x86: Move call to print_modules() out of show_regs()
[deliverable/linux.git] / arch / arm / mm / mmu.c
CommitLineData
d111e8f9
RK
1/*
2 * linux/arch/arm/mm/mmu.c
3 *
4 * Copyright (C) 1995-2005 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
ae8f1541 10#include <linux/module.h>
d111e8f9
RK
11#include <linux/kernel.h>
12#include <linux/errno.h>
13#include <linux/init.h>
d111e8f9
RK
14#include <linux/mman.h>
15#include <linux/nodemask.h>
2778f620 16#include <linux/memblock.h>
d907387c 17#include <linux/fs.h>
0536bdf3 18#include <linux/vmalloc.h>
d111e8f9 19
15d07dc9 20#include <asm/cp15.h>
0ba8b9b2 21#include <asm/cputype.h>
37efe642 22#include <asm/sections.h>
3f973e22 23#include <asm/cachetype.h>
d111e8f9
RK
24#include <asm/setup.h>
25#include <asm/sizes.h>
e616c591 26#include <asm/smp_plat.h>
d111e8f9 27#include <asm/tlb.h>
d73cd428 28#include <asm/highmem.h>
9f97da78 29#include <asm/system_info.h>
247055aa 30#include <asm/traps.h>
d111e8f9
RK
31
32#include <asm/mach/arch.h>
33#include <asm/mach/map.h>
34
35#include "mm.h"
36
d111e8f9
RK
37/*
38 * empty_zero_page is a special page that is used for
39 * zero-initialized data and COW.
40 */
41struct page *empty_zero_page;
3653f3ab 42EXPORT_SYMBOL(empty_zero_page);
d111e8f9
RK
43
44/*
45 * The pmd table for the upper-most set of pages.
46 */
47pmd_t *top_pmd;
48
ae8f1541
RK
49#define CPOLICY_UNCACHED 0
50#define CPOLICY_BUFFERED 1
51#define CPOLICY_WRITETHROUGH 2
52#define CPOLICY_WRITEBACK 3
53#define CPOLICY_WRITEALLOC 4
54
55static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
56static unsigned int ecc_mask __initdata = 0;
44b18693 57pgprot_t pgprot_user;
ae8f1541
RK
58pgprot_t pgprot_kernel;
59
44b18693 60EXPORT_SYMBOL(pgprot_user);
ae8f1541
RK
61EXPORT_SYMBOL(pgprot_kernel);
62
63struct cachepolicy {
64 const char policy[16];
65 unsigned int cr_mask;
442e70c0 66 pmdval_t pmd;
f6e3354d 67 pteval_t pte;
ae8f1541
RK
68};
69
70static struct cachepolicy cache_policies[] __initdata = {
71 {
72 .policy = "uncached",
73 .cr_mask = CR_W|CR_C,
74 .pmd = PMD_SECT_UNCACHED,
bb30f36f 75 .pte = L_PTE_MT_UNCACHED,
ae8f1541
RK
76 }, {
77 .policy = "buffered",
78 .cr_mask = CR_C,
79 .pmd = PMD_SECT_BUFFERED,
bb30f36f 80 .pte = L_PTE_MT_BUFFERABLE,
ae8f1541
RK
81 }, {
82 .policy = "writethrough",
83 .cr_mask = 0,
84 .pmd = PMD_SECT_WT,
bb30f36f 85 .pte = L_PTE_MT_WRITETHROUGH,
ae8f1541
RK
86 }, {
87 .policy = "writeback",
88 .cr_mask = 0,
89 .pmd = PMD_SECT_WB,
bb30f36f 90 .pte = L_PTE_MT_WRITEBACK,
ae8f1541
RK
91 }, {
92 .policy = "writealloc",
93 .cr_mask = 0,
94 .pmd = PMD_SECT_WBWA,
bb30f36f 95 .pte = L_PTE_MT_WRITEALLOC,
ae8f1541
RK
96 }
97};
98
99/*
6cbdc8c5 100 * These are useful for identifying cache coherency
ae8f1541
RK
101 * problems by allowing the cache or the cache and
102 * writebuffer to be turned off. (Note: the write
103 * buffer should not be on and the cache off).
104 */
2b0d8c25 105static int __init early_cachepolicy(char *p)
ae8f1541
RK
106{
107 int i;
108
109 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
110 int len = strlen(cache_policies[i].policy);
111
2b0d8c25 112 if (memcmp(p, cache_policies[i].policy, len) == 0) {
ae8f1541
RK
113 cachepolicy = i;
114 cr_alignment &= ~cache_policies[i].cr_mask;
115 cr_no_alignment &= ~cache_policies[i].cr_mask;
ae8f1541
RK
116 break;
117 }
118 }
119 if (i == ARRAY_SIZE(cache_policies))
120 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
4b46d641
RK
121 /*
122 * This restriction is partly to do with the way we boot; it is
123 * unpredictable to have memory mapped using two different sets of
124 * memory attributes (shared, type, and cache attribs). We can not
125 * change these attributes once the initial assembly has setup the
126 * page tables.
