ARM: add definitions for pte_mkexec/pte_mknexec
[deliverable/linux.git] / arch / arm / mm / mmu.c
CommitLineData
d111e8f9
RK
1/*
2 * linux/arch/arm/mm/mmu.c
3 *
4 * Copyright (C) 1995-2005 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
ae8f1541 10#include <linux/module.h>
d111e8f9
RK
11#include <linux/kernel.h>
12#include <linux/errno.h>
13#include <linux/init.h>
d111e8f9
RK
14#include <linux/mman.h>
15#include <linux/nodemask.h>
2778f620 16#include <linux/memblock.h>
d907387c 17#include <linux/fs.h>
0536bdf3 18#include <linux/vmalloc.h>
158e8bfe 19#include <linux/sizes.h>
d111e8f9 20
15d07dc9 21#include <asm/cp15.h>
0ba8b9b2 22#include <asm/cputype.h>
37efe642 23#include <asm/sections.h>
3f973e22 24#include <asm/cachetype.h>
ebd4922e 25#include <asm/sections.h>
d111e8f9 26#include <asm/setup.h>
e616c591 27#include <asm/smp_plat.h>
d111e8f9 28#include <asm/tlb.h>
d73cd428 29#include <asm/highmem.h>
9f97da78 30#include <asm/system_info.h>
247055aa 31#include <asm/traps.h>
a77e0c7b
SS
32#include <asm/procinfo.h>
33#include <asm/memory.h>
d111e8f9
RK
34
35#include <asm/mach/arch.h>
36#include <asm/mach/map.h>
c2794437 37#include <asm/mach/pci.h>
d111e8f9
RK
38
39#include "mm.h"
de40614e 40#include "tcm.h"
d111e8f9 41
d111e8f9
RK
42/*
43 * empty_zero_page is a special page that is used for
44 * zero-initialized data and COW.
45 */
46struct page *empty_zero_page;
3653f3ab 47EXPORT_SYMBOL(empty_zero_page);
d111e8f9
RK
48
49/*
50 * The pmd table for the upper-most set of pages.
51 */
52pmd_t *top_pmd;
53
ae8f1541
RK
54#define CPOLICY_UNCACHED 0
55#define CPOLICY_BUFFERED 1
56#define CPOLICY_WRITETHROUGH 2
57#define CPOLICY_WRITEBACK 3
58#define CPOLICY_WRITEALLOC 4
59
60static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
61static unsigned int ecc_mask __initdata = 0;
44b18693 62pgprot_t pgprot_user;
ae8f1541 63pgprot_t pgprot_kernel;
cc577c26
CD
64pgprot_t pgprot_hyp_device;
65pgprot_t pgprot_s2;
66pgprot_t pgprot_s2_device;
ae8f1541 67
44b18693 68EXPORT_SYMBOL(pgprot_user);
ae8f1541
RK
69EXPORT_SYMBOL(pgprot_kernel);
70
71struct cachepolicy {
72 const char policy[16];
73 unsigned int cr_mask;
442e70c0 74 pmdval_t pmd;
f6e3354d 75 pteval_t pte;
cc577c26 76 pteval_t pte_s2;
ae8f1541
RK
77};
78
cc577c26
CD
79#ifdef CONFIG_ARM_LPAE
80#define s2_policy(policy) policy
81#else
82#define s2_policy(policy) 0
83#endif
84
ae8f1541
RK
85static struct cachepolicy cache_policies[] __initdata = {
86 {
87 .policy = "uncached",
88 .cr_mask = CR_W|CR_C,
89 .pmd = PMD_SECT_UNCACHED,
bb30f36f 90 .pte = L_PTE_MT_UNCACHED,
cc577c26 91 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
ae8f1541
RK
92 }, {
93 .policy = "buffered",
94 .cr_mask = CR_C,
95 .pmd = PMD_SECT_BUFFERED,
bb30f36f 96 .pte = L_PTE_MT_BUFFERABLE,
cc577c26 97 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
ae8f1541
RK
98 }, {
99 .policy = "writethrough",
100 .cr_mask = 0,
101 .pmd = PMD_SECT_WT,
bb30f36f 102 .pte = L_PTE_MT_WRITETHROUGH,
cc577c26 103 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITETHROUGH),
ae8f1541
RK
104 }, {
105 .policy = "writeback",
106 .cr_mask = 0,
107 .pmd = PMD_SECT_WB,
bb30f36f 108 .pte = L_PTE_MT_WRITEBACK,
cc577c26 109 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
ae8f1541
RK
110 }, {
111 .policy = "writealloc",
112 .cr_mask = 0,
113 .pmd = PMD_SECT_WBWA,
bb30f36f 114 .pte = L_PTE_MT_WRITEALLOC,
cc577c26 115 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
ae8f1541
RK
116 }
117};
118
b849a60e 119#ifdef CONFIG_CPU_CP15
ae8f1541 120/*
6cbdc8c5 121 * These are useful for identifying cache coherency
ae8f1541
RK
122 * problems by allowing the cache or the cache and
123 * writebuffer to be turned off. (Note: the write
124 * buffer should not be on and the cache off).
125 */
2b0d8c25 126static int __init early_cachepolicy(char *p)
ae8f1541
RK
127{
128 int i;
129
130 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
131 int len = strlen(cache_policies[i].policy);
132
2b0d8c25 133 if (memcmp(p, cache_policies[i].policy, len) == 0) {
ae8f1541
RK
134 cachepolicy = i;
135 cr_alignment &= ~cache_policies[i].cr_mask;
136 cr_no_alignment &= ~cache_policies[i].cr_mask;
ae8f1541
RK
137 break;
138 }
139 }
140 if (i == ARRAY_SIZE(cache_policies))
141 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
4b46d641
RK
142 /*
143 * This restriction is partly to do with the way we boot; it is
144 * unpredictable to have memory mapped using two different sets of
145 * memory attributes (shared, type, and cache attribs). We can not
146 * change these attributes once the initial assembly has setup the
147 * page tables.
