ARM: Use GFP_DMA only for masks _less_ than 32-bit
[deliverable/linux.git] / arch / arm / mm / dma-mapping.c
CommitLineData
1da177e4 1/*
0ddbccd1 2 * linux/arch/arm/mm/dma-mapping.c
1da177e4
LT
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12#include <linux/module.h>
13#include <linux/mm.h>
14#include <linux/slab.h>
15#include <linux/errno.h>
16#include <linux/list.h>
17#include <linux/init.h>
18#include <linux/device.h>
19#include <linux/dma-mapping.h>
20
23759dc6 21#include <asm/memory.h>
43377453 22#include <asm/highmem.h>
1da177e4 23#include <asm/cacheflush.h>
1da177e4 24#include <asm/tlbflush.h>
37134cd5
KH
25#include <asm/sizes.h>
26
27/* Sanity check size */
28#if (CONSISTENT_DMA_SIZE % SZ_2M)
29#error "CONSISTENT_DMA_SIZE must be multiple of 2MiB"
30#endif
1da177e4 31
1da177e4 32#define CONSISTENT_END (0xffe00000)
37134cd5
KH
33#define CONSISTENT_BASE (CONSISTENT_END - CONSISTENT_DMA_SIZE)
34
1da177e4 35#define CONSISTENT_OFFSET(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT)
37134cd5
KH
36#define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PGDIR_SHIFT)
37#define NUM_CONSISTENT_PTES (CONSISTENT_DMA_SIZE >> PGDIR_SHIFT)
38
ab6494f0
CM
39static u64 get_coherent_dma_mask(struct device *dev)
40{
41 u64 mask = ISA_DMA_THRESHOLD;
42
43 if (dev) {
44 mask = dev->coherent_dma_mask;
45
46 /*
47 * Sanity check the DMA mask - it must be non-zero, and
48 * must be able to be satisfied by a DMA allocation.
49 */
50 if (mask == 0) {
51 dev_warn(dev, "coherent DMA mask is unset\n");
52 return 0;
53 }
54
55 if ((~mask) & ISA_DMA_THRESHOLD) {
56 dev_warn(dev, "coherent DMA mask %#llx is smaller "
57 "than system GFP_DMA mask %#llx\n",
58 mask, (unsigned long long)ISA_DMA_THRESHOLD);
59 return 0;
60 }
61 }
1da177e4 62
ab6494f0
CM
63 return mask;
64}
65
66#ifdef CONFIG_MMU
1da177e4 67/*
37134cd5 68 * These are the page tables (2MB each) covering uncached, DMA consistent allocations
1da177e4 69 */
37134cd5 70static pte_t *consistent_pte[NUM_CONSISTENT_PTES];
1da177e4
LT
71static DEFINE_SPINLOCK(consistent_lock);
72
73/*
74 * VM region handling support.
75 *
76 * This should become something generic, handling VM region allocations for
77 * vmalloc and similar (ioremap, module space, etc).
78 *
79 * I envisage vmalloc()'s supporting vm_struct becoming:
80 *
81 * struct vm_struct {
82 * struct vm_region region;
83 * unsigned long flags;
84 * struct page **pages;
85 * unsigned int nr_pages;
86 * unsigned long phys_addr;
87 * };
88 *
89 * get_vm_area() would then call vm_region_alloc with an appropriate
90 * struct vm_region head (eg):
91 *
92 * struct vm_region vmalloc_head = {
93 * .vm_list = LIST_HEAD_INIT(vmalloc_head.vm_list),
94 * .vm_start = VMALLOC_START,
95 * .vm_end = VMALLOC_END,
96 * };
97 *
98 * However, vmalloc_head.vm_start is variable (typically, it is dependent on
99 * the amount of RAM found at boot time.) I would imagine that get_vm_area()
100 * would have to initialise this each time prior to calling vm_region_alloc().
