[ARM] Re-jig Linux PTE bits to allow room for 4 memory type bits
[deliverable/linux.git] / arch / arm / mm / mmu.c
CommitLineData
d111e8f9
RK
1/*
2 * linux/arch/arm/mm/mmu.c
3 *
4 * Copyright (C) 1995-2005 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
ae8f1541 10#include <linux/module.h>
d111e8f9
RK
11#include <linux/kernel.h>
12#include <linux/errno.h>
13#include <linux/init.h>
14#include <linux/bootmem.h>
15#include <linux/mman.h>
16#include <linux/nodemask.h>
17
18#include <asm/mach-types.h>
19#include <asm/setup.h>
20#include <asm/sizes.h>
21#include <asm/tlb.h>
22
23#include <asm/mach/arch.h>
24#include <asm/mach/map.h>
25
26#include "mm.h"
27
28DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
29
6ae5a6ef 30extern void _stext, _etext, __data_start, _end;
d111e8f9
RK
31extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
32
33/*
34 * empty_zero_page is a special page that is used for
35 * zero-initialized data and COW.
36 */
37struct page *empty_zero_page;
3653f3ab 38EXPORT_SYMBOL(empty_zero_page);
d111e8f9
RK
39
40/*
41 * The pmd table for the upper-most set of pages.
42 */
43pmd_t *top_pmd;
44
ae8f1541
RK
45#define CPOLICY_UNCACHED 0
46#define CPOLICY_BUFFERED 1
47#define CPOLICY_WRITETHROUGH 2
48#define CPOLICY_WRITEBACK 3
49#define CPOLICY_WRITEALLOC 4
50
51static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
52static unsigned int ecc_mask __initdata = 0;
44b18693 53pgprot_t pgprot_user;
ae8f1541
RK
54pgprot_t pgprot_kernel;
55
44b18693 56EXPORT_SYMBOL(pgprot_user);
ae8f1541
RK
57EXPORT_SYMBOL(pgprot_kernel);
58
59struct cachepolicy {
60 const char policy[16];
61 unsigned int cr_mask;
62 unsigned int pmd;
63 unsigned int pte;
64};
65
66static struct cachepolicy cache_policies[] __initdata = {
67 {
68 .policy = "uncached",
69 .cr_mask = CR_W|CR_C,
70 .pmd = PMD_SECT_UNCACHED,
71 .pte = 0,
72 }, {
73 .policy = "buffered",
74 .cr_mask = CR_C,
75 .pmd = PMD_SECT_BUFFERED,
76 .pte = PTE_BUFFERABLE,
77 }, {
78 .policy = "writethrough",
79 .cr_mask = 0,
80 .pmd = PMD_SECT_WT,
81 .pte = PTE_CACHEABLE,
82 }, {
83 .policy = "writeback",
84 .cr_mask = 0,
85 .pmd = PMD_SECT_WB,
86 .pte = PTE_BUFFERABLE|PTE_CACHEABLE,
87 }, {
88 .policy = "writealloc",
89 .cr_mask = 0,
90 .pmd = PMD_SECT_WBWA,
91 .pte = PTE_BUFFERABLE|PTE_CACHEABLE,
92 }
93};
94
95/*
6cbdc8c5 96 * These are useful for identifying cache coherency
ae8f1541
RK
97 * problems by allowing the cache or the cache and
98 * writebuffer to be turned off. (Note: the write
99 * buffer should not be on and the cache off).