148 */
11179d8c
CM
149 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
150 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
151 cachepolicy = CPOLICY_WRITEBACK;
152 }
ae8f1541
RK
153 flush_cache_all();
154 set_cr(cr_alignment);
2b0d8c25 155 return 0;
ae8f1541 156}
2b0d8c25 157early_param("cachepolicy", early_cachepolicy);
ae8f1541 158
2b0d8c25 159static int __init early_nocache(char *__unused)
ae8f1541
RK
160{
161 char *p = "buffered";
162 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
163 early_cachepolicy(p);
164 return 0;
ae8f1541 165}
2b0d8c25 166early_param("nocache", early_nocache);
ae8f1541 167
2b0d8c25 168static int __init early_nowrite(char *__unused)
ae8f1541
RK
169{
170 char *p = "uncached";
171 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
172 early_cachepolicy(p);
173 return 0;
ae8f1541 174}
2b0d8c25 175early_param("nowb", early_nowrite);
ae8f1541 176
1b6ba46b 177#ifndef CONFIG_ARM_LPAE
2b0d8c25 178static int __init early_ecc(char *p)
ae8f1541 179{
2b0d8c25 180 if (memcmp(p, "on", 2) == 0)
ae8f1541 181 ecc_mask = PMD_PROTECTION;
2b0d8c25 182 else if (memcmp(p, "off", 3) == 0)
ae8f1541 183 ecc_mask = 0;
2b0d8c25 184 return 0;
ae8f1541 185}
2b0d8c25 186early_param("ecc", early_ecc);
1b6ba46b 187#endif
ae8f1541
RK
188
189static int __init noalign_setup(char *__unused)
190{
191 cr_alignment &= ~CR_A;
192 cr_no_alignment &= ~CR_A;
193 set_cr(cr_alignment);
194 return 1;
195}
196__setup("noalign", noalign_setup);
197
255d1f86
RK
198#ifndef CONFIG_SMP
199void adjust_cr(unsigned long mask, unsigned long set)
200{
201 unsigned long flags;
202
203 mask &= ~CR_A;
204
205 set &= mask;
206
207 local_irq_save(flags);
208
209 cr_no_alignment = (cr_no_alignment & ~mask) | set;
210 cr_alignment = (cr_alignment & ~mask) | set;
211
212 set_cr((get_cr() & ~mask) | set);
213
214 local_irq_restore(flags);
215}
216#endif
217
b849a60e
UKK
218#else /* ifdef CONFIG_CPU_CP15 */
219
220static int __init early_cachepolicy(char *p)
221{
222 pr_warning("cachepolicy kernel parameter not supported without cp15\n");
223}
224early_param("cachepolicy", early_cachepolicy);
225
226static int __init noalign_setup(char *__unused)
227{
228 pr_warning("noalign kernel parameter not supported without cp15\n");
229}
230__setup("noalign", noalign_setup);
231
232#endif /* ifdef CONFIG_CPU_CP15 / else */
233
36bb94ba 234#define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
b1cce6b1 235#define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
0af92bef 236
b29e9f5e 237static struct mem_type mem_types[] = {
0af92bef 238 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
bb30f36f
RK
239 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
240 L_PTE_SHARED,
0af92bef 241 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 242 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
0af92bef
RK
243 .domain = DOMAIN_IO,
244 },
245 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
bb30f36f 246 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
0af92bef 247 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 248 .prot_sect = PROT_SECT_DEVICE,
0af92bef
RK
249 .domain = DOMAIN_IO,
250 },
251 [MT_DEVICE_CACHED] = { /* ioremap_cached */
bb30f36f 252 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
0af92bef
RK
253 .prot_l1 = PMD_TYPE_TABLE,
254 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
255 .domain = DOMAIN_IO,
c2794437 256 },
1ad77a87 257 [MT_DEVICE_WC] = { /* ioremap_wc */
bb30f36f 258 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
0af92bef 259 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 260 .prot_sect = PROT_SECT_DEVICE,
0af92bef 261 .domain = DOMAIN_IO,
ae8f1541 262 },
ebb4c658
RK
263 [MT_UNCACHED] = {
264 .prot_pte = PROT_PTE_DEVICE,
265 .prot_l1 = PMD_TYPE_TABLE,
266 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
267 .domain = DOMAIN_IO,
268 },
ae8f1541 269 [MT_CACHECLEAN] = {
9ef79635 270 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
ae8f1541
RK
271 .domain = DOMAIN_KERNEL,
272 },
1b6ba46b 273#ifndef CONFIG_ARM_LPAE
ae8f1541 274 [MT_MINICLEAN] = {
9ef79635 275 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
ae8f1541
RK
276 .domain = DOMAIN_KERNEL,
277 },
1b6ba46b 278#endif
ae8f1541
RK
279 [MT_LOW_VECTORS] = {
280 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 281 L_PTE_RDONLY,
ae8f1541
RK
282 .prot_l1 = PMD_TYPE_TABLE,
283 .domain = DOMAIN_USER,
284 },
285 [MT_HIGH_VECTORS] = {
286 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 287 L_PTE_USER | L_PTE_RDONLY,
ae8f1541
RK
288 .prot_l1 = PMD_TYPE_TABLE,
289 .domain = DOMAIN_USER,
290 },
2e2c9de2 291 [MT_MEMORY_RWX] = {
36bb94ba 292 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
f1a2481c 293 .prot_l1 = PMD_TYPE_TABLE,
9ef79635 294 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
ae8f1541
RK
295 .domain = DOMAIN_KERNEL,
296 },
ebd4922e
RK
297 [MT_MEMORY_RW] = {
298 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
299 L_PTE_XN,
300 .prot_l1 = PMD_TYPE_TABLE,
301 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
302 .domain = DOMAIN_KERNEL,
303 },
ae8f1541 304 [MT_ROM] = {
9ef79635 305 .prot_sect = PMD_TYPE_SECT,
ae8f1541
RK
306 .domain = DOMAIN_KERNEL,
307 },
2e2c9de2 308 [MT_MEMORY_RWX_NONCACHED] = {
f1a2481c 309 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 310 L_PTE_MT_BUFFERABLE,
f1a2481c 311 .prot_l1 = PMD_TYPE_TABLE,
e4707dd3
PW
312 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
313 .domain = DOMAIN_KERNEL,
314 },
2e2c9de2 315 [MT_MEMORY_RW_DTCM] = {
f444fce3 316 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 317 L_PTE_XN,
f444fce3
LW
318 .prot_l1 = PMD_TYPE_TABLE,
319 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
320 .domain = DOMAIN_KERNEL,
cb9d7707 321 },
2e2c9de2 322 [MT_MEMORY_RWX_ITCM] = {
36bb94ba 323 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
cb9d7707 324 .prot_l1 = PMD_TYPE_TABLE,
f444fce3 325 .domain = DOMAIN_KERNEL,
cb9d7707 326 },
2e2c9de2 327 [MT_MEMORY_RW_SO] = {
8fb54284 328 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
93d5bf07 329 L_PTE_MT_UNCACHED | L_PTE_XN,
8fb54284
SS
330 .prot_l1 = PMD_TYPE_TABLE,
331 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
332 PMD_SECT_UNCACHED | PMD_SECT_XN,
333 .domain = DOMAIN_KERNEL,
334 },
c7909509
MS
335 [MT_MEMORY_DMA_READY] = {
336 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
337 .prot_l1 = PMD_TYPE_TABLE,
338 .domain = DOMAIN_KERNEL,
339 },
ae8f1541
RK
340};
341
b29e9f5e
RK
342const struct mem_type *get_mem_type(unsigned int type)
343{
344 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
345}
69d3a84a 346EXPORT_SYMBOL(get_mem_type);
b29e9f5e 347
ae8f1541
RK
348/*
349 * Adjust the PMD section entries according to the CPU in use.
