[ARM] Separate page table manipulation code from bootmem initialisation
[deliverable/linux.git] / arch / arm / mm / init.c
CommitLineData
1da177e4
LT
1/*
2 * linux/arch/arm/mm/init.c
3 *
90072059 4 * Copyright (C) 1995-2005 Russell King
1da177e4
LT
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
1da177e4
LT
10#include <linux/kernel.h>
11#include <linux/errno.h>
12#include <linux/ptrace.h>
13#include <linux/swap.h>
14#include <linux/init.h>
15#include <linux/bootmem.h>
16#include <linux/mman.h>
17#include <linux/nodemask.h>
18#include <linux/initrd.h>
19
20#include <asm/mach-types.h>
1da177e4 21#include <asm/setup.h>
74d02fb9 22#include <asm/sizes.h>
1da177e4
LT
23#include <asm/tlb.h>
24
25#include <asm/mach/arch.h>
26#include <asm/mach/map.h>
27
1b2e2b73
RK
28#include "mm.h"
29
1da177e4
LT
30DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
31
32extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
33extern void _stext, _text, _etext, __data_start, _end, __init_begin, __init_end;
34extern unsigned long phys_initrd_start;
35extern unsigned long phys_initrd_size;
36
37/*
38 * The sole use of this is to pass memory configuration
39 * data from paging_init to mem_init.
40 */
41static struct meminfo meminfo __initdata = { 0, };
42
43/*
44 * empty_zero_page is a special page that is used for
45 * zero-initialized data and COW.
46 */
47struct page *empty_zero_page;
48
1b2e2b73
RK
49/*
50 * The pmd table for the upper-most set of pages.
51 */
52pmd_t *top_pmd;
53
1da177e4
LT
54void show_mem(void)
55{
56 int free = 0, total = 0, reserved = 0;
57 int shared = 0, cached = 0, slab = 0, node;
58
59 printk("Mem-info:\n");
60 show_free_areas();
61 printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
62
63 for_each_online_node(node) {
64 struct page *page, *end;
65
66 page = NODE_MEM_MAP(node);
67 end = page + NODE_DATA(node)->node_spanned_pages;
68
69 do {
70 total++;
71 if (PageReserved(page))
72 reserved++;
73 else if (PageSwapCache(page))
74 cached++;
75 else if (PageSlab(page))
76 slab++;
77 else if (!page_count(page))
78 free++;
79 else
80 shared += page_count(page) - 1;
81 page++;
82 } while (page < end);
83 }
84
85 printk("%d pages of RAM\n", total);
86 printk("%d free pages\n", free);
87 printk("%d reserved pages\n", reserved);
88 printk("%d slab pages\n", slab);
89 printk("%d pages shared\n", shared);
90 printk("%d pages swap cached\n", cached);
91}
92
90072059
RK
93#define for_each_nodebank(iter,mi,no) \
94 for (iter = 0; iter < mi->nr_banks; iter++) \
95 if (mi->bank[iter].node == no)
1da177e4
LT
96
97/*
98 * FIXME: We really want to avoid allocating the bootmap bitmap
99 * over the top of the initrd. Hopefully, this is located towards
100 * the start of a bank, so if we allocate the bootmap bitmap at
101 * the end, we won't clash.
102 */
103static unsigned int __init
104find_bootmap_pfn(int node, struct meminfo *mi, unsigned int bootmap_pages)
105{
106 unsigned int start_pfn, bank, bootmap_pfn;
107
90072059 108 start_pfn = PAGE_ALIGN(__pa(&_end)) >> PAGE_SHIFT;
1da177e4
LT
109 bootmap_pfn = 0;
110
90072059 111 for_each_nodebank(bank, mi, node) {
1da177e4
LT
112 unsigned int start, end;
113
92a8cbed
RK
114 start = mi->bank[bank].start >> PAGE_SHIFT;
115 end = (mi->bank[bank].size +
116 mi->bank[bank].start) >> PAGE_SHIFT;
1da177e4
LT
117
118 if (end < start_pfn)
119 continue;
120
121 if (start < start_pfn)
122 start = start_pfn;
123
124 if (end <= start)
125 continue;
126
127 if (end - start >= bootmap_pages) {
128 bootmap_pfn = start;
129 break;
130 }
131 }
132
133 if (bootmap_pfn == 0)
134 BUG();
135
136 return bootmap_pfn;
137}
138
1da177e4
LT
139static int __init check_initrd(struct meminfo *mi)
140{
141 int initrd_node = -2;
142#ifdef CONFIG_BLK_DEV_INITRD
143 unsigned long end = phys_initrd_start + phys_initrd_size;
144
145 /*
146 * Make sure that the initrd is within a valid area of
147 * memory.
