ARM: 7436/1: Do not map the vectors page as write-through on UP systems
[deliverable/linux.git] / arch / arm / mm / mmu.c
CommitLineData
d111e8f9
RK
1/*
2 * linux/arch/arm/mm/mmu.c
3 *
4 * Copyright (C) 1995-2005 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
ae8f1541 10#include <linux/module.h>
d111e8f9
RK
11#include <linux/kernel.h>
12#include <linux/errno.h>
13#include <linux/init.h>
d111e8f9
RK
14#include <linux/mman.h>
15#include <linux/nodemask.h>
2778f620 16#include <linux/memblock.h>
d907387c 17#include <linux/fs.h>
0536bdf3 18#include <linux/vmalloc.h>
d111e8f9 19
15d07dc9 20#include <asm/cp15.h>
0ba8b9b2 21#include <asm/cputype.h>
37efe642 22#include <asm/sections.h>
3f973e22 23#include <asm/cachetype.h>
d111e8f9
RK
24#include <asm/setup.h>
25#include <asm/sizes.h>
e616c591 26#include <asm/smp_plat.h>
d111e8f9 27#include <asm/tlb.h>
d73cd428 28#include <asm/highmem.h>
9f97da78 29#include <asm/system_info.h>
247055aa 30#include <asm/traps.h>
d111e8f9
RK
31
32#include <asm/mach/arch.h>
33#include <asm/mach/map.h>
34
35#include "mm.h"
36
d111e8f9
RK
37/*
38 * empty_zero_page is a special page that is used for
39 * zero-initialized data and COW.
40 */
41struct page *empty_zero_page;
3653f3ab 42EXPORT_SYMBOL(empty_zero_page);
d111e8f9
RK
43
44/*
45 * The pmd table for the upper-most set of pages.
46 */
47pmd_t *top_pmd;
48
ae8f1541
RK
49#define CPOLICY_UNCACHED 0
50#define CPOLICY_BUFFERED 1
51#define CPOLICY_WRITETHROUGH 2
52#define CPOLICY_WRITEBACK 3
53#define CPOLICY_WRITEALLOC 4
54
55static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
56static unsigned int ecc_mask __initdata = 0;
44b18693 57pgprot_t pgprot_user;
ae8f1541
RK
58pgprot_t pgprot_kernel;
59
44b18693 60EXPORT_SYMBOL(pgprot_user);
ae8f1541
RK
61EXPORT_SYMBOL(pgprot_kernel);
62
63struct cachepolicy {
64 const char policy[16];
65 unsigned int cr_mask;
442e70c0 66 pmdval_t pmd;
f6e3354d 67 pteval_t pte;
ae8f1541
RK
68};
69
70static struct cachepolicy cache_policies[] __initdata = {
71 {
72 .policy = "uncached",
73 .cr_mask = CR_W|CR_C,
74 .pmd = PMD_SECT_UNCACHED,
bb30f36f 75 .pte = L_PTE_MT_UNCACHED,
ae8f1541
RK
76 }, {
77 .policy = "buffered",
78 .cr_mask = CR_C,
79 .pmd = PMD_SECT_BUFFERED,
bb30f36f 80 .pte = L_PTE_MT_BUFFERABLE,
ae8f1541
RK
81 }, {
82 .policy = "writethrough",
83 .cr_mask = 0,
84 .pmd = PMD_SECT_WT,
bb30f36f 85 .pte = L_PTE_MT_WRITETHROUGH,
ae8f1541
RK
86 }, {
87 .policy = "writeback",
88 .cr_mask = 0,
89 .pmd = PMD_SECT_WB,
bb30f36f 90 .pte = L_PTE_MT_WRITEBACK,
ae8f1541
RK
91 }, {
92 .policy = "writealloc",
93 .cr_mask = 0,
94 .pmd = PMD_SECT_WBWA,
bb30f36f 95 .pte = L_PTE_MT_WRITEALLOC,
ae8f1541
RK
96 }
97};
98
99/*
6cbdc8c5 100 * These are useful for identifying cache coherency
ae8f1541
RK
101 * problems by allowing the cache or the cache and
102 * writebuffer to be turned off. (Note: the write
103 * buffer should not be on and the cache off).
104 */
2b0d8c25 105static int __init early_cachepolicy(char *p)
ae8f1541
RK
106{
107 int i;
108
109 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
110 int len = strlen(cache_policies[i].policy);
111
2b0d8c25 112 if (memcmp(p, cache_policies[i].policy, len) == 0) {
ae8f1541
RK
113 cachepolicy = i;
114 cr_alignment &= ~cache_policies[i].cr_mask;
115 cr_no_alignment &= ~cache_policies[i].cr_mask;
ae8f1541
RK
116 break;
117 }
118 }
119 if (i == ARRAY_SIZE(cache_policies))
120 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
4b46d641
RK
121 /*
122 * This restriction is partly to do with the way we boot; it is
123 * unpredictable to have memory mapped using two different sets of
124 * memory attributes (shared, type, and cache attribs). We can not
125 * change these attributes once the initial assembly has setup the
126 * page tables.
