ARM: LPAE: Introduce the 3-level page table format definitions
[deliverable/linux.git] / arch / arm / mm / ioremap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/arch/arm/mm/ioremap.c
3 *
4 * Re-map IO memory to kernel address space so that we can access it.
5 *
6 * (C) Copyright 1995 1996 Linus Torvalds
7 *
8 * Hacked for ARM by Phil Blundell <philb@gnu.org>
9 * Hacked to allow all architectures to build, and various cleanups
10 * by Russell King
11 *
12 * This allows a driver to remap an arbitrary region of bus memory into
13 * virtual space. One should *only* use readl, writel, memcpy_toio and
14 * so on with such remapped areas.
15 *
16 * Because the ARM only has a 32-bit address space we can't address the
17 * whole of the (physical) PCI space at once. PCI huge-mode addressing
18 * allows us to circumvent this restriction by splitting PCI space into
19 * two 2GB chunks and mapping only one at a time into processor memory.
20 * We use MMU protection domains to trap any attempt to access the bank
21 * that is not currently mapped. (This isn't fully implemented yet.)
22 */
23#include <linux/module.h>
24#include <linux/errno.h>
25#include <linux/mm.h>
26#include <linux/vmalloc.h>
fced80c7 27#include <linux/io.h>
1da177e4 28
0ba8b9b2 29#include <asm/cputype.h>
1da177e4 30#include <asm/cacheflush.h>
ff0daca5
RK
31#include <asm/mmu_context.h>
32#include <asm/pgalloc.h>
1da177e4 33#include <asm/tlbflush.h>
ff0daca5
RK
34#include <asm/sizes.h>
35
b29e9f5e
RK
36#include <asm/mach/map.h>
37#include "mm.h"
38
ff0daca5 39/*
a069c896
LB
40 * Used by ioremap() and iounmap() code to mark (super)section-mapped
41 * I/O regions in vm_struct->flags field.
ff0daca5
RK
42 */
43#define VM_ARM_SECTION_MAPPING 0x80000000
1da177e4 44
69d3a84a
HD
45int ioremap_page(unsigned long virt, unsigned long phys,
46 const struct mem_type *mtype)
47{
d7461963
RK
48 return ioremap_page_range(virt, virt + PAGE_SIZE, phys,
49 __pgprot(mtype->prot_pte));
69d3a84a
HD
50}
51EXPORT_SYMBOL(ioremap_page);
ff0daca5
RK
52
53void __check_kvm_seq(struct mm_struct *mm)
54{
55 unsigned int seq;
56
57 do {
58 seq = init_mm.context.kvm_seq;
59 memcpy(pgd_offset(mm, VMALLOC_START),
60 pgd_offset_k(VMALLOC_START),
61 sizeof(pgd_t) * (pgd_index(VMALLOC_END) -
62 pgd_index(VMALLOC_START)));
63 mm->context.kvm_seq = seq;
64 } while (seq != init_mm.context.kvm_seq);
65}
66
67#ifndef CONFIG_SMP
68/*
69 * Section support is unsafe on SMP - If you iounmap and ioremap a region,
70 * the other CPUs will not see this change until their next context switch.
71 * Meanwhile, (eg) if an interrupt comes in on one of those other CPUs
72 * which requires the new ioremap'd region to be referenced, the CPU will
73 * reference the _old_ region.
74 *
31aa8fd6
RK
75 * Note that get_vm_area_caller() allocates a guard 4K page, so we need to
76 * mask the size back to 1MB aligned or we will overflow in the loop below.
ff0daca5
RK
77 */
78static void unmap_area_sections(unsigned long virt, unsigned long size)
79{
24f11ec0 80 unsigned long addr = virt, end = virt + (size & ~(SZ_1M - 1));
ff0daca5 81 pgd_t *pgd;
03a6b827
CM
82 pud_t *pud;
83 pmd_t *pmdp;
ff0daca5
RK
84
85 flush_cache_vunmap(addr, end);
86 pgd = pgd_offset_k(addr);
03a6b827
CM
87 pud = pud_offset(pgd, addr);
88 pmdp = pmd_offset(pud, addr);
ff0daca5 89 do {
03a6b827 90 pmd_t pmd = *pmdp;
ff0daca5 91
ff0daca5
RK
92 if (!pmd_none(pmd)) {
93 /*
94 * Clear the PMD from the page table, and
95 * increment the kvm sequence so others
96 * notice this change.
97 *
98 * Note: this is still racy on SMP machines.
99 */
100 pmd_clear(pmdp);
101 init_mm.context.kvm_seq++;
102
103 /*
104 * Free the page table, if there was one.
105 */
106 if ((pmd_val(pmd) & PMD_TYPE_MASK) == PMD_TYPE_TABLE)
5e541973 107 pte_free_kernel(&init_mm, pmd_page_vaddr(pmd));
ff0daca5
RK
108 }
109
03a6b827
CM
110 addr += PMD_SIZE;
111 pmdp += 2;
ff0daca5
RK
112 } while (addr < end);
113
114 /*
115 * Ensure that the active_mm is up to date - we want to
116 * catch any use-after-iounmap cases.
