Disintegrate asm/system.h for ARM
[deliverable/linux.git] / arch / arm / mm / mmu.c
CommitLineData
d111e8f9
RK
1/*
2 * linux/arch/arm/mm/mmu.c
3 *
4 * Copyright (C) 1995-2005 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
ae8f1541 10#include <linux/module.h>
d111e8f9
RK
11#include <linux/kernel.h>
12#include <linux/errno.h>
13#include <linux/init.h>
d111e8f9
RK
14#include <linux/mman.h>
15#include <linux/nodemask.h>
2778f620 16#include <linux/memblock.h>
d907387c 17#include <linux/fs.h>
0536bdf3 18#include <linux/vmalloc.h>
d111e8f9 19
15d07dc9 20#include <asm/cp15.h>
0ba8b9b2 21#include <asm/cputype.h>
37efe642 22#include <asm/sections.h>
3f973e22 23#include <asm/cachetype.h>
d111e8f9
RK
24#include <asm/setup.h>
25#include <asm/sizes.h>
e616c591 26#include <asm/smp_plat.h>
d111e8f9 27#include <asm/tlb.h>
d73cd428 28#include <asm/highmem.h>
9f97da78 29#include <asm/system_info.h>
247055aa 30#include <asm/traps.h>
d111e8f9
RK
31
32#include <asm/mach/arch.h>
33#include <asm/mach/map.h>
34
35#include "mm.h"
36
d111e8f9
RK
37/*
38 * empty_zero_page is a special page that is used for
39 * zero-initialized data and COW.
40 */
41struct page *empty_zero_page;
3653f3ab 42EXPORT_SYMBOL(empty_zero_page);
d111e8f9
RK
43
44/*
45 * The pmd table for the upper-most set of pages.
46 */
47pmd_t *top_pmd;
48
ae8f1541
RK
49#define CPOLICY_UNCACHED 0
50#define CPOLICY_BUFFERED 1
51#define CPOLICY_WRITETHROUGH 2
52#define CPOLICY_WRITEBACK 3
53#define CPOLICY_WRITEALLOC 4
54
55static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
56static unsigned int ecc_mask __initdata = 0;
44b18693 57pgprot_t pgprot_user;
ae8f1541
RK
58pgprot_t pgprot_kernel;
59
44b18693 60EXPORT_SYMBOL(pgprot_user);
ae8f1541
RK
61EXPORT_SYMBOL(pgprot_kernel);
62
63struct cachepolicy {
64 const char policy[16];
65 unsigned int cr_mask;
442e70c0 66 pmdval_t pmd;
f6e3354d 67 pteval_t pte;
ae8f1541
RK
68};
69
70static struct cachepolicy cache_policies[] __initdata = {
71 {
72 .policy = "uncached",
73 .cr_mask = CR_W|CR_C,
74 .pmd = PMD_SECT_UNCACHED,
bb30f36f 75 .pte = L_PTE_MT_UNCACHED,
ae8f1541
RK
76 }, {
77 .policy = "buffered",
78 .cr_mask = CR_C,
79 .pmd = PMD_SECT_BUFFERED,
bb30f36f 80 .pte = L_PTE_MT_BUFFERABLE,
ae8f1541
RK
81 }, {
82 .policy = "writethrough",
83 .cr_mask = 0,
84 .pmd = PMD_SECT_WT,
bb30f36f 85 .pte = L_PTE_MT_WRITETHROUGH,
ae8f1541
RK
86 }, {
87 .policy = "writeback",
88 .cr_mask = 0,
89 .pmd = PMD_SECT_WB,
bb30f36f 90 .pte = L_PTE_MT_WRITEBACK,
ae8f1541
RK
91 }, {
92 .policy = "writealloc",
93 .cr_mask = 0,
94 .pmd = PMD_SECT_WBWA,
bb30f36f 95 .pte = L_PTE_MT_WRITEALLOC,
ae8f1541
RK
96 }
97};
98
99/*
6cbdc8c5 100 * These are useful for identifying cache coherency
ae8f1541
RK
101 * problems by allowing the cache or the cache and
102 * writebuffer to be turned off. (Note: the write
103 * buffer should not be on and the cache off).