127 */
11179d8c
CM
128 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
129 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
130 cachepolicy = CPOLICY_WRITEBACK;
131 }
ae8f1541
RK
132 flush_cache_all();
133 set_cr(cr_alignment);
2b0d8c25 134 return 0;
ae8f1541 135}
2b0d8c25 136early_param("cachepolicy", early_cachepolicy);
ae8f1541 137
2b0d8c25 138static int __init early_nocache(char *__unused)
ae8f1541
RK
139{
140 char *p = "buffered";
141 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
142 early_cachepolicy(p);
143 return 0;
ae8f1541 144}
2b0d8c25 145early_param("nocache", early_nocache);
ae8f1541 146
2b0d8c25 147static int __init early_nowrite(char *__unused)
ae8f1541
RK
148{
149 char *p = "uncached";
150 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
151 early_cachepolicy(p);
152 return 0;
ae8f1541 153}
2b0d8c25 154early_param("nowb", early_nowrite);
ae8f1541 155
1b6ba46b 156#ifndef CONFIG_ARM_LPAE
2b0d8c25 157static int __init early_ecc(char *p)
ae8f1541 158{
2b0d8c25 159 if (memcmp(p, "on", 2) == 0)
ae8f1541 160 ecc_mask = PMD_PROTECTION;
2b0d8c25 161 else if (memcmp(p, "off", 3) == 0)
ae8f1541 162 ecc_mask = 0;
2b0d8c25 163 return 0;
ae8f1541 164}
2b0d8c25 165early_param("ecc", early_ecc);
1b6ba46b 166#endif
ae8f1541
RK
167
168static int __init noalign_setup(char *__unused)
169{
170 cr_alignment &= ~CR_A;
171 cr_no_alignment &= ~CR_A;
172 set_cr(cr_alignment);
173 return 1;
174}
175__setup("noalign", noalign_setup);
176
255d1f86
RK
177#ifndef CONFIG_SMP
178void adjust_cr(unsigned long mask, unsigned long set)
179{
180 unsigned long flags;
181
182 mask &= ~CR_A;
183
184 set &= mask;
185
186 local_irq_save(flags);
187
188 cr_no_alignment = (cr_no_alignment & ~mask) | set;
189 cr_alignment = (cr_alignment & ~mask) | set;
190
191 set_cr((get_cr() & ~mask) | set);
192
193 local_irq_restore(flags);
194}
195#endif
196
36bb94ba 197#define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
b1cce6b1 198#define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
0af92bef 199
b29e9f5e 200static struct mem_type mem_types[] = {
0af92bef 201 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
bb30f36f
RK
202 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
203 L_PTE_SHARED,
0af92bef 204 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 205 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
0af92bef
RK
206 .domain = DOMAIN_IO,
207 },
208 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
bb30f36f 209 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
0af92bef 210 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 211 .prot_sect = PROT_SECT_DEVICE,
0af92bef
RK
212 .domain = DOMAIN_IO,
213 },
214 [MT_DEVICE_CACHED] = { /* ioremap_cached */
bb30f36f 215 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
0af92bef
RK
216 .prot_l1 = PMD_TYPE_TABLE,
217 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
218 .domain = DOMAIN_IO,
219 },
1ad77a87 220 [MT_DEVICE_WC] = { /* ioremap_wc */
bb30f36f 221 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
0af92bef 222 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 223 .prot_sect = PROT_SECT_DEVICE,
0af92bef 224 .domain = DOMAIN_IO,
ae8f1541 225 },
ebb4c658
RK
226 [MT_UNCACHED] = {
227 .prot_pte = PROT_PTE_DEVICE,
228 .prot_l1 = PMD_TYPE_TABLE,
229 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
230 .domain = DOMAIN_IO,
231 },
ae8f1541 232 [MT_CACHECLEAN] = {
9ef79635 233 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
ae8f1541
RK
234 .domain = DOMAIN_KERNEL,
235 },
1b6ba46b 236#ifndef CONFIG_ARM_LPAE
ae8f1541 237 [MT_MINICLEAN] = {
9ef79635 238 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
ae8f1541
RK
239 .domain = DOMAIN_KERNEL,
240 },
1b6ba46b 241#endif
ae8f1541
RK
242 [MT_LOW_VECTORS] = {
243 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 244 L_PTE_RDONLY,
ae8f1541
RK
245 .prot_l1 = PMD_TYPE_TABLE,
246 .domain = DOMAIN_USER,
247 },
248 [MT_HIGH_VECTORS] = {
249 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 250 L_PTE_USER | L_PTE_RDONLY,
ae8f1541
RK
251 .prot_l1 = PMD_TYPE_TABLE,
252 .domain = DOMAIN_USER,
253 },
254 [MT_MEMORY] = {
36bb94ba 255 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
f1a2481c 256 .prot_l1 = PMD_TYPE_TABLE,
9ef79635 257 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
ae8f1541
RK
258 .domain = DOMAIN_KERNEL,
259 },
260 [MT_ROM] = {
9ef79635 261 .prot_sect = PMD_TYPE_SECT,
ae8f1541
RK
262 .domain = DOMAIN_KERNEL,
263 },
e4707dd3 264 [MT_MEMORY_NONCACHED] = {
f1a2481c 265 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 266 L_PTE_MT_BUFFERABLE,
f1a2481c 267 .prot_l1 = PMD_TYPE_TABLE,
e4707dd3
PW
268 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
269 .domain = DOMAIN_KERNEL,
270 },
cb9d7707 271 [MT_MEMORY_DTCM] = {
f444fce3 272 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 273 L_PTE_XN,
f444fce3
LW
274 .prot_l1 = PMD_TYPE_TABLE,
275 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
276 .domain = DOMAIN_KERNEL,
cb9d7707
LW
277 },
278 [MT_MEMORY_ITCM] = {
36bb94ba 279 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
cb9d7707 280 .prot_l1 = PMD_TYPE_TABLE,
f444fce3 281 .domain = DOMAIN_KERNEL,
cb9d7707 282 },
8fb54284
SS
283 [MT_MEMORY_SO] = {
284 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
285 L_PTE_MT_UNCACHED,
286 .prot_l1 = PMD_TYPE_TABLE,
287 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
288 PMD_SECT_UNCACHED | PMD_SECT_XN,
289 .domain = DOMAIN_KERNEL,
290 },
c7909509
MS
291 [MT_MEMORY_DMA_READY] = {
292 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
293 .prot_l1 = PMD_TYPE_TABLE,
294 .domain = DOMAIN_KERNEL,
295 },
ae8f1541
RK
296};
297
b29e9f5e
RK
298const struct mem_type *get_mem_type(unsigned int type)
299{
300 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
301}
69d3a84a 302EXPORT_SYMBOL(get_mem_type);
b29e9f5e 303
ae8f1541
RK
304/*
305 * Adjust the PMD section entries according to the CPU in use.