127 */
11179d8c
CM
128 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
129 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
130 cachepolicy = CPOLICY_WRITEBACK;
131 }
ae8f1541
RK
132 flush_cache_all();
133 set_cr(cr_alignment);
2b0d8c25 134 return 0;
ae8f1541 135}
2b0d8c25 136early_param("cachepolicy", early_cachepolicy);
ae8f1541 137
2b0d8c25 138static int __init early_nocache(char *__unused)
ae8f1541
RK
139{
140 char *p = "buffered";
141 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
142 early_cachepolicy(p);
143 return 0;
ae8f1541 144}
2b0d8c25 145early_param("nocache", early_nocache);
ae8f1541 146
2b0d8c25 147static int __init early_nowrite(char *__unused)
ae8f1541
RK
148{
149 char *p = "uncached";
150 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
151 early_cachepolicy(p);
152 return 0;
ae8f1541 153}
2b0d8c25 154early_param("nowb", early_nowrite);
ae8f1541 155
1b6ba46b 156#ifndef CONFIG_ARM_LPAE
2b0d8c25 157static int __init early_ecc(char *p)
ae8f1541 158{
2b0d8c25 159 if (memcmp(p, "on", 2) == 0)
ae8f1541 160 ecc_mask = PMD_PROTECTION;
2b0d8c25 161 else if (memcmp(p, "off", 3) == 0)
ae8f1541 162 ecc_mask = 0;
2b0d8c25 163 return 0;
ae8f1541 164}
2b0d8c25 165early_param("ecc", early_ecc);
1b6ba46b 166#endif
ae8f1541
RK
167
168static int __init noalign_setup(char *__unused)
169{
170 cr_alignment &= ~CR_A;
171 cr_no_alignment &= ~CR_A;
172 set_cr(cr_alignment);
173 return 1;
174}
175__setup("noalign", noalign_setup);
176
255d1f86
RK
177#ifndef CONFIG_SMP
178void adjust_cr(unsigned long mask, unsigned long set)
179{
180 unsigned long flags;
181
182 mask &= ~CR_A;
183
184 set &= mask;
185
186 local_irq_save(flags);
187
188 cr_no_alignment = (cr_no_alignment & ~mask) | set;
189 cr_alignment = (cr_alignment & ~mask) | set;
190
191 set_cr((get_cr() & ~mask) | set);
192
193 local_irq_restore(flags);
194}
195#endif
196
36bb94ba 197#define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
b1cce6b1 198#define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
0af92bef 199
b29e9f5e 200static struct mem_type mem_types[] = {
0af92bef 201 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
bb30f36f
RK
202 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
203 L_PTE_SHARED,
0af92bef 204 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 205 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
0af92bef
RK
206 .domain = DOMAIN_IO,
207 },
208 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
bb30f36f 209 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
0af92bef 210 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 211 .prot_sect = PROT_SECT_DEVICE,
0af92bef
RK
212 .domain = DOMAIN_IO,
213 },
214 [MT_DEVICE_CACHED] = { /* ioremap_cached */
bb30f36f 215 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
0af92bef
RK
216 .prot_l1 = PMD_TYPE_TABLE,
217 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
218 .domain = DOMAIN_IO,
219 },
1ad77a87 220 [MT_DEVICE_WC] = { /* ioremap_wc */
bb30f36f 221 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
0af92bef 222 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 223 .prot_sect = PROT_SECT_DEVICE,
0af92bef 224 .domain = DOMAIN_IO,
ae8f1541 225 },
ebb4c658
RK
226 [MT_UNCACHED] = {
227 .prot_pte = PROT_PTE_DEVICE,
228 .prot_l1 = PMD_TYPE_TABLE,
229 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
230 .domain = DOMAIN_IO,
231 },
ae8f1541 232 [MT_CACHECLEAN] = {
9ef79635 233 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
ae8f1541
RK
234 .domain = DOMAIN_KERNEL,
235 },
1b6ba46b 236#ifndef CONFIG_ARM_LPAE
ae8f1541 237 [MT_MINICLEAN] = {
9ef79635 238 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
ae8f1541
RK
239 .domain = DOMAIN_KERNEL,
240 },
1b6ba46b 241#endif
ae8f1541
RK
242 [MT_LOW_VECTORS] = {
243 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 244 L_PTE_RDONLY,
ae8f1541
RK
245 .prot_l1 = PMD_TYPE_TABLE,
246 .domain = DOMAIN_USER,
247 },
248 [MT_HIGH_VECTORS] = {
249 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 250 L_PTE_USER | L_PTE_RDONLY,
ae8f1541
RK
251 .prot_l1 = PMD_TYPE_TABLE,
252 .domain = DOMAIN_USER,
253 },
254 [MT_MEMORY] = {
36bb94ba 255 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
f1a2481c 256 .prot_l1 = PMD_TYPE_TABLE,
9ef79635 257 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
ae8f1541
RK
258 .domain = DOMAIN_KERNEL,
259 },
260 [MT_ROM] = {
9ef79635 261 .prot_sect = PMD_TYPE_SECT,
ae8f1541
RK
262 .domain = DOMAIN_KERNEL,
263 },
e4707dd3 264 [MT_MEMORY_NONCACHED] = {
f1a2481c 265 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 266 L_PTE_MT_BUFFERABLE,
f1a2481c 267 .prot_l1 = PMD_TYPE_TABLE,
e4707dd3
PW
268 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
269 .domain = DOMAIN_KERNEL,
270 },
cb9d7707 271 [MT_MEMORY_DTCM] = {
f444fce3 272 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 273 L_PTE_XN,
f444fce3
LW
274 .prot_l1 = PMD_TYPE_TABLE,
275 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
276 .domain = DOMAIN_KERNEL,
cb9d7707
LW
277 },
278 [MT_MEMORY_ITCM] = {
36bb94ba 279 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
cb9d7707 280 .prot_l1 = PMD_TYPE_TABLE,
f444fce3 281 .domain = DOMAIN_KERNEL,
cb9d7707 282 },
8fb54284
SS
283 [MT_MEMORY_SO] = {
284 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
285 L_PTE_MT_UNCACHED,
286 .prot_l1 = PMD_TYPE_TABLE,
287 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
288 PMD_SECT_UNCACHED | PMD_SECT_XN,
289 .domain = DOMAIN_KERNEL,
290 },
c7909509
MS
291 [MT_MEMORY_DMA_READY] = {
292 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
293 .prot_l1 = PMD_TYPE_TABLE,
294 .domain = DOMAIN_KERNEL,
295 },
ae8f1541
RK
296};
297
b29e9f5e
RK
298const struct mem_type *get_mem_type(unsigned int type)
299{
300 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
301}
69d3a84a 302EXPORT_SYMBOL(get_mem_type);
b29e9f5e 303
ae8f1541
RK
304/*
305 * Adjust the PMD section entries according to the CPU in use.