350 */
351static void __init build_mem_type_table(void)
352{
353 struct cachepolicy *cp;
354 unsigned int cr = get_cr();
442e70c0 355 pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
cc577c26 356 pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
ae8f1541
RK
357 int cpu_arch = cpu_architecture();
358 int i;
359
11179d8c 360 if (cpu_arch < CPU_ARCH_ARMv6) {
ae8f1541 361#if defined(CONFIG_CPU_DCACHE_DISABLE)
11179d8c
CM
362 if (cachepolicy > CPOLICY_BUFFERED)
363 cachepolicy = CPOLICY_BUFFERED;
ae8f1541 364#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
11179d8c
CM
365 if (cachepolicy > CPOLICY_WRITETHROUGH)
366 cachepolicy = CPOLICY_WRITETHROUGH;
ae8f1541 367#endif
11179d8c 368 }
ae8f1541
RK
369 if (cpu_arch < CPU_ARCH_ARMv5) {
370 if (cachepolicy >= CPOLICY_WRITEALLOC)
371 cachepolicy = CPOLICY_WRITEBACK;
372 ecc_mask = 0;
373 }
f00ec48f
RK
374 if (is_smp())
375 cachepolicy = CPOLICY_WRITEALLOC;
ae8f1541 376
1ad77a87 377 /*
b1cce6b1
RK
378 * Strip out features not present on earlier architectures.
379 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
380 * without extended page tables don't have the 'Shared' bit.
1ad77a87 381 */
b1cce6b1
RK
382 if (cpu_arch < CPU_ARCH_ARMv5)
383 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
384 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
385 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
386 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
387 mem_types[i].prot_sect &= ~PMD_SECT_S;
ae8f1541
RK
388
389 /*
b1cce6b1
RK
390 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
391 * "update-able on write" bit on ARM610). However, Xscale and
392 * Xscale3 require this bit to be cleared.
ae8f1541 393 */
b1cce6b1 394 if (cpu_is_xscale() || cpu_is_xsc3()) {
9ef79635 395 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541 396 mem_types[i].prot_sect &= ~PMD_BIT4;
9ef79635
RK
397 mem_types[i].prot_l1 &= ~PMD_BIT4;
398 }
399 } else if (cpu_arch < CPU_ARCH_ARMv6) {
400 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541
RK
401 if (mem_types[i].prot_l1)
402 mem_types[i].prot_l1 |= PMD_BIT4;
9ef79635
RK
403 if (mem_types[i].prot_sect)
404 mem_types[i].prot_sect |= PMD_BIT4;
405 }
406 }
ae8f1541 407
b1cce6b1
RK
408 /*
409 * Mark the device areas according to the CPU/architecture.
410 */
411 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
412 if (!cpu_is_xsc3()) {
413 /*
414 * Mark device regions on ARMv6+ as execute-never
415 * to prevent speculative instruction fetches.
416 */
417 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
418 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
419 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
420 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
ebd4922e
RK
421
422 /* Also setup NX memory mapping */
423 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
b1cce6b1
RK
424 }
425 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
426 /*
427 * For ARMv7 with TEX remapping,
428 * - shared device is SXCB=1100
429 * - nonshared device is SXCB=0100
430 * - write combine device mem is SXCB=0001
431 * (Uncached Normal memory)
432 */
433 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
434 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
435 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
436 } else if (cpu_is_xsc3()) {
437 /*
438 * For Xscale3,
439 * - shared device is TEXCB=00101
440 * - nonshared device is TEXCB=01000
441 * - write combine device mem is TEXCB=00100
442 * (Inner/Outer Uncacheable in xsc3 parlance)
443 */
444 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
445 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
446 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
447 } else {
448 /*
449 * For ARMv6 and ARMv7 without TEX remapping,
450 * - shared device is TEXCB=00001
451 * - nonshared device is TEXCB=01000
452 * - write combine device mem is TEXCB=00100
453 * (Uncached Normal in ARMv6 parlance).
454 */
455 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
456 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
457 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
458 }
459 } else {
460 /*
461 * On others, write combining is "Uncached/Buffered"
462 */
463 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
464 }
465
466 /*
467 * Now deal with the memory-type mappings
468 */
ae8f1541 469 cp = &cache_policies[cachepolicy];
bb30f36f 470 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
cc577c26
CD
471 s2_pgprot = cp->pte_s2;
472 hyp_device_pgprot = s2_device_pgprot = mem_types[MT_DEVICE].prot_pte;
bb30f36f 473
ae8f1541
RK
474 /*
475 * ARMv6 and above have extended page tables.
476 */
477 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
1b6ba46b 478#ifndef CONFIG_ARM_LPAE
ae8f1541
RK
479 /*
480 * Mark cache clean areas and XIP ROM read only
481 * from SVC mode and no access from userspace.
482 */
483 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
484 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
485 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
1b6ba46b 486#endif
ae8f1541 487
f00ec48f
RK
488 if (is_smp()) {
489 /*
490 * Mark memory with the "shared" attribute
491 * for SMP systems
492 */
493 user_pgprot |= L_PTE_SHARED;
494 kern_pgprot |= L_PTE_SHARED;
495 vecs_pgprot |= L_PTE_SHARED;
cc577c26 496 s2_pgprot |= L_PTE_SHARED;
f00ec48f
RK
497 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
498 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
499 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
500 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
2e2c9de2
RK
501 mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
502 mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
ebd4922e
RK
503 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
504 mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
c7909509 505 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
2e2c9de2
RK
506 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
507 mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
f00ec48f 508 }
ae8f1541
RK
509 }
510
e4707dd3
PW
511 /*
512 * Non-cacheable Normal - intended for memory areas that must
513 * not cause dirty cache line writebacks when used
514 */
515 if (cpu_arch >= CPU_ARCH_ARMv6) {
516 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
517 /* Non-cacheable Normal is XCB = 001 */
2e2c9de2 518 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
e4707dd3
PW
519 PMD_SECT_BUFFERED;
520 } else {
521 /* For both ARMv6 and non-TEX-remapping ARMv7 */
2e2c9de2 522 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
e4707dd3
PW
523 PMD_SECT_TEX(1);
524 }
525 } else {
2e2c9de2 526 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
e4707dd3
PW
527 }
528
1b6ba46b
CM
529#ifdef CONFIG_ARM_LPAE
530 /*
531 * Do not generate access flag faults for the kernel mappings.