100 */
101static void __init early_cachepolicy(char **p)
102{
103 int i;
104
105 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
106 int len = strlen(cache_policies[i].policy);
107
108 if (memcmp(*p, cache_policies[i].policy, len) == 0) {
109 cachepolicy = i;
110 cr_alignment &= ~cache_policies[i].cr_mask;
111 cr_no_alignment &= ~cache_policies[i].cr_mask;
112 *p += len;
113 break;
114 }
115 }
116 if (i == ARRAY_SIZE(cache_policies))
117 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
11179d8c
CM
118 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
119 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
120 cachepolicy = CPOLICY_WRITEBACK;
121 }
ae8f1541
RK
122 flush_cache_all();
123 set_cr(cr_alignment);
124}
125__early_param("cachepolicy=", early_cachepolicy);
126
127static void __init early_nocache(char **__unused)
128{
129 char *p = "buffered";
130 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
131 early_cachepolicy(&p);
132}
133__early_param("nocache", early_nocache);
134
135static void __init early_nowrite(char **__unused)
136{
137 char *p = "uncached";
138 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
139 early_cachepolicy(&p);
140}
141__early_param("nowb", early_nowrite);
142
143static void __init early_ecc(char **p)
144{
145 if (memcmp(*p, "on", 2) == 0) {
146 ecc_mask = PMD_PROTECTION;
147 *p += 2;
148 } else if (memcmp(*p, "off", 3) == 0) {
149 ecc_mask = 0;
150 *p += 3;
151 }
152}
153__early_param("ecc=", early_ecc);
154
155static int __init noalign_setup(char *__unused)
156{
157 cr_alignment &= ~CR_A;
158 cr_no_alignment &= ~CR_A;
159 set_cr(cr_alignment);
160 return 1;
161}
162__setup("noalign", noalign_setup);
163
255d1f86
RK
164#ifndef CONFIG_SMP
165void adjust_cr(unsigned long mask, unsigned long set)
166{
167 unsigned long flags;
168
169 mask &= ~CR_A;
170
171 set &= mask;
172
173 local_irq_save(flags);
174
175 cr_no_alignment = (cr_no_alignment & ~mask) | set;
176 cr_alignment = (cr_alignment & ~mask) | set;
177
178 set_cr((get_cr() & ~mask) | set);
179
180 local_irq_restore(flags);
181}
182#endif
183
0af92bef
RK
184#define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
185#define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_XN|PMD_SECT_AP_WRITE
186
b29e9f5e 187static struct mem_type mem_types[] = {
0af92bef
RK
188 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
189 .prot_pte = PROT_PTE_DEVICE,
190 .prot_l1 = PMD_TYPE_TABLE,
191 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_UNCACHED,
192 .domain = DOMAIN_IO,
193 },
194 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
195 .prot_pte = PROT_PTE_DEVICE,
196 .prot_pte_ext = PTE_EXT_TEX(2),
197 .prot_l1 = PMD_TYPE_TABLE,
198 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_TEX(2),
199 .domain = DOMAIN_IO,
200 },
201 [MT_DEVICE_CACHED] = { /* ioremap_cached */
202 .prot_pte = PROT_PTE_DEVICE | L_PTE_CACHEABLE | L_PTE_BUFFERABLE,
203 .prot_l1 = PMD_TYPE_TABLE,
204 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
205 .domain = DOMAIN_IO,
206 },
207 [MT_DEVICE_IXP2000] = { /* IXP2400 requires XCB=101 for on-chip I/O */
208 .prot_pte = PROT_PTE_DEVICE,
209 .prot_l1 = PMD_TYPE_TABLE,
210 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_BUFFERABLE |
211 PMD_SECT_TEX(1),
212 .domain = DOMAIN_IO,
ae8f1541 213 },
1ad77a87
LB
214 [MT_DEVICE_WC] = { /* ioremap_wc */
215 .prot_pte = PROT_PTE_DEVICE,
216 .prot_l1 = PMD_TYPE_TABLE,
217 .prot_sect = PROT_SECT_DEVICE,
218 .domain = DOMAIN_IO,
219 },
ae8f1541 220 [MT_CACHECLEAN] = {
9ef79635 221 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
ae8f1541
RK
222 .domain = DOMAIN_KERNEL,
223 },
224 [MT_MINICLEAN] = {
9ef79635 225 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
ae8f1541
RK
226 .domain = DOMAIN_KERNEL,
227 },
228 [MT_LOW_VECTORS] = {
229 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
230 L_PTE_EXEC,
231 .prot_l1 = PMD_TYPE_TABLE,
232 .domain = DOMAIN_USER,
233 },
234 [MT_HIGH_VECTORS] = {
235 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
236 L_PTE_USER | L_PTE_EXEC,
237 .prot_l1 = PMD_TYPE_TABLE,
238 .domain = DOMAIN_USER,
239 },
240 [MT_MEMORY] = {
9ef79635 241 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
ae8f1541
RK
242 .domain = DOMAIN_KERNEL,
243 },
244 [MT_ROM] = {
9ef79635 245 .prot_sect = PMD_TYPE_SECT,
ae8f1541
RK
246 .domain = DOMAIN_KERNEL,
247 },
ae8f1541
RK
248};
249
b29e9f5e
RK
250const struct mem_type *get_mem_type(unsigned int type)
251{
252 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
253}
254
ae8f1541
RK
255/*
256 * Adjust the PMD section entries according to the CPU in use.