148 */
149 if (phys_initrd_size) {
150 unsigned int i;
151
152 initrd_node = -1;
153
154 for (i = 0; i < mi->nr_banks; i++) {
155 unsigned long bank_end;
156
157 bank_end = mi->bank[i].start + mi->bank[i].size;
158
159 if (mi->bank[i].start <= phys_initrd_start &&
160 end <= bank_end)
161 initrd_node = mi->bank[i].node;
162 }
163 }
164
165 if (initrd_node == -1) {
166 printk(KERN_ERR "initrd (0x%08lx - 0x%08lx) extends beyond "
167 "physical memory - disabling initrd\n",
168 phys_initrd_start, end);
169 phys_initrd_start = phys_initrd_size = 0;
170 }
171#endif
172
173 return initrd_node;
174}
175
176/*
177 * Reserve the various regions of node 0
178 */
90072059 179static __init void reserve_node_zero(pg_data_t *pgdat)
1da177e4 180{
1da177e4
LT
181 unsigned long res_size = 0;
182
183 /*
184 * Register the kernel text and data with bootmem.
185 * Note that this can only be in node 0.
186 */
187#ifdef CONFIG_XIP_KERNEL
188 reserve_bootmem_node(pgdat, __pa(&__data_start), &_end - &__data_start);
189#else
190 reserve_bootmem_node(pgdat, __pa(&_stext), &_end - &_stext);
191#endif
192
193 /*
194 * Reserve the page tables. These are already in use,
195 * and can only be in node 0.
196 */
197 reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
198 PTRS_PER_PGD * sizeof(pgd_t));
199
1da177e4
LT
200 /*
201 * Hmm... This should go elsewhere, but we really really need to
202 * stop things allocating the low memory; ideally we need a better
203 * implementation of GFP_DMA which does not assume that DMA-able
204 * memory starts at zero.
205 */
206 if (machine_is_integrator() || machine_is_cintegrator())
207 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
208
209 /*
210 * These should likewise go elsewhere. They pre-reserve the
211 * screen memory region at the start of main system memory.
212 */
213 if (machine_is_edb7211())
214 res_size = 0x00020000;
215 if (machine_is_p720t())
216 res_size = 0x00014000;
217
218#ifdef CONFIG_SA1111
219 /*
220 * Because of the SA1111 DMA bug, we want to preserve our
221 * precious DMA-able memory...
222 */
223 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
224#endif
225 if (res_size)
226 reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size);
227}
228
456335e2
RK
229static inline void prepare_page_table(struct meminfo *mi)
230{
231 unsigned long addr;
232
233 /*
234 * Clear out all the mappings below the kernel image.
235 */
236 for (addr = 0; addr < MODULE_START; addr += PGDIR_SIZE)
237 pmd_clear(pmd_off_k(addr));
238
239#ifdef CONFIG_XIP_KERNEL
240 /* The XIP kernel is mapped in the module area -- skip over it */
241 addr = ((unsigned long)&_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
242#endif
243 for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
244 pmd_clear(pmd_off_k(addr));
245
246 /*
247 * Clear out all the kernel space mappings, except for the first
248 * memory bank, up to the end of the vmalloc region.