306 */
307static void __init build_mem_type_table(void)
308{
309 struct cachepolicy *cp;
310 unsigned int cr = get_cr();
442e70c0 311 pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
ae8f1541
RK
312 int cpu_arch = cpu_architecture();
313 int i;
314
11179d8c 315 if (cpu_arch < CPU_ARCH_ARMv6) {
ae8f1541 316#if defined(CONFIG_CPU_DCACHE_DISABLE)
11179d8c
CM
317 if (cachepolicy > CPOLICY_BUFFERED)
318 cachepolicy = CPOLICY_BUFFERED;
ae8f1541 319#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
11179d8c
CM
320 if (cachepolicy > CPOLICY_WRITETHROUGH)
321 cachepolicy = CPOLICY_WRITETHROUGH;
ae8f1541 322#endif
11179d8c 323 }
ae8f1541
RK
324 if (cpu_arch < CPU_ARCH_ARMv5) {
325 if (cachepolicy >= CPOLICY_WRITEALLOC)
326 cachepolicy = CPOLICY_WRITEBACK;
327 ecc_mask = 0;
328 }
f00ec48f
RK
329 if (is_smp())
330 cachepolicy = CPOLICY_WRITEALLOC;
ae8f1541 331
1ad77a87 332 /*
b1cce6b1
RK
333 * Strip out features not present on earlier architectures.
334 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
335 * without extended page tables don't have the 'Shared' bit.
1ad77a87 336 */
b1cce6b1
RK
337 if (cpu_arch < CPU_ARCH_ARMv5)
338 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
339 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
340 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
341 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
342 mem_types[i].prot_sect &= ~PMD_SECT_S;
ae8f1541
RK
343
344 /*
b1cce6b1
RK
345 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
346 * "update-able on write" bit on ARM610). However, Xscale and
347 * Xscale3 require this bit to be cleared.
ae8f1541 348 */
b1cce6b1 349 if (cpu_is_xscale() || cpu_is_xsc3()) {
9ef79635 350 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541 351 mem_types[i].prot_sect &= ~PMD_BIT4;
9ef79635
RK
352 mem_types[i].prot_l1 &= ~PMD_BIT4;
353 }
354 } else if (cpu_arch < CPU_ARCH_ARMv6) {
355 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541
RK
356 if (mem_types[i].prot_l1)
357 mem_types[i].prot_l1 |= PMD_BIT4;
9ef79635
RK
358 if (mem_types[i].prot_sect)
359 mem_types[i].prot_sect |= PMD_BIT4;
360 }
361 }
ae8f1541 362
b1cce6b1
RK
363 /*
364 * Mark the device areas according to the CPU/architecture.
365 */
366 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
367 if (!cpu_is_xsc3()) {
368 /*
369 * Mark device regions on ARMv6+ as execute-never
370 * to prevent speculative instruction fetches.
371 */
372 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
373 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
374 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
375 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
376 }
377 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
378 /*
379 * For ARMv7 with TEX remapping,
380 * - shared device is SXCB=1100
381 * - nonshared device is SXCB=0100
382 * - write combine device mem is SXCB=0001
383 * (Uncached Normal memory)
384 */
385 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
386 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
387 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
388 } else if (cpu_is_xsc3()) {
389 /*
390 * For Xscale3,
391 * - shared device is TEXCB=00101
392 * - nonshared device is TEXCB=01000
393 * - write combine device mem is TEXCB=00100
394 * (Inner/Outer Uncacheable in xsc3 parlance)
395 */
396 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
397 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
398 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
399 } else {
400 /*
401 * For ARMv6 and ARMv7 without TEX remapping,
402 * - shared device is TEXCB=00001
403 * - nonshared device is TEXCB=01000
404 * - write combine device mem is TEXCB=00100
405 * (Uncached Normal in ARMv6 parlance).