532 */
533 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
534 mem_types[i].prot_pte |= PTE_EXT_AF;
1a3abcf4
VA
535 if (mem_types[i].prot_sect)
536 mem_types[i].prot_sect |= PMD_SECT_AF;
1b6ba46b
CM
537 }
538 kern_pgprot |= PTE_EXT_AF;
539 vecs_pgprot |= PTE_EXT_AF;
540#endif
541
ae8f1541 542 for (i = 0; i < 16; i++) {
864aa04c 543 pteval_t v = pgprot_val(protection_map[i]);
bb30f36f 544 protection_map[i] = __pgprot(v | user_pgprot);
ae8f1541
RK
545 }
546
bb30f36f
RK
547 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
548 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
ae8f1541 549
44b18693 550 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
ae8f1541 551 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
36bb94ba 552 L_PTE_DIRTY | kern_pgprot);
cc577c26
CD
553 pgprot_s2 = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
554 pgprot_s2_device = __pgprot(s2_device_pgprot);
555 pgprot_hyp_device = __pgprot(hyp_device_pgprot);
ae8f1541
RK
556
557 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
558 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
2e2c9de2
RK
559 mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
560 mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
ebd4922e
RK
561 mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
562 mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
c7909509 563 mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
2e2c9de2 564 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
ae8f1541
RK
565 mem_types[MT_ROM].prot_sect |= cp->pmd;
566
567 switch (cp->pmd) {
568 case PMD_SECT_WT:
569 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
570 break;
571 case PMD_SECT_WB:
572 case PMD_SECT_WBWA:
573 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
574 break;
575 }
905b5797
MS
576 pr_info("Memory policy: %sData cache %s\n",
577 ecc_mask ? "ECC enabled, " : "", cp->policy);
2497f0a8
RK
578
579 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
580 struct mem_type *t = &mem_types[i];
581 if (t->prot_l1)
582 t->prot_l1 |= PMD_DOMAIN(t->domain);
583 if (t->prot_sect)
584 t->prot_sect |= PMD_DOMAIN(t->domain);
585 }
ae8f1541
RK
586}
587
d907387c
CM
588#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
589pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
590 unsigned long size, pgprot_t vma_prot)
591{
592 if (!pfn_valid(pfn))
593 return pgprot_noncached(vma_prot);
594 else if (file->f_flags & O_SYNC)
595 return pgprot_writecombine(vma_prot);
596 return vma_prot;
597}
598EXPORT_SYMBOL(phys_mem_access_prot);
599#endif
600
ae8f1541
RK
601#define vectors_base() (vectors_high() ? 0xffff0000 : 0)
602
0536bdf3 603static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
3abe9d33 604{
0536bdf3 605 void *ptr = __va(memblock_alloc(sz, align));
2778f620
RK
606 memset(ptr, 0, sz);
607 return ptr;
3abe9d33
RK
608}
609
0536bdf3
NP
610static void __init *early_alloc(unsigned long sz)
611{
612 return early_alloc_aligned(sz, sz);
613}
614
4bb2e27d 615static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
ae8f1541 616{
24e6c699 617 if (pmd_none(*pmd)) {
410f1483 618 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
97092e0c 619 __pmd_populate(pmd, __pa(pte), prot);
24e6c699 620 }
4bb2e27d
RK
621 BUG_ON(pmd_bad(*pmd));
622 return pte_offset_kernel(pmd, addr);
623}
ae8f1541 624
4bb2e27d
RK
625static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
626 unsigned long end, unsigned long pfn,
627 const struct mem_type *type)
628{
629 pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
24e6c699 630 do {
40d192b6 631 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
24e6c699
RK
632 pfn++;
633 } while (pte++, addr += PAGE_SIZE, addr != end);
ae8f1541
RK
634}
635
37468b30 636static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
e651eab0
S
637 unsigned long end, phys_addr_t phys,
638 const struct mem_type *type)
ae8f1541 639{
37468b30
PYC
640 pmd_t *p = pmd;
641
e651eab0 642#ifndef CONFIG_ARM_LPAE
24e6c699 643 /*
e651eab0
S
644 * In classic MMU format, puds and pmds are folded in to
645 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
646 * group of L1 entries making up one logical pointer to
647 * an L2 table (2MB), where as PMDs refer to the individual
648 * L1 entries (1MB). Hence increment to get the correct
649 * offset for odd 1MB sections.
650 * (See arch/arm/include/asm/pgtable-2level.h)
24e6c699 651 */
e651eab0
S
652 if (addr & SECTION_SIZE)
653 pmd++;
1b6ba46b 654#endif
e651eab0
S
655 do {
656 *pmd = __pmd(phys | type->prot_sect);
657 phys += SECTION_SIZE;
658 } while (pmd++, addr += SECTION_SIZE, addr != end);
24e6c699 659
37468b30 660 flush_pmd_entry(p);
e651eab0 661}
ae8f1541 662
e651eab0
S
663static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
664 unsigned long end, phys_addr_t phys,
665 const struct mem_type *type)
666{
667 pmd_t *pmd = pmd_offset(pud, addr);
668 unsigned long next;
669
670 do {
24e6c699 671 /*
e651eab0
S
672 * With LPAE, we must loop over to map
673 * all the pmds for the given range.
24e6c699 674 */
e651eab0
S
675 next = pmd_addr_end(addr, end);
676
677 /*
678 * Try a section mapping - addr, next and phys must all be
679 * aligned to a section boundary.
680 */
681 if (type->prot_sect &&
682 ((addr | next | phys) & ~SECTION_MASK) == 0) {
37468b30 683 __map_init_section(pmd, addr, next, phys, type);
e651eab0
S
684 } else {
685 alloc_init_pte(pmd, addr, next,
686 __phys_to_pfn(phys), type);
687 }
688
689 phys += next - addr;
690
691 } while (pmd++, addr = next, addr != end);
ae8f1541
RK
692}
693
14904927 694static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
20d6956d
VA
695 unsigned long end, phys_addr_t phys,
696 const struct mem_type *type)
516295e5
RK
697{
698 pud_t *pud = pud_offset(pgd, addr);
699 unsigned long next;
700
701 do {
702 next = pud_addr_end(addr, end);
e651eab0 703 alloc_init_pmd(pud, addr, next, phys, type);
516295e5
RK
704 phys += next - addr;
705 } while (pud++, addr = next, addr != end);
706}
707
1b6ba46b 708#ifndef CONFIG_ARM_LPAE
4a56c1e4
RK
709static void __init create_36bit_mapping(struct map_desc *md,
710 const struct mem_type *type)
711{
97092e0c
RK
712 unsigned long addr, length, end;
713 phys_addr_t phys;
4a56c1e4
RK
714 pgd_t *pgd;
715
716 addr = md->virtual;
cae6292b 717 phys = __pfn_to_phys(md->pfn);
4a56c1e4
RK
718 length = PAGE_ALIGN(md->length);
719
720 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
721 printk(KERN_ERR "MM: CPU does not support supersection "
722 "mapping for 0x%08llx at 0x%08lx\n",
29a38193 723 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
724 return;
725 }
726
727 /* N.B. ARMv6 supersections are only defined to work with domain 0.
728 * Since domain assignments can in fact be arbitrary, the
729 * 'domain == 0' check below is required to insure that ARMv6
730 * supersections are only allocated for domain 0 regardless
731 * of the actual domain assignments in use.