306 */
307static void __init build_mem_type_table(void)
308{
309 struct cachepolicy *cp;
310 unsigned int cr = get_cr();
442e70c0 311 pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
ae8f1541
RK
312 int cpu_arch = cpu_architecture();
313 int i;
314
11179d8c 315 if (cpu_arch < CPU_ARCH_ARMv6) {
ae8f1541 316#if defined(CONFIG_CPU_DCACHE_DISABLE)
11179d8c
CM
317 if (cachepolicy > CPOLICY_BUFFERED)
318 cachepolicy = CPOLICY_BUFFERED;
ae8f1541 319#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
11179d8c
CM
320 if (cachepolicy > CPOLICY_WRITETHROUGH)
321 cachepolicy = CPOLICY_WRITETHROUGH;
ae8f1541 322#endif
11179d8c 323 }
ae8f1541
RK
324 if (cpu_arch < CPU_ARCH_ARMv5) {
325 if (cachepolicy >= CPOLICY_WRITEALLOC)
326 cachepolicy = CPOLICY_WRITEBACK;
327 ecc_mask = 0;
328 }
f00ec48f
RK
329 if (is_smp())
330 cachepolicy = CPOLICY_WRITEALLOC;
ae8f1541 331
1ad77a87 332 /*
b1cce6b1
RK
333 * Strip out features not present on earlier architectures.
334 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
335 * without extended page tables don't have the 'Shared' bit.
1ad77a87 336 */
b1cce6b1
RK
337 if (cpu_arch < CPU_ARCH_ARMv5)
338 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
339 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
340 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
341 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
342 mem_types[i].prot_sect &= ~PMD_SECT_S;
ae8f1541
RK
343
344 /*
b1cce6b1
RK
345 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
346 * "update-able on write" bit on ARM610). However, Xscale and
347 * Xscale3 require this bit to be cleared.
ae8f1541 348 */
b1cce6b1 349 if (cpu_is_xscale() || cpu_is_xsc3()) {
9ef79635 350 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541 351 mem_types[i].prot_sect &= ~PMD_BIT4;
9ef79635
RK
352 mem_types[i].prot_l1 &= ~PMD_BIT4;
353 }
354 } else if (cpu_arch < CPU_ARCH_ARMv6) {
355 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541
RK
356 if (mem_types[i].prot_l1)
357 mem_types[i].prot_l1 |= PMD_BIT4;
9ef79635
RK
358 if (mem_types[i].prot_sect)
359 mem_types[i].prot_sect |= PMD_BIT4;
360 }
361 }
ae8f1541 362
b1cce6b1
RK
363 /*
364 * Mark the device areas according to the CPU/architecture.
365 */
366 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
367 if (!cpu_is_xsc3()) {
368 /*
369 * Mark device regions on ARMv6+ as execute-never
370 * to prevent speculative instruction fetches.
371 */
372 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
373 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
374 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
375 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
376 }
377 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
378 /*
379 * For ARMv7 with TEX remapping,
380 * - shared device is SXCB=1100
381 * - nonshared device is SXCB=0100
382 * - write combine device mem is SXCB=0001
383 * (Uncached Normal memory)
384 */
385 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
386 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
387 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
388 } else if (cpu_is_xsc3()) {
389 /*
390 * For Xscale3,
391 * - shared device is TEXCB=00101
392 * - nonshared device is TEXCB=01000
393 * - write combine device mem is TEXCB=00100
394 * (Inner/Outer Uncacheable in xsc3 parlance)
395 */
396 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
397 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
398 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
399 } else {
400 /*
401 * For ARMv6 and ARMv7 without TEX remapping,
402 * - shared device is TEXCB=00001
403 * - nonshared device is TEXCB=01000
404 * - write combine device mem is TEXCB=00100
405 * (Uncached Normal in ARMv6 parlance).