406 */
407 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
408 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
409 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
410 }
411 } else {
412 /*
413 * On others, write combining is "Uncached/Buffered"
414 */
415 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
416 }
417
418 /*
419 * Now deal with the memory-type mappings
420 */
ae8f1541 421 cp = &cache_policies[cachepolicy];
bb30f36f
RK
422 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
423
bb30f36f
RK
424 /*
425 * Only use write-through for non-SMP systems
426 */
f00ec48f 427 if (!is_smp() && cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
bb30f36f 428 vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
ae8f1541
RK
429
430 /*
431 * Enable CPU-specific coherency if supported.
432 * (Only available on XSC3 at the moment.)
433 */
f1a2481c 434 if (arch_is_coherent() && cpu_is_xsc3()) {
b1cce6b1 435 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
f1a2481c 436 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
c7909509 437 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
f1a2481c
SS
438 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
439 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
440 }
ae8f1541
RK
441 /*
442 * ARMv6 and above have extended page tables.
443 */
444 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
1b6ba46b 445#ifndef CONFIG_ARM_LPAE
ae8f1541
RK
446 /*
447 * Mark cache clean areas and XIP ROM read only
448 * from SVC mode and no access from userspace.
449 */
450 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
451 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
452 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
1b6ba46b 453#endif
ae8f1541 454
f00ec48f
RK
455 if (is_smp()) {
456 /*
457 * Mark memory with the "shared" attribute
458 * for SMP systems
459 */
460 user_pgprot |= L_PTE_SHARED;
461 kern_pgprot |= L_PTE_SHARED;
462 vecs_pgprot |= L_PTE_SHARED;
463 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
464 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
465 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
466 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
467 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
468 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
c7909509 469 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
f00ec48f
RK
470 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
471 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
472 }
ae8f1541
RK
473 }
474
e4707dd3
PW
475 /*
476 * Non-cacheable Normal - intended for memory areas that must
477 * not cause dirty cache line writebacks when used
478 */
479 if (cpu_arch >= CPU_ARCH_ARMv6) {
480 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
481 /* Non-cacheable Normal is XCB = 001 */
482 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
483 PMD_SECT_BUFFERED;
484 } else {
485 /* For both ARMv6 and non-TEX-remapping ARMv7 */
486 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
487 PMD_SECT_TEX(1);
488 }
489 } else {
490 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
491 }
492
1b6ba46b
CM
493#ifdef CONFIG_ARM_LPAE
494 /*
495 * Do not generate access flag faults for the kernel mappings.
496 */
497 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
498 mem_types[i].prot_pte |= PTE_EXT_AF;
1a3abcf4
VA
499 if (mem_types[i].prot_sect)
500 mem_types[i].prot_sect |= PMD_SECT_AF;
1b6ba46b
CM
501 }
502 kern_pgprot |= PTE_EXT_AF;
503 vecs_pgprot |= PTE_EXT_AF;
504#endif
505
ae8f1541
RK
506 for (i = 0; i < 16; i++) {
507 unsigned long v = pgprot_val(protection_map[i]);
bb30f36f 508 protection_map[i] = __pgprot(v | user_pgprot);
ae8f1541
RK
509 }
510
bb30f36f
RK
511 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
512 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
ae8f1541 513
44b18693 514 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
ae8f1541 515 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
36bb94ba 516 L_PTE_DIRTY | kern_pgprot);
ae8f1541
RK
517
518 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
519 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
520 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
f1a2481c 521 mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
c7909509 522 mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
f1a2481c 523 mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
ae8f1541
RK
524 mem_types[MT_ROM].prot_sect |= cp->pmd;
525
526 switch (cp->pmd) {
527 case PMD_SECT_WT:
528 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
529 break;
530 case PMD_SECT_WB:
531 case PMD_SECT_WBWA:
532 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
533 break;
534 }
535 printk("Memory policy: ECC %sabled, Data cache %s\n",
536 ecc_mask ? "en" : "dis", cp->policy);
2497f0a8
RK
537
538 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
539 struct mem_type *t = &mem_types[i];
540 if (t->prot_l1)
541 t->prot_l1 |= PMD_DOMAIN(t->domain);
542 if (t->prot_sect)
543 t->prot_sect |= PMD_DOMAIN(t->domain);
544 }
ae8f1541
RK
545}
546
d907387c
CM
547#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
548pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
549 unsigned long size, pgprot_t vma_prot)
550{
551 if (!pfn_valid(pfn))
552 return pgprot_noncached(vma_prot);
553 else if (file->f_flags & O_SYNC)
554 return pgprot_writecombine(vma_prot);
555 return vma_prot;
556}
557EXPORT_SYMBOL(phys_mem_access_prot);
558#endif
559
ae8f1541
RK
560#define vectors_base() (vectors_high() ? 0xffff0000 : 0)
561
0536bdf3 562static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
3abe9d33 563{
0536bdf3 564 void *ptr = __va(memblock_alloc(sz, align));
2778f620
RK
565 memset(ptr, 0, sz);
566 return ptr;
3abe9d33
RK
567}
568
0536bdf3
NP
569static void __init *early_alloc(unsigned long sz)
570{
571 return early_alloc_aligned(sz, sz);
572}
573
4bb2e27d 574static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
ae8f1541 575{
24e6c699 576 if (pmd_none(*pmd)) {
410f1483 577 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
97092e0c 578 __pmd_populate(pmd, __pa(pte), prot);
24e6c699 579 }
4bb2e27d
RK
580 BUG_ON(pmd_bad(*pmd));
581 return pte_offset_kernel(pmd, addr);
582}
ae8f1541 583
4bb2e27d
RK
584static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
585 unsigned long end, unsigned long pfn,
586 const struct mem_type *type)
587{
588 pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
24e6c699 589 do {
40d192b6 590 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
24e6c699
RK
591 pfn++;
592 } while (pte++, addr += PAGE_SIZE, addr != end);
ae8f1541
RK
593}
594
516295e5 595static void __init alloc_init_section(pud_t *pud, unsigned long addr,
97092e0c 596 unsigned long end, phys_addr_t phys,
24e6c699 597 const struct mem_type *type)
ae8f1541 598{
516295e5 599 pmd_t *pmd = pmd_offset(pud, addr);
ae8f1541 600
24e6c699
RK
601 /*
602 * Try a section mapping - end, addr and phys must all be aligned
603 * to a section boundary. Note that PMDs refer to the individual
604 * L1 entries, whereas PGDs refer to a group of L1 entries making
605 * up one logical pointer to an L2 table.
