ARM: fix alignment of keystone page table fixup
[deliverable/linux.git] / arch / arm / mm / mmu.c
CommitLineData
d111e8f9
RK
1/*
2 * linux/arch/arm/mm/mmu.c
3 *
4 * Copyright (C) 1995-2005 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
ae8f1541 10#include <linux/module.h>
d111e8f9
RK
11#include <linux/kernel.h>
12#include <linux/errno.h>
13#include <linux/init.h>
d111e8f9
RK
14#include <linux/mman.h>
15#include <linux/nodemask.h>
2778f620 16#include <linux/memblock.h>
d907387c 17#include <linux/fs.h>
0536bdf3 18#include <linux/vmalloc.h>
158e8bfe 19#include <linux/sizes.h>
d111e8f9 20
15d07dc9 21#include <asm/cp15.h>
0ba8b9b2 22#include <asm/cputype.h>
37efe642 23#include <asm/sections.h>
3f973e22 24#include <asm/cachetype.h>
ebd4922e 25#include <asm/sections.h>
d111e8f9 26#include <asm/setup.h>
e616c591 27#include <asm/smp_plat.h>
d111e8f9 28#include <asm/tlb.h>
d73cd428 29#include <asm/highmem.h>
9f97da78 30#include <asm/system_info.h>
247055aa 31#include <asm/traps.h>
a77e0c7b
SS
32#include <asm/procinfo.h>
33#include <asm/memory.h>
d111e8f9
RK
34
35#include <asm/mach/arch.h>
36#include <asm/mach/map.h>
c2794437 37#include <asm/mach/pci.h>
a05e54c1 38#include <asm/fixmap.h>
d111e8f9
RK
39
40#include "mm.h"
de40614e 41#include "tcm.h"
d111e8f9 42
d111e8f9
RK
43/*
44 * empty_zero_page is a special page that is used for
45 * zero-initialized data and COW.
46 */
47struct page *empty_zero_page;
3653f3ab 48EXPORT_SYMBOL(empty_zero_page);
d111e8f9
RK
49
50/*
51 * The pmd table for the upper-most set of pages.
52 */
53pmd_t *top_pmd;
54
ae8f1541
RK
55#define CPOLICY_UNCACHED 0
56#define CPOLICY_BUFFERED 1
57#define CPOLICY_WRITETHROUGH 2
58#define CPOLICY_WRITEBACK 3
59#define CPOLICY_WRITEALLOC 4
60
61static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
62static unsigned int ecc_mask __initdata = 0;
44b18693 63pgprot_t pgprot_user;
ae8f1541 64pgprot_t pgprot_kernel;
cc577c26
CD
65pgprot_t pgprot_hyp_device;
66pgprot_t pgprot_s2;
67pgprot_t pgprot_s2_device;
ae8f1541 68
44b18693 69EXPORT_SYMBOL(pgprot_user);
ae8f1541
RK
70EXPORT_SYMBOL(pgprot_kernel);
71
72struct cachepolicy {
73 const char policy[16];
74 unsigned int cr_mask;
442e70c0 75 pmdval_t pmd;
f6e3354d 76 pteval_t pte;
cc577c26 77 pteval_t pte_s2;
ae8f1541
RK
78};
79
cc577c26
CD
80#ifdef CONFIG_ARM_LPAE
81#define s2_policy(policy) policy
82#else
83#define s2_policy(policy) 0
84#endif
85
ae8f1541
RK
86static struct cachepolicy cache_policies[] __initdata = {
87 {
88 .policy = "uncached",
89 .cr_mask = CR_W|CR_C,
90 .pmd = PMD_SECT_UNCACHED,
bb30f36f 91 .pte = L_PTE_MT_UNCACHED,
cc577c26 92 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
ae8f1541
RK
93 }, {
94 .policy = "buffered",
95 .cr_mask = CR_C,
96 .pmd = PMD_SECT_BUFFERED,
bb30f36f 97 .pte = L_PTE_MT_BUFFERABLE,
cc577c26 98 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
ae8f1541
RK
99 }, {
100 .policy = "writethrough",
101 .cr_mask = 0,
102 .pmd = PMD_SECT_WT,
bb30f36f 103 .pte = L_PTE_MT_WRITETHROUGH,
cc577c26 104 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITETHROUGH),
ae8f1541
RK
105 }, {
106 .policy = "writeback",
107 .cr_mask = 0,
108 .pmd = PMD_SECT_WB,
bb30f36f 109 .pte = L_PTE_MT_WRITEBACK,
cc577c26 110 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
ae8f1541
RK
111 }, {
112 .policy = "writealloc",
113 .cr_mask = 0,
114 .pmd = PMD_SECT_WBWA,
bb30f36f 115 .pte = L_PTE_MT_WRITEALLOC,
cc577c26 116 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
ae8f1541
RK
117 }
118};
119
b849a60e 120#ifdef CONFIG_CPU_CP15
20e7e364
RK
121static unsigned long initial_pmd_value __initdata = 0;
122
ae8f1541 123/*
ca8f0b0a
RK
124 * Initialise the cache_policy variable with the initial state specified
125 * via the "pmd" value. This is used to ensure that on ARMv6 and later,
126 * the C code sets the page tables up with the same policy as the head
127 * assembly code, which avoids an illegal state where the TLBs can get
128 * confused. See comments in early_cachepolicy() for more information.
ae8f1541 129 */
ca8f0b0a 130void __init init_default_cache_policy(unsigned long pmd)
ae8f1541
RK
131{
132 int i;
133
20e7e364
RK
134 initial_pmd_value = pmd;
135
ca8f0b0a
RK
136 pmd &= PMD_SECT_TEX(1) | PMD_SECT_BUFFERABLE | PMD_SECT_CACHEABLE;
137
138 for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
139 if (cache_policies[i].pmd == pmd) {
140 cachepolicy = i;
141 break;
142 }
143
144 if (i == ARRAY_SIZE(cache_policies))
145 pr_err("ERROR: could not find cache policy\n");
146}
147
148/*
149 * These are useful for identifying cache coherency problems by allowing
150 * the cache or the cache and writebuffer to be turned off. (Note: the
151 * write buffer should not be on and the cache off).
152 */
153static int __init early_cachepolicy(char *p)
154{
155 int i, selected = -1;
156
ae8f1541
RK
157 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
158 int len = strlen(cache_policies[i].policy);
159
2b0d8c25 160 if (memcmp(p, cache_policies[i].policy, len) == 0) {
ca8f0b0a 161 selected = i;
ae8f1541
RK
162 break;
163 }
164 }
ca8f0b0a
RK
165
166 if (selected == -1)
167 pr_err("ERROR: unknown or unsupported cache policy\n");
168
4b46d641
RK
169 /*
170 * This restriction is partly to do with the way we boot; it is
171 * unpredictable to have memory mapped using two different sets of
172 * memory attributes (shared, type, and cache attribs). We can not
173 * change these attributes once the initial assembly has setup the
174 * page tables.