257 */
258static void __init build_mem_type_table(void)
259{
260 struct cachepolicy *cp;
261 unsigned int cr = get_cr();
262 unsigned int user_pgprot, kern_pgprot;
263 int cpu_arch = cpu_architecture();
264 int i;
265
11179d8c 266 if (cpu_arch < CPU_ARCH_ARMv6) {
ae8f1541 267#if defined(CONFIG_CPU_DCACHE_DISABLE)
11179d8c
CM
268 if (cachepolicy > CPOLICY_BUFFERED)
269 cachepolicy = CPOLICY_BUFFERED;
ae8f1541 270#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
11179d8c
CM
271 if (cachepolicy > CPOLICY_WRITETHROUGH)
272 cachepolicy = CPOLICY_WRITETHROUGH;
ae8f1541 273#endif
11179d8c 274 }
ae8f1541
RK
275 if (cpu_arch < CPU_ARCH_ARMv5) {
276 if (cachepolicy >= CPOLICY_WRITEALLOC)
277 cachepolicy = CPOLICY_WRITEBACK;
278 ecc_mask = 0;
279 }
280
1ad77a87
LB
281 /*
282 * On non-Xscale3 ARMv5-and-older systems, use CB=01
283 * (Uncached/Buffered) for ioremap_wc() mappings. On XScale3
284 * and ARMv6+, use TEXCB=00100 mappings (Inner/Outer Uncacheable
285 * in xsc3 parlance, Uncached Normal in ARMv6 parlance).
286 */
287 if (cpu_is_xsc3() || cpu_arch >= CPU_ARCH_ARMv6) {
288 mem_types[MT_DEVICE_WC].prot_pte_ext |= PTE_EXT_TEX(1);
289 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
290 } else {
291 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_BUFFERABLE;
292 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
293 }
294
ae8f1541 295 /*
9ef79635
RK
296 * ARMv5 and lower, bit 4 must be set for page tables.
297 * (was: cache "update-able on write" bit on ARM610)
298 * However, Xscale cores require this bit to be cleared.
ae8f1541 299 */
9ef79635
RK
300 if (cpu_is_xscale()) {
301 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541 302 mem_types[i].prot_sect &= ~PMD_BIT4;
9ef79635
RK
303 mem_types[i].prot_l1 &= ~PMD_BIT4;
304 }
305 } else if (cpu_arch < CPU_ARCH_ARMv6) {
306 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541
RK
307 if (mem_types[i].prot_l1)
308 mem_types[i].prot_l1 |= PMD_BIT4;
9ef79635
RK
309 if (mem_types[i].prot_sect)
310 mem_types[i].prot_sect |= PMD_BIT4;
311 }
312 }
ae8f1541
RK
313
314 cp = &cache_policies[cachepolicy];
315 kern_pgprot = user_pgprot = cp->pte;
316
317 /*
318 * Enable CPU-specific coherency if supported.
319 * (Only available on XSC3 at the moment.)
320 */
321 if (arch_is_coherent()) {
322 if (cpu_is_xsc3()) {
323 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
0e5fdca7 324 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
ae8f1541
RK
325 }
326 }
327
328 /*
329 * ARMv6 and above have extended page tables.
330 */
331 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
ae8f1541
RK
332 /*
333 * Mark cache clean areas and XIP ROM read only
334 * from SVC mode and no access from userspace.
