Merge branch 'acpi-lpss'
[deliverable/linux.git] / arch / arm / mm / mmu.c
CommitLineData
d111e8f9
RK
1/*
2 * linux/arch/arm/mm/mmu.c
3 *
4 * Copyright (C) 1995-2005 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
ae8f1541 10#include <linux/module.h>
d111e8f9
RK
11#include <linux/kernel.h>
12#include <linux/errno.h>
13#include <linux/init.h>
d111e8f9
RK
14#include <linux/mman.h>
15#include <linux/nodemask.h>
2778f620 16#include <linux/memblock.h>
d907387c 17#include <linux/fs.h>
0536bdf3 18#include <linux/vmalloc.h>
158e8bfe 19#include <linux/sizes.h>
d111e8f9 20
15d07dc9 21#include <asm/cp15.h>
0ba8b9b2 22#include <asm/cputype.h>
37efe642 23#include <asm/sections.h>
3f973e22 24#include <asm/cachetype.h>
d111e8f9 25#include <asm/setup.h>
e616c591 26#include <asm/smp_plat.h>
d111e8f9 27#include <asm/tlb.h>
d73cd428 28#include <asm/highmem.h>
9f97da78 29#include <asm/system_info.h>
247055aa 30#include <asm/traps.h>
d111e8f9
RK
31
32#include <asm/mach/arch.h>
33#include <asm/mach/map.h>
c2794437 34#include <asm/mach/pci.h>
d111e8f9
RK
35
36#include "mm.h"
de40614e 37#include "tcm.h"
d111e8f9 38
d111e8f9
RK
39/*
40 * empty_zero_page is a special page that is used for
41 * zero-initialized data and COW.
42 */
43struct page *empty_zero_page;
3653f3ab 44EXPORT_SYMBOL(empty_zero_page);
d111e8f9
RK
45
46/*
47 * The pmd table for the upper-most set of pages.
48 */
49pmd_t *top_pmd;
50
ae8f1541
RK
51#define CPOLICY_UNCACHED 0
52#define CPOLICY_BUFFERED 1
53#define CPOLICY_WRITETHROUGH 2
54#define CPOLICY_WRITEBACK 3
55#define CPOLICY_WRITEALLOC 4
56
57static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
58static unsigned int ecc_mask __initdata = 0;
44b18693 59pgprot_t pgprot_user;
ae8f1541 60pgprot_t pgprot_kernel;
cc577c26
CD
61pgprot_t pgprot_hyp_device;
62pgprot_t pgprot_s2;
63pgprot_t pgprot_s2_device;
ae8f1541 64
44b18693 65EXPORT_SYMBOL(pgprot_user);
ae8f1541
RK
66EXPORT_SYMBOL(pgprot_kernel);
67
68struct cachepolicy {
69 const char policy[16];
70 unsigned int cr_mask;
442e70c0 71 pmdval_t pmd;
f6e3354d 72 pteval_t pte;
cc577c26 73 pteval_t pte_s2;
ae8f1541
RK
74};
75
cc577c26
CD
76#ifdef CONFIG_ARM_LPAE
77#define s2_policy(policy) policy
78#else
79#define s2_policy(policy) 0
80#endif
81
ae8f1541
RK
82static struct cachepolicy cache_policies[] __initdata = {
83 {
84 .policy = "uncached",
85 .cr_mask = CR_W|CR_C,
86 .pmd = PMD_SECT_UNCACHED,
bb30f36f 87 .pte = L_PTE_MT_UNCACHED,
cc577c26 88 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
ae8f1541
RK
89 }, {
90 .policy = "buffered",
91 .cr_mask = CR_C,
92 .pmd = PMD_SECT_BUFFERED,
bb30f36f 93 .pte = L_PTE_MT_BUFFERABLE,
cc577c26 94 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
ae8f1541
RK
95 }, {
96 .policy = "writethrough",
97 .cr_mask = 0,
98 .pmd = PMD_SECT_WT,
bb30f36f 99 .pte = L_PTE_MT_WRITETHROUGH,
cc577c26 100 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITETHROUGH),
ae8f1541
RK
101 }, {
102 .policy = "writeback",
103 .cr_mask = 0,
104 .pmd = PMD_SECT_WB,
bb30f36f 105 .pte = L_PTE_MT_WRITEBACK,
cc577c26 106 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
ae8f1541
RK
107 }, {
108 .policy = "writealloc",
109 .cr_mask = 0,
110 .pmd = PMD_SECT_WBWA,
bb30f36f 111 .pte = L_PTE_MT_WRITEALLOC,
cc577c26 112 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
ae8f1541
RK
113 }
114};
115
116/*
6cbdc8c5 117 * These are useful for identifying cache coherency
ae8f1541
RK
118 * problems by allowing the cache or the cache and
119 * writebuffer to be turned off. (Note: the write
120 * buffer should not be on and the cache off).
121 */
2b0d8c25 122static int __init early_cachepolicy(char *p)
ae8f1541
RK
123{
124 int i;
125
126 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
127 int len = strlen(cache_policies[i].policy);
128
2b0d8c25 129 if (memcmp(p, cache_policies[i].policy, len) == 0) {
ae8f1541
RK
130 cachepolicy = i;
131 cr_alignment &= ~cache_policies[i].cr_mask;
132 cr_no_alignment &= ~cache_policies[i].cr_mask;
ae8f1541
RK
133 break;
134 }
135 }
136 if (i == ARRAY_SIZE(cache_policies))
137 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
4b46d641
RK
138 /*
139 * This restriction is partly to do with the way we boot; it is
140 * unpredictable to have memory mapped using two different sets of
141 * memory attributes (shared, type, and cache attribs). We can not
142 * change these attributes once the initial assembly has setup the
143 * page tables.