406 */
407 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
408 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
409 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
410 }
411 } else {
412 /*
413 * On others, write combining is "Uncached/Buffered"
414 */
415 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
416 }
417
418 /*
419 * Now deal with the memory-type mappings
420 */
ae8f1541 421 cp = &cache_policies[cachepolicy];
bb30f36f
RK
422 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
423
ae8f1541
RK
424 /*
425 * Enable CPU-specific coherency if supported.
426 * (Only available on XSC3 at the moment.)
427 */
f1a2481c 428 if (arch_is_coherent() && cpu_is_xsc3()) {
b1cce6b1 429 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
f1a2481c 430 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
c7909509 431 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
f1a2481c
SS
432 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
433 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
434 }
ae8f1541
RK
435 /*
436 * ARMv6 and above have extended page tables.
437 */
438 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
1b6ba46b 439#ifndef CONFIG_ARM_LPAE
ae8f1541
RK
440 /*
441 * Mark cache clean areas and XIP ROM read only
442 * from SVC mode and no access from userspace.
443 */
444 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
445 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
446 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
1b6ba46b 447#endif
ae8f1541 448
f00ec48f
RK
449 if (is_smp()) {
450 /*
451 * Mark memory with the "shared" attribute
452 * for SMP systems
453 */
454 user_pgprot |= L_PTE_SHARED;
455 kern_pgprot |= L_PTE_SHARED;
456 vecs_pgprot |= L_PTE_SHARED;
457 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
458 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
459 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
460 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
461 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
462 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
c7909509 463 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
f00ec48f
RK
464 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
465 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
466 }
ae8f1541
RK
467 }
468
e4707dd3
PW
469 /*
470 * Non-cacheable Normal - intended for memory areas that must
471 * not cause dirty cache line writebacks when used
472 */
473 if (cpu_arch >= CPU_ARCH_ARMv6) {
474 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
475 /* Non-cacheable Normal is XCB = 001 */
476 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
477 PMD_SECT_BUFFERED;
478 } else {
479 /* For both ARMv6 and non-TEX-remapping ARMv7 */
480 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
481 PMD_SECT_TEX(1);
482 }
483 } else {
484 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
485 }
486
1b6ba46b
CM
487#ifdef CONFIG_ARM_LPAE
488 /*
489 * Do not generate access flag faults for the kernel mappings.
490 */
491 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
492 mem_types[i].prot_pte |= PTE_EXT_AF;
1a3abcf4
VA
493 if (mem_types[i].prot_sect)
494 mem_types[i].prot_sect |= PMD_SECT_AF;
1b6ba46b
CM
495 }
496 kern_pgprot |= PTE_EXT_AF;
497 vecs_pgprot |= PTE_EXT_AF;
498#endif
499
ae8f1541
RK
500 for (i = 0; i < 16; i++) {
501 unsigned long v = pgprot_val(protection_map[i]);
bb30f36f 502 protection_map[i] = __pgprot(v | user_pgprot);
ae8f1541
RK
503 }
504
bb30f36f
RK
505 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
506 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
ae8f1541 507
44b18693 508 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
ae8f1541 509 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
36bb94ba 510 L_PTE_DIRTY | kern_pgprot);
ae8f1541
RK
511
512 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
513 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
514 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
f1a2481c 515 mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
c7909509 516 mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
f1a2481c 517 mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
ae8f1541
RK
518 mem_types[MT_ROM].prot_sect |= cp->pmd;
519
520 switch (cp->pmd) {
521 case PMD_SECT_WT:
522 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
523 break;
524 case PMD_SECT_WB:
525 case PMD_SECT_WBWA:
526 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
527 break;
528 }
529 printk("Memory policy: ECC %sabled, Data cache %s\n",
530 ecc_mask ? "en" : "dis", cp->policy);
2497f0a8
RK
531
532 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
533 struct mem_type *t = &mem_types[i];
534 if (t->prot_l1)
535 t->prot_l1 |= PMD_DOMAIN(t->domain);
536 if (t->prot_sect)
537 t->prot_sect |= PMD_DOMAIN(t->domain);
538 }
ae8f1541
RK
539}
540
d907387c
CM
541#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
542pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
543 unsigned long size, pgprot_t vma_prot)
544{
545 if (!pfn_valid(pfn))
546 return pgprot_noncached(vma_prot);
547 else if (file->f_flags & O_SYNC)
548 return pgprot_writecombine(vma_prot);
549 return vma_prot;
550}
551EXPORT_SYMBOL(phys_mem_access_prot);
552#endif
553
ae8f1541
RK
554#define vectors_base() (vectors_high() ? 0xffff0000 : 0)
555
0536bdf3 556static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
3abe9d33 557{
0536bdf3 558 void *ptr = __va(memblock_alloc(sz, align));
2778f620
RK
559 memset(ptr, 0, sz);
560 return ptr;
3abe9d33
RK
561}
562
0536bdf3
NP
563static void __init *early_alloc(unsigned long sz)
564{
565 return early_alloc_aligned(sz, sz);
566}
567
4bb2e27d 568static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
ae8f1541 569{
24e6c699 570 if (pmd_none(*pmd)) {
410f1483 571 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
97092e0c 572 __pmd_populate(pmd, __pa(pte), prot);
24e6c699 573 }
4bb2e27d
RK
574 BUG_ON(pmd_bad(*pmd));
575 return pte_offset_kernel(pmd, addr);
576}
ae8f1541 577
4bb2e27d
RK
578static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
579 unsigned long end, unsigned long pfn,
580 const struct mem_type *type)
581{
582 pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
24e6c699 583 do {
40d192b6 584 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
24e6c699
RK
585 pfn++;
586 } while (pte++, addr += PAGE_SIZE, addr != end);
ae8f1541
RK
587}
588
516295e5 589static void __init alloc_init_section(pud_t *pud, unsigned long addr,
97092e0c 590 unsigned long end, phys_addr_t phys,
24e6c699 591 const struct mem_type *type)
ae8f1541 592{
516295e5 593 pmd_t *pmd = pmd_offset(pud, addr);
ae8f1541 594
24e6c699
RK
595 /*
596 * Try a section mapping - end, addr and phys must all be aligned
597 * to a section boundary. Note that PMDs refer to the individual
598 * L1 entries, whereas PGDs refer to a group of L1 entries making
599 * up one logical pointer to an L2 table.