335 */
336 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
337 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
338 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
339
340 /*
341 * Mark the device area as "shared device"
342 */
343 mem_types[MT_DEVICE].prot_pte |= L_PTE_BUFFERABLE;
344 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
345
ae8f1541
RK
346#ifdef CONFIG_SMP
347 /*
348 * Mark memory with the "shared" attribute for SMP systems
349 */
350 user_pgprot |= L_PTE_SHARED;
351 kern_pgprot |= L_PTE_SHARED;
352 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
353#endif
354 }
355
356 for (i = 0; i < 16; i++) {
357 unsigned long v = pgprot_val(protection_map[i]);
358 v = (v & ~(L_PTE_BUFFERABLE|L_PTE_CACHEABLE)) | user_pgprot;
359 protection_map[i] = __pgprot(v);
360 }
361
362 mem_types[MT_LOW_VECTORS].prot_pte |= kern_pgprot;
363 mem_types[MT_HIGH_VECTORS].prot_pte |= kern_pgprot;
364
365 if (cpu_arch >= CPU_ARCH_ARMv5) {
366#ifndef CONFIG_SMP
367 /*
368 * Only use write-through for non-SMP systems
369 */
370 mem_types[MT_LOW_VECTORS].prot_pte &= ~L_PTE_BUFFERABLE;
371 mem_types[MT_HIGH_VECTORS].prot_pte &= ~L_PTE_BUFFERABLE;
372#endif
373 } else {
374 mem_types[MT_MINICLEAN].prot_sect &= ~PMD_SECT_TEX(1);
375 }
376
44b18693 377 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
ae8f1541
RK
378 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
379 L_PTE_DIRTY | L_PTE_WRITE |
380 L_PTE_EXEC | kern_pgprot);
381
382 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
383 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
384 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
385 mem_types[MT_ROM].prot_sect |= cp->pmd;
386
387 switch (cp->pmd) {
388 case PMD_SECT_WT:
389 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
390 break;
391 case PMD_SECT_WB:
392 case PMD_SECT_WBWA:
393 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
394 break;
395 }
396 printk("Memory policy: ECC %sabled, Data cache %s\n",
397 ecc_mask ? "en" : "dis", cp->policy);
2497f0a8
RK
398
399 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
400 struct mem_type *t = &mem_types[i];
401 if (t->prot_l1)
402 t->prot_l1 |= PMD_DOMAIN(t->domain);
403 if (t->prot_sect)
404 t->prot_sect |= PMD_DOMAIN(t->domain);
405 }
ae8f1541
RK
406}
407
408#define vectors_base() (vectors_high() ? 0xffff0000 : 0)
409
24e6c699
RK
410static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
411 unsigned long end, unsigned long pfn,
412 const struct mem_type *type)
ae8f1541 413{
24e6c699 414 pte_t *pte;
ae8f1541 415
24e6c699
RK
416 if (pmd_none(*pmd)) {
417 pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
418 __pmd_populate(pmd, __pa(pte) | type->prot_l1);
419 }
ae8f1541 420
24e6c699
RK
421 pte = pte_offset_kernel(pmd, addr);
422 do {
c172cc92
RK
423 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
424 type->prot_pte_ext);
24e6c699
RK
425 pfn++;
426 } while (pte++, addr += PAGE_SIZE, addr != end);
ae8f1541
RK
427}
428
24e6c699
RK
429static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
430 unsigned long end, unsigned long phys,
431 const struct mem_type *type)
ae8f1541 432{
24e6c699 433 pmd_t *pmd = pmd_offset(pgd, addr);
ae8f1541 434
24e6c699
RK
435 /*
436 * Try a section mapping - end, addr and phys must all be aligned
437 * to a section boundary. Note that PMDs refer to the individual
438 * L1 entries, whereas PGDs refer to a group of L1 entries making
439 * up one logical pointer to an L2 table.
440 */
441 if (((addr | end | phys) & ~SECTION_MASK) == 0) {
442 pmd_t *p = pmd;
ae8f1541 443
24e6c699
RK
444 if (addr & SECTION_SIZE)
445 pmd++;
446
447 do {
448 *pmd = __pmd(phys | type->prot_sect);
449 phys += SECTION_SIZE;
450 } while (pmd++, addr += SECTION_SIZE, addr != end);
ae8f1541 451
24e6c699
RK
452 flush_pmd_entry(p);
453 } else {
454 /*
455 * No need to loop; pte's aren't interested in the
456 * individual L1 entries.
457 */
458 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
459 }
ae8f1541
RK
460}
461
4a56c1e4
RK
462static void __init create_36bit_mapping(struct map_desc *md,
463 const struct mem_type *type)
464{
465 unsigned long phys, addr, length, end;
466 pgd_t *pgd;
467
468 addr = md->virtual;
469 phys = (unsigned long)__pfn_to_phys(md->pfn);
470 length = PAGE_ALIGN(md->length);
471
472 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
473 printk(KERN_ERR "MM: CPU does not support supersection "
474 "mapping for 0x%08llx at 0x%08lx\n",
475 __pfn_to_phys((u64)md->pfn), addr);
476 return;
477 }
478
479 /* N.B. ARMv6 supersections are only defined to work with domain 0.