101 */
9c93af1e 102struct arm_vm_region {
1da177e4
LT
103 struct list_head vm_list;
104 unsigned long vm_start;
105 unsigned long vm_end;
106 struct page *vm_pages;
5edf71ae 107 int vm_active;
1da177e4
LT
108};
109
9c93af1e 110static struct arm_vm_region consistent_head = {
1da177e4
LT
111 .vm_list = LIST_HEAD_INIT(consistent_head.vm_list),
112 .vm_start = CONSISTENT_BASE,
113 .vm_end = CONSISTENT_END,
114};
115
9c93af1e
DH
116static struct arm_vm_region *
117arm_vm_region_alloc(struct arm_vm_region *head, size_t size, gfp_t gfp)
1da177e4
LT
118{
119 unsigned long addr = head->vm_start, end = head->vm_end - size;
120 unsigned long flags;
9c93af1e 121 struct arm_vm_region *c, *new;
1da177e4 122
9c93af1e 123 new = kmalloc(sizeof(struct arm_vm_region), gfp);
1da177e4
LT
124 if (!new)
125 goto out;
126
127 spin_lock_irqsave(&consistent_lock, flags);
128
129 list_for_each_entry(c, &head->vm_list, vm_list) {
130 if ((addr + size) < addr)
131 goto nospc;
132 if ((addr + size) <= c->vm_start)
133 goto found;
134 addr = c->vm_end;
135 if (addr > end)
136 goto nospc;
137 }
138
139 found:
140 /*
141 * Insert this entry _before_ the one we found.
142 */
143 list_add_tail(&new->vm_list, &c->vm_list);
144 new->vm_start = addr;
145 new->vm_end = addr + size;
5edf71ae 146 new->vm_active = 1;
1da177e4
LT
147
148 spin_unlock_irqrestore(&consistent_lock, flags);
149 return new;
150
151 nospc:
152 spin_unlock_irqrestore(&consistent_lock, flags);
153 kfree(new);
154 out:
155 return NULL;
156}
157
9c93af1e 158static struct arm_vm_region *arm_vm_region_find(struct arm_vm_region *head, unsigned long addr)
1da177e4 159{
9c93af1e 160 struct arm_vm_region *c;
1da177e4
LT
161
162 list_for_each_entry(c, &head->vm_list, vm_list) {
5edf71ae 163 if (c->vm_active && c->vm_start == addr)
1da177e4
LT
164 goto out;
165 }
166 c = NULL;
167 out:
168 return c;
169}
170
171#ifdef CONFIG_HUGETLB_PAGE
172#error ARM Coherent DMA allocator does not (yet) support huge TLB
173#endif
174
175static void *
f9e3214a 176__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
1da177e4
LT
177 pgprot_t prot)
178{
179 struct page *page;
9c93af1e 180 struct arm_vm_region *c;
1da177e4 181 unsigned long order;
ab6494f0
CM
182 u64 mask = get_coherent_dma_mask(dev);
183 u64 limit;
1da177e4 184
37134cd5 185 if (!consistent_pte[0]) {
1da177e4
LT
186 printk(KERN_ERR "%s: not initialised\n", __func__);
187 dump_stack();
188 return NULL;
189 }
190
ab6494f0
CM
191 if (!mask)
192 goto no_page;
1da177e4
LT
193
194 /*
195 * Sanity check the allocation size.
196 */
197 size = PAGE_ALIGN(size);
198 limit = (mask + 1) & ~mask;
199 if ((limit && size >= limit) ||
200 size >= (CONSISTENT_END - CONSISTENT_BASE)) {
201 printk(KERN_WARNING "coherent allocation too big "
202 "(requested %#x mask %#llx)\n", size, mask);
203 goto no_page;
204 }
205
206 order = get_order(size);
207
c06e004c 208 if (mask < 0xffffffffULL)
1da177e4
LT
209 gfp |= GFP_DMA;
210
211 page = alloc_pages(gfp, order);
212 if (!page)
213 goto no_page;
214
215 /*
216 * Invalidate any data that might be lurking in the
217 * kernel direct-mapped region for device DMA.
218 */
219 {
7ae5a761
RK
220 void *ptr = page_address(page);
221 memset(ptr, 0, size);
222 dmac_flush_range(ptr, ptr + size);
223 outer_flush_range(__pa(ptr), __pa(ptr) + size);
1da177e4
LT
224 }
225
226 /*
227 * Allocate a virtual address in the consistent mapping region.