144 */
11179d8c
CM
145 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
146 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
147 cachepolicy = CPOLICY_WRITEBACK;
148 }
ae8f1541
RK
149 flush_cache_all();
150 set_cr(cr_alignment);
2b0d8c25 151 return 0;
ae8f1541 152}
2b0d8c25 153early_param("cachepolicy", early_cachepolicy);
ae8f1541 154
2b0d8c25 155static int __init early_nocache(char *__unused)
ae8f1541
RK
156{
157 char *p = "buffered";
158 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
159 early_cachepolicy(p);
160 return 0;
ae8f1541 161}
2b0d8c25 162early_param("nocache", early_nocache);
ae8f1541 163
2b0d8c25 164static int __init early_nowrite(char *__unused)
ae8f1541
RK
165{
166 char *p = "uncached";
167 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
168 early_cachepolicy(p);
169 return 0;
ae8f1541 170}
2b0d8c25 171early_param("nowb", early_nowrite);
ae8f1541 172
1b6ba46b 173#ifndef CONFIG_ARM_LPAE
2b0d8c25 174static int __init early_ecc(char *p)
ae8f1541 175{
2b0d8c25 176 if (memcmp(p, "on", 2) == 0)
ae8f1541 177 ecc_mask = PMD_PROTECTION;
2b0d8c25 178 else if (memcmp(p, "off", 3) == 0)
ae8f1541 179 ecc_mask = 0;
2b0d8c25 180 return 0;
ae8f1541 181}
2b0d8c25 182early_param("ecc", early_ecc);
1b6ba46b 183#endif
ae8f1541
RK
184
185static int __init noalign_setup(char *__unused)
186{
187 cr_alignment &= ~CR_A;
188 cr_no_alignment &= ~CR_A;
189 set_cr(cr_alignment);
190 return 1;
191}
192__setup("noalign", noalign_setup);
193
255d1f86
RK
194#ifndef CONFIG_SMP
195void adjust_cr(unsigned long mask, unsigned long set)
196{
197 unsigned long flags;
198
199 mask &= ~CR_A;
200
201 set &= mask;
202
203 local_irq_save(flags);
204
205 cr_no_alignment = (cr_no_alignment & ~mask) | set;
206 cr_alignment = (cr_alignment & ~mask) | set;
207
208 set_cr((get_cr() & ~mask) | set);
209
210 local_irq_restore(flags);
211}
212#endif
213
36bb94ba 214#define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
b1cce6b1 215#define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
0af92bef 216
b29e9f5e 217static struct mem_type mem_types[] = {
0af92bef 218 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
bb30f36f
RK
219 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
220 L_PTE_SHARED,
0af92bef 221 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 222 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
0af92bef
RK
223 .domain = DOMAIN_IO,
224 },
225 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
bb30f36f 226 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
0af92bef 227 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 228 .prot_sect = PROT_SECT_DEVICE,
0af92bef
RK
229 .domain = DOMAIN_IO,
230 },
231 [MT_DEVICE_CACHED] = { /* ioremap_cached */
bb30f36f 232 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
0af92bef
RK
233 .prot_l1 = PMD_TYPE_TABLE,
234 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
235 .domain = DOMAIN_IO,
c2794437 236 },
1ad77a87 237 [MT_DEVICE_WC] = { /* ioremap_wc */
bb30f36f 238 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
0af92bef 239 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 240 .prot_sect = PROT_SECT_DEVICE,
0af92bef 241 .domain = DOMAIN_IO,
ae8f1541 242 },
ebb4c658
RK
243 [MT_UNCACHED] = {
244 .prot_pte = PROT_PTE_DEVICE,
245 .prot_l1 = PMD_TYPE_TABLE,
246 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
247 .domain = DOMAIN_IO,
248 },
ae8f1541 249 [MT_CACHECLEAN] = {
9ef79635 250 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
ae8f1541
RK
251 .domain = DOMAIN_KERNEL,
252 },
1b6ba46b 253#ifndef CONFIG_ARM_LPAE
ae8f1541 254 [MT_MINICLEAN] = {
9ef79635 255 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
ae8f1541
RK
256 .domain = DOMAIN_KERNEL,
257 },
1b6ba46b 258#endif
ae8f1541
RK
259 [MT_LOW_VECTORS] = {
260 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 261 L_PTE_RDONLY,
ae8f1541
RK
262 .prot_l1 = PMD_TYPE_TABLE,
263 .domain = DOMAIN_USER,
264 },
265 [MT_HIGH_VECTORS] = {
266 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 267 L_PTE_USER | L_PTE_RDONLY,
ae8f1541
RK
268 .prot_l1 = PMD_TYPE_TABLE,
269 .domain = DOMAIN_USER,
270 },
271 [MT_MEMORY] = {
36bb94ba 272 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
f1a2481c 273 .prot_l1 = PMD_TYPE_TABLE,
9ef79635 274 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
ae8f1541
RK
275 .domain = DOMAIN_KERNEL,
276 },
277 [MT_ROM] = {
9ef79635 278 .prot_sect = PMD_TYPE_SECT,
ae8f1541
RK
279 .domain = DOMAIN_KERNEL,
280 },
e4707dd3 281 [MT_MEMORY_NONCACHED] = {
f1a2481c 282 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 283 L_PTE_MT_BUFFERABLE,
f1a2481c 284 .prot_l1 = PMD_TYPE_TABLE,
e4707dd3
PW
285 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
286 .domain = DOMAIN_KERNEL,
287 },
cb9d7707 288 [MT_MEMORY_DTCM] = {
f444fce3 289 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 290 L_PTE_XN,
f444fce3
LW
291 .prot_l1 = PMD_TYPE_TABLE,
292 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
293 .domain = DOMAIN_KERNEL,
cb9d7707
LW
294 },
295 [MT_MEMORY_ITCM] = {
36bb94ba 296 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
cb9d7707 297 .prot_l1 = PMD_TYPE_TABLE,
f444fce3 298 .domain = DOMAIN_KERNEL,
cb9d7707 299 },
8fb54284
SS
300 [MT_MEMORY_SO] = {
301 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
93d5bf07 302 L_PTE_MT_UNCACHED | L_PTE_XN,
8fb54284
SS
303 .prot_l1 = PMD_TYPE_TABLE,
304 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
305 PMD_SECT_UNCACHED | PMD_SECT_XN,
306 .domain = DOMAIN_KERNEL,
307 },
c7909509
MS
308 [MT_MEMORY_DMA_READY] = {
309 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
310 .prot_l1 = PMD_TYPE_TABLE,
311 .domain = DOMAIN_KERNEL,
312 },
ae8f1541
RK
313};
314
b29e9f5e
RK
315const struct mem_type *get_mem_type(unsigned int type)
316{
317 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
318}
69d3a84a 319EXPORT_SYMBOL(get_mem_type);
b29e9f5e 320
ae8f1541
RK
321/*
322 * Adjust the PMD section entries according to the CPU in use.