480 * Since domain assignments can in fact be arbitrary, the
481 * 'domain == 0' check below is required to insure that ARMv6
482 * supersections are only allocated for domain 0 regardless
483 * of the actual domain assignments in use.
484 */
485 if (type->domain) {
486 printk(KERN_ERR "MM: invalid domain in supersection "
487 "mapping for 0x%08llx at 0x%08lx\n",
488 __pfn_to_phys((u64)md->pfn), addr);
489 return;
490 }
491
492 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
493 printk(KERN_ERR "MM: cannot create mapping for "
494 "0x%08llx at 0x%08lx invalid alignment\n",
495 __pfn_to_phys((u64)md->pfn), addr);
496 return;
497 }
498
499 /*
500 * Shift bits [35:32] of address into bits [23:20] of PMD
501 * (See ARMv6 spec).
502 */
503 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
504
505 pgd = pgd_offset_k(addr);
506 end = addr + length;
507 do {
508 pmd_t *pmd = pmd_offset(pgd, addr);
509 int i;
510
511 for (i = 0; i < 16; i++)
512 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
513
514 addr += SUPERSECTION_SIZE;
515 phys += SUPERSECTION_SIZE;
516 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
517 } while (addr != end);
518}
519
ae8f1541
RK
520/*
521 * Create the page directory entries and any necessary
522 * page tables for the mapping specified by `md'. We
523 * are able to cope here with varying sizes and address
524 * offsets, and we take full advantage of sections and
525 * supersections.
526 */
527void __init create_mapping(struct map_desc *md)
528{
24e6c699 529 unsigned long phys, addr, length, end;
d5c98176 530 const struct mem_type *type;
24e6c699 531 pgd_t *pgd;
ae8f1541
RK
532
533 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
534 printk(KERN_WARNING "BUG: not creating mapping for "
535 "0x%08llx at 0x%08lx in user region\n",
536 __pfn_to_phys((u64)md->pfn), md->virtual);
537 return;
538 }
539
540 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
541 md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
542 printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
543 "overlaps vmalloc space\n",
544 __pfn_to_phys((u64)md->pfn), md->virtual);
545 }
546
d5c98176 547 type = &mem_types[md->type];
ae8f1541
RK
548
549 /*
550 * Catch 36-bit addresses
551 */
4a56c1e4
RK
552 if (md->pfn >= 0x100000) {
553 create_36bit_mapping(md, type);
554 return;
ae8f1541
RK
555 }
556
7b9c7b4d 557 addr = md->virtual & PAGE_MASK;
24e6c699 558 phys = (unsigned long)__pfn_to_phys(md->pfn);
7b9c7b4d 559 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
ae8f1541 560
24e6c699 561 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
ae8f1541
RK
562 printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
563 "be mapped using pages, ignoring.\n",
24e6c699 564 __pfn_to_phys(md->pfn), addr);
ae8f1541
RK
565 return;
566 }
567
24e6c699
RK
568 pgd = pgd_offset_k(addr);
569 end = addr + length;
570 do {
571 unsigned long next = pgd_addr_end(addr, end);
ae8f1541 572
24e6c699 573 alloc_init_section(pgd, addr, next, phys, type);
ae8f1541 574
24e6c699
RK
575 phys += next - addr;
576 addr = next;
577 } while (pgd++, addr != end);
ae8f1541
RK
578}
579
580/*
581 * Create the architecture specific mappings
582 */
583void __init iotable_init(struct map_desc *io_desc, int nr)
584{
585 int i;
586
587 for (i = 0; i < nr; i++)
588 create_mapping(io_desc + i);
589}
590
60296c71
LB
591static int __init check_membank_valid(struct membank *mb)
592{
593 /*
594 * Check whether this memory region has non-zero size.
595 */
596 if (mb->size == 0)
597 return 0;
598
599 /*
600 * Check whether this memory region would entirely overlap
601 * the vmalloc area.
602 */
603 if (phys_to_virt(mb->start) >= VMALLOC_MIN) {
604 printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
605 "(vmalloc region overlap).\n",
606 mb->start, mb->start + mb->size - 1);
607 return 0;
608 }
609
610 /*
611 * Check whether this memory region would partially overlap
612 * the vmalloc area.