606 */
c7909509 607 if (type->prot_sect && ((addr | end | phys) & ~SECTION_MASK) == 0) {
24e6c699 608 pmd_t *p = pmd;
ae8f1541 609
1b6ba46b 610#ifndef CONFIG_ARM_LPAE
24e6c699
RK
611 if (addr & SECTION_SIZE)
612 pmd++;
1b6ba46b 613#endif
24e6c699
RK
614
615 do {
616 *pmd = __pmd(phys | type->prot_sect);
617 phys += SECTION_SIZE;
618 } while (pmd++, addr += SECTION_SIZE, addr != end);
ae8f1541 619
24e6c699
RK
620 flush_pmd_entry(p);
621 } else {
622 /*
623 * No need to loop; pte's aren't interested in the
624 * individual L1 entries.
625 */
626 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
627 }
ae8f1541
RK
628}
629
14904927
SB
630static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
631 unsigned long end, unsigned long phys, const struct mem_type *type)
516295e5
RK
632{
633 pud_t *pud = pud_offset(pgd, addr);
634 unsigned long next;
635
636 do {
637 next = pud_addr_end(addr, end);
638 alloc_init_section(pud, addr, next, phys, type);
639 phys += next - addr;
640 } while (pud++, addr = next, addr != end);
641}
642
1b6ba46b 643#ifndef CONFIG_ARM_LPAE
4a56c1e4
RK
644static void __init create_36bit_mapping(struct map_desc *md,
645 const struct mem_type *type)
646{
97092e0c
RK
647 unsigned long addr, length, end;
648 phys_addr_t phys;
4a56c1e4
RK
649 pgd_t *pgd;
650
651 addr = md->virtual;
cae6292b 652 phys = __pfn_to_phys(md->pfn);
4a56c1e4
RK
653 length = PAGE_ALIGN(md->length);
654
655 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
656 printk(KERN_ERR "MM: CPU does not support supersection "
657 "mapping for 0x%08llx at 0x%08lx\n",
29a38193 658 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
659 return;
660 }
661
662 /* N.B. ARMv6 supersections are only defined to work with domain 0.
663 * Since domain assignments can in fact be arbitrary, the
664 * 'domain == 0' check below is required to insure that ARMv6
665 * supersections are only allocated for domain 0 regardless
666 * of the actual domain assignments in use.
667 */
668 if (type->domain) {
669 printk(KERN_ERR "MM: invalid domain in supersection "
670 "mapping for 0x%08llx at 0x%08lx\n",
29a38193 671 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
672 return;
673 }
674
675 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
29a38193
WD
676 printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
677 " at 0x%08lx invalid alignment\n",
678 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
679 return;
680 }
681
682 /*
683 * Shift bits [35:32] of address into bits [23:20] of PMD
684 * (See ARMv6 spec).
685 */
686 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
687
688 pgd = pgd_offset_k(addr);
689 end = addr + length;
690 do {
516295e5
RK
691 pud_t *pud = pud_offset(pgd, addr);
692 pmd_t *pmd = pmd_offset(pud, addr);
4a56c1e4
RK
693 int i;
694
695 for (i = 0; i < 16; i++)
696 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
697
698 addr += SUPERSECTION_SIZE;
699 phys += SUPERSECTION_SIZE;
700 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
701 } while (addr != end);
702}
1b6ba46b 703#endif /* !CONFIG_ARM_LPAE */
4a56c1e4 704
ae8f1541
RK
705/*
706 * Create the page directory entries and any necessary
707 * page tables for the mapping specified by `md'. We
708 * are able to cope here with varying sizes and address
709 * offsets, and we take full advantage of sections and
710 * supersections.