323 */
324static void __init build_mem_type_table(void)
325{
326 struct cachepolicy *cp;
327 unsigned int cr = get_cr();
442e70c0 328 pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
cc577c26 329 pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
ae8f1541
RK
330 int cpu_arch = cpu_architecture();
331 int i;
332
11179d8c 333 if (cpu_arch < CPU_ARCH_ARMv6) {
ae8f1541 334#if defined(CONFIG_CPU_DCACHE_DISABLE)
11179d8c
CM
335 if (cachepolicy > CPOLICY_BUFFERED)
336 cachepolicy = CPOLICY_BUFFERED;
ae8f1541 337#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
11179d8c
CM
338 if (cachepolicy > CPOLICY_WRITETHROUGH)
339 cachepolicy = CPOLICY_WRITETHROUGH;
ae8f1541 340#endif
11179d8c 341 }
ae8f1541
RK
342 if (cpu_arch < CPU_ARCH_ARMv5) {
343 if (cachepolicy >= CPOLICY_WRITEALLOC)
344 cachepolicy = CPOLICY_WRITEBACK;
345 ecc_mask = 0;
346 }
f00ec48f
RK
347 if (is_smp())
348 cachepolicy = CPOLICY_WRITEALLOC;
ae8f1541 349
1ad77a87 350 /*
b1cce6b1
RK
351 * Strip out features not present on earlier architectures.
352 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
353 * without extended page tables don't have the 'Shared' bit.
1ad77a87 354 */
b1cce6b1
RK
355 if (cpu_arch < CPU_ARCH_ARMv5)
356 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
357 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
358 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
359 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
360 mem_types[i].prot_sect &= ~PMD_SECT_S;
ae8f1541
RK
361
362 /*
b1cce6b1
RK
363 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
364 * "update-able on write" bit on ARM610). However, Xscale and
365 * Xscale3 require this bit to be cleared.
ae8f1541 366 */
b1cce6b1 367 if (cpu_is_xscale() || cpu_is_xsc3()) {
9ef79635 368 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541 369 mem_types[i].prot_sect &= ~PMD_BIT4;
9ef79635
RK
370 mem_types[i].prot_l1 &= ~PMD_BIT4;
371 }
372 } else if (cpu_arch < CPU_ARCH_ARMv6) {
373 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541
RK
374 if (mem_types[i].prot_l1)
375 mem_types[i].prot_l1 |= PMD_BIT4;
9ef79635
RK
376 if (mem_types[i].prot_sect)
377 mem_types[i].prot_sect |= PMD_BIT4;
378 }
379 }
ae8f1541 380
b1cce6b1
RK
381 /*
382 * Mark the device areas according to the CPU/architecture.
383 */
384 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
385 if (!cpu_is_xsc3()) {
386 /*
387 * Mark device regions on ARMv6+ as execute-never
388 * to prevent speculative instruction fetches.
389 */
390 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
391 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
392 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
393 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
394 }
395 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
396 /*
397 * For ARMv7 with TEX remapping,
398 * - shared device is SXCB=1100
399 * - nonshared device is SXCB=0100
400 * - write combine device mem is SXCB=0001
401 * (Uncached Normal memory)
402 */
403 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
404 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
405 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
406 } else if (cpu_is_xsc3()) {
407 /*
408 * For Xscale3,
409 * - shared device is TEXCB=00101
410 * - nonshared device is TEXCB=01000
411 * - write combine device mem is TEXCB=00100
412 * (Inner/Outer Uncacheable in xsc3 parlance)
413 */
414 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
415 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
416 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
417 } else {
418 /*
419 * For ARMv6 and ARMv7 without TEX remapping,
420 * - shared device is TEXCB=00001
421 * - nonshared device is TEXCB=01000
422 * - write combine device mem is TEXCB=00100
423 * (Uncached Normal in ARMv6 parlance).
424 */
425 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
426 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
427 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
428 }
429 } else {
430 /*
431 * On others, write combining is "Uncached/Buffered"
432 */
433 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
434 }
435
436 /*
437 * Now deal with the memory-type mappings
438 */
ae8f1541 439 cp = &cache_policies[cachepolicy];
bb30f36f 440 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
cc577c26
CD
441 s2_pgprot = cp->pte_s2;
442 hyp_device_pgprot = s2_device_pgprot = mem_types[MT_DEVICE].prot_pte;
bb30f36f 443
ae8f1541
RK
444 /*
445 * ARMv6 and above have extended page tables.
446 */
447 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
1b6ba46b 448#ifndef CONFIG_ARM_LPAE
ae8f1541
RK
449 /*
450 * Mark cache clean areas and XIP ROM read only
451 * from SVC mode and no access from userspace.
452 */
453 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
454 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
455 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
1b6ba46b 456#endif
ae8f1541 457
f00ec48f
RK
458 if (is_smp()) {
459 /*
460 * Mark memory with the "shared" attribute
461 * for SMP systems
462 */
463 user_pgprot |= L_PTE_SHARED;
464 kern_pgprot |= L_PTE_SHARED;
465 vecs_pgprot |= L_PTE_SHARED;
cc577c26 466 s2_pgprot |= L_PTE_SHARED;
f00ec48f
RK
467 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
468 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
469 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
470 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
471 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
472 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
c7909509 473 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
f00ec48f
RK
474 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
475 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
476 }
ae8f1541
RK
477 }
478
e4707dd3
PW
479 /*
480 * Non-cacheable Normal - intended for memory areas that must
481 * not cause dirty cache line writebacks when used
482 */
483 if (cpu_arch >= CPU_ARCH_ARMv6) {
484 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
485 /* Non-cacheable Normal is XCB = 001 */
486 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
487 PMD_SECT_BUFFERED;
488 } else {
489 /* For both ARMv6 and non-TEX-remapping ARMv7 */
490 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
491 PMD_SECT_TEX(1);
492 }
493 } else {
494 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
495 }
496
1b6ba46b
CM
497#ifdef CONFIG_ARM_LPAE
498 /*
499 * Do not generate access flag faults for the kernel mappings.