175 */
ca8f0b0a
RK
176 if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
177 pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
178 cache_policies[cachepolicy].policy);
179 return 0;
180 }
181
182 if (selected != cachepolicy) {
183 unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
184 cachepolicy = selected;
185 flush_cache_all();
186 set_cr(cr);
11179d8c 187 }
2b0d8c25 188 return 0;
ae8f1541 189}
2b0d8c25 190early_param("cachepolicy", early_cachepolicy);
ae8f1541 191
2b0d8c25 192static int __init early_nocache(char *__unused)
ae8f1541
RK
193{
194 char *p = "buffered";
195 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
196 early_cachepolicy(p);
197 return 0;
ae8f1541 198}
2b0d8c25 199early_param("nocache", early_nocache);
ae8f1541 200
2b0d8c25 201static int __init early_nowrite(char *__unused)
ae8f1541
RK
202{
203 char *p = "uncached";
204 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
205 early_cachepolicy(p);
206 return 0;
ae8f1541 207}
2b0d8c25 208early_param("nowb", early_nowrite);
ae8f1541 209
1b6ba46b 210#ifndef CONFIG_ARM_LPAE
2b0d8c25 211static int __init early_ecc(char *p)
ae8f1541 212{
2b0d8c25 213 if (memcmp(p, "on", 2) == 0)
ae8f1541 214 ecc_mask = PMD_PROTECTION;
2b0d8c25 215 else if (memcmp(p, "off", 3) == 0)
ae8f1541 216 ecc_mask = 0;
2b0d8c25 217 return 0;
ae8f1541 218}
2b0d8c25 219early_param("ecc", early_ecc);
1b6ba46b 220#endif
ae8f1541 221
b849a60e
UKK
222#else /* ifdef CONFIG_CPU_CP15 */
223
224static int __init early_cachepolicy(char *p)
225{
226 pr_warning("cachepolicy kernel parameter not supported without cp15\n");
227}
228early_param("cachepolicy", early_cachepolicy);
229
230static int __init noalign_setup(char *__unused)
231{
232 pr_warning("noalign kernel parameter not supported without cp15\n");
233}
234__setup("noalign", noalign_setup);
235
236#endif /* ifdef CONFIG_CPU_CP15 / else */
237
36bb94ba 238#define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
4d9c5b89 239#define PROT_PTE_S2_DEVICE PROT_PTE_DEVICE
b1cce6b1 240#define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
0af92bef 241
b29e9f5e 242static struct mem_type mem_types[] = {
0af92bef 243 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
bb30f36f
RK
244 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
245 L_PTE_SHARED,
4d9c5b89
CD
246 .prot_pte_s2 = s2_policy(PROT_PTE_S2_DEVICE) |
247 s2_policy(L_PTE_S2_MT_DEV_SHARED) |
248 L_PTE_SHARED,
0af92bef 249 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 250 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
0af92bef
RK
251 .domain = DOMAIN_IO,
252 },
253 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
bb30f36f 254 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
0af92bef 255 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 256 .prot_sect = PROT_SECT_DEVICE,
0af92bef
RK
257 .domain = DOMAIN_IO,
258 },
259 [MT_DEVICE_CACHED] = { /* ioremap_cached */
bb30f36f 260 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
0af92bef
RK
261 .prot_l1 = PMD_TYPE_TABLE,
262 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
263 .domain = DOMAIN_IO,
c2794437 264 },
1ad77a87 265 [MT_DEVICE_WC] = { /* ioremap_wc */
bb30f36f 266 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
0af92bef 267 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 268 .prot_sect = PROT_SECT_DEVICE,
0af92bef 269 .domain = DOMAIN_IO,
ae8f1541 270 },
ebb4c658
RK
271 [MT_UNCACHED] = {
272 .prot_pte = PROT_PTE_DEVICE,
273 .prot_l1 = PMD_TYPE_TABLE,
274 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
275 .domain = DOMAIN_IO,
276 },
ae8f1541 277 [MT_CACHECLEAN] = {
9ef79635 278 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
ae8f1541
RK
279 .domain = DOMAIN_KERNEL,
280 },
1b6ba46b 281#ifndef CONFIG_ARM_LPAE
ae8f1541 282 [MT_MINICLEAN] = {
9ef79635 283 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
ae8f1541
RK
284 .domain = DOMAIN_KERNEL,
285 },
1b6ba46b 286#endif
ae8f1541
RK
287 [MT_LOW_VECTORS] = {
288 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 289 L_PTE_RDONLY,
ae8f1541
RK
290 .prot_l1 = PMD_TYPE_TABLE,
291 .domain = DOMAIN_USER,
292 },
293 [MT_HIGH_VECTORS] = {
294 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 295 L_PTE_USER | L_PTE_RDONLY,
ae8f1541
RK
296 .prot_l1 = PMD_TYPE_TABLE,
297 .domain = DOMAIN_USER,
298 },
2e2c9de2 299 [MT_MEMORY_RWX] = {
36bb94ba 300 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
f1a2481c 301 .prot_l1 = PMD_TYPE_TABLE,
9ef79635 302 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
ae8f1541
RK
303 .domain = DOMAIN_KERNEL,
304 },
ebd4922e
RK
305 [MT_MEMORY_RW] = {
306 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
307 L_PTE_XN,
308 .prot_l1 = PMD_TYPE_TABLE,
309 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
310 .domain = DOMAIN_KERNEL,
311 },
ae8f1541 312 [MT_ROM] = {
9ef79635 313 .prot_sect = PMD_TYPE_SECT,
ae8f1541
RK
314 .domain = DOMAIN_KERNEL,
315 },
2e2c9de2 316 [MT_MEMORY_RWX_NONCACHED] = {
f1a2481c 317 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 318 L_PTE_MT_BUFFERABLE,
f1a2481c 319 .prot_l1 = PMD_TYPE_TABLE,
e4707dd3
PW
320 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
321 .domain = DOMAIN_KERNEL,
322 },
2e2c9de2 323 [MT_MEMORY_RW_DTCM] = {
f444fce3 324 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 325 L_PTE_XN,
f444fce3
LW
326 .prot_l1 = PMD_TYPE_TABLE,
327 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
328 .domain = DOMAIN_KERNEL,
cb9d7707 329 },
2e2c9de2 330 [MT_MEMORY_RWX_ITCM] = {
36bb94ba 331 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
cb9d7707 332 .prot_l1 = PMD_TYPE_TABLE,
f444fce3 333 .domain = DOMAIN_KERNEL,
cb9d7707 334 },
2e2c9de2 335 [MT_MEMORY_RW_SO] = {
8fb54284 336 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
93d5bf07 337 L_PTE_MT_UNCACHED | L_PTE_XN,
8fb54284
SS
338 .prot_l1 = PMD_TYPE_TABLE,
339 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
340 PMD_SECT_UNCACHED | PMD_SECT_XN,
341 .domain = DOMAIN_KERNEL,
342 },
c7909509 343 [MT_MEMORY_DMA_READY] = {
71b55663
RK
344 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
345 L_PTE_XN,
c7909509
MS
346 .prot_l1 = PMD_TYPE_TABLE,
347 .domain = DOMAIN_KERNEL,
348 },
ae8f1541
RK
349};
350
b29e9f5e
RK
351const struct mem_type *get_mem_type(unsigned int type)
352{
353 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
354}
69d3a84a 355EXPORT_SYMBOL(get_mem_type);
b29e9f5e 356
75374ad4
LA
357#define PTE_SET_FN(_name, pteop) \
358static int pte_set_##_name(pte_t *ptep, pgtable_t token, unsigned long addr, \
359 void *data) \
360{ \
361 pte_t pte = pteop(*ptep); \
362\
363 set_pte_ext(ptep, pte, 0); \
364 return 0; \
365} \
366
367#define SET_MEMORY_FN(_name, callback) \
368int set_memory_##_name(unsigned long addr, int numpages) \
369{ \
370 unsigned long start = addr; \
371 unsigned long size = PAGE_SIZE*numpages; \
372 unsigned end = start + size; \
373\
374 if (start < MODULES_VADDR || start >= MODULES_END) \
375 return -EINVAL;\
376\
377 if (end < MODULES_VADDR || end >= MODULES_END) \
378 return -EINVAL; \
379\
380 apply_to_page_range(&init_mm, start, size, callback, NULL); \
381 flush_tlb_kernel_range(start, end); \
382 return 0;\
383}
384
385PTE_SET_FN(ro, pte_wrprotect)
386PTE_SET_FN(rw, pte_mkwrite)
387PTE_SET_FN(x, pte_mkexec)
388PTE_SET_FN(nx, pte_mknexec)
389
390SET_MEMORY_FN(ro, pte_set_ro)
391SET_MEMORY_FN(rw, pte_set_rw)
392SET_MEMORY_FN(x, pte_set_x)
393SET_MEMORY_FN(nx, pte_set_nx)
394
ae8f1541
RK
395/*
396 * Adjust the PMD section entries according to the CPU in use.