711 */
a2227120 712static void __init create_mapping(struct map_desc *md)
ae8f1541 713{
cae6292b
WD
714 unsigned long addr, length, end;
715 phys_addr_t phys;
d5c98176 716 const struct mem_type *type;
24e6c699 717 pgd_t *pgd;
ae8f1541
RK
718
719 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
29a38193
WD
720 printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
721 " at 0x%08lx in user region\n",
722 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
ae8f1541
RK
723 return;
724 }
725
726 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
0536bdf3
NP
727 md->virtual >= PAGE_OFFSET &&
728 (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
29a38193 729 printk(KERN_WARNING "BUG: mapping for 0x%08llx"
0536bdf3 730 " at 0x%08lx out of vmalloc space\n",
29a38193 731 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
ae8f1541
RK
732 }
733
d5c98176 734 type = &mem_types[md->type];
ae8f1541 735
1b6ba46b 736#ifndef CONFIG_ARM_LPAE
ae8f1541
RK
737 /*
738 * Catch 36-bit addresses
739 */
4a56c1e4
RK
740 if (md->pfn >= 0x100000) {
741 create_36bit_mapping(md, type);
742 return;
ae8f1541 743 }
1b6ba46b 744#endif
ae8f1541 745
7b9c7b4d 746 addr = md->virtual & PAGE_MASK;
cae6292b 747 phys = __pfn_to_phys(md->pfn);
7b9c7b4d 748 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
ae8f1541 749
24e6c699 750 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
29a38193 751 printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
ae8f1541 752 "be mapped using pages, ignoring.\n",
29a38193 753 (long long)__pfn_to_phys(md->pfn), addr);
ae8f1541
RK
754 return;
755 }
756
24e6c699
RK
757 pgd = pgd_offset_k(addr);
758 end = addr + length;
759 do {
760 unsigned long next = pgd_addr_end(addr, end);
ae8f1541 761
516295e5 762 alloc_init_pud(pgd, addr, next, phys, type);
ae8f1541 763
24e6c699
RK
764 phys += next - addr;
765 addr = next;
766 } while (pgd++, addr != end);
ae8f1541
RK
767}
768
769/*
770 * Create the architecture specific mappings
771 */
772void __init iotable_init(struct map_desc *io_desc, int nr)
773{
0536bdf3
NP
774 struct map_desc *md;
775 struct vm_struct *vm;
776
777 if (!nr)
778 return;
ae8f1541 779
0536bdf3
NP
780 vm = early_alloc_aligned(sizeof(*vm) * nr, __alignof__(*vm));
781
782 for (md = io_desc; nr; md++, nr--) {
783 create_mapping(md);
784 vm->addr = (void *)(md->virtual & PAGE_MASK);
785 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
786 vm->phys_addr = __pfn_to_phys(md->pfn);
576d2f25
NP
787 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
788 vm->flags |= VM_ARM_MTYPE(md->type);
0536bdf3
NP
789 vm->caller = iotable_init;
790 vm_area_add_early(vm++);
791 }
ae8f1541
RK
792}
793
0536bdf3
NP
794static void * __initdata vmalloc_min =
795 (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
6c5da7ac
RK
796
797/*
798 * vmalloc=size forces the vmalloc area to be exactly 'size'
799 * bytes. This can be used to increase (or decrease) the vmalloc
0536bdf3 800 * area - the default is 240m.
6c5da7ac 801 */
2b0d8c25 802static int __init early_vmalloc(char *arg)
6c5da7ac 803{
79612395 804 unsigned long vmalloc_reserve = memparse(arg, NULL);
6c5da7ac
RK
805
806 if (vmalloc_reserve < SZ_16M) {
807 vmalloc_reserve = SZ_16M;
808 printk(KERN_WARNING
809 "vmalloc area too small, limiting to %luMB\n",
810 vmalloc_reserve >> 20);
811 }
9210807c
NP
812
813 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
814 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
815 printk(KERN_WARNING
816 "vmalloc area is too big, limiting to %luMB\n",
817 vmalloc_reserve >> 20);
818 }
79612395
RK
819
820 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
2b0d8c25 821 return 0;
6c5da7ac 822}
2b0d8c25 823early_param("vmalloc", early_vmalloc);
6c5da7ac 824
c7909509 825phys_addr_t arm_lowmem_limit __initdata = 0;
8df65168 826
0371d3f7 827void __init sanity_check_meminfo(void)
60296c71 828{
dde5828f 829 int i, j, highmem = 0;
60296c71 830
4b5f32ce 831 for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
a1bbaec0
NP
832 struct membank *bank = &meminfo.bank[j];
833 *bank = meminfo.bank[i];
60296c71 834
77f73a2c
WD
835 if (bank->start > ULONG_MAX)
836 highmem = 1;
837
a1bbaec0 838#ifdef CONFIG_HIGHMEM
40f7bfe4 839 if (__va(bank->start) >= vmalloc_min ||
dde5828f
RK
840 __va(bank->start) < (void *)PAGE_OFFSET)
841 highmem = 1;
842
843 bank->highmem = highmem;
844
a1bbaec0
NP
845 /*
846 * Split those memory banks which are partially overlapping
847 * the vmalloc area greatly simplifying things later.
848 */
77f73a2c 849 if (!highmem && __va(bank->start) < vmalloc_min &&
79612395 850 bank->size > vmalloc_min - __va(bank->start)) {
a1bbaec0
NP
851 if (meminfo.nr_banks >= NR_BANKS) {
852 printk(KERN_CRIT "NR_BANKS too low, "
853 "ignoring high memory\n");
854 } else {
855 memmove(bank + 1, bank,
856 (meminfo.nr_banks - i) * sizeof(*bank));
857 meminfo.nr_banks++;
858 i++;
79612395
RK
859 bank[1].size -= vmalloc_min - __va(bank->start);
860 bank[1].start = __pa(vmalloc_min - 1) + 1;
dde5828f 861 bank[1].highmem = highmem = 1;
a1bbaec0
NP
862 j++;
863 }
79612395 864 bank->size = vmalloc_min - __va(bank->start);
a1bbaec0
NP
865 }
866#else
041d785f
RK
867 bank->highmem = highmem;
868
77f73a2c
WD
869 /*
870 * Highmem banks not allowed with !CONFIG_HIGHMEM.