500 */
501 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
502 mem_types[i].prot_pte |= PTE_EXT_AF;
1a3abcf4
VA
503 if (mem_types[i].prot_sect)
504 mem_types[i].prot_sect |= PMD_SECT_AF;
1b6ba46b
CM
505 }
506 kern_pgprot |= PTE_EXT_AF;
507 vecs_pgprot |= PTE_EXT_AF;
508#endif
509
ae8f1541 510 for (i = 0; i < 16; i++) {
864aa04c 511 pteval_t v = pgprot_val(protection_map[i]);
bb30f36f 512 protection_map[i] = __pgprot(v | user_pgprot);
ae8f1541
RK
513 }
514
bb30f36f
RK
515 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
516 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
ae8f1541 517
44b18693 518 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
ae8f1541 519 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
36bb94ba 520 L_PTE_DIRTY | kern_pgprot);
cc577c26
CD
521 pgprot_s2 = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
522 pgprot_s2_device = __pgprot(s2_device_pgprot);
523 pgprot_hyp_device = __pgprot(hyp_device_pgprot);
ae8f1541
RK
524
525 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
526 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
527 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
f1a2481c 528 mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
c7909509 529 mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
f1a2481c 530 mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
ae8f1541
RK
531 mem_types[MT_ROM].prot_sect |= cp->pmd;
532
533 switch (cp->pmd) {
534 case PMD_SECT_WT:
535 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
536 break;
537 case PMD_SECT_WB:
538 case PMD_SECT_WBWA:
539 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
540 break;
541 }
542 printk("Memory policy: ECC %sabled, Data cache %s\n",
543 ecc_mask ? "en" : "dis", cp->policy);
2497f0a8
RK
544
545 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
546 struct mem_type *t = &mem_types[i];
547 if (t->prot_l1)
548 t->prot_l1 |= PMD_DOMAIN(t->domain);
549 if (t->prot_sect)
550 t->prot_sect |= PMD_DOMAIN(t->domain);
551 }
ae8f1541
RK
552}
553
d907387c
CM
554#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
555pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
556 unsigned long size, pgprot_t vma_prot)
557{
558 if (!pfn_valid(pfn))
559 return pgprot_noncached(vma_prot);
560 else if (file->f_flags & O_SYNC)
561 return pgprot_writecombine(vma_prot);
562 return vma_prot;
563}
564EXPORT_SYMBOL(phys_mem_access_prot);
565#endif
566
ae8f1541
RK
567#define vectors_base() (vectors_high() ? 0xffff0000 : 0)
568
0536bdf3 569static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
3abe9d33 570{
0536bdf3 571 void *ptr = __va(memblock_alloc(sz, align));
2778f620
RK
572 memset(ptr, 0, sz);
573 return ptr;
3abe9d33
RK
574}
575
0536bdf3
NP
576static void __init *early_alloc(unsigned long sz)
577{
578 return early_alloc_aligned(sz, sz);
579}
580
4bb2e27d 581static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
ae8f1541 582{
24e6c699 583 if (pmd_none(*pmd)) {
410f1483 584 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
97092e0c 585 __pmd_populate(pmd, __pa(pte), prot);
24e6c699 586 }
4bb2e27d
RK
587 BUG_ON(pmd_bad(*pmd));
588 return pte_offset_kernel(pmd, addr);
589}
ae8f1541 590
4bb2e27d
RK
591static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
592 unsigned long end, unsigned long pfn,
593 const struct mem_type *type)
594{
595 pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
24e6c699 596 do {
40d192b6 597 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
24e6c699
RK
598 pfn++;
599 } while (pte++, addr += PAGE_SIZE, addr != end);
ae8f1541
RK
600}
601
e651eab0
S
602static void __init map_init_section(pmd_t *pmd, unsigned long addr,
603 unsigned long end, phys_addr_t phys,
604 const struct mem_type *type)
ae8f1541 605{
e651eab0 606#ifndef CONFIG_ARM_LPAE
24e6c699 607 /*
e651eab0
S
608 * In classic MMU format, puds and pmds are folded in to
609 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
610 * group of L1 entries making up one logical pointer to
611 * an L2 table (2MB), where as PMDs refer to the individual
612 * L1 entries (1MB). Hence increment to get the correct
613 * offset for odd 1MB sections.
614 * (See arch/arm/include/asm/pgtable-2level.h)
24e6c699 615 */
e651eab0
S
616 if (addr & SECTION_SIZE)
617 pmd++;
1b6ba46b 618#endif
e651eab0
S
619 do {
620 *pmd = __pmd(phys | type->prot_sect);
621 phys += SECTION_SIZE;
622 } while (pmd++, addr += SECTION_SIZE, addr != end);
24e6c699 623
e651eab0
S
624 flush_pmd_entry(pmd);
625}
ae8f1541 626
e651eab0
S
627static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
628 unsigned long end, phys_addr_t phys,
629 const struct mem_type *type)
630{
631 pmd_t *pmd = pmd_offset(pud, addr);
632 unsigned long next;
633
634 do {
24e6c699 635 /*
e651eab0
S
636 * With LPAE, we must loop over to map
637 * all the pmds for the given range.
24e6c699 638 */
e651eab0
S
639 next = pmd_addr_end(addr, end);
640
641 /*
642 * Try a section mapping - addr, next and phys must all be
643 * aligned to a section boundary.