397 */
398static void __init build_mem_type_table(void)
399{
400 struct cachepolicy *cp;
401 unsigned int cr = get_cr();
442e70c0 402 pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
cc577c26 403 pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
ae8f1541
RK
404 int cpu_arch = cpu_architecture();
405 int i;
406
11179d8c 407 if (cpu_arch < CPU_ARCH_ARMv6) {
ae8f1541 408#if defined(CONFIG_CPU_DCACHE_DISABLE)
11179d8c
CM
409 if (cachepolicy > CPOLICY_BUFFERED)
410 cachepolicy = CPOLICY_BUFFERED;
ae8f1541 411#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
11179d8c
CM
412 if (cachepolicy > CPOLICY_WRITETHROUGH)
413 cachepolicy = CPOLICY_WRITETHROUGH;
ae8f1541 414#endif
11179d8c 415 }
ae8f1541
RK
416 if (cpu_arch < CPU_ARCH_ARMv5) {
417 if (cachepolicy >= CPOLICY_WRITEALLOC)
418 cachepolicy = CPOLICY_WRITEBACK;
419 ecc_mask = 0;
420 }
ca8f0b0a 421
20e7e364
RK
422 if (is_smp()) {
423 if (cachepolicy != CPOLICY_WRITEALLOC) {
424 pr_warn("Forcing write-allocate cache policy for SMP\n");
425 cachepolicy = CPOLICY_WRITEALLOC;
426 }
427 if (!(initial_pmd_value & PMD_SECT_S)) {
428 pr_warn("Forcing shared mappings for SMP\n");
429 initial_pmd_value |= PMD_SECT_S;
430 }
ca8f0b0a 431 }
ae8f1541 432
1ad77a87 433 /*
b1cce6b1
RK
434 * Strip out features not present on earlier architectures.
435 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
436 * without extended page tables don't have the 'Shared' bit.
1ad77a87 437 */
b1cce6b1
RK
438 if (cpu_arch < CPU_ARCH_ARMv5)
439 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
440 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
441 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
442 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
443 mem_types[i].prot_sect &= ~PMD_SECT_S;
ae8f1541
RK
444
445 /*
b1cce6b1
RK
446 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
447 * "update-able on write" bit on ARM610). However, Xscale and
448 * Xscale3 require this bit to be cleared.
ae8f1541 449 */
b1cce6b1 450 if (cpu_is_xscale() || cpu_is_xsc3()) {
9ef79635 451 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541 452 mem_types[i].prot_sect &= ~PMD_BIT4;
9ef79635
RK
453 mem_types[i].prot_l1 &= ~PMD_BIT4;
454 }
455 } else if (cpu_arch < CPU_ARCH_ARMv6) {
456 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541
RK
457 if (mem_types[i].prot_l1)
458 mem_types[i].prot_l1 |= PMD_BIT4;
9ef79635
RK
459 if (mem_types[i].prot_sect)
460 mem_types[i].prot_sect |= PMD_BIT4;
461 }
462 }
ae8f1541 463
b1cce6b1
RK
464 /*
465 * Mark the device areas according to the CPU/architecture.
466 */
467 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
468 if (!cpu_is_xsc3()) {
469 /*
470 * Mark device regions on ARMv6+ as execute-never
471 * to prevent speculative instruction fetches.
472 */
473 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
474 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
475 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
476 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
ebd4922e
RK
477
478 /* Also setup NX memory mapping */
479 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
b1cce6b1
RK
480 }
481 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
482 /*
483 * For ARMv7 with TEX remapping,
484 * - shared device is SXCB=1100
485 * - nonshared device is SXCB=0100
486 * - write combine device mem is SXCB=0001
487 * (Uncached Normal memory)
488 */
489 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
490 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
491 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
492 } else if (cpu_is_xsc3()) {
493 /*
494 * For Xscale3,
495 * - shared device is TEXCB=00101
496 * - nonshared device is TEXCB=01000
497 * - write combine device mem is TEXCB=00100
498 * (Inner/Outer Uncacheable in xsc3 parlance)
499 */
500 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
501 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
502 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
503 } else {
504 /*
505 * For ARMv6 and ARMv7 without TEX remapping,
506 * - shared device is TEXCB=00001
507 * - nonshared device is TEXCB=01000
508 * - write combine device mem is TEXCB=00100
509 * (Uncached Normal in ARMv6 parlance).
510 */
511 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
512 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
513 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
514 }
515 } else {
516 /*
517 * On others, write combining is "Uncached/Buffered"
518 */
519 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
520 }
521
522 /*
523 * Now deal with the memory-type mappings
524 */
ae8f1541 525 cp = &cache_policies[cachepolicy];
bb30f36f 526 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
cc577c26 527 s2_pgprot = cp->pte_s2;
4d9c5b89
CD
528 hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
529 s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
bb30f36f 530
b6ccb980
WD
531 /*
532 * We don't use domains on ARMv6 (since this causes problems with
533 * v6/v7 kernels), so we must use a separate memory type for user
534 * r/o, kernel r/w to map the vectors page.
535 */
536#ifndef CONFIG_ARM_LPAE
537 if (cpu_arch == CPU_ARCH_ARMv6)
538 vecs_pgprot |= L_PTE_MT_VECTORS;
539#endif
bb30f36f 540
ae8f1541
RK
541 /*
542 * ARMv6 and above have extended page tables.
543 */
544 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
1b6ba46b 545#ifndef CONFIG_ARM_LPAE
ae8f1541
RK
546 /*
547 * Mark cache clean areas and XIP ROM read only
548 * from SVC mode and no access from userspace.