871 */
872 if (highmem) {
873 printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
874 "(!CONFIG_HIGHMEM).\n",
875 (unsigned long long)bank->start,
876 (unsigned long long)bank->start + bank->size - 1);
877 continue;
878 }
879
a1bbaec0
NP
880 /*
881 * Check whether this memory bank would entirely overlap
882 * the vmalloc area.
883 */
79612395 884 if (__va(bank->start) >= vmalloc_min ||
f0bba9f9 885 __va(bank->start) < (void *)PAGE_OFFSET) {
e33b9d08 886 printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
a1bbaec0 887 "(vmalloc region overlap).\n",
e33b9d08
RK
888 (unsigned long long)bank->start,
889 (unsigned long long)bank->start + bank->size - 1);
a1bbaec0
NP
890 continue;
891 }
60296c71 892
a1bbaec0
NP
893 /*
894 * Check whether this memory bank would partially overlap
895 * the vmalloc area.
896 */
79612395 897 if (__va(bank->start + bank->size) > vmalloc_min ||
a1bbaec0 898 __va(bank->start + bank->size) < __va(bank->start)) {
79612395 899 unsigned long newsize = vmalloc_min - __va(bank->start);
e33b9d08
RK
900 printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
901 "to -%.8llx (vmalloc region overlap).\n",
902 (unsigned long long)bank->start,
903 (unsigned long long)bank->start + bank->size - 1,
904 (unsigned long long)bank->start + newsize - 1);
a1bbaec0
NP
905 bank->size = newsize;
906 }
907#endif
c7909509
MS
908 if (!bank->highmem && bank->start + bank->size > arm_lowmem_limit)
909 arm_lowmem_limit = bank->start + bank->size;
40f7bfe4 910
a1bbaec0 911 j++;
60296c71 912 }
e616c591
RK
913#ifdef CONFIG_HIGHMEM
914 if (highmem) {
915 const char *reason = NULL;
916
917 if (cache_is_vipt_aliasing()) {
918 /*
919 * Interactions between kmap and other mappings
920 * make highmem support with aliasing VIPT caches
921 * rather difficult.
922 */
923 reason = "with VIPT aliasing cache";
e616c591
RK
924 }
925 if (reason) {
926 printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
927 reason);
928 while (j > 0 && meminfo.bank[j - 1].highmem)
929 j--;
930 }
931 }
932#endif
4b5f32ce 933 meminfo.nr_banks = j;
c7909509
MS
934 high_memory = __va(arm_lowmem_limit - 1) + 1;
935 memblock_set_current_limit(arm_lowmem_limit);
60296c71
LB
936}
937
4b5f32ce 938static inline void prepare_page_table(void)
d111e8f9
RK
939{
940 unsigned long addr;
8df65168 941 phys_addr_t end;
d111e8f9
RK
942
943 /*
944 * Clear out all the mappings below the kernel image.
945 */
e73fc88e 946 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
d111e8f9
RK
947 pmd_clear(pmd_off_k(addr));
948
949#ifdef CONFIG_XIP_KERNEL
950 /* The XIP kernel is mapped in the module area -- skip over it */
e73fc88e 951 addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
d111e8f9 952#endif
e73fc88e 953 for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
d111e8f9
RK
954 pmd_clear(pmd_off_k(addr));
955
8df65168
RK
956 /*
957 * Find the end of the first block of lowmem.
958 */
959 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
c7909509
MS
960 if (end >= arm_lowmem_limit)
961 end = arm_lowmem_limit;
8df65168 962
d111e8f9
RK
963 /*
964 * Clear out all the kernel space mappings, except for the first
0536bdf3 965 * memory bank, up to the vmalloc region.
d111e8f9 966 */
8df65168 967 for (addr = __phys_to_virt(end);
0536bdf3 968 addr < VMALLOC_START; addr += PMD_SIZE)
d111e8f9
RK
969 pmd_clear(pmd_off_k(addr));
970}
971
1b6ba46b
CM
972#ifdef CONFIG_ARM_LPAE
973/* the first page is reserved for pgd */
974#define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
975 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
976#else
e73fc88e 977#define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1b6ba46b 978#endif
e73fc88e 979
d111e8f9 980/*
2778f620 981 * Reserve the special regions of memory
d111e8f9 982 */
2778f620 983void __init arm_mm_memblock_reserve(void)
d111e8f9 984{
d111e8f9
RK
985 /*
986 * Reserve the page tables. These are already in use,
987 * and can only be in node 0.
988 */
e73fc88e 989 memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
d111e8f9 990
d111e8f9
RK
991#ifdef CONFIG_SA1111
992 /*
993 * Because of the SA1111 DMA bug, we want to preserve our
994 * precious DMA-able memory...
995 */
2778f620 996 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
d111e8f9 997#endif
d111e8f9
RK
998}
999
1000/*
0536bdf3
NP
1001 * Set up the device mappings. Since we clear out the page tables for all
1002 * mappings above VMALLOC_START, we will remove any debug device mappings.
d111e8f9
RK
1003 * This means you have to be careful how you debug this function, or any
1004 * called function. This means you can't use any function or debugging
1005 * method which may touch any device, otherwise the kernel _will_ crash.