644 */
645 if (type->prot_sect &&
646 ((addr | next | phys) & ~SECTION_MASK) == 0) {
647 map_init_section(pmd, addr, next, phys, type);
648 } else {
649 alloc_init_pte(pmd, addr, next,
650 __phys_to_pfn(phys), type);
651 }
652
653 phys += next - addr;
654
655 } while (pmd++, addr = next, addr != end);
ae8f1541
RK
656}
657
14904927
SB
658static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
659 unsigned long end, unsigned long phys, const struct mem_type *type)
516295e5
RK
660{
661 pud_t *pud = pud_offset(pgd, addr);
662 unsigned long next;
663
664 do {
665 next = pud_addr_end(addr, end);
e651eab0 666 alloc_init_pmd(pud, addr, next, phys, type);
516295e5
RK
667 phys += next - addr;
668 } while (pud++, addr = next, addr != end);
669}
670
1b6ba46b 671#ifndef CONFIG_ARM_LPAE
4a56c1e4
RK
672static void __init create_36bit_mapping(struct map_desc *md,
673 const struct mem_type *type)
674{
97092e0c
RK
675 unsigned long addr, length, end;
676 phys_addr_t phys;
4a56c1e4
RK
677 pgd_t *pgd;
678
679 addr = md->virtual;
cae6292b 680 phys = __pfn_to_phys(md->pfn);
4a56c1e4
RK
681 length = PAGE_ALIGN(md->length);
682
683 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
684 printk(KERN_ERR "MM: CPU does not support supersection "
685 "mapping for 0x%08llx at 0x%08lx\n",
29a38193 686 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
687 return;
688 }
689
690 /* N.B. ARMv6 supersections are only defined to work with domain 0.
691 * Since domain assignments can in fact be arbitrary, the
692 * 'domain == 0' check below is required to insure that ARMv6
693 * supersections are only allocated for domain 0 regardless
694 * of the actual domain assignments in use.
695 */
696 if (type->domain) {
697 printk(KERN_ERR "MM: invalid domain in supersection "
698 "mapping for 0x%08llx at 0x%08lx\n",
29a38193 699 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
700 return;
701 }
702
703 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
29a38193
WD
704 printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
705 " at 0x%08lx invalid alignment\n",
706 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
707 return;
708 }
709
710 /*
711 * Shift bits [35:32] of address into bits [23:20] of PMD
712 * (See ARMv6 spec).
713 */
714 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
715
716 pgd = pgd_offset_k(addr);
717 end = addr + length;
718 do {
516295e5
RK
719 pud_t *pud = pud_offset(pgd, addr);
720 pmd_t *pmd = pmd_offset(pud, addr);
4a56c1e4
RK
721 int i;
722
723 for (i = 0; i < 16; i++)
724 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
725
726 addr += SUPERSECTION_SIZE;
727 phys += SUPERSECTION_SIZE;
728 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
729 } while (addr != end);
730}
1b6ba46b 731#endif /* !CONFIG_ARM_LPAE */
4a56c1e4 732
ae8f1541
RK
733/*
734 * Create the page directory entries and any necessary
735 * page tables for the mapping specified by `md'. We
736 * are able to cope here with varying sizes and address
737 * offsets, and we take full advantage of sections and
738 * supersections.
739 */
a2227120 740static void __init create_mapping(struct map_desc *md)
ae8f1541 741{
cae6292b
WD
742 unsigned long addr, length, end;
743 phys_addr_t phys;
d5c98176 744 const struct mem_type *type;
24e6c699 745 pgd_t *pgd;
ae8f1541
RK
746
747 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
29a38193
WD
748 printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
749 " at 0x%08lx in user region\n",
750 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
ae8f1541
RK
751 return;
752 }
753
754 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
0536bdf3
NP
755 md->virtual >= PAGE_OFFSET &&
756 (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
29a38193 757 printk(KERN_WARNING "BUG: mapping for 0x%08llx"
0536bdf3 758 " at 0x%08lx out of vmalloc space\n",
29a38193 759 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
ae8f1541
RK
760 }
761
d5c98176 762 type = &mem_types[md->type];
ae8f1541 763
1b6ba46b 764#ifndef CONFIG_ARM_LPAE
ae8f1541
RK
765 /*
766 * Catch 36-bit addresses
767 */
4a56c1e4
RK
768 if (md->pfn >= 0x100000) {
769 create_36bit_mapping(md, type);
770 return;
ae8f1541 771 }
1b6ba46b 772#endif
ae8f1541 773
7b9c7b4d 774 addr = md->virtual & PAGE_MASK;
cae6292b 775 phys = __pfn_to_phys(md->pfn);
7b9c7b4d 776 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
ae8f1541 777
24e6c699 778 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
29a38193 779 printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
ae8f1541 780 "be mapped using pages, ignoring.\n",
29a38193 781 (long long)__pfn_to_phys(md->pfn), addr);
ae8f1541
RK
782 return;
783 }
784
24e6c699
RK
785 pgd = pgd_offset_k(addr);
786 end = addr + length;
787 do {
788 unsigned long next = pgd_addr_end(addr, end);
ae8f1541 789
516295e5 790 alloc_init_pud(pgd, addr, next, phys, type);
ae8f1541 791
24e6c699
RK
792 phys += next - addr;
793 addr = next;
794 } while (pgd++, addr != end);
ae8f1541
RK
795}
796
797/*
798 * Create the architecture specific mappings
799 */
800void __init iotable_init(struct map_desc *io_desc, int nr)
801{
0536bdf3
NP
802 struct map_desc *md;
803 struct vm_struct *vm;
101eeda3 804 struct static_vm *svm;
0536bdf3
NP
805
806 if (!nr)
807 return;
ae8f1541 808
101eeda3 809 svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
0536bdf3
NP
810
811 for (md = io_desc; nr; md++, nr--) {
812 create_mapping(md);
101eeda3
JK
813
814 vm = &svm->vm;
0536bdf3
NP
815 vm->addr = (void *)(md->virtual & PAGE_MASK);
816 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
c2794437
RH
817 vm->phys_addr = __pfn_to_phys(md->pfn);
818 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
576d2f25 819 vm->flags |= VM_ARM_MTYPE(md->type);
0536bdf3 820 vm->caller = iotable_init;
101eeda3 821 add_static_vm_early(svm++);
0536bdf3 822 }
ae8f1541
RK
823}
824
c2794437
RH
825void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
826 void *caller)
827{
828 struct vm_struct *vm;
101eeda3
JK
829 struct static_vm *svm;
830
831 svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
c2794437 832
101eeda3 833 vm = &svm->vm;
c2794437
RH
834 vm->addr = (void *)addr;
835 vm->size = size;
863e99a8 836 vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
c2794437 837 vm->caller = caller;
101eeda3 838 add_static_vm_early(svm);
c2794437
RH
839}
840
19b52abe
NP
841#ifndef CONFIG_ARM_LPAE
842
843/*
844 * The Linux PMD is made of two consecutive section entries covering 2MB
845 * (see definition in include/asm/pgtable-2level.h). However a call to
846 * create_mapping() may optimize static mappings by using individual
847 * 1MB section mappings. This leaves the actual PMD potentially half
848 * initialized if the top or bottom section entry isn't used, leaving it
849 * open to problems if a subsequent ioremap() or vmalloc() tries to use
850 * the virtual space left free by that unused section entry.