732 */
733 if (type->domain) {
734 printk(KERN_ERR "MM: invalid domain in supersection "
735 "mapping for 0x%08llx at 0x%08lx\n",
29a38193 736 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
737 return;
738 }
739
740 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
29a38193
WD
741 printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
742 " at 0x%08lx invalid alignment\n",
743 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
744 return;
745 }
746
747 /*
748 * Shift bits [35:32] of address into bits [23:20] of PMD
749 * (See ARMv6 spec).
750 */
751 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
752
753 pgd = pgd_offset_k(addr);
754 end = addr + length;
755 do {
516295e5
RK
756 pud_t *pud = pud_offset(pgd, addr);
757 pmd_t *pmd = pmd_offset(pud, addr);
4a56c1e4
RK
758 int i;
759
760 for (i = 0; i < 16; i++)
761 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
762
763 addr += SUPERSECTION_SIZE;
764 phys += SUPERSECTION_SIZE;
765 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
766 } while (addr != end);
767}
1b6ba46b 768#endif /* !CONFIG_ARM_LPAE */
4a56c1e4 769
ae8f1541
RK
770/*
771 * Create the page directory entries and any necessary
772 * page tables for the mapping specified by `md'. We
773 * are able to cope here with varying sizes and address
774 * offsets, and we take full advantage of sections and
775 * supersections.
776 */
a2227120 777static void __init create_mapping(struct map_desc *md)
ae8f1541 778{
cae6292b
WD
779 unsigned long addr, length, end;
780 phys_addr_t phys;
d5c98176 781 const struct mem_type *type;
24e6c699 782 pgd_t *pgd;
ae8f1541
RK
783
784 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
29a38193
WD
785 printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
786 " at 0x%08lx in user region\n",
787 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
ae8f1541
RK
788 return;
789 }
790
791 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
0536bdf3
NP
792 md->virtual >= PAGE_OFFSET &&
793 (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
29a38193 794 printk(KERN_WARNING "BUG: mapping for 0x%08llx"
0536bdf3 795 " at 0x%08lx out of vmalloc space\n",
29a38193 796 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
ae8f1541
RK
797 }
798
d5c98176 799 type = &mem_types[md->type];
ae8f1541 800
1b6ba46b 801#ifndef CONFIG_ARM_LPAE
ae8f1541
RK
802 /*
803 * Catch 36-bit addresses
804 */
4a56c1e4
RK
805 if (md->pfn >= 0x100000) {
806 create_36bit_mapping(md, type);
807 return;
ae8f1541 808 }
1b6ba46b 809#endif
ae8f1541 810
7b9c7b4d 811 addr = md->virtual & PAGE_MASK;
cae6292b 812 phys = __pfn_to_phys(md->pfn);
7b9c7b4d 813 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
ae8f1541 814
24e6c699 815 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
29a38193 816 printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
ae8f1541 817 "be mapped using pages, ignoring.\n",
29a38193 818 (long long)__pfn_to_phys(md->pfn), addr);
ae8f1541
RK
819 return;
820 }
821
24e6c699
RK
822 pgd = pgd_offset_k(addr);
823 end = addr + length;
824 do {
825 unsigned long next = pgd_addr_end(addr, end);
ae8f1541 826
516295e5 827 alloc_init_pud(pgd, addr, next, phys, type);
ae8f1541 828
24e6c699
RK
829 phys += next - addr;
830 addr = next;
831 } while (pgd++, addr != end);
ae8f1541
RK
832}
833
834/*
835 * Create the architecture specific mappings
836 */
837void __init iotable_init(struct map_desc *io_desc, int nr)
838{
0536bdf3
NP
839 struct map_desc *md;
840 struct vm_struct *vm;
101eeda3 841 struct static_vm *svm;
0536bdf3
NP
842
843 if (!nr)
844 return;
ae8f1541 845
101eeda3 846 svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
0536bdf3
NP
847
848 for (md = io_desc; nr; md++, nr--) {
849 create_mapping(md);
101eeda3
JK
850
851 vm = &svm->vm;
0536bdf3
NP
852 vm->addr = (void *)(md->virtual & PAGE_MASK);
853 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
c2794437
RH
854 vm->phys_addr = __pfn_to_phys(md->pfn);
855 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
576d2f25 856 vm->flags |= VM_ARM_MTYPE(md->type);
0536bdf3 857 vm->caller = iotable_init;
101eeda3 858 add_static_vm_early(svm++);
0536bdf3 859 }
ae8f1541
RK
860}
861
c2794437
RH
862void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
863 void *caller)
864{
865 struct vm_struct *vm;
101eeda3
JK
866 struct static_vm *svm;
867
868 svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
c2794437 869
101eeda3 870 vm = &svm->vm;
c2794437
RH
871 vm->addr = (void *)addr;
872 vm->size = size;
863e99a8 873 vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
c2794437 874 vm->caller = caller;
101eeda3 875 add_static_vm_early(svm);
c2794437
RH
876}
877
19b52abe
NP
878#ifndef CONFIG_ARM_LPAE
879
880/*
881 * The Linux PMD is made of two consecutive section entries covering 2MB
882 * (see definition in include/asm/pgtable-2level.h). However a call to
883 * create_mapping() may optimize static mappings by using individual
884 * 1MB section mappings. This leaves the actual PMD potentially half
885 * initialized if the top or bottom section entry isn't used, leaving it
886 * open to problems if a subsequent ioremap() or vmalloc() tries to use
887 * the virtual space left free by that unused section entry.
888 *
889 * Let's avoid the issue by inserting dummy vm entries covering the unused
890 * PMD halves once the static mappings are in place.
891 */
892
893static void __init pmd_empty_section_gap(unsigned long addr)
894{
c2794437 895 vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
19b52abe
NP
896}
897
898static void __init fill_pmd_gaps(void)
899{
101eeda3 900 struct static_vm *svm;
19b52abe
NP
901 struct vm_struct *vm;
902 unsigned long addr, next = 0;
903 pmd_t *pmd;
904
101eeda3
JK
905 list_for_each_entry(svm, &static_vmlist, list) {
906 vm = &svm->vm;
19b52abe
NP
907 addr = (unsigned long)vm->addr;
908 if (addr < next)
909 continue;
910
911 /*
912 * Check if this vm starts on an odd section boundary.
913 * If so and the first section entry for this PMD is free
914 * then we block the corresponding virtual address.
915 */
916 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
917 pmd = pmd_off_k(addr);
918 if (pmd_none(*pmd))
919 pmd_empty_section_gap(addr & PMD_MASK);
920 }
921
922 /*
923 * Then check if this vm ends on an odd section boundary.
924 * If so and the second section entry for this PMD is empty
925 * then we block the corresponding virtual address.