249 */
250 for (addr = __phys_to_virt(mi->bank[0].start + mi->bank[0].size);
251 addr < VMALLOC_END; addr += PGDIR_SIZE)
252 pmd_clear(pmd_off_k(addr));
253}
254
255static inline void map_memory_bank(struct membank *bank)
256{
257 struct map_desc map;
258
259 map.pfn = __phys_to_pfn(bank->start);
260 map.virtual = __phys_to_virt(bank->start);
261 map.length = bank->size;
262 map.type = MT_MEMORY;
263
264 create_mapping(&map);
265}
266
90072059
RK
267static unsigned long __init
268bootmem_init_node(int node, int initrd_node, struct meminfo *mi)
1da177e4 269{
90072059
RK
270 unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
271 unsigned long start_pfn, end_pfn, boot_pfn;
272 unsigned int boot_pages;
273 pg_data_t *pgdat;
274 int i;
1da177e4 275
90072059
RK
276 start_pfn = -1UL;
277 end_pfn = 0;
1da177e4 278
90072059
RK
279 /*
280 * Calculate the pfn range, and map the memory banks for this node.
281 */
282 for_each_nodebank(i, mi, node) {
456335e2 283 struct membank *bank = &mi->bank[i];
90072059 284 unsigned long start, end;
1da177e4 285
456335e2
RK
286 start = bank->start >> PAGE_SHIFT;
287 end = (bank->start + bank->size) >> PAGE_SHIFT;
1da177e4 288
90072059
RK
289 if (start_pfn > start)
290 start_pfn = start;
291 if (end_pfn < end)
292 end_pfn = end;
293
456335e2 294 map_memory_bank(bank);
90072059 295 }
1da177e4
LT
296
297 /*
90072059 298 * If there is no memory in this node, ignore it.
1da177e4 299 */
90072059
RK
300 if (end_pfn == 0)
301 return end_pfn;
1da177e4 302
90072059
RK
303 /*
304 * Allocate the bootmem bitmap page.
305 */
306 boot_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
307 boot_pfn = find_bootmap_pfn(node, mi, boot_pages);
1da177e4 308
90072059
RK
309 /*
310 * Initialise the bootmem allocator for this node, handing the
311 * memory banks over to bootmem.
312 */
313 node_set_online(node);
314 pgdat = NODE_DATA(node);
315 init_bootmem_node(pgdat, boot_pfn, start_pfn, end_pfn);
1da177e4 316
90072059
RK
317 for_each_nodebank(i, mi, node)
318 free_bootmem_node(pgdat, mi->bank[i].start, mi->bank[i].size);
319
320 /*
321 * Reserve the bootmem bitmap for this node.
322 */
323 reserve_bootmem_node(pgdat, boot_pfn << PAGE_SHIFT,
324 boot_pages << PAGE_SHIFT);
1da177e4
LT
325
326#ifdef CONFIG_BLK_DEV_INITRD
90072059
RK
327 /*
328 * If the initrd is in this node, reserve its memory.
329 */
330 if (node == initrd_node) {
331 reserve_bootmem_node(pgdat, phys_initrd_start,
1da177e4
LT
332 phys_initrd_size);
333 initrd_start = __phys_to_virt(phys_initrd_start);
334 initrd_end = initrd_start + phys_initrd_size;
335 }
336#endif
337
90072059
RK
338 /*
339 * Finally, reserve any node zero regions.
340 */
341 if (node == 0)
342 reserve_node_zero(pgdat);
343
344 /*
345 * initialise the zones within this node.
346 */
347 memset(zone_size, 0, sizeof(zone_size));
348 memset(zhole_size, 0, sizeof(zhole_size));
349
350 /*
351 * The size of this node has already been determined. If we need
352 * to do anything fancy with the allocation of this memory to the
353 * zones, now is the time to do it.
354 */
355 zone_size[0] = end_pfn - start_pfn;
356
357 /*
358 * For each bank in this node, calculate the size of the holes.