600 */
c7909509 601 if (type->prot_sect && ((addr | end | phys) & ~SECTION_MASK) == 0) {
24e6c699 602 pmd_t *p = pmd;
ae8f1541 603
1b6ba46b 604#ifndef CONFIG_ARM_LPAE
24e6c699
RK
605 if (addr & SECTION_SIZE)
606 pmd++;
1b6ba46b 607#endif
24e6c699
RK
608
609 do {
610 *pmd = __pmd(phys | type->prot_sect);
611 phys += SECTION_SIZE;
612 } while (pmd++, addr += SECTION_SIZE, addr != end);
ae8f1541 613
24e6c699
RK
614 flush_pmd_entry(p);
615 } else {
616 /*
617 * No need to loop; pte's aren't interested in the
618 * individual L1 entries.
619 */
620 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
621 }
ae8f1541
RK
622}
623
14904927
SB
624static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
625 unsigned long end, unsigned long phys, const struct mem_type *type)
516295e5
RK
626{
627 pud_t *pud = pud_offset(pgd, addr);
628 unsigned long next;
629
630 do {
631 next = pud_addr_end(addr, end);
632 alloc_init_section(pud, addr, next, phys, type);
633 phys += next - addr;
634 } while (pud++, addr = next, addr != end);
635}
636
1b6ba46b 637#ifndef CONFIG_ARM_LPAE
4a56c1e4
RK
638static void __init create_36bit_mapping(struct map_desc *md,
639 const struct mem_type *type)
640{
97092e0c
RK
641 unsigned long addr, length, end;
642 phys_addr_t phys;
4a56c1e4
RK
643 pgd_t *pgd;
644
645 addr = md->virtual;
cae6292b 646 phys = __pfn_to_phys(md->pfn);
4a56c1e4
RK
647 length = PAGE_ALIGN(md->length);
648
649 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
650 printk(KERN_ERR "MM: CPU does not support supersection "
651 "mapping for 0x%08llx at 0x%08lx\n",
29a38193 652 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
653 return;
654 }
655
656 /* N.B. ARMv6 supersections are only defined to work with domain 0.
657 * Since domain assignments can in fact be arbitrary, the
658 * 'domain == 0' check below is required to insure that ARMv6
659 * supersections are only allocated for domain 0 regardless
660 * of the actual domain assignments in use.
661 */
662 if (type->domain) {
663 printk(KERN_ERR "MM: invalid domain in supersection "
664 "mapping for 0x%08llx at 0x%08lx\n",
29a38193 665 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
666 return;
667 }
668
669 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
29a38193
WD
670 printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
671 " at 0x%08lx invalid alignment\n",
672 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
673 return;
674 }
675
676 /*
677 * Shift bits [35:32] of address into bits [23:20] of PMD
678 * (See ARMv6 spec).
679 */
680 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
681
682 pgd = pgd_offset_k(addr);
683 end = addr + length;
684 do {
516295e5
RK
685 pud_t *pud = pud_offset(pgd, addr);
686 pmd_t *pmd = pmd_offset(pud, addr);
4a56c1e4
RK
687 int i;
688
689 for (i = 0; i < 16; i++)
690 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
691
692 addr += SUPERSECTION_SIZE;
693 phys += SUPERSECTION_SIZE;
694 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
695 } while (addr != end);
696}
1b6ba46b 697#endif /* !CONFIG_ARM_LPAE */
4a56c1e4 698
ae8f1541
RK
699/*
700 * Create the page directory entries and any necessary
701 * page tables for the mapping specified by `md'. We
702 * are able to cope here with varying sizes and address
703 * offsets, and we take full advantage of sections and
704 * supersections.