613 */
614 if (phys_to_virt(mb->start + mb->size) < phys_to_virt(mb->start) ||
615 phys_to_virt(mb->start + mb->size) > VMALLOC_MIN) {
616 unsigned long newsize = VMALLOC_MIN - phys_to_virt(mb->start);
617
618 printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
619 "to -%.8lx (vmalloc region overlap).\n",
620 mb->start, mb->start + mb->size - 1,
621 mb->start + newsize - 1);
622 mb->size = newsize;
623 }
624
625 return 1;
626}
627
628static void __init sanity_check_meminfo(struct meminfo *mi)
629{
630 int i;
631 int j;
632
633 for (i = 0, j = 0; i < mi->nr_banks; i++) {
634 if (check_membank_valid(&mi->bank[i]))
635 mi->bank[j++] = mi->bank[i];
636 }
637 mi->nr_banks = j;
638}
639
d111e8f9
RK
640static inline void prepare_page_table(struct meminfo *mi)
641{
642 unsigned long addr;
643
644 /*
645 * Clear out all the mappings below the kernel image.
646 */
647 for (addr = 0; addr < MODULE_START; addr += PGDIR_SIZE)
648 pmd_clear(pmd_off_k(addr));
649
650#ifdef CONFIG_XIP_KERNEL
651 /* The XIP kernel is mapped in the module area -- skip over it */
652 addr = ((unsigned long)&_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
653#endif
654 for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
655 pmd_clear(pmd_off_k(addr));
656
657 /*
658 * Clear out all the kernel space mappings, except for the first
659 * memory bank, up to the end of the vmalloc region.
660 */
661 for (addr = __phys_to_virt(mi->bank[0].start + mi->bank[0].size);
662 addr < VMALLOC_END; addr += PGDIR_SIZE)
663 pmd_clear(pmd_off_k(addr));
664}
665
666/*
667 * Reserve the various regions of node 0
668 */
669void __init reserve_node_zero(pg_data_t *pgdat)
670{
671 unsigned long res_size = 0;
672
673 /*
674 * Register the kernel text and data with bootmem.
675 * Note that this can only be in node 0.
676 */
677#ifdef CONFIG_XIP_KERNEL
72a7fe39
BW
678 reserve_bootmem_node(pgdat, __pa(&__data_start), &_end - &__data_start,
679 BOOTMEM_DEFAULT);
d111e8f9 680#else
72a7fe39
BW
681 reserve_bootmem_node(pgdat, __pa(&_stext), &_end - &_stext,
682 BOOTMEM_DEFAULT);
d111e8f9
RK
683#endif
684
685 /*
686 * Reserve the page tables. These are already in use,
687 * and can only be in node 0.
688 */
689 reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
72a7fe39 690 PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT);
d111e8f9
RK
691
692 /*
693 * Hmm... This should go elsewhere, but we really really need to
694 * stop things allocating the low memory; ideally we need a better
695 * implementation of GFP_DMA which does not assume that DMA-able
696 * memory starts at zero.
697 */
698 if (machine_is_integrator() || machine_is_cintegrator())
699 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
700
701 /*
702 * These should likewise go elsewhere. They pre-reserve the
703 * screen memory region at the start of main system memory.
704 */
705 if (machine_is_edb7211())
706 res_size = 0x00020000;
707 if (machine_is_p720t())
708 res_size = 0x00014000;
709
bbf6f280
BD
710 /* H1940 and RX3715 need to reserve this for suspend */
711
712 if (machine_is_h1940() || machine_is_rx3715()) {
72a7fe39
BW
713 reserve_bootmem_node(pgdat, 0x30003000, 0x1000,
714 BOOTMEM_DEFAULT);
715 reserve_bootmem_node(pgdat, 0x30081000, 0x1000,
716 BOOTMEM_DEFAULT);
9073341c
BD
717 }
718
d111e8f9
RK
719#ifdef CONFIG_SA1111
720 /*
721 * Because of the SA1111 DMA bug, we want to preserve our
722 * precious DMA-able memory...
723 */
724 res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
725#endif
726 if (res_size)
72a7fe39
BW
727 reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size,
728 BOOTMEM_DEFAULT);
d111e8f9
RK
729}
730
731/*
732 * Set up device the mappings. Since we clear out the page tables for all
733 * mappings above VMALLOC_END, we will remove any debug device mappings.