851 *
852 * Let's avoid the issue by inserting dummy vm entries covering the unused
853 * PMD halves once the static mappings are in place.
854 */
855
856static void __init pmd_empty_section_gap(unsigned long addr)
857{
c2794437 858 vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
19b52abe
NP
859}
860
861static void __init fill_pmd_gaps(void)
862{
101eeda3 863 struct static_vm *svm;
19b52abe
NP
864 struct vm_struct *vm;
865 unsigned long addr, next = 0;
866 pmd_t *pmd;
867
101eeda3
JK
868 list_for_each_entry(svm, &static_vmlist, list) {
869 vm = &svm->vm;
19b52abe
NP
870 addr = (unsigned long)vm->addr;
871 if (addr < next)
872 continue;
873
874 /*
875 * Check if this vm starts on an odd section boundary.
876 * If so and the first section entry for this PMD is free
877 * then we block the corresponding virtual address.
878 */
879 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
880 pmd = pmd_off_k(addr);
881 if (pmd_none(*pmd))
882 pmd_empty_section_gap(addr & PMD_MASK);
883 }
884
885 /*
886 * Then check if this vm ends on an odd section boundary.
887 * If so and the second section entry for this PMD is empty
888 * then we block the corresponding virtual address.
889 */
890 addr += vm->size;
891 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
892 pmd = pmd_off_k(addr) + 1;
893 if (pmd_none(*pmd))
894 pmd_empty_section_gap(addr);
895 }
896
897 /* no need to look at any vm entry until we hit the next PMD */
898 next = (addr + PMD_SIZE - 1) & PMD_MASK;
899 }
900}
901
902#else
903#define fill_pmd_gaps() do { } while (0)
904#endif
905
c2794437
RH
906#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
907static void __init pci_reserve_io(void)
908{
101eeda3 909 struct static_vm *svm;
c2794437 910
101eeda3
JK
911 svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
912 if (svm)
913 return;
c2794437 914
c2794437
RH
915 vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
916}
917#else
918#define pci_reserve_io() do { } while (0)
919#endif
920
e5c5f2ad
RH
921#ifdef CONFIG_DEBUG_LL
922void __init debug_ll_io_init(void)
923{
924 struct map_desc map;
925
926 debug_ll_addr(&map.pfn, &map.virtual);
927 if (!map.pfn || !map.virtual)
928 return;
929 map.pfn = __phys_to_pfn(map.pfn);
930 map.virtual &= PAGE_MASK;
931 map.length = PAGE_SIZE;
932 map.type = MT_DEVICE;
933 create_mapping(&map);
934}
935#endif
936
0536bdf3
NP
937static void * __initdata vmalloc_min =
938 (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
6c5da7ac
RK
939
940/*
941 * vmalloc=size forces the vmalloc area to be exactly 'size'
942 * bytes. This can be used to increase (or decrease) the vmalloc
0536bdf3 943 * area - the default is 240m.
6c5da7ac 944 */
2b0d8c25 945static int __init early_vmalloc(char *arg)
6c5da7ac 946{
79612395 947 unsigned long vmalloc_reserve = memparse(arg, NULL);
6c5da7ac
RK
948
949 if (vmalloc_reserve < SZ_16M) {
950 vmalloc_reserve = SZ_16M;
951 printk(KERN_WARNING
952 "vmalloc area too small, limiting to %luMB\n",
953 vmalloc_reserve >> 20);
954 }
9210807c
NP
955
956 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
957 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
958 printk(KERN_WARNING
959 "vmalloc area is too big, limiting to %luMB\n",
960 vmalloc_reserve >> 20);
961 }
79612395
RK
962
963 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
2b0d8c25 964 return 0;
6c5da7ac 965}
2b0d8c25 966early_param("vmalloc", early_vmalloc);
6c5da7ac 967
c7909509 968phys_addr_t arm_lowmem_limit __initdata = 0;
8df65168 969
0371d3f7 970void __init sanity_check_meminfo(void)
60296c71 971{
dde5828f 972 int i, j, highmem = 0;
60296c71 973
4b5f32ce 974 for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
a1bbaec0
NP
975 struct membank *bank = &meminfo.bank[j];
976 *bank = meminfo.bank[i];
60296c71 977
77f73a2c
WD
978 if (bank->start > ULONG_MAX)
979 highmem = 1;
980
a1bbaec0 981#ifdef CONFIG_HIGHMEM
40f7bfe4 982 if (__va(bank->start) >= vmalloc_min ||
dde5828f
RK
983 __va(bank->start) < (void *)PAGE_OFFSET)
984 highmem = 1;
985
986 bank->highmem = highmem;
987
a1bbaec0
NP
988 /*
989 * Split those memory banks which are partially overlapping
990 * the vmalloc area greatly simplifying things later.