104 */
2b0d8c25 105static int __init early_cachepolicy(char *p)
ae8f1541
RK
106{
107 int i;
108
109 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
110 int len = strlen(cache_policies[i].policy);
111
2b0d8c25 112 if (memcmp(p, cache_policies[i].policy, len) == 0) {
ae8f1541
RK
113 cachepolicy = i;
114 cr_alignment &= ~cache_policies[i].cr_mask;
115 cr_no_alignment &= ~cache_policies[i].cr_mask;
ae8f1541
RK
116 break;
117 }
118 }
119 if (i == ARRAY_SIZE(cache_policies))
120 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
4b46d641
RK
121 /*
122 * This restriction is partly to do with the way we boot; it is
123 * unpredictable to have memory mapped using two different sets of
124 * memory attributes (shared, type, and cache attribs). We can not
125 * change these attributes once the initial assembly has setup the
126 * page tables.
127 */
11179d8c
CM
128 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
129 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
130 cachepolicy = CPOLICY_WRITEBACK;
131 }
ae8f1541
RK
132 flush_cache_all();
133 set_cr(cr_alignment);
2b0d8c25 134 return 0;
ae8f1541 135}
2b0d8c25 136early_param("cachepolicy", early_cachepolicy);
ae8f1541 137
2b0d8c25 138static int __init early_nocache(char *__unused)
ae8f1541
RK
139{
140 char *p = "buffered";
141 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
142 early_cachepolicy(p);
143 return 0;
ae8f1541 144}
2b0d8c25 145early_param("nocache", early_nocache);
ae8f1541 146
2b0d8c25 147static int __init early_nowrite(char *__unused)
ae8f1541
RK
148{
149 char *p = "uncached";
150 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
151 early_cachepolicy(p);
152 return 0;
ae8f1541 153}
2b0d8c25 154early_param("nowb", early_nowrite);
ae8f1541 155
1b6ba46b 156#ifndef CONFIG_ARM_LPAE
2b0d8c25 157static int __init early_ecc(char *p)
ae8f1541 158{
2b0d8c25 159 if (memcmp(p, "on", 2) == 0)
ae8f1541 160 ecc_mask = PMD_PROTECTION;
2b0d8c25 161 else if (memcmp(p, "off", 3) == 0)
ae8f1541 162 ecc_mask = 0;
2b0d8c25 163 return 0;
ae8f1541 164}
2b0d8c25 165early_param("ecc", early_ecc);
1b6ba46b 166#endif
ae8f1541
RK
167
168static int __init noalign_setup(char *__unused)
169{
170 cr_alignment &= ~CR_A;
171 cr_no_alignment &= ~CR_A;
172 set_cr(cr_alignment);
173 return 1;
174}
175__setup("noalign", noalign_setup);
176
255d1f86
RK
177#ifndef CONFIG_SMP
178void adjust_cr(unsigned long mask, unsigned long set)
179{
180 unsigned long flags;
181
182 mask &= ~CR_A;
183
184 set &= mask;
185
186 local_irq_save(flags);
187
188 cr_no_alignment = (cr_no_alignment & ~mask) | set;
189 cr_alignment = (cr_alignment & ~mask) | set;
190
191 set_cr((get_cr() & ~mask) | set);
192
193 local_irq_restore(flags);
194}
195#endif
196
36bb94ba 197#define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
b1cce6b1 198#define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
0af92bef 199
b29e9f5e 200static struct mem_type mem_types[] = {
0af92bef 201 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
bb30f36f
RK
202 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
203 L_PTE_SHARED,
0af92bef 204 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 205 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
0af92bef
RK
206 .domain = DOMAIN_IO,
207 },
208 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
bb30f36f 209 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
0af92bef 210 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 211 .prot_sect = PROT_SECT_DEVICE,
0af92bef
RK
212 .domain = DOMAIN_IO,
213 },
214 [MT_DEVICE_CACHED] = { /* ioremap_cached */
bb30f36f 215 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
0af92bef
RK
216 .prot_l1 = PMD_TYPE_TABLE,
217 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
218 .domain = DOMAIN_IO,
219 },