705 */
a2227120 706static void __init create_mapping(struct map_desc *md)
ae8f1541 707{
cae6292b
WD
708 unsigned long addr, length, end;
709 phys_addr_t phys;
d5c98176 710 const struct mem_type *type;
24e6c699 711 pgd_t *pgd;
ae8f1541
RK
712
713 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
29a38193
WD
714 printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
715 " at 0x%08lx in user region\n",
716 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
ae8f1541
RK
717 return;
718 }
719
720 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
0536bdf3
NP
721 md->virtual >= PAGE_OFFSET &&
722 (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
29a38193 723 printk(KERN_WARNING "BUG: mapping for 0x%08llx"
0536bdf3 724 " at 0x%08lx out of vmalloc space\n",
29a38193 725 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
ae8f1541
RK
726 }
727
d5c98176 728 type = &mem_types[md->type];
ae8f1541 729
1b6ba46b 730#ifndef CONFIG_ARM_LPAE
ae8f1541
RK
731 /*
732 * Catch 36-bit addresses
733 */
4a56c1e4
RK
734 if (md->pfn >= 0x100000) {
735 create_36bit_mapping(md, type);
736 return;
ae8f1541 737 }
1b6ba46b 738#endif
ae8f1541 739
7b9c7b4d 740 addr = md->virtual & PAGE_MASK;
cae6292b 741 phys = __pfn_to_phys(md->pfn);
7b9c7b4d 742 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
ae8f1541 743
24e6c699 744 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
29a38193 745 printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
ae8f1541 746 "be mapped using pages, ignoring.\n",
29a38193 747 (long long)__pfn_to_phys(md->pfn), addr);
ae8f1541
RK
748 return;
749 }
750
24e6c699
RK
751 pgd = pgd_offset_k(addr);
752 end = addr + length;
753 do {
754 unsigned long next = pgd_addr_end(addr, end);
ae8f1541 755
516295e5 756 alloc_init_pud(pgd, addr, next, phys, type);
ae8f1541 757
24e6c699
RK
758 phys += next - addr;
759 addr = next;
760 } while (pgd++, addr != end);
ae8f1541
RK
761}
762
763/*
764 * Create the architecture specific mappings
765 */
766void __init iotable_init(struct map_desc *io_desc, int nr)
767{
0536bdf3
NP
768 struct map_desc *md;
769 struct vm_struct *vm;
770
771 if (!nr)
772 return;
ae8f1541 773
0536bdf3
NP
774 vm = early_alloc_aligned(sizeof(*vm) * nr, __alignof__(*vm));
775
776 for (md = io_desc; nr; md++, nr--) {
777 create_mapping(md);
778 vm->addr = (void *)(md->virtual & PAGE_MASK);
779 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
780 vm->phys_addr = __pfn_to_phys(md->pfn);
576d2f25
NP
781 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
782 vm->flags |= VM_ARM_MTYPE(md->type);
0536bdf3
NP
783 vm->caller = iotable_init;
784 vm_area_add_early(vm++);
785 }
ae8f1541
RK
786}
787
0536bdf3
NP
788static void * __initdata vmalloc_min =
789 (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
6c5da7ac
RK
790
791/*
792 * vmalloc=size forces the vmalloc area to be exactly 'size'
793 * bytes. This can be used to increase (or decrease) the vmalloc
0536bdf3 794 * area - the default is 240m.
6c5da7ac 795 */
2b0d8c25 796static int __init early_vmalloc(char *arg)
6c5da7ac 797{
79612395 798 unsigned long vmalloc_reserve = memparse(arg, NULL);
6c5da7ac
RK
799
800 if (vmalloc_reserve < SZ_16M) {
801 vmalloc_reserve = SZ_16M;
802 printk(KERN_WARNING
803 "vmalloc area too small, limiting to %luMB\n",
804 vmalloc_reserve >> 20);
805 }
9210807c
NP
806
807 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
808 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
809 printk(KERN_WARNING
810 "vmalloc area is too big, limiting to %luMB\n",
811 vmalloc_reserve >> 20);
812 }
79612395
RK
813
814 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
2b0d8c25 815 return 0;
6c5da7ac 816}
2b0d8c25 817early_param("vmalloc", early_vmalloc);
6c5da7ac 818
c7909509 819phys_addr_t arm_lowmem_limit __initdata = 0;
8df65168 820
0371d3f7 821void __init sanity_check_meminfo(void)
60296c71 822{
dde5828f 823 int i, j, highmem = 0;
60296c71 824
4b5f32ce 825 for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
a1bbaec0
NP
826 struct membank *bank = &meminfo.bank[j];
827 *bank = meminfo.bank[i];
60296c71 828
77f73a2c
WD
829 if (bank->start > ULONG_MAX)
830 highmem = 1;
831
a1bbaec0 832#ifdef CONFIG_HIGHMEM
40f7bfe4 833 if (__va(bank->start) >= vmalloc_min ||
dde5828f
RK
834 __va(bank->start) < (void *)PAGE_OFFSET)
835 highmem = 1;
836
837 bank->highmem = highmem;
838
a1bbaec0
NP
839 /*
840 * Split those memory banks which are partially overlapping
841 * the vmalloc area greatly simplifying things later.
842 */
77f73a2c 843 if (!highmem && __va(bank->start) < vmalloc_min &&
79612395 844 bank->size > vmalloc_min - __va(bank->start)) {
a1bbaec0
NP
845 if (meminfo.nr_banks >= NR_BANKS) {
846 printk(KERN_CRIT "NR_BANKS too low, "
847 "ignoring high memory\n");
848 } else {
849 memmove(bank + 1, bank,
850 (meminfo.nr_banks - i) * sizeof(*bank));
851 meminfo.nr_banks++;
852 i++;
79612395
RK
853 bank[1].size -= vmalloc_min - __va(bank->start);
854 bank[1].start = __pa(vmalloc_min - 1) + 1;
dde5828f 855 bank[1].highmem = highmem = 1;
a1bbaec0
NP
856 j++;
857 }
79612395 858 bank->size = vmalloc_min - __va(bank->start);
a1bbaec0
NP
859 }
860#else
041d785f
RK
861 bank->highmem = highmem;
862
77f73a2c
WD
863 /*
864 * Highmem banks not allowed with !CONFIG_HIGHMEM.