991 */
77f73a2c 992 if (!highmem && __va(bank->start) < vmalloc_min &&
79612395 993 bank->size > vmalloc_min - __va(bank->start)) {
a1bbaec0
NP
994 if (meminfo.nr_banks >= NR_BANKS) {
995 printk(KERN_CRIT "NR_BANKS too low, "
996 "ignoring high memory\n");
997 } else {
998 memmove(bank + 1, bank,
999 (meminfo.nr_banks - i) * sizeof(*bank));
1000 meminfo.nr_banks++;
1001 i++;
79612395
RK
1002 bank[1].size -= vmalloc_min - __va(bank->start);
1003 bank[1].start = __pa(vmalloc_min - 1) + 1;
dde5828f 1004 bank[1].highmem = highmem = 1;
a1bbaec0
NP
1005 j++;
1006 }
79612395 1007 bank->size = vmalloc_min - __va(bank->start);
a1bbaec0
NP
1008 }
1009#else
041d785f
RK
1010 bank->highmem = highmem;
1011
77f73a2c
WD
1012 /*
1013 * Highmem banks not allowed with !CONFIG_HIGHMEM.
1014 */
1015 if (highmem) {
1016 printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
1017 "(!CONFIG_HIGHMEM).\n",
1018 (unsigned long long)bank->start,
1019 (unsigned long long)bank->start + bank->size - 1);
1020 continue;
1021 }
1022
a1bbaec0
NP
1023 /*
1024 * Check whether this memory bank would entirely overlap
1025 * the vmalloc area.
1026 */
79612395 1027 if (__va(bank->start) >= vmalloc_min ||
f0bba9f9 1028 __va(bank->start) < (void *)PAGE_OFFSET) {
e33b9d08 1029 printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
a1bbaec0 1030 "(vmalloc region overlap).\n",
e33b9d08
RK
1031 (unsigned long long)bank->start,
1032 (unsigned long long)bank->start + bank->size - 1);
a1bbaec0
NP
1033 continue;
1034 }
60296c71 1035
a1bbaec0
NP
1036 /*
1037 * Check whether this memory bank would partially overlap
1038 * the vmalloc area.
1039 */
36418c51
JA
1040 if (__va(bank->start + bank->size - 1) >= vmalloc_min ||
1041 __va(bank->start + bank->size - 1) <= __va(bank->start)) {
79612395 1042 unsigned long newsize = vmalloc_min - __va(bank->start);
e33b9d08
RK
1043 printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
1044 "to -%.8llx (vmalloc region overlap).\n",
1045 (unsigned long long)bank->start,
1046 (unsigned long long)bank->start + bank->size - 1,
1047 (unsigned long long)bank->start + newsize - 1);
a1bbaec0
NP
1048 bank->size = newsize;
1049 }
1050#endif
c7909509
MS
1051 if (!bank->highmem && bank->start + bank->size > arm_lowmem_limit)
1052 arm_lowmem_limit = bank->start + bank->size;
40f7bfe4 1053
a1bbaec0 1054 j++;
60296c71 1055 }
e616c591
RK
1056#ifdef CONFIG_HIGHMEM
1057 if (highmem) {
1058 const char *reason = NULL;
1059
1060 if (cache_is_vipt_aliasing()) {
1061 /*
1062 * Interactions between kmap and other mappings
1063 * make highmem support with aliasing VIPT caches
1064 * rather difficult.
1065 */
1066 reason = "with VIPT aliasing cache";
e616c591
RK
1067 }
1068 if (reason) {
1069 printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
1070 reason);
1071 while (j > 0 && meminfo.bank[j - 1].highmem)
1072 j--;
1073 }
1074 }
1075#endif
4b5f32ce 1076 meminfo.nr_banks = j;
c7909509
MS
1077 high_memory = __va(arm_lowmem_limit - 1) + 1;
1078 memblock_set_current_limit(arm_lowmem_limit);
60296c71
LB
1079}
1080
4b5f32ce 1081static inline void prepare_page_table(void)
d111e8f9
RK
1082{
1083 unsigned long addr;
8df65168 1084 phys_addr_t end;
d111e8f9
RK
1085
1086 /*
1087 * Clear out all the mappings below the kernel image.
1088 */
e73fc88e 1089 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
d111e8f9
RK
1090 pmd_clear(pmd_off_k(addr));
1091
1092#ifdef CONFIG_XIP_KERNEL
1093 /* The XIP kernel is mapped in the module area -- skip over it */
e73fc88e 1094 addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
d111e8f9 1095#endif
e73fc88e 1096 for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
d111e8f9
RK
1097 pmd_clear(pmd_off_k(addr));
1098
8df65168
RK
1099 /*
1100 * Find the end of the first block of lowmem.
1101 */
1102 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
c7909509
MS
1103 if (end >= arm_lowmem_limit)
1104 end = arm_lowmem_limit;
8df65168 1105
d111e8f9
RK
1106 /*
1107 * Clear out all the kernel space mappings, except for the first
0536bdf3 1108 * memory bank, up to the vmalloc region.
d111e8f9 1109 */
8df65168 1110 for (addr = __phys_to_virt(end);
0536bdf3 1111 addr < VMALLOC_START; addr += PMD_SIZE)
d111e8f9
RK
1112 pmd_clear(pmd_off_k(addr));
1113}
1114
1b6ba46b
CM
1115#ifdef CONFIG_ARM_LPAE
1116/* the first page is reserved for pgd */
1117#define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
1118 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1119#else
e73fc88e 1120#define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1b6ba46b 1121#endif
e73fc88e 1122
d111e8f9 1123/*
2778f620 1124 * Reserve the special regions of memory
d111e8f9 1125 */
2778f620 1126void __init arm_mm_memblock_reserve(void)
d111e8f9 1127{
d111e8f9
RK
1128 /*
1129 * Reserve the page tables. These are already in use,
1130 * and can only be in node 0.