549 */
550 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
551 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
552 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
1b6ba46b 553#endif
ae8f1541 554
20e7e364
RK
555 /*
556 * If the initial page tables were created with the S bit
557 * set, then we need to do the same here for the same
558 * reasons given in early_cachepolicy().
559 */
560 if (initial_pmd_value & PMD_SECT_S) {
f00ec48f
RK
561 user_pgprot |= L_PTE_SHARED;
562 kern_pgprot |= L_PTE_SHARED;
563 vecs_pgprot |= L_PTE_SHARED;
cc577c26 564 s2_pgprot |= L_PTE_SHARED;
f00ec48f
RK
565 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
566 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
567 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
568 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
2e2c9de2
RK
569 mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
570 mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
ebd4922e
RK
571 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
572 mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
c7909509 573 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
2e2c9de2
RK
574 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
575 mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
f00ec48f 576 }
ae8f1541
RK
577 }
578
e4707dd3
PW
579 /*
580 * Non-cacheable Normal - intended for memory areas that must
581 * not cause dirty cache line writebacks when used
582 */
583 if (cpu_arch >= CPU_ARCH_ARMv6) {
584 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
585 /* Non-cacheable Normal is XCB = 001 */
2e2c9de2 586 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
e4707dd3
PW
587 PMD_SECT_BUFFERED;
588 } else {
589 /* For both ARMv6 and non-TEX-remapping ARMv7 */
2e2c9de2 590 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
e4707dd3
PW
591 PMD_SECT_TEX(1);
592 }
593 } else {
2e2c9de2 594 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
e4707dd3
PW
595 }
596
1b6ba46b
CM
597#ifdef CONFIG_ARM_LPAE
598 /*
599 * Do not generate access flag faults for the kernel mappings.
600 */
601 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
602 mem_types[i].prot_pte |= PTE_EXT_AF;
1a3abcf4
VA
603 if (mem_types[i].prot_sect)
604 mem_types[i].prot_sect |= PMD_SECT_AF;
1b6ba46b
CM
605 }
606 kern_pgprot |= PTE_EXT_AF;
607 vecs_pgprot |= PTE_EXT_AF;
608#endif
609
ae8f1541 610 for (i = 0; i < 16; i++) {
864aa04c 611 pteval_t v = pgprot_val(protection_map[i]);
bb30f36f 612 protection_map[i] = __pgprot(v | user_pgprot);
ae8f1541
RK
613 }
614
bb30f36f
RK
615 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
616 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
ae8f1541 617
44b18693 618 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
ae8f1541 619 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
36bb94ba 620 L_PTE_DIRTY | kern_pgprot);
cc577c26
CD
621 pgprot_s2 = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
622 pgprot_s2_device = __pgprot(s2_device_pgprot);
623 pgprot_hyp_device = __pgprot(hyp_device_pgprot);
ae8f1541
RK
624
625 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
626 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
2e2c9de2
RK
627 mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
628 mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
ebd4922e
RK
629 mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
630 mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
c7909509 631 mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
2e2c9de2 632 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
ae8f1541
RK
633 mem_types[MT_ROM].prot_sect |= cp->pmd;
634
635 switch (cp->pmd) {
636 case PMD_SECT_WT:
637 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
638 break;
639 case PMD_SECT_WB:
640 case PMD_SECT_WBWA:
641 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
642 break;
643 }
905b5797
MS
644 pr_info("Memory policy: %sData cache %s\n",
645 ecc_mask ? "ECC enabled, " : "", cp->policy);
2497f0a8
RK
646
647 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
648 struct mem_type *t = &mem_types[i];
649 if (t->prot_l1)
650 t->prot_l1 |= PMD_DOMAIN(t->domain);
651 if (t->prot_sect)
652 t->prot_sect |= PMD_DOMAIN(t->domain);
653 }
ae8f1541
RK
654}
655
d907387c
CM
656#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
657pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
658 unsigned long size, pgprot_t vma_prot)
659{
660 if (!pfn_valid(pfn))
661 return pgprot_noncached(vma_prot);
662 else if (file->f_flags & O_SYNC)
663 return pgprot_writecombine(vma_prot);
664 return vma_prot;
665}
666EXPORT_SYMBOL(phys_mem_access_prot);
667#endif
668
ae8f1541
RK
669#define vectors_base() (vectors_high() ? 0xffff0000 : 0)
670
0536bdf3 671static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
3abe9d33 672{
0536bdf3 673 void *ptr = __va(memblock_alloc(sz, align));
2778f620
RK
674 memset(ptr, 0, sz);
675 return ptr;
3abe9d33
RK
676}
677
0536bdf3
NP
678static void __init *early_alloc(unsigned long sz)
679{
680 return early_alloc_aligned(sz, sz);
681}
682
4bb2e27d 683static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
ae8f1541 684{
24e6c699 685 if (pmd_none(*pmd)) {
410f1483 686 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
97092e0c 687 __pmd_populate(pmd, __pa(pte), prot);
24e6c699 688 }
4bb2e27d
RK
689 BUG_ON(pmd_bad(*pmd));
690 return pte_offset_kernel(pmd, addr);
691}
ae8f1541 692
4bb2e27d
RK
693static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
694 unsigned long end, unsigned long pfn,
695 const struct mem_type *type)
696{
697 pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
24e6c699 698 do {
40d192b6 699 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
24e6c699
RK
700 pfn++;
701 } while (pte++, addr += PAGE_SIZE, addr != end);
ae8f1541
RK
702}
703
37468b30 704static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
e651eab0
S
705 unsigned long end, phys_addr_t phys,
706 const struct mem_type *type)
ae8f1541 707{
37468b30
PYC
708 pmd_t *p = pmd;
709
e651eab0 710#ifndef CONFIG_ARM_LPAE
24e6c699 711 /*
e651eab0
S
712 * In classic MMU format, puds and pmds are folded in to
713 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
714 * group of L1 entries making up one logical pointer to
715 * an L2 table (2MB), where as PMDs refer to the individual
716 * L1 entries (1MB). Hence increment to get the correct
717 * offset for odd 1MB sections.
718 * (See arch/arm/include/asm/pgtable-2level.h)
24e6c699 719 */
e651eab0
S
720 if (addr & SECTION_SIZE)
721 pmd++;
1b6ba46b 722#endif
e651eab0
S
723 do {
724 *pmd = __pmd(phys | type->prot_sect);
725 phys += SECTION_SIZE;
726 } while (pmd++, addr += SECTION_SIZE, addr != end);
24e6c699 727
37468b30 728 flush_pmd_entry(p);
e651eab0 729}
ae8f1541 730
e651eab0
S
731static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
732 unsigned long end, phys_addr_t phys,
733 const struct mem_type *type)
734{
735 pmd_t *pmd = pmd_offset(pud, addr);
736 unsigned long next;
737
738 do {
24e6c699 739 /*
e651eab0
S
740 * With LPAE, we must loop over to map
741 * all the pmds for the given range.