228 */
9c93af1e 229 c = arm_vm_region_alloc(&consistent_head, size,
1da177e4
LT
230 gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
231 if (c) {
37134cd5 232 pte_t *pte;
1da177e4 233 struct page *end = page + (1 << order);
37134cd5
KH
234 int idx = CONSISTENT_PTE_INDEX(c->vm_start);
235 u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
1da177e4 236
37134cd5 237 pte = consistent_pte[idx] + off;
1da177e4
LT
238 c->vm_pages = page;
239
8dfcc9ba
NP
240 split_page(page, order);
241
1da177e4
LT
242 /*
243 * Set the "dma handle"
244 */
245 *handle = page_to_dma(dev, page);
246
247 do {
248 BUG_ON(!pte_none(*pte));
249
1da177e4
LT
250 /*
251 * x86 does not mark the pages reserved...
252 */
253 SetPageReserved(page);
ad1ae2fe 254 set_pte_ext(pte, mk_pte(page, prot), 0);
1da177e4
LT
255 page++;
256 pte++;
37134cd5
KH
257 off++;
258 if (off >= PTRS_PER_PTE) {
259 off = 0;
260 pte = consistent_pte[++idx];
261 }
1da177e4
LT
262 } while (size -= PAGE_SIZE);
263
264 /*
265 * Free the otherwise unused pages.
266 */
267 while (page < end) {
1da177e4
LT
268 __free_page(page);
269 page++;
270 }
271
272 return (void *)c->vm_start;
273 }
274
275 if (page)
276 __free_pages(page, order);
277 no_page:
278 *handle = ~0;
279 return NULL;
280}
ab6494f0
CM
281#else /* !CONFIG_MMU */
282static void *
283__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
284 pgprot_t prot)
285{
286 void *virt;
287 u64 mask = get_coherent_dma_mask(dev);
288
289 if (!mask)
290 goto error;
291
c06e004c 292 if (mask < 0xffffffffULL)
ab6494f0
CM
293 gfp |= GFP_DMA;
294 virt = kmalloc(size, gfp);
295 if (!virt)
296 goto error;
297
298 *handle = virt_to_dma(dev, virt);
299 return virt;
300
301error:
302 *handle = ~0;
303 return NULL;
304}
305#endif /* CONFIG_MMU */
1da177e4
LT
306
307/*
308 * Allocate DMA-coherent memory space and return both the kernel remapped
309 * virtual and bus address for that space.
310 */
311void *
f9e3214a 312dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
1da177e4 313{
1fe53268
DB
314 void *memory;
315
316 if (dma_alloc_from_coherent(dev, size, handle, &memory))
317 return memory;
318
23759dc6
LB
319 if (arch_is_coherent()) {
320 void *virt;
321
322 virt = kmalloc(size, gfp);
323 if (!virt)
324 return NULL;
325 *handle = virt_to_dma(dev, virt);
326
327 return virt;
328 }
329
1da177e4
LT
330 return __dma_alloc(dev, size, handle, gfp,
331 pgprot_noncached(pgprot_kernel));
332}
333EXPORT_SYMBOL(dma_alloc_coherent);
334
335/*
336 * Allocate a writecombining region, in much the same way as
337 * dma_alloc_coherent above.
338 */
339void *
f9e3214a 340dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
1da177e4
LT
341{
342 return __dma_alloc(dev, size, handle, gfp,
343 pgprot_writecombine(pgprot_kernel));
344}
345EXPORT_SYMBOL(dma_alloc_writecombine);
346
347static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
348 void *cpu_addr, dma_addr_t dma_addr, size_t size)
349{
ab6494f0
CM
350 int ret = -ENXIO;
351#ifdef CONFIG_MMU
1da177e4 352 unsigned long flags, user_size, kern_size;
9c93af1e 353 struct arm_vm_region *c;
1da177e4
LT
354
355 user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
356
357 spin_lock_irqsave(&consistent_lock, flags);
9c93af1e 358 c = arm_vm_region_find(&consistent_head, (unsigned long)cpu_addr);
1da177e4
LT
359 spin_unlock_irqrestore(&consistent_lock, flags);
360
361 if (c) {
362 unsigned long off = vma->vm_pgoff;
363
364 kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
365
366 if (off < kern_size &&
367 user_size <= (kern_size - off)) {
1da177e4
LT
368 ret = remap_pfn_range(vma, vma->vm_start,
369 page_to_pfn(c->vm_pages) + off,
370 user_size << PAGE_SHIFT,
371 vma->vm_page_prot);
372 }
373 }
ab6494f0 374#endif /* CONFIG_MMU */
1da177e4
LT
375
376 return ret;
377}
378
379int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
380 void *cpu_addr, dma_addr_t dma_addr, size_t size)
381{
382 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
383 return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
384}
385EXPORT_SYMBOL(dma_mmap_coherent);
386
387int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
388 void *cpu_addr, dma_addr_t dma_addr, size_t size)
389{
390 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
391 return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
392}
393EXPORT_SYMBOL(dma_mmap_writecombine);
394
395/*
396 * free a page as defined by the above mapping.