1ad77a87 220 [MT_DEVICE_WC] = { /* ioremap_wc */
bb30f36f 221 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
0af92bef 222 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 223 .prot_sect = PROT_SECT_DEVICE,
0af92bef 224 .domain = DOMAIN_IO,
ae8f1541 225 },
ebb4c658
RK
226 [MT_UNCACHED] = {
227 .prot_pte = PROT_PTE_DEVICE,
228 .prot_l1 = PMD_TYPE_TABLE,
229 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
230 .domain = DOMAIN_IO,
231 },
ae8f1541 232 [MT_CACHECLEAN] = {
9ef79635 233 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
ae8f1541
RK
234 .domain = DOMAIN_KERNEL,
235 },
1b6ba46b 236#ifndef CONFIG_ARM_LPAE
ae8f1541 237 [MT_MINICLEAN] = {
9ef79635 238 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
ae8f1541
RK
239 .domain = DOMAIN_KERNEL,
240 },
1b6ba46b 241#endif
ae8f1541
RK
242 [MT_LOW_VECTORS] = {
243 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 244 L_PTE_RDONLY,
ae8f1541
RK
245 .prot_l1 = PMD_TYPE_TABLE,
246 .domain = DOMAIN_USER,
247 },
248 [MT_HIGH_VECTORS] = {
249 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 250 L_PTE_USER | L_PTE_RDONLY,
ae8f1541
RK
251 .prot_l1 = PMD_TYPE_TABLE,
252 .domain = DOMAIN_USER,
253 },
254 [MT_MEMORY] = {
36bb94ba 255 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
f1a2481c 256 .prot_l1 = PMD_TYPE_TABLE,
9ef79635 257 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
ae8f1541
RK
258 .domain = DOMAIN_KERNEL,
259 },
260 [MT_ROM] = {
9ef79635 261 .prot_sect = PMD_TYPE_SECT,
ae8f1541
RK
262 .domain = DOMAIN_KERNEL,
263 },
e4707dd3 264 [MT_MEMORY_NONCACHED] = {
f1a2481c 265 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 266 L_PTE_MT_BUFFERABLE,
f1a2481c 267 .prot_l1 = PMD_TYPE_TABLE,
e4707dd3
PW
268 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
269 .domain = DOMAIN_KERNEL,
270 },
cb9d7707 271 [MT_MEMORY_DTCM] = {
f444fce3 272 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
36bb94ba 273 L_PTE_XN,
f444fce3
LW
274 .prot_l1 = PMD_TYPE_TABLE,
275 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
276 .domain = DOMAIN_KERNEL,
cb9d7707
LW
277 },
278 [MT_MEMORY_ITCM] = {
36bb94ba 279 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
cb9d7707 280 .prot_l1 = PMD_TYPE_TABLE,
f444fce3 281 .domain = DOMAIN_KERNEL,
cb9d7707 282 },
8fb54284
SS
283 [MT_MEMORY_SO] = {
284 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
285 L_PTE_MT_UNCACHED,
286 .prot_l1 = PMD_TYPE_TABLE,
287 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
288 PMD_SECT_UNCACHED | PMD_SECT_XN,
289 .domain = DOMAIN_KERNEL,
290 },
ae8f1541
RK
291};
292
b29e9f5e
RK
293const struct mem_type *get_mem_type(unsigned int type)
294{
295 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
296}
69d3a84a 297EXPORT_SYMBOL(get_mem_type);
b29e9f5e 298
ae8f1541
RK
299/*
300 * Adjust the PMD section entries according to the CPU in use.
301 */
302static void __init build_mem_type_table(void)
303{
304 struct cachepolicy *cp;
305 unsigned int cr = get_cr();
442e70c0 306 pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
ae8f1541
RK
307 int cpu_arch = cpu_architecture();
308 int i;
309
11179d8c 310 if (cpu_arch < CPU_ARCH_ARMv6) {
ae8f1541 311#if defined(CONFIG_CPU_DCACHE_DISABLE)
11179d8c
CM
312 if (cachepolicy > CPOLICY_BUFFERED)
313 cachepolicy = CPOLICY_BUFFERED;
ae8f1541 314#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
11179d8c
CM
315 if (cachepolicy > CPOLICY_WRITETHROUGH)
316 cachepolicy = CPOLICY_WRITETHROUGH;
ae8f1541 317#endif
11179d8c 318 }
ae8f1541
RK
319 if (cpu_arch < CPU_ARCH_ARMv5) {
320 if (cachepolicy >= CPOLICY_WRITEALLOC)
321 cachepolicy = CPOLICY_WRITEBACK;
322 ecc_mask = 0;
323 }
f00ec48f
RK
324 if (is_smp())
325 cachepolicy = CPOLICY_WRITEALLOC;
ae8f1541 326
1ad77a87 327 /*
b1cce6b1
RK
328 * Strip out features not present on earlier architectures.