734 * This means you have to be careful how you debug this function, or any
735 * called function. This means you can't use any function or debugging
736 * method which may touch any device, otherwise the kernel _will_ crash.
737 */
738static void __init devicemaps_init(struct machine_desc *mdesc)
739{
740 struct map_desc map;
741 unsigned long addr;
742 void *vectors;
743
744 /*
745 * Allocate the vector page early.
746 */
747 vectors = alloc_bootmem_low_pages(PAGE_SIZE);
748 BUG_ON(!vectors);
749
750 for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
751 pmd_clear(pmd_off_k(addr));
752
753 /*
754 * Map the kernel if it is XIP.
755 * It is always first in the modulearea.
756 */
757#ifdef CONFIG_XIP_KERNEL
758 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
759 map.virtual = MODULE_START;
760 map.length = ((unsigned long)&_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
761 map.type = MT_ROM;
762 create_mapping(&map);
763#endif
764
765 /*
766 * Map the cache flushing regions.
767 */
768#ifdef FLUSH_BASE
769 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
770 map.virtual = FLUSH_BASE;
771 map.length = SZ_1M;
772 map.type = MT_CACHECLEAN;
773 create_mapping(&map);
774#endif
775#ifdef FLUSH_BASE_MINICACHE
776 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
777 map.virtual = FLUSH_BASE_MINICACHE;
778 map.length = SZ_1M;
779 map.type = MT_MINICLEAN;
780 create_mapping(&map);
781#endif
782
783 /*
784 * Create a mapping for the machine vectors at the high-vectors
785 * location (0xffff0000). If we aren't using high-vectors, also
786 * create a mapping at the low-vectors virtual address.
787 */
788 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
789 map.virtual = 0xffff0000;
790 map.length = PAGE_SIZE;
791 map.type = MT_HIGH_VECTORS;
792 create_mapping(&map);
793
794 if (!vectors_high()) {
795 map.virtual = 0;
796 map.type = MT_LOW_VECTORS;
797 create_mapping(&map);
798 }
799
800 /*
801 * Ask the machine support to map in the statically mapped devices.
802 */
803 if (mdesc->map_io)
804 mdesc->map_io();
805
806 /*
807 * Finally flush the caches and tlb to ensure that we're in a
808 * consistent state wrt the writebuffer. This also ensures that
809 * any write-allocated cache lines in the vector page are written
810 * back. After this point, we can start to touch devices again.
811 */
812 local_flush_tlb_all();
813 flush_cache_all();
814}
815
816/*
817 * paging_init() sets up the page tables, initialises the zone memory
818 * maps, and sets up the zero page, bad page and bad page tables.
819 */
820void __init paging_init(struct meminfo *mi, struct machine_desc *mdesc)
821{
822 void *zero_page;
823
824 build_mem_type_table();
60296c71 825 sanity_check_meminfo(mi);
d111e8f9
RK
826 prepare_page_table(mi);
827 bootmem_init(mi);
828 devicemaps_init(mdesc);
829
830 top_pmd = pmd_off_k(0xffff0000);
831
832 /*
833 * allocate the zero page. Note that we count on this going ok.
834 */
835 zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
836 memzero(zero_page, PAGE_SIZE);
837 empty_zero_page = virt_to_page(zero_page);
838 flush_dcache_page(empty_zero_page);
839}
ae8f1541
RK
840
841/*
842 * In order to soft-boot, we need to insert a 1:1 mapping in place of
843 * the user-mode pages. This will then ensure that we have predictable
844 * results when turning the mmu off
845 */
846void setup_mm_for_reboot(char mode)
847{
848 unsigned long base_pmdval;
849 pgd_t *pgd;
850 int i;
851
852 if (current->mm && current->mm->pgd)
853 pgd = current->mm->pgd;
854 else
855 pgd = init_mm.pgd;
856
857 base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
858 if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
859 base_pmdval |= PMD_BIT4;
860
861 for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
862 unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
863 pmd_t *pmd;
864
865 pmd = pmd_off(pgd, i << PGDIR_SHIFT);
866 pmd[0] = __pmd(pmdval);
867 pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
868 flush_pmd_entry(pmd);
869 }
870}
This page took 0.307119 seconds and 5 git commands to generate.