24e6c699 742 */
e651eab0
S
743 next = pmd_addr_end(addr, end);
744
745 /*
746 * Try a section mapping - addr, next and phys must all be
747 * aligned to a section boundary.
748 */
749 if (type->prot_sect &&
750 ((addr | next | phys) & ~SECTION_MASK) == 0) {
37468b30 751 __map_init_section(pmd, addr, next, phys, type);
e651eab0
S
752 } else {
753 alloc_init_pte(pmd, addr, next,
754 __phys_to_pfn(phys), type);
755 }
756
757 phys += next - addr;
758
759 } while (pmd++, addr = next, addr != end);
ae8f1541
RK
760}
761
14904927 762static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
20d6956d
VA
763 unsigned long end, phys_addr_t phys,
764 const struct mem_type *type)
516295e5
RK
765{
766 pud_t *pud = pud_offset(pgd, addr);
767 unsigned long next;
768
769 do {
770 next = pud_addr_end(addr, end);
e651eab0 771 alloc_init_pmd(pud, addr, next, phys, type);
516295e5
RK
772 phys += next - addr;
773 } while (pud++, addr = next, addr != end);
774}
775
1b6ba46b 776#ifndef CONFIG_ARM_LPAE
4a56c1e4
RK
777static void __init create_36bit_mapping(struct map_desc *md,
778 const struct mem_type *type)
779{
97092e0c
RK
780 unsigned long addr, length, end;
781 phys_addr_t phys;
4a56c1e4
RK
782 pgd_t *pgd;
783
784 addr = md->virtual;
cae6292b 785 phys = __pfn_to_phys(md->pfn);
4a56c1e4
RK
786 length = PAGE_ALIGN(md->length);
787
788 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
789 printk(KERN_ERR "MM: CPU does not support supersection "
790 "mapping for 0x%08llx at 0x%08lx\n",
29a38193 791 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
792 return;
793 }
794
795 /* N.B. ARMv6 supersections are only defined to work with domain 0.
796 * Since domain assignments can in fact be arbitrary, the
797 * 'domain == 0' check below is required to insure that ARMv6
798 * supersections are only allocated for domain 0 regardless
799 * of the actual domain assignments in use.
800 */
801 if (type->domain) {
802 printk(KERN_ERR "MM: invalid domain in supersection "
803 "mapping for 0x%08llx at 0x%08lx\n",
29a38193 804 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
805 return;
806 }
807
808 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
29a38193
WD
809 printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
810 " at 0x%08lx invalid alignment\n",
811 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
812 return;
813 }
814
815 /*
816 * Shift bits [35:32] of address into bits [23:20] of PMD
817 * (See ARMv6 spec).
818 */
819 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
820
821 pgd = pgd_offset_k(addr);
822 end = addr + length;
823 do {
516295e5
RK
824 pud_t *pud = pud_offset(pgd, addr);
825 pmd_t *pmd = pmd_offset(pud, addr);
4a56c1e4
RK
826 int i;
827
828 for (i = 0; i < 16; i++)
829 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
830
831 addr += SUPERSECTION_SIZE;
832 phys += SUPERSECTION_SIZE;
833 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
834 } while (addr != end);
835}
1b6ba46b 836#endif /* !CONFIG_ARM_LPAE */
4a56c1e4 837
ae8f1541
RK
838/*
839 * Create the page directory entries and any necessary
840 * page tables for the mapping specified by `md'. We
841 * are able to cope here with varying sizes and address
842 * offsets, and we take full advantage of sections and
843 * supersections.
844 */
a2227120 845static void __init create_mapping(struct map_desc *md)
ae8f1541 846{
cae6292b
WD
847 unsigned long addr, length, end;
848 phys_addr_t phys;
d5c98176 849 const struct mem_type *type;
24e6c699 850 pgd_t *pgd;
ae8f1541
RK
851
852 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
29a38193
WD
853 printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
854 " at 0x%08lx in user region\n",
855 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
ae8f1541
RK
856 return;
857 }
858
859 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
0536bdf3
NP
860 md->virtual >= PAGE_OFFSET &&
861 (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
29a38193 862 printk(KERN_WARNING "BUG: mapping for 0x%08llx"
0536bdf3 863 " at 0x%08lx out of vmalloc space\n",
29a38193 864 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
ae8f1541
RK
865 }
866
d5c98176 867 type = &mem_types[md->type];
ae8f1541 868
1b6ba46b 869#ifndef CONFIG_ARM_LPAE
ae8f1541
RK
870 /*
871 * Catch 36-bit addresses
872 */
4a56c1e4
RK
873 if (md->pfn >= 0x100000) {
874 create_36bit_mapping(md, type);
875 return;
ae8f1541 876 }
1b6ba46b 877#endif
ae8f1541 878
7b9c7b4d 879 addr = md->virtual & PAGE_MASK;
cae6292b 880 phys = __pfn_to_phys(md->pfn);
7b9c7b4d 881 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
ae8f1541 882
24e6c699 883 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
29a38193 884 printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
ae8f1541 885 "be mapped using pages, ignoring.\n",
29a38193 886 (long long)__pfn_to_phys(md->pfn), addr);
ae8f1541
RK
887 return;
888 }
889
24e6c699
RK
890 pgd = pgd_offset_k(addr);
891 end = addr + length;
892 do {
893 unsigned long next = pgd_addr_end(addr, end);
ae8f1541 894
516295e5 895 alloc_init_pud(pgd, addr, next, phys, type);
ae8f1541 896
24e6c699
RK
897 phys += next - addr;
898 addr = next;
899 } while (pgd++, addr != end);
ae8f1541
RK
900}
901
902/*
903 * Create the architecture specific mappings
904 */
905void __init iotable_init(struct map_desc *io_desc, int nr)
906{
0536bdf3
NP
907 struct map_desc *md;
908 struct vm_struct *vm;
101eeda3 909 struct static_vm *svm;
0536bdf3
NP
910
911 if (!nr)
912 return;
ae8f1541 913
101eeda3 914 svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
0536bdf3
NP
915
916 for (md = io_desc; nr; md++, nr--) {
917 create_mapping(md);
101eeda3
JK
918
919 vm = &svm->vm;
0536bdf3
NP
920 vm->addr = (void *)(md->virtual & PAGE_MASK);
921 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
c2794437
RH
922 vm->phys_addr = __pfn_to_phys(md->pfn);
923 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
576d2f25 924 vm->flags |= VM_ARM_MTYPE(md->type);
0536bdf3 925 vm->caller = iotable_init;
101eeda3 926 add_static_vm_early(svm++);
0536bdf3 927 }
ae8f1541
RK
928}
929
c2794437
RH
930void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
931 void *caller)
932{
933 struct vm_struct *vm;
101eeda3
JK
934 struct static_vm *svm;
935
936 svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
c2794437 937
101eeda3 938 vm = &svm->vm;
c2794437
RH
939 vm->addr = (void *)addr;
940 vm->size = size;
863e99a8 941 vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
c2794437 942 vm->caller = caller;
101eeda3 943 add_static_vm_early(svm);
c2794437
RH
944}
945
19b52abe
NP
946#ifndef CONFIG_ARM_LPAE
947
948/*
949 * The Linux PMD is made of two consecutive section entries covering 2MB
950 * (see definition in include/asm/pgtable-2level.h). However a call to
951 * create_mapping() may optimize static mappings by using individual
952 * 1MB section mappings. This leaves the actual PMD potentially half
953 * initialized if the top or bottom section entry isn't used, leaving it
954 * open to problems if a subsequent ioremap() or vmalloc() tries to use
955 * the virtual space left free by that unused section entry.