5edf71ae 397 * Must not be called with IRQs disabled.
1da177e4 398 */
ab6494f0 399#ifdef CONFIG_MMU
1da177e4
LT
400void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
401{
9c93af1e 402 struct arm_vm_region *c;
1da177e4
LT
403 unsigned long flags, addr;
404 pte_t *ptep;
37134cd5
KH
405 int idx;
406 u32 off;
1da177e4 407
5edf71ae
RK
408 WARN_ON(irqs_disabled());
409
1fe53268
DB
410 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
411 return;
412
23759dc6
LB
413 if (arch_is_coherent()) {
414 kfree(cpu_addr);
415 return;
416 }
417
1da177e4
LT
418 size = PAGE_ALIGN(size);
419
420 spin_lock_irqsave(&consistent_lock, flags);
9c93af1e 421 c = arm_vm_region_find(&consistent_head, (unsigned long)cpu_addr);
1da177e4
LT
422 if (!c)
423 goto no_area;
424
5edf71ae
RK
425 c->vm_active = 0;
426 spin_unlock_irqrestore(&consistent_lock, flags);
427
1da177e4
LT
428 if ((c->vm_end - c->vm_start) != size) {
429 printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
430 __func__, c->vm_end - c->vm_start, size);
431 dump_stack();
432 size = c->vm_end - c->vm_start;
433 }
434
37134cd5
KH
435 idx = CONSISTENT_PTE_INDEX(c->vm_start);
436 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
437 ptep = consistent_pte[idx] + off;
1da177e4
LT
438 addr = c->vm_start;
439 do {
440 pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
441 unsigned long pfn;
442
443 ptep++;
444 addr += PAGE_SIZE;
37134cd5
KH
445 off++;
446 if (off >= PTRS_PER_PTE) {
447 off = 0;
448 ptep = consistent_pte[++idx];
449 }
1da177e4
LT
450
451 if (!pte_none(pte) && pte_present(pte)) {
452 pfn = pte_pfn(pte);
453
454 if (pfn_valid(pfn)) {
455 struct page *page = pfn_to_page(pfn);
456
457 /*
458 * x86 does not mark the pages reserved...
459 */
460 ClearPageReserved(page);
461
462 __free_page(page);
463 continue;
464 }
465 }
466
467 printk(KERN_CRIT "%s: bad page in kernel page table\n",
468 __func__);
469 } while (size -= PAGE_SIZE);
470
471 flush_tlb_kernel_range(c->vm_start, c->vm_end);
472
5edf71ae 473 spin_lock_irqsave(&consistent_lock, flags);
1da177e4 474 list_del(&c->vm_list);
1da177e4
LT
475 spin_unlock_irqrestore(&consistent_lock, flags);
476
477 kfree(c);
478 return;
479
480 no_area:
481 spin_unlock_irqrestore(&consistent_lock, flags);
482 printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
483 __func__, cpu_addr);
484 dump_stack();
485}
ab6494f0
CM
486#else /* !CONFIG_MMU */
487void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
488{
489 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
490 return;
491 kfree(cpu_addr);
492}
493#endif /* CONFIG_MMU */
1da177e4
LT
494EXPORT_SYMBOL(dma_free_coherent);
495
496/*
497 * Initialise the consistent memory allocation.