926 */
927 addr += vm->size;
928 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
929 pmd = pmd_off_k(addr) + 1;
930 if (pmd_none(*pmd))
931 pmd_empty_section_gap(addr);
932 }
933
934 /* no need to look at any vm entry until we hit the next PMD */
935 next = (addr + PMD_SIZE - 1) & PMD_MASK;
936 }
937}
938
939#else
940#define fill_pmd_gaps() do { } while (0)
941#endif
942
c2794437
RH
943#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
944static void __init pci_reserve_io(void)
945{
101eeda3 946 struct static_vm *svm;
c2794437 947
101eeda3
JK
948 svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
949 if (svm)
950 return;
c2794437 951
c2794437
RH
952 vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
953}
954#else
955#define pci_reserve_io() do { } while (0)
956#endif
957
e5c5f2ad
RH
958#ifdef CONFIG_DEBUG_LL
959void __init debug_ll_io_init(void)
960{
961 struct map_desc map;
962
963 debug_ll_addr(&map.pfn, &map.virtual);
964 if (!map.pfn || !map.virtual)
965 return;
966 map.pfn = __phys_to_pfn(map.pfn);
967 map.virtual &= PAGE_MASK;
968 map.length = PAGE_SIZE;
969 map.type = MT_DEVICE;
ee4de5d9 970 iotable_init(&map, 1);
e5c5f2ad
RH
971}
972#endif
973
0536bdf3
NP
974static void * __initdata vmalloc_min =
975 (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
6c5da7ac
RK
976
977/*
978 * vmalloc=size forces the vmalloc area to be exactly 'size'
979 * bytes. This can be used to increase (or decrease) the vmalloc
0536bdf3 980 * area - the default is 240m.
6c5da7ac 981 */
2b0d8c25 982static int __init early_vmalloc(char *arg)
6c5da7ac 983{
79612395 984 unsigned long vmalloc_reserve = memparse(arg, NULL);
6c5da7ac
RK
985
986 if (vmalloc_reserve < SZ_16M) {
987 vmalloc_reserve = SZ_16M;
988 printk(KERN_WARNING
989 "vmalloc area too small, limiting to %luMB\n",
990 vmalloc_reserve >> 20);
991 }
9210807c
NP
992
993 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
994 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
995 printk(KERN_WARNING
996 "vmalloc area is too big, limiting to %luMB\n",
997 vmalloc_reserve >> 20);
998 }
79612395
RK
999
1000 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
2b0d8c25 1001 return 0;
6c5da7ac 1002}
2b0d8c25 1003early_param("vmalloc", early_vmalloc);
6c5da7ac 1004
c7909509 1005phys_addr_t arm_lowmem_limit __initdata = 0;
8df65168 1006
0371d3f7 1007void __init sanity_check_meminfo(void)
60296c71 1008{
c65b7e98 1009 phys_addr_t memblock_limit = 0;
dde5828f 1010 int i, j, highmem = 0;
82f66704 1011 phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1;
60296c71 1012
4b5f32ce 1013 for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
a1bbaec0 1014 struct membank *bank = &meminfo.bank[j];
28d4bf7a 1015 phys_addr_t size_limit;
60296c71 1016
a1bbaec0 1017 *bank = meminfo.bank[i];
28d4bf7a 1018 size_limit = bank->size;
77f73a2c 1019
82f66704 1020 if (bank->start >= vmalloc_limit)
dde5828f 1021 highmem = 1;
28d4bf7a
CC
1022 else
1023 size_limit = vmalloc_limit - bank->start;
dde5828f
RK
1024
1025 bank->highmem = highmem;
1026
adf2e9fd 1027#ifdef CONFIG_HIGHMEM
a1bbaec0
NP
1028 /*
1029 * Split those memory banks which are partially overlapping
1030 * the vmalloc area greatly simplifying things later.
1031 */
28d4bf7a 1032 if (!highmem && bank->size > size_limit) {
a1bbaec0
NP
1033 if (meminfo.nr_banks >= NR_BANKS) {
1034 printk(KERN_CRIT "NR_BANKS too low, "
1035 "ignoring high memory\n");
1036 } else {
1037 memmove(bank + 1, bank,
1038 (meminfo.nr_banks - i) * sizeof(*bank));
1039 meminfo.nr_banks++;
1040 i++;
28d4bf7a 1041 bank[1].size -= size_limit;
82f66704 1042 bank[1].start = vmalloc_limit;
dde5828f 1043 bank[1].highmem = highmem = 1;
a1bbaec0
NP
1044 j++;
1045 }
28d4bf7a 1046 bank->size = size_limit;
a1bbaec0
NP
1047 }
1048#else
77f73a2c
WD
1049 /*
1050 * Highmem banks not allowed with !CONFIG_HIGHMEM.
1051 */
1052 if (highmem) {
1053 printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
1054 "(!CONFIG_HIGHMEM).\n",
1055 (unsigned long long)bank->start,
1056 (unsigned long long)bank->start + bank->size - 1);
1057 continue;
1058 }
1059
a1bbaec0
NP
1060 /*
1061 * Check whether this memory bank would partially overlap
1062 * the vmalloc area.
1063 */
28d4bf7a 1064 if (bank->size > size_limit) {
e33b9d08
RK
1065 printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
1066 "to -%.8llx (vmalloc region overlap).\n",
1067 (unsigned long long)bank->start,
1068 (unsigned long long)bank->start + bank->size - 1,
28d4bf7a
CC
1069 (unsigned long long)bank->start + size_limit - 1);
1070 bank->size = size_limit;
a1bbaec0
NP
1071 }
1072#endif
c65b7e98
RK
1073 if (!bank->highmem) {
1074 phys_addr_t bank_end = bank->start + bank->size;
40f7bfe4 1075
c65b7e98
RK
1076 if (bank_end > arm_lowmem_limit)
1077 arm_lowmem_limit = bank_end;
1078
1079 /*
1080 * Find the first non-section-aligned page, and point
1081 * memblock_limit at it. This relies on rounding the
1082 * limit down to be section-aligned, which happens at
1083 * the end of this function.
1084 *
1085 * With this algorithm, the start or end of almost any
1086 * bank can be non-section-aligned. The only exception
1087 * is that the start of the bank 0 must be section-
1088 * aligned, since otherwise memory would need to be
1089 * allocated when mapping the start of bank 0, which
1090 * occurs before any free memory is mapped.
1091 */
1092 if (!memblock_limit) {
1093 if (!IS_ALIGNED(bank->start, SECTION_SIZE))
1094 memblock_limit = bank->start;
1095 else if (!IS_ALIGNED(bank_end, SECTION_SIZE))
1096 memblock_limit = bank_end;
1097 }
1098 }
a1bbaec0 1099 j++;
60296c71 1100 }
e616c591
RK
1101#ifdef CONFIG_HIGHMEM
1102 if (highmem) {
1103 const char *reason = NULL;
1104
1105 if (cache_is_vipt_aliasing()) {
1106 /*
1107 * Interactions between kmap and other mappings
1108 * make highmem support with aliasing VIPT caches
1109 * rather difficult.