1131 */
e73fc88e 1132 memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
d111e8f9 1133
d111e8f9
RK
1134#ifdef CONFIG_SA1111
1135 /*
1136 * Because of the SA1111 DMA bug, we want to preserve our
1137 * precious DMA-able memory...
1138 */
2778f620 1139 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
d111e8f9 1140#endif
d111e8f9
RK
1141}
1142
1143/*
0536bdf3
NP
1144 * Set up the device mappings. Since we clear out the page tables for all
1145 * mappings above VMALLOC_START, we will remove any debug device mappings.
d111e8f9
RK
1146 * This means you have to be careful how you debug this function, or any
1147 * called function. This means you can't use any function or debugging
1148 * method which may touch any device, otherwise the kernel _will_ crash.
1149 */
1150static void __init devicemaps_init(struct machine_desc *mdesc)
1151{
1152 struct map_desc map;
1153 unsigned long addr;
94e5a85b 1154 void *vectors;
d111e8f9
RK
1155
1156 /*
1157 * Allocate the vector page early.
1158 */
94e5a85b
RK
1159 vectors = early_alloc(PAGE_SIZE);
1160
1161 early_trap_init(vectors);
d111e8f9 1162
0536bdf3 1163 for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
d111e8f9
RK
1164 pmd_clear(pmd_off_k(addr));
1165
1166 /*
1167 * Map the kernel if it is XIP.
1168 * It is always first in the modulearea.
1169 */
1170#ifdef CONFIG_XIP_KERNEL
1171 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
ab4f2ee1 1172 map.virtual = MODULES_VADDR;
37efe642 1173 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
d111e8f9
RK
1174 map.type = MT_ROM;
1175 create_mapping(&map);
1176#endif
1177
1178 /*
1179 * Map the cache flushing regions.
1180 */
1181#ifdef FLUSH_BASE
1182 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1183 map.virtual = FLUSH_BASE;
1184 map.length = SZ_1M;
1185 map.type = MT_CACHECLEAN;
1186 create_mapping(&map);
1187#endif
1188#ifdef FLUSH_BASE_MINICACHE
1189 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1190 map.virtual = FLUSH_BASE_MINICACHE;
1191 map.length = SZ_1M;
1192 map.type = MT_MINICLEAN;
1193 create_mapping(&map);
1194#endif
1195
1196 /*
1197 * Create a mapping for the machine vectors at the high-vectors
1198 * location (0xffff0000). If we aren't using high-vectors, also
1199 * create a mapping at the low-vectors virtual address.
1200 */
94e5a85b 1201 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
d111e8f9
RK
1202 map.virtual = 0xffff0000;
1203 map.length = PAGE_SIZE;
1204 map.type = MT_HIGH_VECTORS;
1205 create_mapping(&map);
1206
1207 if (!vectors_high()) {
1208 map.virtual = 0;
1209 map.type = MT_LOW_VECTORS;
1210 create_mapping(&map);
1211 }
1212
1213 /*
1214 * Ask the machine support to map in the statically mapped devices.
1215 */
1216 if (mdesc->map_io)
1217 mdesc->map_io();
19b52abe 1218 fill_pmd_gaps();
d111e8f9 1219
c2794437
RH
1220 /* Reserve fixed i/o space in VMALLOC region */
1221 pci_reserve_io();
1222
d111e8f9
RK
1223 /*
1224 * Finally flush the caches and tlb to ensure that we're in a
1225 * consistent state wrt the writebuffer. This also ensures that
1226 * any write-allocated cache lines in the vector page are written
1227 * back. After this point, we can start to touch devices again.
1228 */
1229 local_flush_tlb_all();
1230 flush_cache_all();
1231}
1232
d73cd428
NP
1233static void __init kmap_init(void)
1234{
1235#ifdef CONFIG_HIGHMEM
4bb2e27d
RK
1236 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1237 PKMAP_BASE, _PAGE_KERNEL_TABLE);
d73cd428
NP
1238#endif
1239}
1240
a2227120
RK
1241static void __init map_lowmem(void)
1242{
8df65168 1243 struct memblock_region *reg;
a2227120
RK
1244
1245 /* Map all the lowmem memory banks. */
8df65168
RK
1246 for_each_memblock(memory, reg) {
1247 phys_addr_t start = reg->base;
1248 phys_addr_t end = start + reg->size;
1249 struct map_desc map;
1250
c7909509
MS
1251 if (end > arm_lowmem_limit)
1252 end = arm_lowmem_limit;
8df65168
RK
1253 if (start >= end)
1254 break;
1255
1256 map.pfn = __phys_to_pfn(start);
1257 map.virtual = __phys_to_virt(start);
1258 map.length = end - start;
1259 map.type = MT_MEMORY;
a2227120 1260
8df65168 1261 create_mapping(&map);
a2227120
RK
1262 }
1263}
1264
d111e8f9
RK
1265/*
1266 * paging_init() sets up the page tables, initialises the zone memory
1267 * maps, and sets up the zero page, bad page and bad page tables.
1268 */
4b5f32ce 1269void __init paging_init(struct machine_desc *mdesc)
d111e8f9
RK
1270{
1271 void *zero_page;
1272
c7909509 1273 memblock_set_current_limit(arm_lowmem_limit);
0371d3f7 1274
d111e8f9 1275 build_mem_type_table();
4b5f32ce 1276 prepare_page_table();
a2227120 1277 map_lowmem();
c7909509 1278 dma_contiguous_remap();
d111e8f9 1279 devicemaps_init(mdesc);
d73cd428 1280 kmap_init();
de40614e 1281 tcm_init();
d111e8f9
RK
1282
1283 top_pmd = pmd_off_k(0xffff0000);
1284
3abe9d33
RK
1285 /* allocate the zero page. */
1286 zero_page = early_alloc(PAGE_SIZE);
2778f620 1287
8d717a52 1288 bootmem_init();
2778f620 1289
d111e8f9 1290 empty_zero_page = virt_to_page(zero_page);
421fe93c 1291 __flush_dcache_page(NULL, empty_zero_page);
d111e8f9 1292}
This page took 0.554213 seconds and 5 git commands to generate.