865 */
866 if (highmem) {
867 printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
868 "(!CONFIG_HIGHMEM).\n",
869 (unsigned long long)bank->start,
870 (unsigned long long)bank->start + bank->size - 1);
871 continue;
872 }
873
a1bbaec0
NP
874 /*
875 * Check whether this memory bank would entirely overlap
876 * the vmalloc area.
877 */
79612395 878 if (__va(bank->start) >= vmalloc_min ||
f0bba9f9 879 __va(bank->start) < (void *)PAGE_OFFSET) {
e33b9d08 880 printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
a1bbaec0 881 "(vmalloc region overlap).\n",
e33b9d08
RK
882 (unsigned long long)bank->start,
883 (unsigned long long)bank->start + bank->size - 1);
a1bbaec0
NP
884 continue;
885 }
60296c71 886
a1bbaec0
NP
887 /*
888 * Check whether this memory bank would partially overlap
889 * the vmalloc area.
890 */
79612395 891 if (__va(bank->start + bank->size) > vmalloc_min ||
a1bbaec0 892 __va(bank->start + bank->size) < __va(bank->start)) {
79612395 893 unsigned long newsize = vmalloc_min - __va(bank->start);
e33b9d08
RK
894 printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
895 "to -%.8llx (vmalloc region overlap).\n",
896 (unsigned long long)bank->start,
897 (unsigned long long)bank->start + bank->size - 1,
898 (unsigned long long)bank->start + newsize - 1);
a1bbaec0
NP
899 bank->size = newsize;
900 }
901#endif
c7909509
MS
902 if (!bank->highmem && bank->start + bank->size > arm_lowmem_limit)
903 arm_lowmem_limit = bank->start + bank->size;
40f7bfe4 904
a1bbaec0 905 j++;
60296c71 906 }
e616c591
RK
907#ifdef CONFIG_HIGHMEM
908 if (highmem) {
909 const char *reason = NULL;
910
911 if (cache_is_vipt_aliasing()) {
912 /*
913 * Interactions between kmap and other mappings
914 * make highmem support with aliasing VIPT caches
915 * rather difficult.
916 */
917 reason = "with VIPT aliasing cache";
e616c591
RK
918 }
919 if (reason) {
920 printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
921 reason);
922 while (j > 0 && meminfo.bank[j - 1].highmem)
923 j--;
924 }
925 }
926#endif
4b5f32ce 927 meminfo.nr_banks = j;
c7909509
MS
928 high_memory = __va(arm_lowmem_limit - 1) + 1;
929 memblock_set_current_limit(arm_lowmem_limit);
60296c71
LB
930}
931
4b5f32ce 932static inline void prepare_page_table(void)
d111e8f9
RK
933{
934 unsigned long addr;
8df65168 935 phys_addr_t end;
d111e8f9
RK
936
937 /*
938 * Clear out all the mappings below the kernel image.
939 */
e73fc88e 940 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
d111e8f9
RK
941 pmd_clear(pmd_off_k(addr));
942
943#ifdef CONFIG_XIP_KERNEL
944 /* The XIP kernel is mapped in the module area -- skip over it */
e73fc88e 945 addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
d111e8f9 946#endif
e73fc88e 947 for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
d111e8f9
RK
948 pmd_clear(pmd_off_k(addr));
949
8df65168
RK
950 /*
951 * Find the end of the first block of lowmem.
952 */
953 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
c7909509
MS
954 if (end >= arm_lowmem_limit)
955 end = arm_lowmem_limit;
8df65168 956
d111e8f9
RK
957 /*
958 * Clear out all the kernel space mappings, except for the first
0536bdf3 959 * memory bank, up to the vmalloc region.
d111e8f9 960 */
8df65168 961 for (addr = __phys_to_virt(end);
0536bdf3 962 addr < VMALLOC_START; addr += PMD_SIZE)
d111e8f9
RK
963 pmd_clear(pmd_off_k(addr));
964}
965
1b6ba46b
CM
966#ifdef CONFIG_ARM_LPAE
967/* the first page is reserved for pgd */
968#define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
969 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
970#else
e73fc88e 971#define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1b6ba46b 972#endif
e73fc88e 973
d111e8f9 974/*
2778f620 975 * Reserve the special regions of memory
d111e8f9 976 */
2778f620 977void __init arm_mm_memblock_reserve(void)
d111e8f9 978{
d111e8f9
RK
979 /*
980 * Reserve the page tables. These are already in use,
981 * and can only be in node 0.
982 */
e73fc88e 983 memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
d111e8f9 984
d111e8f9
RK
985#ifdef CONFIG_SA1111
986 /*
987 * Because of the SA1111 DMA bug, we want to preserve our
988 * precious DMA-able memory...
989 */
2778f620 990 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
d111e8f9 991#endif
d111e8f9
RK
992}
993
994/*
0536bdf3
NP
995 * Set up the device mappings. Since we clear out the page tables for all
996 * mappings above VMALLOC_START, we will remove any debug device mappings.
d111e8f9
RK
997 * This means you have to be careful how you debug this function, or any
998 * called function. This means you can't use any function or debugging
999 * method which may touch any device, otherwise the kernel _will_ crash.