1110 */
1111 reason = "with VIPT aliasing cache";
e616c591
RK
1112 }
1113 if (reason) {
1114 printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
1115 reason);
1116 while (j > 0 && meminfo.bank[j - 1].highmem)
1117 j--;
1118 }
1119 }
1120#endif
4b5f32ce 1121 meminfo.nr_banks = j;
c7909509 1122 high_memory = __va(arm_lowmem_limit - 1) + 1;
c65b7e98
RK
1123
1124 /*
1125 * Round the memblock limit down to a section size. This
1126 * helps to ensure that we will allocate memory from the
1127 * last full section, which should be mapped.
1128 */
1129 if (memblock_limit)
1130 memblock_limit = round_down(memblock_limit, SECTION_SIZE);
1131 if (!memblock_limit)
1132 memblock_limit = arm_lowmem_limit;
1133
1134 memblock_set_current_limit(memblock_limit);
60296c71
LB
1135}
1136
4b5f32ce 1137static inline void prepare_page_table(void)
d111e8f9
RK
1138{
1139 unsigned long addr;
8df65168 1140 phys_addr_t end;
d111e8f9
RK
1141
1142 /*
1143 * Clear out all the mappings below the kernel image.
1144 */
e73fc88e 1145 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
d111e8f9
RK
1146 pmd_clear(pmd_off_k(addr));
1147
1148#ifdef CONFIG_XIP_KERNEL
1149 /* The XIP kernel is mapped in the module area -- skip over it */
e73fc88e 1150 addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
d111e8f9 1151#endif
e73fc88e 1152 for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
d111e8f9
RK
1153 pmd_clear(pmd_off_k(addr));
1154
8df65168
RK
1155 /*
1156 * Find the end of the first block of lowmem.
1157 */
1158 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
c7909509
MS
1159 if (end >= arm_lowmem_limit)
1160 end = arm_lowmem_limit;
8df65168 1161
d111e8f9
RK
1162 /*
1163 * Clear out all the kernel space mappings, except for the first
0536bdf3 1164 * memory bank, up to the vmalloc region.
d111e8f9 1165 */
8df65168 1166 for (addr = __phys_to_virt(end);
0536bdf3 1167 addr < VMALLOC_START; addr += PMD_SIZE)
d111e8f9
RK
1168 pmd_clear(pmd_off_k(addr));
1169}
1170
1b6ba46b
CM
1171#ifdef CONFIG_ARM_LPAE
1172/* the first page is reserved for pgd */
1173#define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
1174 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1175#else
e73fc88e 1176#define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1b6ba46b 1177#endif
e73fc88e 1178
d111e8f9 1179/*
2778f620 1180 * Reserve the special regions of memory
d111e8f9 1181 */
2778f620 1182void __init arm_mm_memblock_reserve(void)
d111e8f9 1183{
d111e8f9
RK
1184 /*
1185 * Reserve the page tables. These are already in use,
1186 * and can only be in node 0.
1187 */
e73fc88e 1188 memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
d111e8f9 1189
d111e8f9
RK
1190#ifdef CONFIG_SA1111
1191 /*
1192 * Because of the SA1111 DMA bug, we want to preserve our
1193 * precious DMA-able memory...
1194 */
2778f620 1195 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
d111e8f9 1196#endif
d111e8f9
RK
1197}
1198
1199/*
0536bdf3
NP
1200 * Set up the device mappings. Since we clear out the page tables for all
1201 * mappings above VMALLOC_START, we will remove any debug device mappings.
d111e8f9
RK
1202 * This means you have to be careful how you debug this function, or any
1203 * called function. This means you can't use any function or debugging
1204 * method which may touch any device, otherwise the kernel _will_ crash.
1205 */
ff69a4c8 1206static void __init devicemaps_init(const struct machine_desc *mdesc)
d111e8f9
RK
1207{
1208 struct map_desc map;
1209 unsigned long addr;
94e5a85b 1210 void *vectors;
d111e8f9
RK
1211
1212 /*
1213 * Allocate the vector page early.
1214 */
19accfd3 1215 vectors = early_alloc(PAGE_SIZE * 2);
94e5a85b
RK
1216
1217 early_trap_init(vectors);
d111e8f9 1218
0536bdf3 1219 for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
d111e8f9
RK
1220 pmd_clear(pmd_off_k(addr));
1221
1222 /*
1223 * Map the kernel if it is XIP.
1224 * It is always first in the modulearea.
1225 */
1226#ifdef CONFIG_XIP_KERNEL
1227 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
ab4f2ee1 1228 map.virtual = MODULES_VADDR;
37efe642 1229 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
d111e8f9
RK
1230 map.type = MT_ROM;
1231 create_mapping(&map);
1232#endif
1233
1234 /*
1235 * Map the cache flushing regions.
1236 */
1237#ifdef FLUSH_BASE
1238 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1239 map.virtual = FLUSH_BASE;
1240 map.length = SZ_1M;
1241 map.type = MT_CACHECLEAN;
1242 create_mapping(&map);
1243#endif
1244#ifdef FLUSH_BASE_MINICACHE
1245 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1246 map.virtual = FLUSH_BASE_MINICACHE;
1247 map.length = SZ_1M;
1248 map.type = MT_MINICLEAN;
1249 create_mapping(&map);
1250#endif
1251
1252 /*
1253 * Create a mapping for the machine vectors at the high-vectors
1254 * location (0xffff0000). If we aren't using high-vectors, also
1255 * create a mapping at the low-vectors virtual address.
1256 */
94e5a85b 1257 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
d111e8f9
RK
1258 map.virtual = 0xffff0000;
1259 map.length = PAGE_SIZE;
a5463cd3 1260#ifdef CONFIG_KUSER_HELPERS
d111e8f9 1261 map.type = MT_HIGH_VECTORS;
a5463cd3
RK
1262#else
1263 map.type = MT_LOW_VECTORS;
1264#endif
d111e8f9
RK
1265 create_mapping(&map);
1266
1267 if (!vectors_high()) {
1268 map.virtual = 0;
19accfd3 1269 map.length = PAGE_SIZE * 2;
d111e8f9
RK
1270 map.type = MT_LOW_VECTORS;
1271 create_mapping(&map);
1272 }
1273
19accfd3
RK
1274 /* Now create a kernel read-only mapping */
1275 map.pfn += 1;
1276 map.virtual = 0xffff0000 + PAGE_SIZE;
1277 map.length = PAGE_SIZE;
1278 map.type = MT_LOW_VECTORS;
1279 create_mapping(&map);
1280
d111e8f9
RK
1281 /*
1282 * Ask the machine support to map in the statically mapped devices.
1283 */
1284 if (mdesc->map_io)
1285 mdesc->map_io();
bc37324e
MR
1286 else
1287 debug_ll_io_init();
19b52abe 1288 fill_pmd_gaps();
d111e8f9 1289
c2794437
RH
1290 /* Reserve fixed i/o space in VMALLOC region */
1291 pci_reserve_io();
1292
d111e8f9
RK
1293 /*
1294 * Finally flush the caches and tlb to ensure that we're in a
1295 * consistent state wrt the writebuffer. This also ensures that
1296 * any write-allocated cache lines in the vector page are written
1297 * back. After this point, we can start to touch devices again.