956 *
957 * Let's avoid the issue by inserting dummy vm entries covering the unused
958 * PMD halves once the static mappings are in place.
959 */
960
961static void __init pmd_empty_section_gap(unsigned long addr)
962{
c2794437 963 vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
19b52abe
NP
964}
965
966static void __init fill_pmd_gaps(void)
967{
101eeda3 968 struct static_vm *svm;
19b52abe
NP
969 struct vm_struct *vm;
970 unsigned long addr, next = 0;
971 pmd_t *pmd;
972
101eeda3
JK
973 list_for_each_entry(svm, &static_vmlist, list) {
974 vm = &svm->vm;
19b52abe
NP
975 addr = (unsigned long)vm->addr;
976 if (addr < next)
977 continue;
978
979 /*
980 * Check if this vm starts on an odd section boundary.
981 * If so and the first section entry for this PMD is free
982 * then we block the corresponding virtual address.
983 */
984 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
985 pmd = pmd_off_k(addr);
986 if (pmd_none(*pmd))
987 pmd_empty_section_gap(addr & PMD_MASK);
988 }
989
990 /*
991 * Then check if this vm ends on an odd section boundary.
992 * If so and the second section entry for this PMD is empty
993 * then we block the corresponding virtual address.
994 */
995 addr += vm->size;
996 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
997 pmd = pmd_off_k(addr) + 1;
998 if (pmd_none(*pmd))
999 pmd_empty_section_gap(addr);
1000 }
1001
1002 /* no need to look at any vm entry until we hit the next PMD */
1003 next = (addr + PMD_SIZE - 1) & PMD_MASK;
1004 }
1005}
1006
1007#else
1008#define fill_pmd_gaps() do { } while (0)
1009#endif
1010
c2794437
RH
1011#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1012static void __init pci_reserve_io(void)
1013{
101eeda3 1014 struct static_vm *svm;
c2794437 1015
101eeda3
JK
1016 svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1017 if (svm)
1018 return;
c2794437 1019
c2794437
RH
1020 vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1021}
1022#else
1023#define pci_reserve_io() do { } while (0)
1024#endif
1025
e5c5f2ad
RH
1026#ifdef CONFIG_DEBUG_LL
1027void __init debug_ll_io_init(void)
1028{
1029 struct map_desc map;
1030
1031 debug_ll_addr(&map.pfn, &map.virtual);
1032 if (!map.pfn || !map.virtual)
1033 return;
1034 map.pfn = __phys_to_pfn(map.pfn);
1035 map.virtual &= PAGE_MASK;
1036 map.length = PAGE_SIZE;
1037 map.type = MT_DEVICE;
ee4de5d9 1038 iotable_init(&map, 1);
e5c5f2ad
RH
1039}
1040#endif
1041
0536bdf3
NP
1042static void * __initdata vmalloc_min =
1043 (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
6c5da7ac
RK
1044
1045/*
1046 * vmalloc=size forces the vmalloc area to be exactly 'size'
1047 * bytes. This can be used to increase (or decrease) the vmalloc
0536bdf3 1048 * area - the default is 240m.
6c5da7ac 1049 */
2b0d8c25 1050static int __init early_vmalloc(char *arg)
6c5da7ac 1051{
79612395 1052 unsigned long vmalloc_reserve = memparse(arg, NULL);
6c5da7ac
RK
1053
1054 if (vmalloc_reserve < SZ_16M) {
1055 vmalloc_reserve = SZ_16M;
1056 printk(KERN_WARNING
1057 "vmalloc area too small, limiting to %luMB\n",
1058 vmalloc_reserve >> 20);
1059 }
9210807c
NP
1060
1061 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
1062 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
1063 printk(KERN_WARNING
1064 "vmalloc area is too big, limiting to %luMB\n",
1065 vmalloc_reserve >> 20);
1066 }
79612395
RK
1067
1068 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
2b0d8c25 1069 return 0;
6c5da7ac 1070}
2b0d8c25 1071early_param("vmalloc", early_vmalloc);
6c5da7ac 1072
c7909509 1073phys_addr_t arm_lowmem_limit __initdata = 0;
8df65168 1074
0371d3f7 1075void __init sanity_check_meminfo(void)
60296c71 1076{
c65b7e98 1077 phys_addr_t memblock_limit = 0;
1c2f87c2 1078 int highmem = 0;
82f66704 1079 phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1;
1c2f87c2 1080 struct memblock_region *reg;
60296c71 1081
1c2f87c2
LA
1082 for_each_memblock(memory, reg) {
1083 phys_addr_t block_start = reg->base;
1084 phys_addr_t block_end = reg->base + reg->size;
1085 phys_addr_t size_limit = reg->size;
77f73a2c 1086
1c2f87c2 1087 if (reg->base >= vmalloc_limit)
dde5828f 1088 highmem = 1;
28d4bf7a 1089 else
1c2f87c2 1090 size_limit = vmalloc_limit - reg->base;
dde5828f 1091
dde5828f 1092
1c2f87c2
LA
1093 if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1094
1095 if (highmem) {
1096 pr_notice("Ignoring RAM at %pa-%pa (!CONFIG_HIGHMEM)\n",
1097 &block_start, &block_end);
1098 memblock_remove(reg->base, reg->size);
1099 continue;
a1bbaec0 1100 }
77f73a2c 1101
1c2f87c2
LA
1102 if (reg->size > size_limit) {
1103 phys_addr_t overlap_size = reg->size - size_limit;
1104
1105 pr_notice("Truncating RAM at %pa-%pa to -%pa",
1106 &block_start, &block_end, &vmalloc_limit);
1107 memblock_remove(vmalloc_limit, overlap_size);
1108 block_end = vmalloc_limit;
1109 }
a1bbaec0 1110 }
40f7bfe4 1111
1c2f87c2
LA
1112 if (!highmem) {
1113 if (block_end > arm_lowmem_limit) {
1114 if (reg->size > size_limit)
1115 arm_lowmem_limit = vmalloc_limit;
1116 else
1117 arm_lowmem_limit = block_end;
1118 }
c65b7e98
RK
1119
1120 /*
1121 * Find the first non-section-aligned page, and point
1122 * memblock_limit at it. This relies on rounding the
1123 * limit down to be section-aligned, which happens at
1124 * the end of this function.
1125 *
1126 * With this algorithm, the start or end of almost any
1127 * bank can be non-section-aligned. The only exception
1128 * is that the start of the bank 0 must be section-
1129 * aligned, since otherwise memory would need to be
1130 * allocated when mapping the start of bank 0, which
1131 * occurs before any free memory is mapped.