498 */
499static int __init consistent_init(void)
500{
ab6494f0
CM
501 int ret = 0;
502#ifdef CONFIG_MMU
1da177e4
LT
503 pgd_t *pgd;
504 pmd_t *pmd;
505 pte_t *pte;
ab6494f0 506 int i = 0;
37134cd5 507 u32 base = CONSISTENT_BASE;
1da177e4 508
1da177e4 509 do {
37134cd5
KH
510 pgd = pgd_offset(&init_mm, base);
511 pmd = pmd_alloc(&init_mm, pgd, base);
1da177e4
LT
512 if (!pmd) {
513 printk(KERN_ERR "%s: no pmd tables\n", __func__);
514 ret = -ENOMEM;
515 break;
516 }
517 WARN_ON(!pmd_none(*pmd));
518
37134cd5 519 pte = pte_alloc_kernel(pmd, base);
1da177e4
LT
520 if (!pte) {
521 printk(KERN_ERR "%s: no pte tables\n", __func__);
522 ret = -ENOMEM;
523 break;
524 }
525
37134cd5
KH
526 consistent_pte[i++] = pte;
527 base += (1 << PGDIR_SHIFT);
528 } while (base < CONSISTENT_END);
ab6494f0 529#endif /* !CONFIG_MMU */
1da177e4 530
1da177e4
LT
531 return ret;
532}
533
534core_initcall(consistent_init);
535
536/*
537 * Make an area consistent for devices.
105ef9a0
DW
538 * Note: Drivers should NOT use this function directly, as it will break
539 * platforms with CONFIG_DMABOUNCE.
540 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
1da177e4 541 */
84aa462e 542void dma_cache_maint(const void *start, size_t size, int direction)
1da177e4 543{
1522ac3e
RK
544 void (*inner_op)(const void *, const void *);
545 void (*outer_op)(unsigned long, unsigned long);
1da177e4 546
1522ac3e 547 BUG_ON(!virt_addr_valid(start) || !virt_addr_valid(start + size - 1));
953233dc 548
1da177e4
LT
549 switch (direction) {
550 case DMA_FROM_DEVICE: /* invalidate only */
1522ac3e
RK
551 inner_op = dmac_inv_range;
552 outer_op = outer_inv_range;
1da177e4
LT
553 break;
554 case DMA_TO_DEVICE: /* writeback only */
1522ac3e
RK
555 inner_op = dmac_clean_range;
556 outer_op = outer_clean_range;
1da177e4
LT
557 break;
558 case DMA_BIDIRECTIONAL: /* writeback and invalidate */
1522ac3e
RK
559 inner_op = dmac_flush_range;
560 outer_op = outer_flush_range;
1da177e4
LT
561 break;
562 default:
563 BUG();
564 }
1522ac3e
RK
565
566 inner_op(start, start + size);
567 outer_op(__pa(start), __pa(start) + size);
1da177e4 568}
84aa462e 569EXPORT_SYMBOL(dma_cache_maint);
afd1a321 570
43377453
NP
571static void dma_cache_maint_contiguous(struct page *page, unsigned long offset,
572 size_t size, int direction)
573{
574 void *vaddr;
575 unsigned long paddr;
576 void (*inner_op)(const void *, const void *);
577 void (*outer_op)(unsigned long, unsigned long);
578
579 switch (direction) {
580 case DMA_FROM_DEVICE: /* invalidate only */
581 inner_op = dmac_inv_range;
582 outer_op = outer_inv_range;
583 break;
584 case DMA_TO_DEVICE: /* writeback only */
585 inner_op = dmac_clean_range;
586 outer_op = outer_clean_range;
587 break;
588 case DMA_BIDIRECTIONAL: /* writeback and invalidate */
589 inner_op = dmac_flush_range;
590 outer_op = outer_flush_range;
591 break;
592 default:
593 BUG();
594 }
595
596 if (!PageHighMem(page)) {
597 vaddr = page_address(page) + offset;
598 inner_op(vaddr, vaddr + size);
599 } else {
600 vaddr = kmap_high_get(page);
601 if (vaddr) {
602 vaddr += offset;
603 inner_op(vaddr, vaddr + size);
604 kunmap_high(page);
605 }
606 }
607
608 paddr = page_to_phys(page) + offset;
609 outer_op(paddr, paddr + size);
610}
611
612void dma_cache_maint_page(struct page *page, unsigned long offset,
613 size_t size, int dir)
614{
615 /*
616 * A single sg entry may refer to multiple physically contiguous
617 * pages. But we still need to process highmem pages individually.