1006 */
1007static void __init devicemaps_init(struct machine_desc *mdesc)
1008{
1009 struct map_desc map;
1010 unsigned long addr;
94e5a85b 1011 void *vectors;
d111e8f9
RK
1012
1013 /*
1014 * Allocate the vector page early.
1015 */
94e5a85b
RK
1016 vectors = early_alloc(PAGE_SIZE);
1017
1018 early_trap_init(vectors);
d111e8f9 1019
0536bdf3 1020 for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
d111e8f9
RK
1021 pmd_clear(pmd_off_k(addr));
1022
1023 /*
1024 * Map the kernel if it is XIP.
1025 * It is always first in the modulearea.
1026 */
1027#ifdef CONFIG_XIP_KERNEL
1028 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
ab4f2ee1 1029 map.virtual = MODULES_VADDR;
37efe642 1030 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
d111e8f9
RK
1031 map.type = MT_ROM;
1032 create_mapping(&map);
1033#endif
1034
1035 /*
1036 * Map the cache flushing regions.
1037 */
1038#ifdef FLUSH_BASE
1039 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1040 map.virtual = FLUSH_BASE;
1041 map.length = SZ_1M;
1042 map.type = MT_CACHECLEAN;
1043 create_mapping(&map);
1044#endif
1045#ifdef FLUSH_BASE_MINICACHE
1046 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1047 map.virtual = FLUSH_BASE_MINICACHE;
1048 map.length = SZ_1M;
1049 map.type = MT_MINICLEAN;
1050 create_mapping(&map);
1051#endif
1052
1053 /*
1054 * Create a mapping for the machine vectors at the high-vectors
1055 * location (0xffff0000). If we aren't using high-vectors, also
1056 * create a mapping at the low-vectors virtual address.
1057 */
94e5a85b 1058 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
d111e8f9
RK
1059 map.virtual = 0xffff0000;
1060 map.length = PAGE_SIZE;
1061 map.type = MT_HIGH_VECTORS;
1062 create_mapping(&map);
1063
1064 if (!vectors_high()) {
1065 map.virtual = 0;
1066 map.type = MT_LOW_VECTORS;
1067 create_mapping(&map);
1068 }
1069
1070 /*
1071 * Ask the machine support to map in the statically mapped devices.
1072 */
1073 if (mdesc->map_io)
1074 mdesc->map_io();
1075
1076 /*
1077 * Finally flush the caches and tlb to ensure that we're in a
1078 * consistent state wrt the writebuffer. This also ensures that
1079 * any write-allocated cache lines in the vector page are written
1080 * back. After this point, we can start to touch devices again.
1081 */
1082 local_flush_tlb_all();
1083 flush_cache_all();
1084}
1085
d73cd428
NP
1086static void __init kmap_init(void)
1087{
1088#ifdef CONFIG_HIGHMEM
4bb2e27d
RK
1089 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1090 PKMAP_BASE, _PAGE_KERNEL_TABLE);
d73cd428
NP
1091#endif
1092}
1093
a2227120
RK
1094static void __init map_lowmem(void)
1095{
8df65168 1096 struct memblock_region *reg;
a2227120
RK
1097
1098 /* Map all the lowmem memory banks. */
8df65168
RK
1099 for_each_memblock(memory, reg) {
1100 phys_addr_t start = reg->base;
1101 phys_addr_t end = start + reg->size;
1102 struct map_desc map;
1103
c7909509
MS
1104 if (end > arm_lowmem_limit)
1105 end = arm_lowmem_limit;
8df65168
RK
1106 if (start >= end)
1107 break;
1108
1109 map.pfn = __phys_to_pfn(start);
1110 map.virtual = __phys_to_virt(start);
1111 map.length = end - start;
1112 map.type = MT_MEMORY;
a2227120 1113
8df65168 1114 create_mapping(&map);
a2227120
RK
1115 }
1116}
1117
d111e8f9
RK
1118/*
1119 * paging_init() sets up the page tables, initialises the zone memory
1120 * maps, and sets up the zero page, bad page and bad page tables.
1121 */
4b5f32ce 1122void __init paging_init(struct machine_desc *mdesc)
d111e8f9
RK
1123{
1124 void *zero_page;
1125
c7909509 1126 memblock_set_current_limit(arm_lowmem_limit);
0371d3f7 1127
d111e8f9 1128 build_mem_type_table();
4b5f32ce 1129 prepare_page_table();
a2227120 1130 map_lowmem();
c7909509 1131 dma_contiguous_remap();
d111e8f9 1132 devicemaps_init(mdesc);
d73cd428 1133 kmap_init();
d111e8f9
RK
1134
1135 top_pmd = pmd_off_k(0xffff0000);
1136
3abe9d33
RK
1137 /* allocate the zero page. */
1138 zero_page = early_alloc(PAGE_SIZE);
2778f620 1139
8d717a52 1140 bootmem_init();
2778f620 1141
d111e8f9 1142 empty_zero_page = virt_to_page(zero_page);
421fe93c 1143 __flush_dcache_page(NULL, empty_zero_page);
d111e8f9 1144}
This page took 0.608632 seconds and 5 git commands to generate.