1132 */
1133 if (!memblock_limit) {
1c2f87c2
LA
1134 if (!IS_ALIGNED(block_start, SECTION_SIZE))
1135 memblock_limit = block_start;
1136 else if (!IS_ALIGNED(block_end, SECTION_SIZE))
1137 memblock_limit = arm_lowmem_limit;
c65b7e98 1138 }
e616c591 1139
e616c591
RK
1140 }
1141 }
1c2f87c2 1142
c7909509 1143 high_memory = __va(arm_lowmem_limit - 1) + 1;
c65b7e98
RK
1144
1145 /*
1146 * Round the memblock limit down to a section size. This
1147 * helps to ensure that we will allocate memory from the
1148 * last full section, which should be mapped.
1149 */
1150 if (memblock_limit)
1151 memblock_limit = round_down(memblock_limit, SECTION_SIZE);
1152 if (!memblock_limit)
1153 memblock_limit = arm_lowmem_limit;
1154
1155 memblock_set_current_limit(memblock_limit);
60296c71
LB
1156}
1157
4b5f32ce 1158static inline void prepare_page_table(void)
d111e8f9
RK
1159{
1160 unsigned long addr;
8df65168 1161 phys_addr_t end;
d111e8f9
RK
1162
1163 /*
1164 * Clear out all the mappings below the kernel image.
1165 */
e73fc88e 1166 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
d111e8f9
RK
1167 pmd_clear(pmd_off_k(addr));
1168
1169#ifdef CONFIG_XIP_KERNEL
1170 /* The XIP kernel is mapped in the module area -- skip over it */
e73fc88e 1171 addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
d111e8f9 1172#endif
e73fc88e 1173 for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
d111e8f9
RK
1174 pmd_clear(pmd_off_k(addr));
1175
8df65168
RK
1176 /*
1177 * Find the end of the first block of lowmem.
1178 */
1179 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
c7909509
MS
1180 if (end >= arm_lowmem_limit)
1181 end = arm_lowmem_limit;
8df65168 1182
d111e8f9
RK
1183 /*
1184 * Clear out all the kernel space mappings, except for the first
0536bdf3 1185 * memory bank, up to the vmalloc region.
d111e8f9 1186 */
8df65168 1187 for (addr = __phys_to_virt(end);
0536bdf3 1188 addr < VMALLOC_START; addr += PMD_SIZE)
d111e8f9
RK
1189 pmd_clear(pmd_off_k(addr));
1190}
1191
1b6ba46b
CM
1192#ifdef CONFIG_ARM_LPAE
1193/* the first page is reserved for pgd */
1194#define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
1195 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1196#else
e73fc88e 1197#define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1b6ba46b 1198#endif
e73fc88e 1199
d111e8f9 1200/*
2778f620 1201 * Reserve the special regions of memory
d111e8f9 1202 */
2778f620 1203void __init arm_mm_memblock_reserve(void)
d111e8f9 1204{
d111e8f9
RK
1205 /*
1206 * Reserve the page tables. These are already in use,
1207 * and can only be in node 0.
1208 */
e73fc88e 1209 memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
d111e8f9 1210
d111e8f9
RK
1211#ifdef CONFIG_SA1111
1212 /*
1213 * Because of the SA1111 DMA bug, we want to preserve our
1214 * precious DMA-able memory...
1215 */
2778f620 1216 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
d111e8f9 1217#endif
d111e8f9
RK
1218}
1219
1220/*
0536bdf3
NP
1221 * Set up the device mappings. Since we clear out the page tables for all
1222 * mappings above VMALLOC_START, we will remove any debug device mappings.
d111e8f9
RK
1223 * This means you have to be careful how you debug this function, or any
1224 * called function. This means you can't use any function or debugging
1225 * method which may touch any device, otherwise the kernel _will_ crash.
1226 */
ff69a4c8 1227static void __init devicemaps_init(const struct machine_desc *mdesc)
d111e8f9
RK
1228{
1229 struct map_desc map;
1230 unsigned long addr;
94e5a85b 1231 void *vectors;
d111e8f9
RK
1232
1233 /*
1234 * Allocate the vector page early.
1235 */
19accfd3 1236 vectors = early_alloc(PAGE_SIZE * 2);
94e5a85b
RK
1237
1238 early_trap_init(vectors);
d111e8f9 1239
0536bdf3 1240 for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
d111e8f9
RK
1241 pmd_clear(pmd_off_k(addr));
1242
1243 /*
1244 * Map the kernel if it is XIP.
1245 * It is always first in the modulearea.
1246 */
1247#ifdef CONFIG_XIP_KERNEL
1248 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
ab4f2ee1 1249 map.virtual = MODULES_VADDR;
37efe642 1250 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
d111e8f9
RK
1251 map.type = MT_ROM;
1252 create_mapping(&map);
1253#endif
1254
1255 /*
1256 * Map the cache flushing regions.
1257 */
1258#ifdef FLUSH_BASE
1259 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1260 map.virtual = FLUSH_BASE;
1261 map.length = SZ_1M;
1262 map.type = MT_CACHECLEAN;
1263 create_mapping(&map);
1264#endif
1265#ifdef FLUSH_BASE_MINICACHE
1266 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1267 map.virtual = FLUSH_BASE_MINICACHE;
1268 map.length = SZ_1M;
1269 map.type = MT_MINICLEAN;
1270 create_mapping(&map);
1271#endif
1272
1273 /*
1274 * Create a mapping for the machine vectors at the high-vectors
1275 * location (0xffff0000). If we aren't using high-vectors, also
1276 * create a mapping at the low-vectors virtual address.
1277 */
94e5a85b 1278 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
d111e8f9
RK
1279 map.virtual = 0xffff0000;
1280 map.length = PAGE_SIZE;
a5463cd3 1281#ifdef CONFIG_KUSER_HELPERS
d111e8f9 1282 map.type = MT_HIGH_VECTORS;
a5463cd3
RK
1283#else
1284 map.type = MT_LOW_VECTORS;
1285#endif
d111e8f9
RK
1286 create_mapping(&map);
1287
1288 if (!vectors_high()) {
1289 map.virtual = 0;
19accfd3 1290 map.length = PAGE_SIZE * 2;
d111e8f9
RK
1291 map.type = MT_LOW_VECTORS;
1292 create_mapping(&map);
1293 }
1294
19accfd3
RK
1295 /* Now create a kernel read-only mapping */
1296 map.pfn += 1;
1297 map.virtual = 0xffff0000 + PAGE_SIZE;
1298 map.length = PAGE_SIZE;
1299 map.type = MT_LOW_VECTORS;
1300 create_mapping(&map);
1301
d111e8f9
RK
1302 /*
1303 * Ask the machine support to map in the statically mapped devices.
1304 */
1305 if (mdesc->map_io)
1306 mdesc->map_io();
bc37324e
MR
1307 else
1308 debug_ll_io_init();
19b52abe 1309 fill_pmd_gaps();
d111e8f9 1310
c2794437
RH
1311 /* Reserve fixed i/o space in VMALLOC region */
1312 pci_reserve_io();
1313
d111e8f9
RK
1314 /*
1315 * Finally flush the caches and tlb to ensure that we're in a
1316 * consistent state wrt the writebuffer. This also ensures that
1317 * any write-allocated cache lines in the vector page are written
1318 * back. After this point, we can start to touch devices again.