359 * holes = node_size - sum(bank_sizes_in_node)
360 */
361 zhole_size[0] = zone_size[0];
362 for_each_nodebank(i, mi, node)
363 zhole_size[0] -= mi->bank[i].size >> PAGE_SHIFT;
364
365 /*
366 * Adjust the sizes according to any special requirements for
367 * this machine type.
368 */
369 arch_adjust_zones(node, zone_size, zhole_size);
370
371 free_area_init_node(node, pgdat, zone_size, start_pfn, zhole_size);
372
373 return end_pfn;
1da177e4
LT
374}
375
90072059 376static void __init bootmem_init(struct meminfo *mi)
1da177e4 377{
456335e2 378 unsigned long memend_pfn = 0;
90072059 379 int node, initrd_node, i;
1da177e4 380
90072059
RK
381 /*
382 * Invalidate the node number for empty or invalid memory banks
383 */
384 for (i = 0; i < mi->nr_banks; i++)
385 if (mi->bank[i].size == 0 || mi->bank[i].node >= MAX_NUMNODES)
386 mi->bank[i].node = -1;
1da177e4
LT
387
388 memcpy(&meminfo, mi, sizeof(meminfo));
389
456335e2 390 prepare_page_table(mi);
1da177e4
LT
391
392 /*
90072059 393 * Locate which node contains the ramdisk image, if any.
1da177e4 394 */
90072059 395 initrd_node = check_initrd(mi);
1da177e4 396
90072059
RK
397 /*
398 * Run through each node initialising the bootmem allocator.
399 */
400 for_each_node(node) {
401 unsigned long end_pfn;
1da177e4 402
90072059 403 end_pfn = bootmem_init_node(node, initrd_node, mi);
1da177e4
LT
404
405 /*
90072059 406 * Remember the highest memory PFN.
1da177e4 407 */
90072059
RK
408 if (end_pfn > memend_pfn)
409 memend_pfn = end_pfn;
410 }
1da177e4 411
90072059 412 high_memory = __va(memend_pfn << PAGE_SHIFT);
1da177e4 413
90072059
RK
414 /*
415 * This doesn't seem to be used by the Linux memory manager any
416 * more, but is used by ll_rw_block. If we can get rid of it, we
417 * also get rid of some of the stuff above as well.
418 *
419 * Note: max_low_pfn and max_pfn reflect the number of _pages_ in
420 * the system, not the maximum PFN.
421 */
422 max_pfn = max_low_pfn = memend_pfn - PHYS_PFN_OFFSET;
423}
1da177e4 424
90072059
RK
425/*
426 * Set up device the mappings. Since we clear out the page tables for all
427 * mappings above VMALLOC_END, we will remove any debug device mappings.
428 * This means you have to be careful how you debug this function, or any
02b30839
RK
429 * called function. This means you can't use any function or debugging
430 * method which may touch any device, otherwise the kernel _will_ crash.
90072059
RK
431 */
432static void __init devicemaps_init(struct machine_desc *mdesc)
433{
434 struct map_desc map;
435 unsigned long addr;
436 void *vectors;
1da177e4 437
02b30839
RK
438 /*
439 * Allocate the vector page early.
440 */
441 vectors = alloc_bootmem_low_pages(PAGE_SIZE);
442 BUG_ON(!vectors);
443
90072059
RK
444 for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
445 pmd_clear(pmd_off_k(addr));
1da177e4 446
1a47ebc0
NP
447 /*
448 * Map the kernel if it is XIP.
449 * It is always first in the modulearea.
450 */
451#ifdef CONFIG_XIP_KERNEL
4052ebb7 452 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1a47ebc0 453 map.virtual = MODULE_START;
4052ebb7 454 map.length = ((unsigned long)&_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1a47ebc0
NP
455 map.type = MT_ROM;
456 create_mapping(&map);
457#endif
458
90072059
RK
459 /*
460 * Map the cache flushing regions.