618 * If highmem is not configured then the bulk of this loop gets
619 * optimized out.
620 */
621 size_t left = size;
622 do {
623 size_t len = left;
624 if (PageHighMem(page) && len + offset > PAGE_SIZE) {
625 if (offset >= PAGE_SIZE) {
626 page += offset / PAGE_SIZE;
627 offset %= PAGE_SIZE;
628 }
629 len = PAGE_SIZE - offset;
630 }
631 dma_cache_maint_contiguous(page, offset, len, dir);
632 offset = 0;
633 page++;
634 left -= len;
635 } while (left);
636}
637EXPORT_SYMBOL(dma_cache_maint_page);
638
afd1a321
RK
639/**
640 * dma_map_sg - map a set of SG buffers for streaming mode DMA
641 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
642 * @sg: list of buffers
643 * @nents: number of buffers to map
644 * @dir: DMA transfer direction
645 *
646 * Map a set of buffers described by scatterlist in streaming mode for DMA.
647 * This is the scatter-gather version of the dma_map_single interface.
648 * Here the scatter gather list elements are each tagged with the
649 * appropriate dma address and length. They are obtained via
650 * sg_dma_{address,length}.
651 *
652 * Device ownership issues as mentioned for dma_map_single are the same
653 * here.
654 */
655int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
656 enum dma_data_direction dir)
657{
658 struct scatterlist *s;
01135d92 659 int i, j;
afd1a321
RK
660
661 for_each_sg(sg, s, nents, i) {
01135d92
RK
662 s->dma_address = dma_map_page(dev, sg_page(s), s->offset,
663 s->length, dir);
664 if (dma_mapping_error(dev, s->dma_address))
665 goto bad_mapping;
afd1a321 666 }
afd1a321 667 return nents;
01135d92
RK
668
669 bad_mapping:
670 for_each_sg(sg, s, i, j)
671 dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
672 return 0;
afd1a321
RK
673}
674EXPORT_SYMBOL(dma_map_sg);
675
676/**
677 * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
678 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
679 * @sg: list of buffers
680 * @nents: number of buffers to unmap (returned from dma_map_sg)
681 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
682 *
683 * Unmap a set of streaming mode DMA translations. Again, CPU access
684 * rules concerning calls here are the same as for dma_unmap_single().
685 */
686void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
687 enum dma_data_direction dir)
688{
01135d92
RK
689 struct scatterlist *s;
690 int i;
691
692 for_each_sg(sg, s, nents, i)
693 dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
afd1a321
RK
694}
695EXPORT_SYMBOL(dma_unmap_sg);
696
697/**
698 * dma_sync_sg_for_cpu
699 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
700 * @sg: list of buffers
701 * @nents: number of buffers to map (returned from dma_map_sg)
702 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
703 */
704void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
705 int nents, enum dma_data_direction dir)
706{
707 struct scatterlist *s;
708 int i;
709
710 for_each_sg(sg, s, nents, i) {
309dbbab
RK
711 dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0,
712 sg_dma_len(s), dir);
afd1a321
RK
713 }
714}
715EXPORT_SYMBOL(dma_sync_sg_for_cpu);
716
717/**
718 * dma_sync_sg_for_device
719 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
720 * @sg: list of buffers
721 * @nents: number of buffers to map (returned from dma_map_sg)
722 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
723 */
724void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
725 int nents, enum dma_data_direction dir)
726{
727 struct scatterlist *s;
728 int i;
729
730 for_each_sg(sg, s, nents, i) {
2638b4db
RK
731 if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0,
732 sg_dma_len(s), dir))
733 continue;
734
afd1a321 735 if (!arch_is_coherent())
43377453
NP
736 dma_cache_maint_page(sg_page(s), s->offset,
737 s->length, dir);
afd1a321
RK
738 }
739}
740EXPORT_SYMBOL(dma_sync_sg_for_device);
This page took 0.424392 seconds and 5 git commands to generate.