1319 */
1320 local_flush_tlb_all();
1321 flush_cache_all();
1322}
1323
d73cd428
NP
1324static void __init kmap_init(void)
1325{
1326#ifdef CONFIG_HIGHMEM
4bb2e27d
RK
1327 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1328 PKMAP_BASE, _PAGE_KERNEL_TABLE);
a05e54c1
LH
1329
1330 fixmap_page_table = early_pte_alloc(pmd_off_k(FIXADDR_START),
1331 FIXADDR_START, _PAGE_KERNEL_TABLE);
d73cd428
NP
1332#endif
1333}
1334
a2227120
RK
1335static void __init map_lowmem(void)
1336{
8df65168 1337 struct memblock_region *reg;
ebd4922e
RK
1338 unsigned long kernel_x_start = round_down(__pa(_stext), SECTION_SIZE);
1339 unsigned long kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
a2227120
RK
1340
1341 /* Map all the lowmem memory banks. */
8df65168
RK
1342 for_each_memblock(memory, reg) {
1343 phys_addr_t start = reg->base;
1344 phys_addr_t end = start + reg->size;
1345 struct map_desc map;
1346
c7909509
MS
1347 if (end > arm_lowmem_limit)
1348 end = arm_lowmem_limit;
8df65168
RK
1349 if (start >= end)
1350 break;
1351
ebd4922e
RK
1352 if (end < kernel_x_start || start >= kernel_x_end) {
1353 map.pfn = __phys_to_pfn(start);
1354 map.virtual = __phys_to_virt(start);
1355 map.length = end - start;
1356 map.type = MT_MEMORY_RWX;
a2227120 1357
ebd4922e
RK
1358 create_mapping(&map);
1359 } else {
1360 /* This better cover the entire kernel */
1361 if (start < kernel_x_start) {
1362 map.pfn = __phys_to_pfn(start);
1363 map.virtual = __phys_to_virt(start);
1364 map.length = kernel_x_start - start;
1365 map.type = MT_MEMORY_RW;
1366
1367 create_mapping(&map);
1368 }
1369
1370 map.pfn = __phys_to_pfn(kernel_x_start);
1371 map.virtual = __phys_to_virt(kernel_x_start);
1372 map.length = kernel_x_end - kernel_x_start;
1373 map.type = MT_MEMORY_RWX;
1374
1375 create_mapping(&map);
1376
1377 if (kernel_x_end < end) {
1378 map.pfn = __phys_to_pfn(kernel_x_end);
1379 map.virtual = __phys_to_virt(kernel_x_end);
1380 map.length = end - kernel_x_end;
1381 map.type = MT_MEMORY_RW;
1382
1383 create_mapping(&map);
1384 }
1385 }
a2227120
RK
1386 }
1387}
1388
a77e0c7b
SS
1389#ifdef CONFIG_ARM_LPAE
1390/*
1391 * early_paging_init() recreates boot time page table setup, allowing machines
1392 * to switch over to a high (>4G) address space on LPAE systems
1393 */
1394void __init early_paging_init(const struct machine_desc *mdesc,
1395 struct proc_info_list *procinfo)
1396{
1397 pmdval_t pmdprot = procinfo->__cpu_mm_mmu_flags;
1398 unsigned long map_start, map_end;
1399 pgd_t *pgd0, *pgdk;
1400 pud_t *pud0, *pudk, *pud_start;
1401 pmd_t *pmd0, *pmdk;
1402 phys_addr_t phys;
1403 int i;
1404
1405 if (!(mdesc->init_meminfo))
1406 return;
1407
1408 /* remap kernel code and data */
823a19cd
RK
1409 map_start = init_mm.start_code & PMD_MASK;
1410 map_end = ALIGN(init_mm.brk, PMD_SIZE);
a77e0c7b
SS
1411
1412 /* get a handle on things... */
1413 pgd0 = pgd_offset_k(0);
1414 pud_start = pud0 = pud_offset(pgd0, 0);
1415 pmd0 = pmd_offset(pud0, 0);
1416
1417 pgdk = pgd_offset_k(map_start);
1418 pudk = pud_offset(pgdk, map_start);
1419 pmdk = pmd_offset(pudk, map_start);
1420
1421 mdesc->init_meminfo();
1422
1423 /* Run the patch stub to update the constants */
1424 fixup_pv_table(&__pv_table_begin,
1425 (&__pv_table_end - &__pv_table_begin) << 2);
1426
1427 /*
1428 * Cache cleaning operations for self-modifying code
1429 * We should clean the entries by MVA but running a
1430 * for loop over every pv_table entry pointer would
1431 * just complicate the code.
1432 */
1433 flush_cache_louis();
9581960a 1434 dsb(ishst);
a77e0c7b
SS
1435 isb();
1436
1437 /* remap level 1 table */
1438 for (i = 0; i < PTRS_PER_PGD; pud0++, i++) {
1439 set_pud(pud0,
1440 __pud(__pa(pmd0) | PMD_TYPE_TABLE | L_PGD_SWAPPER));
1441 pmd0 += PTRS_PER_PMD;
1442 }
1443
1444 /* remap pmds for kernel mapping */
823a19cd 1445 phys = __pa(map_start);
a77e0c7b
SS
1446 do {
1447 *pmdk++ = __pmd(phys | pmdprot);
1448 phys += PMD_SIZE;
1449 } while (phys < map_end);
1450
1451 flush_cache_all();
1452 cpu_switch_mm(pgd0, &init_mm);
1453 cpu_set_ttbr(1, __pa(pgd0) + TTBR1_OFFSET);
1454 local_flush_bp_all();
1455 local_flush_tlb_all();
1456}
1457
1458#else
1459
1460void __init early_paging_init(const struct machine_desc *mdesc,
1461 struct proc_info_list *procinfo)
1462{
1463 if (mdesc->init_meminfo)
1464 mdesc->init_meminfo();
1465}
1466
1467#endif
1468
d111e8f9
RK
1469/*
1470 * paging_init() sets up the page tables, initialises the zone memory
1471 * maps, and sets up the zero page, bad page and bad page tables.
1472 */
ff69a4c8 1473void __init paging_init(const struct machine_desc *mdesc)
d111e8f9
RK
1474{
1475 void *zero_page;
1476
1477 build_mem_type_table();
4b5f32ce 1478 prepare_page_table();
a2227120 1479 map_lowmem();
c7909509 1480 dma_contiguous_remap();
d111e8f9 1481 devicemaps_init(mdesc);
d73cd428 1482 kmap_init();
de40614e 1483 tcm_init();
d111e8f9
RK
1484
1485 top_pmd = pmd_off_k(0xffff0000);
1486
3abe9d33
RK
1487 /* allocate the zero page. */
1488 zero_page = early_alloc(PAGE_SIZE);
2778f620 1489
8d717a52 1490 bootmem_init();
2778f620 1491
d111e8f9 1492 empty_zero_page = virt_to_page(zero_page);
421fe93c 1493 __flush_dcache_page(NULL, empty_zero_page);
d111e8f9 1494}
This page took 0.598949 seconds and 5 git commands to generate.