461 */
462#ifdef FLUSH_BASE
9769c246 463 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
90072059 464 map.virtual = FLUSH_BASE;
74d02fb9 465 map.length = SZ_1M;
90072059
RK
466 map.type = MT_CACHECLEAN;
467 create_mapping(&map);
468#endif
469#ifdef FLUSH_BASE_MINICACHE
74d02fb9 470 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
90072059 471 map.virtual = FLUSH_BASE_MINICACHE;
74d02fb9 472 map.length = SZ_1M;
90072059
RK
473 map.type = MT_MINICLEAN;
474 create_mapping(&map);
475#endif
476
90072059
RK
477 /*
478 * Create a mapping for the machine vectors at the high-vectors
479 * location (0xffff0000). If we aren't using high-vectors, also
480 * create a mapping at the low-vectors virtual address.
481 */
9769c246 482 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
90072059
RK
483 map.virtual = 0xffff0000;
484 map.length = PAGE_SIZE;
485 map.type = MT_HIGH_VECTORS;
486 create_mapping(&map);
487
488 if (!vectors_high()) {
489 map.virtual = 0;
490 map.type = MT_LOW_VECTORS;
491 create_mapping(&map);
1da177e4
LT
492 }
493
494 /*
90072059 495 * Ask the machine support to map in the statically mapped devices.
90072059
RK
496 */
497 if (mdesc->map_io)
498 mdesc->map_io();
6bf7bd69
RK
499
500 /*
02b30839
RK
501 * Finally flush the caches and tlb to ensure that we're in a
502 * consistent state wrt the writebuffer. This also ensures that
503 * any write-allocated cache lines in the vector page are written
504 * back. After this point, we can start to touch devices again.
6bf7bd69
RK
505 */
506 local_flush_tlb_all();
02b30839 507 flush_cache_all();
90072059
RK
508}
509
510/*
511 * paging_init() sets up the page tables, initialises the zone memory
512 * maps, and sets up the zero page, bad page and bad page tables.
513 */
514void __init paging_init(struct meminfo *mi, struct machine_desc *mdesc)
515{
516 void *zero_page;
517
518 build_mem_type_table();
519 bootmem_init(mi);
520 devicemaps_init(mdesc);
521
522 top_pmd = pmd_off_k(0xffff0000);
523
524 /*
525 * allocate the zero page. Note that we count on this going ok.
1da177e4 526 */
90072059 527 zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
1da177e4
LT
528 memzero(zero_page, PAGE_SIZE);
529 empty_zero_page = virt_to_page(zero_page);
530 flush_dcache_page(empty_zero_page);
531}
532
533static inline void free_area(unsigned long addr, unsigned long end, char *s)
534{
535 unsigned int size = (end - addr) >> 10;
536
537 for (; addr < end; addr += PAGE_SIZE) {
538 struct page *page = virt_to_page(addr);
539 ClearPageReserved(page);
7835e98b 540 init_page_count(page);
1da177e4
LT
541 free_page(addr);
542 totalram_pages++;
543 }
544
545 if (size && s)
546 printk(KERN_INFO "Freeing %s memory: %dK\n", s, size);
547}
548
a013053d
RK
549static inline void
550free_memmap(int node, unsigned long start_pfn, unsigned long end_pfn)
551{
552 struct page *start_pg, *end_pg;
553 unsigned long pg, pgend;
554
555 /*
556 * Convert start_pfn/end_pfn to a struct page pointer.
557 */
558 start_pg = pfn_to_page(start_pfn);
559 end_pg = pfn_to_page(end_pfn);
560
561 /*
562 * Convert to physical addresses, and
563 * round start upwards and end downwards.
564 */
565 pg = PAGE_ALIGN(__pa(start_pg));
566 pgend = __pa(end_pg) & PAGE_MASK;
567
568 /*
569 * If there are free pages between these,
570 * free the section of the memmap array.
571 */
572 if (pg < pgend)
573 free_bootmem_node(NODE_DATA(node), pg, pgend - pg);
574}
575
576/*
577 * The mem_map array can get very big. Free the unused area of the memory map.