1298 */
1299 local_flush_tlb_all();
1300 flush_cache_all();
1301}
1302
d73cd428
NP
1303static void __init kmap_init(void)
1304{
1305#ifdef CONFIG_HIGHMEM
4bb2e27d
RK
1306 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1307 PKMAP_BASE, _PAGE_KERNEL_TABLE);
d73cd428
NP
1308#endif
1309}
1310
a2227120
RK
1311static void __init map_lowmem(void)
1312{
8df65168 1313 struct memblock_region *reg;
ebd4922e
RK
1314 unsigned long kernel_x_start = round_down(__pa(_stext), SECTION_SIZE);
1315 unsigned long kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
a2227120
RK
1316
1317 /* Map all the lowmem memory banks. */
8df65168
RK
1318 for_each_memblock(memory, reg) {
1319 phys_addr_t start = reg->base;
1320 phys_addr_t end = start + reg->size;
1321 struct map_desc map;
1322
c7909509
MS
1323 if (end > arm_lowmem_limit)
1324 end = arm_lowmem_limit;
8df65168
RK
1325 if (start >= end)
1326 break;
1327
ebd4922e
RK
1328 if (end < kernel_x_start || start >= kernel_x_end) {
1329 map.pfn = __phys_to_pfn(start);
1330 map.virtual = __phys_to_virt(start);
1331 map.length = end - start;
1332 map.type = MT_MEMORY_RWX;
a2227120 1333
ebd4922e
RK
1334 create_mapping(&map);
1335 } else {
1336 /* This better cover the entire kernel */
1337 if (start < kernel_x_start) {
1338 map.pfn = __phys_to_pfn(start);
1339 map.virtual = __phys_to_virt(start);
1340 map.length = kernel_x_start - start;
1341 map.type = MT_MEMORY_RW;
1342
1343 create_mapping(&map);
1344 }
1345
1346 map.pfn = __phys_to_pfn(kernel_x_start);
1347 map.virtual = __phys_to_virt(kernel_x_start);
1348 map.length = kernel_x_end - kernel_x_start;
1349 map.type = MT_MEMORY_RWX;
1350
1351 create_mapping(&map);
1352
1353 if (kernel_x_end < end) {
1354 map.pfn = __phys_to_pfn(kernel_x_end);
1355 map.virtual = __phys_to_virt(kernel_x_end);
1356 map.length = end - kernel_x_end;
1357 map.type = MT_MEMORY_RW;
1358
1359 create_mapping(&map);
1360 }
1361 }
a2227120
RK
1362 }
1363}
1364
a77e0c7b
SS
1365#ifdef CONFIG_ARM_LPAE
1366/*
1367 * early_paging_init() recreates boot time page table setup, allowing machines
1368 * to switch over to a high (>4G) address space on LPAE systems
1369 */
1370void __init early_paging_init(const struct machine_desc *mdesc,
1371 struct proc_info_list *procinfo)
1372{
1373 pmdval_t pmdprot = procinfo->__cpu_mm_mmu_flags;
1374 unsigned long map_start, map_end;
1375 pgd_t *pgd0, *pgdk;
1376 pud_t *pud0, *pudk, *pud_start;
1377 pmd_t *pmd0, *pmdk;
1378 phys_addr_t phys;
1379 int i;
1380
1381 if (!(mdesc->init_meminfo))
1382 return;
1383
1384 /* remap kernel code and data */
1385 map_start = init_mm.start_code;
1386 map_end = init_mm.brk;
1387
1388 /* get a handle on things... */
1389 pgd0 = pgd_offset_k(0);
1390 pud_start = pud0 = pud_offset(pgd0, 0);
1391 pmd0 = pmd_offset(pud0, 0);
1392
1393 pgdk = pgd_offset_k(map_start);
1394 pudk = pud_offset(pgdk, map_start);
1395 pmdk = pmd_offset(pudk, map_start);
1396
1397 mdesc->init_meminfo();
1398
1399 /* Run the patch stub to update the constants */
1400 fixup_pv_table(&__pv_table_begin,
1401 (&__pv_table_end - &__pv_table_begin) << 2);
1402
1403 /*
1404 * Cache cleaning operations for self-modifying code
1405 * We should clean the entries by MVA but running a
1406 * for loop over every pv_table entry pointer would
1407 * just complicate the code.
1408 */
1409 flush_cache_louis();
1410 dsb();
1411 isb();
1412
1413 /* remap level 1 table */
1414 for (i = 0; i < PTRS_PER_PGD; pud0++, i++) {
1415 set_pud(pud0,
1416 __pud(__pa(pmd0) | PMD_TYPE_TABLE | L_PGD_SWAPPER));
1417 pmd0 += PTRS_PER_PMD;
1418 }
1419
1420 /* remap pmds for kernel mapping */
1421 phys = __pa(map_start) & PMD_MASK;
1422 do {
1423 *pmdk++ = __pmd(phys | pmdprot);
1424 phys += PMD_SIZE;
1425 } while (phys < map_end);
1426
1427 flush_cache_all();
1428 cpu_switch_mm(pgd0, &init_mm);
1429 cpu_set_ttbr(1, __pa(pgd0) + TTBR1_OFFSET);
1430 local_flush_bp_all();
1431 local_flush_tlb_all();
1432}
1433
1434#else
1435
1436void __init early_paging_init(const struct machine_desc *mdesc,
1437 struct proc_info_list *procinfo)
1438{
1439 if (mdesc->init_meminfo)
1440 mdesc->init_meminfo();
1441}
1442
1443#endif
1444
d111e8f9
RK
1445/*
1446 * paging_init() sets up the page tables, initialises the zone memory
1447 * maps, and sets up the zero page, bad page and bad page tables.
1448 */
ff69a4c8 1449void __init paging_init(const struct machine_desc *mdesc)
d111e8f9
RK
1450{
1451 void *zero_page;
1452
1453 build_mem_type_table();
4b5f32ce 1454 prepare_page_table();
a2227120 1455 map_lowmem();
c7909509 1456 dma_contiguous_remap();
d111e8f9 1457 devicemaps_init(mdesc);
d73cd428 1458 kmap_init();
de40614e 1459 tcm_init();
d111e8f9
RK
1460
1461 top_pmd = pmd_off_k(0xffff0000);
1462
3abe9d33
RK
1463 /* allocate the zero page. */
1464 zero_page = early_alloc(PAGE_SIZE);
2778f620 1465
8d717a52 1466 bootmem_init();
2778f620 1467
d111e8f9 1468 empty_zero_page = virt_to_page(zero_page);
421fe93c 1469 __flush_dcache_page(NULL, empty_zero_page);
d111e8f9 1470}
This page took 0.58216 seconds and 5 git commands to generate.