117 */
118 if (current->active_mm->context.kvm_seq != init_mm.context.kvm_seq)
119 __check_kvm_seq(current->active_mm);
120
121 flush_tlb_kernel_range(virt, end);
122}
123
124static int
125remap_area_sections(unsigned long virt, unsigned long pfn,
b29e9f5e 126 size_t size, const struct mem_type *type)
ff0daca5 127{
b29e9f5e 128 unsigned long addr = virt, end = virt + size;
ff0daca5 129 pgd_t *pgd;
03a6b827
CM
130 pud_t *pud;
131 pmd_t *pmd;
ff0daca5
RK
132
133 /*
134 * Remove and free any PTE-based mapping, and
135 * sync the current kernel mapping.
136 */
137 unmap_area_sections(virt, size);
138
ff0daca5 139 pgd = pgd_offset_k(addr);
03a6b827
CM
140 pud = pud_offset(pgd, addr);
141 pmd = pmd_offset(pud, addr);
ff0daca5 142 do {
b29e9f5e 143 pmd[0] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
ff0daca5 144 pfn += SZ_1M >> PAGE_SHIFT;
b29e9f5e 145 pmd[1] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
ff0daca5
RK
146 pfn += SZ_1M >> PAGE_SHIFT;
147 flush_pmd_entry(pmd);
148
03a6b827
CM
149 addr += PMD_SIZE;
150 pmd += 2;
ff0daca5
RK
151 } while (addr < end);
152
153 return 0;
154}
a069c896
LB
155
156static int
157remap_area_supersections(unsigned long virt, unsigned long pfn,
b29e9f5e 158 size_t size, const struct mem_type *type)
a069c896 159{
b29e9f5e 160 unsigned long addr = virt, end = virt + size;
a069c896 161 pgd_t *pgd;
03a6b827
CM
162 pud_t *pud;
163 pmd_t *pmd;
a069c896
LB
164
165 /*
166 * Remove and free any PTE-based mapping, and
167 * sync the current kernel mapping.
168 */
169 unmap_area_sections(virt, size);
170
a069c896 171 pgd = pgd_offset_k(virt);
03a6b827
CM
172 pud = pud_offset(pgd, addr);
173 pmd = pmd_offset(pud, addr);
a069c896
LB
174 do {
175 unsigned long super_pmd_val, i;
176
b29e9f5e
RK
177 super_pmd_val = __pfn_to_phys(pfn) | type->prot_sect |
178 PMD_SECT_SUPER;
a069c896
LB
179 super_pmd_val |= ((pfn >> (32 - PAGE_SHIFT)) & 0xf) << 20;
180
181 for (i = 0; i < 8; i++) {
a069c896
LB
182 pmd[0] = __pmd(super_pmd_val);
183 pmd[1] = __pmd(super_pmd_val);
184 flush_pmd_entry(pmd);
185
03a6b827
CM
186 addr += PMD_SIZE;
187 pmd += 2;
a069c896
LB
188 }
189
190 pfn += SUPERSECTION_SIZE >> PAGE_SHIFT;
191 } while (addr < end);
192
193 return 0;
194}
ff0daca5
RK
195#endif
196
31aa8fd6
RK
197void __iomem * __arm_ioremap_pfn_caller(unsigned long pfn,
198 unsigned long offset, size_t size, unsigned int mtype, void *caller)
9d4ae727 199{
b29e9f5e 200 const struct mem_type *type;
ff0daca5 201 int err;
9d4ae727
DS
202 unsigned long addr;
203 struct vm_struct * area;
a069c896
LB
204
205 /*
206 * High mappings must be supersection aligned
207 */
208 if (pfn >= 0x100000 && (__pfn_to_phys(pfn) & ~SUPERSECTION_MASK))
209 return NULL;
9d4ae727 210
309caa9c
RK
211 /*
212 * Don't allow RAM to be mapped - this causes problems with ARMv6+
213 */
67cfa23a
RK
214 if (WARN_ON(pfn_valid(pfn)))
215 return NULL;
309caa9c 216
3603ab2b
RK
217 type = get_mem_type(mtype);
218 if (!type)
219 return NULL;
b29e9f5e 220
6d78b5f9
RK
221 /*
222 * Page align the mapping size, taking account of any offset.