578 */
579static void __init free_unused_memmap_node(int node, struct meminfo *mi)
580{
581 unsigned long bank_start, prev_bank_end = 0;
582 unsigned int i;
583
584 /*
585 * [FIXME] This relies on each bank being in address order. This
586 * may not be the case, especially if the user has provided the
587 * information on the command line.
588 */
90072059 589 for_each_nodebank(i, mi, node) {
a013053d
RK
590 bank_start = mi->bank[i].start >> PAGE_SHIFT;
591 if (bank_start < prev_bank_end) {
592 printk(KERN_ERR "MEM: unordered memory banks. "
593 "Not freeing memmap.\n");
594 break;
595 }
596
597 /*
598 * If we had a previous bank, and there is a space
599 * between the current bank and the previous, free it.
600 */
601 if (prev_bank_end && prev_bank_end != bank_start)
602 free_memmap(node, prev_bank_end, bank_start);
603
604 prev_bank_end = (mi->bank[i].start +
605 mi->bank[i].size) >> PAGE_SHIFT;
606 }
607}
608
1da177e4
LT
609/*
610 * mem_init() marks the free areas in the mem_map and tells us how much
611 * memory is free. This is done after various parts of the system have
612 * claimed their memory after the kernel image.
613 */
614void __init mem_init(void)
615{
616 unsigned int codepages, datapages, initpages;
617 int i, node;
618
619 codepages = &_etext - &_text;
620 datapages = &_end - &__data_start;
621 initpages = &__init_end - &__init_begin;
622
623#ifndef CONFIG_DISCONTIGMEM
624 max_mapnr = virt_to_page(high_memory) - mem_map;
625#endif
626
1da177e4
LT
627 /* this will put all unused low memory onto the freelists */
628 for_each_online_node(node) {
629 pg_data_t *pgdat = NODE_DATA(node);
630
a013053d
RK
631 free_unused_memmap_node(node, &meminfo);
632
1da177e4
LT
633 if (pgdat->node_spanned_pages != 0)
634 totalram_pages += free_all_bootmem_node(pgdat);
635 }
636
637#ifdef CONFIG_SA1111
638 /* now that our DMA memory is actually so designated, we can free it */
639 free_area(PAGE_OFFSET, (unsigned long)swapper_pg_dir, NULL);
640#endif
641
642 /*
643 * Since our memory may not be contiguous, calculate the
644 * real number of pages we have in this system
645 */
646 printk(KERN_INFO "Memory:");
647
648 num_physpages = 0;
649 for (i = 0; i < meminfo.nr_banks; i++) {
650 num_physpages += meminfo.bank[i].size >> PAGE_SHIFT;
651 printk(" %ldMB", meminfo.bank[i].size >> 20);
652 }
653
654 printk(" = %luMB total\n", num_physpages >> (20 - PAGE_SHIFT));
655 printk(KERN_NOTICE "Memory: %luKB available (%dK code, "
656 "%dK data, %dK init)\n",
657 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
658 codepages >> 10, datapages >> 10, initpages >> 10);
659
660 if (PAGE_SIZE >= 16384 && num_physpages <= 128) {
661 extern int sysctl_overcommit_memory;
662 /*
663 * On a machine this small we won't get
664 * anywhere without overcommit, so turn
665 * it on by default.
666 */
667 sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
668 }
669}
670
671void free_initmem(void)
672{
673 if (!machine_is_integrator() && !machine_is_cintegrator()) {
674 free_area((unsigned long)(&__init_begin),
675 (unsigned long)(&__init_end),
676 "init");
677 }
678}
679
680#ifdef CONFIG_BLK_DEV_INITRD
681
682static int keep_initrd;
683
684void free_initrd_mem(unsigned long start, unsigned long end)
685{
686 if (!keep_initrd)
687 free_area(start, end, "initrd");
688}
689
690static int __init keepinitrd_setup(char *__unused)
691{
692 keep_initrd = 1;
693 return 1;
694}
695
696__setup("keepinitrd", keepinitrd_setup);
697#endif
This page took 0.196232 seconds and 5 git commands to generate.