1000 */
1001static void __init devicemaps_init(struct machine_desc *mdesc)
1002{
1003 struct map_desc map;
1004 unsigned long addr;
94e5a85b 1005 void *vectors;
d111e8f9
RK
1006
1007 /*
1008 * Allocate the vector page early.
1009 */
94e5a85b
RK
1010 vectors = early_alloc(PAGE_SIZE);
1011
1012 early_trap_init(vectors);
d111e8f9 1013
0536bdf3 1014 for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
d111e8f9
RK
1015 pmd_clear(pmd_off_k(addr));
1016
1017 /*
1018 * Map the kernel if it is XIP.
1019 * It is always first in the modulearea.
1020 */
1021#ifdef CONFIG_XIP_KERNEL
1022 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
ab4f2ee1 1023 map.virtual = MODULES_VADDR;
37efe642 1024 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
d111e8f9
RK
1025 map.type = MT_ROM;
1026 create_mapping(&map);
1027#endif
1028
1029 /*
1030 * Map the cache flushing regions.
1031 */
1032#ifdef FLUSH_BASE
1033 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1034 map.virtual = FLUSH_BASE;
1035 map.length = SZ_1M;
1036 map.type = MT_CACHECLEAN;
1037 create_mapping(&map);
1038#endif
1039#ifdef FLUSH_BASE_MINICACHE
1040 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1041 map.virtual = FLUSH_BASE_MINICACHE;
1042 map.length = SZ_1M;
1043 map.type = MT_MINICLEAN;
1044 create_mapping(&map);
1045#endif
1046
1047 /*
1048 * Create a mapping for the machine vectors at the high-vectors
1049 * location (0xffff0000). If we aren't using high-vectors, also
1050 * create a mapping at the low-vectors virtual address.
1051 */
94e5a85b 1052 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
d111e8f9
RK
1053 map.virtual = 0xffff0000;
1054 map.length = PAGE_SIZE;
1055 map.type = MT_HIGH_VECTORS;
1056 create_mapping(&map);
1057
1058 if (!vectors_high()) {
1059 map.virtual = 0;
1060 map.type = MT_LOW_VECTORS;
1061 create_mapping(&map);
1062 }
1063
1064 /*
1065 * Ask the machine support to map in the statically mapped devices.
1066 */
1067 if (mdesc->map_io)
1068 mdesc->map_io();
1069
1070 /*
1071 * Finally flush the caches and tlb to ensure that we're in a
1072 * consistent state wrt the writebuffer. This also ensures that
1073 * any write-allocated cache lines in the vector page are written
1074 * back. After this point, we can start to touch devices again.
1075 */
1076 local_flush_tlb_all();
1077 flush_cache_all();
1078}
1079
d73cd428
NP
1080static void __init kmap_init(void)
1081{
1082#ifdef CONFIG_HIGHMEM
4bb2e27d
RK
1083 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1084 PKMAP_BASE, _PAGE_KERNEL_TABLE);
d73cd428
NP
1085#endif
1086}
1087
a2227120
RK
1088static void __init map_lowmem(void)
1089{
8df65168 1090 struct memblock_region *reg;
a2227120
RK
1091
1092 /* Map all the lowmem memory banks. */
8df65168
RK
1093 for_each_memblock(memory, reg) {
1094 phys_addr_t start = reg->base;
1095 phys_addr_t end = start + reg->size;
1096 struct map_desc map;
1097
c7909509
MS
1098 if (end > arm_lowmem_limit)
1099 end = arm_lowmem_limit;
8df65168
RK
1100 if (start >= end)
1101 break;
1102
1103 map.pfn = __phys_to_pfn(start);
1104 map.virtual = __phys_to_virt(start);
1105 map.length = end - start;
1106 map.type = MT_MEMORY;
a2227120 1107
8df65168 1108 create_mapping(&map);
a2227120
RK
1109 }
1110}
1111
d111e8f9
RK
1112/*
1113 * paging_init() sets up the page tables, initialises the zone memory
1114 * maps, and sets up the zero page, bad page and bad page tables.
1115 */
4b5f32ce 1116void __init paging_init(struct machine_desc *mdesc)
d111e8f9
RK
1117{
1118 void *zero_page;
1119
c7909509 1120 memblock_set_current_limit(arm_lowmem_limit);
0371d3f7 1121
d111e8f9 1122 build_mem_type_table();
4b5f32ce 1123 prepare_page_table();
a2227120 1124 map_lowmem();
c7909509 1125 dma_contiguous_remap();
d111e8f9 1126 devicemaps_init(mdesc);
d73cd428 1127 kmap_init();
d111e8f9
RK
1128
1129 top_pmd = pmd_off_k(0xffff0000);
1130
3abe9d33
RK
1131 /* allocate the zero page. */
1132 zero_page = early_alloc(PAGE_SIZE);
2778f620 1133
8d717a52 1134 bootmem_init();
2778f620 1135
d111e8f9 1136 empty_zero_page = virt_to_page(zero_page);
421fe93c 1137 __flush_dcache_page(NULL, empty_zero_page);
d111e8f9 1138}
This page took 0.464601 seconds and 5 git commands to generate.