223 */
224 size = PAGE_ALIGN(offset + size);
c924aff8 225
31aa8fd6 226 area = get_vm_area_caller(size, VM_IOREMAP, caller);
9d4ae727
DS
227 if (!area)
228 return NULL;
229 addr = (unsigned long)area->addr;
ff0daca5
RK
230
231#ifndef CONFIG_SMP
412489af
CM
232 if (DOMAIN_IO == 0 &&
233 (((cpu_architecture() >= CPU_ARCH_ARMv6) && (get_cr() & CR_XP)) ||
4a56c1e4 234 cpu_is_xsc3()) && pfn >= 0x100000 &&
a069c896
LB
235 !((__pfn_to_phys(pfn) | size | addr) & ~SUPERSECTION_MASK)) {
236 area->flags |= VM_ARM_SECTION_MAPPING;
b29e9f5e 237 err = remap_area_supersections(addr, pfn, size, type);
a069c896 238 } else if (!((__pfn_to_phys(pfn) | size | addr) & ~PMD_MASK)) {
ff0daca5 239 area->flags |= VM_ARM_SECTION_MAPPING;
b29e9f5e 240 err = remap_area_sections(addr, pfn, size, type);
ff0daca5
RK
241 } else
242#endif
d7461963
RK
243 err = ioremap_page_range(addr, addr + size, __pfn_to_phys(pfn),
244 __pgprot(type->prot_pte));
ff0daca5
RK
245
246 if (err) {
478922c2 247 vunmap((void *)addr);
9d4ae727
DS
248 return NULL;
249 }
ff0daca5
RK
250
251 flush_cache_vmap(addr, addr + size);
252 return (void __iomem *) (offset + addr);
9d4ae727 253}
9d4ae727 254
31aa8fd6
RK
255void __iomem *__arm_ioremap_caller(unsigned long phys_addr, size_t size,
256 unsigned int mtype, void *caller)
1da177e4 257{
9d4ae727
DS
258 unsigned long last_addr;
259 unsigned long offset = phys_addr & ~PAGE_MASK;
260 unsigned long pfn = __phys_to_pfn(phys_addr);
1da177e4 261
9d4ae727
DS
262 /*
263 * Don't allow wraparound or zero size
264 */
1da177e4
LT
265 last_addr = phys_addr + size - 1;
266 if (!size || last_addr < phys_addr)
267 return NULL;
268
31aa8fd6
RK
269 return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
270 caller);
271}
272
273/*
274 * Remap an arbitrary physical address space into the kernel virtual
275 * address space. Needed when the kernel wants to access high addresses
276 * directly.
277 *
278 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
279 * have to convert them into an offset in a page-aligned mapping, but the
280 * caller shouldn't need to know that small detail.
281 */
282void __iomem *
283__arm_ioremap_pfn(unsigned long pfn, unsigned long offset, size_t size,
284 unsigned int mtype)
285{
286 return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
287 __builtin_return_address(0));
288}
289EXPORT_SYMBOL(__arm_ioremap_pfn);
290
291void __iomem *
292__arm_ioremap(unsigned long phys_addr, size_t size, unsigned int mtype)
293{
294 return __arm_ioremap_caller(phys_addr, size, mtype,
295 __builtin_return_address(0));
1da177e4 296}
3603ab2b 297EXPORT_SYMBOL(__arm_ioremap);
1da177e4 298
6c5482d5
TL
299/*
300 * Remap an arbitrary physical address space into the kernel virtual
301 * address space as memory. Needed when the kernel wants to execute
302 * code in external memory. This is needed for reprogramming source
303 * clocks that would affect normal memory for example. Please see
304 * CONFIG_GENERIC_ALLOCATOR for allocating external memory.
305 */
306void __iomem *
307__arm_ioremap_exec(unsigned long phys_addr, size_t size, bool cached)
308{
309 unsigned int mtype;
310
311 if (cached)
312 mtype = MT_MEMORY;
313 else
314 mtype = MT_MEMORY_NONCACHED;
315
316 return __arm_ioremap_caller(phys_addr, size, mtype,
317 __builtin_return_address(0));
318}
319
09d9bae0 320void __iounmap(volatile void __iomem *io_addr)
1da177e4 321{
09d9bae0 322 void *addr = (void *)(PAGE_MASK & (unsigned long)io_addr);
ceaccbd2 323#ifndef CONFIG_SMP
ff0daca5 324 struct vm_struct **p, *tmp;
ff0daca5 325
ff0daca5
RK
326 /*
327 * If this is a section based mapping we need to handle it
6cbdc8c5 328 * specially as the VM subsystem does not know how to handle
ff0daca5
RK
329 * such a beast. We need the lock here b/c we need to clear
330 * all the mappings before the area can be reclaimed
331 * by someone else.
332 */
333 write_lock(&vmlist_lock);
334 for (p = &vmlist ; (tmp = *p) ; p = &tmp->next) {
09d9bae0 335 if ((tmp->flags & VM_IOREMAP) && (tmp->addr == addr)) {
ff0daca5 336 if (tmp->flags & VM_ARM_SECTION_MAPPING) {
ff0daca5
RK
337 unmap_area_sections((unsigned long)tmp->addr,
338 tmp->size);
ff0daca5
RK
339 }
340 break;
341 }
342 }
343 write_unlock(&vmlist_lock);
7cddc397 344#endif
ff0daca5 345
24f11ec0 346 vunmap(addr);
1da177e4
LT
347}
348EXPORT_SYMBOL(__iounmap);
This page took 0.817258 seconds and 5 git commands to generate.