contiguous(page, offset, len, dir);
550 offset = 0;
551 page++;
552 left -= len;
553 } while (left);
554}
555EXPORT_SYMBOL(dma_cache_maint_page);
556
afd1a321
RK
557/**
558 * dma_map_sg - map a set of SG buffers for streaming mode DMA
559 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
560 * @sg: list of buffers
561 * @nents: number of buffers to map
562 * @dir: DMA transfer direction
563 *
564 * Map a set of buffers described by scatterlist in streaming mode for DMA.
565 * This is the scatter-gather version of the dma_map_single interface.
566 * Here the scatter gather list elements are each tagged with the
567 * appropriate dma address and length. They are obtained via
568 * sg_dma_{address,length}.
569 *
570 * Device ownership issues as mentioned for dma_map_single are the same
571 * here.
572 */
573int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
574 enum dma_data_direction dir)
575{
576 struct scatterlist *s;
01135d92 577 int i, j;
afd1a321
RK
578
579 for_each_sg(sg, s, nents, i) {
01135d92
RK
580 s->dma_address = dma_map_page(dev, sg_page(s), s->offset,
581 s->length, dir);
582 if (dma_mapping_error(dev, s->dma_address))
583 goto bad_mapping;
afd1a321 584 }
afd1a321 585 return nents;
01135d92
RK
586
587 bad_mapping:
588 for_each_sg(sg, s, i, j)
589 dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
590 return 0;
afd1a321
RK
591}
592EXPORT_SYMBOL(dma_map_sg);
593
594/**
595 * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
596 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
597 * @sg: list of buffers
598 * @nents: number of buffers to unmap (returned from dma_map_sg)
599 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
600 *
601 * Unmap a set of streaming mode DMA translations. Again, CPU access
602 * rules concerning calls here are the same as for dma_unmap_single().
603 */
604void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
605 enum dma_data_direction dir)
606{
01135d92
RK
607 struct scatterlist *s;
608 int i;
609
610 for_each_sg(sg, s, nents, i)
611 dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
afd1a321
RK
612}
613EXPORT_SYMBOL(dma_unmap_sg);
614
615/**
616 * dma_sync_sg_for_cpu
617 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
618 * @sg: list of buffers
619 * @nents: number of buffers to map (returned from dma_map_sg)
620 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
621 */
622void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
623 int nents, enum dma_data_direction dir)
624{
625 struct scatterlist *s;
626 int i;
627
628 for_each_sg(sg, s, nents, i) {
309dbbab
RK
629 dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0,
630 sg_dma_len(s), dir);
afd1a321
RK
631 }
632}
633EXPORT_SYMBOL(dma_sync_sg_for_cpu);
634
635/**
636 * dma_sync_sg_for_device
637 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
638 * @sg: list of buffers
639 * @nents: number of buffers to map (returned from dma_map_sg)
640 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
641 */
642void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
643 int nents, enum dma_data_direction dir)
644{
645 struct scatterlist *s;
646 int i;
647
648 for_each_sg(sg, s, nents, i) {
2638b4db
RK
649 if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0,
650 sg_dma_len(s), dir))
651 continue;
652
afd1a321 653 if (!arch_is_coherent())
43377453
NP
654 dma_cache_maint_page(sg_page(s), s->offset,
655 s->length, dir);
afd1a321
RK
656 }
657}
658EXPORT_SYMBOL(dma_sync_sg_for_device);
This page took 0.419537 seconds and 5 git commands to generate.