329 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
330 * without extended page tables don't have the 'Shared' bit.
1ad77a87 331 */
b1cce6b1
RK
332 if (cpu_arch < CPU_ARCH_ARMv5)
333 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
334 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
335 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
336 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
337 mem_types[i].prot_sect &= ~PMD_SECT_S;
ae8f1541
RK
338
339 /*
b1cce6b1
RK
340 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
341 * "update-able on write" bit on ARM610). However, Xscale and
342 * Xscale3 require this bit to be cleared.
ae8f1541 343 */
b1cce6b1 344 if (cpu_is_xscale() || cpu_is_xsc3()) {
9ef79635 345 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541 346 mem_types[i].prot_sect &= ~PMD_BIT4;
9ef79635
RK
347 mem_types[i].prot_l1 &= ~PMD_BIT4;
348 }
349 } else if (cpu_arch < CPU_ARCH_ARMv6) {
350 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541
RK
351 if (mem_types[i].prot_l1)
352 mem_types[i].prot_l1 |= PMD_BIT4;
9ef79635
RK
353 if (mem_types[i].prot_sect)
354 mem_types[i].prot_sect |= PMD_BIT4;
355 }
356 }
ae8f1541 357
b1cce6b1
RK
358 /*
359 * Mark the device areas according to the CPU/architecture.
360 */
361 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
362 if (!cpu_is_xsc3()) {
363 /*
364 * Mark device regions on ARMv6+ as execute-never
365 * to prevent speculative instruction fetches.
366 */
367 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
368 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
369 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
370 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
371 }
372 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
373 /*
374 * For ARMv7 with TEX remapping,
375 * - shared device is SXCB=1100
376 * - nonshared device is SXCB=0100
377 * - write combine device mem is SXCB=0001
378 * (Uncached Normal memory)
379 */
380 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
381 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
382 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
383 } else if (cpu_is_xsc3()) {
384 /*
385 * For Xscale3,
386 * - shared device is TEXCB=00101
387 * - nonshared device is TEXCB=01000
388 * - write combine device mem is TEXCB=00100
389 * (Inner/Outer Uncacheable in xsc3 parlance)
390 */
391 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
392 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
393 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
394 } else {
395 /*
396 * For ARMv6 and ARMv7 without TEX remapping,
397 * - shared device is TEXCB=00001
398 * - nonshared device is TEXCB=01000
399 * - write combine device mem is TEXCB=00100
400 * (Uncached Normal in ARMv6 parlance).
401 */
402 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
403 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
404 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
405 }
406 } else {
407 /*
408 * On others, write combining is "Uncached/Buffered"
409 */
410 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
411 }
412
413 /*
414 * Now deal with the memory-type mappings
415 */
ae8f1541 416 cp = &cache_policies[cachepolicy];
bb30f36f
RK
417 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
418
bb30f36f
RK
419 /*
420 * Only use write-through for non-SMP systems
421 */
f00ec48f 422 if (!is_smp() && cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
bb30f36f 423 vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
ae8f1541
RK
424
425 /*
426 * Enable CPU-specific coherency if supported.
427 * (Only available on XSC3 at the moment.)
428 */
f1a2481c 429 if (arch_is_coherent() && cpu_is_xsc3()) {
b1cce6b1 430 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
f1a2481c
SS
431 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
432 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
433 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
434 }
ae8f1541
RK
435 /*
436 * ARMv6 and above have extended page tables.
437 */
438 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
1b6ba46b 439#ifndef CONFIG_ARM_LPAE
ae8f1541
RK
440 /*
441 * Mark cache clean areas and XIP ROM read only
442 * from SVC mode and no access from userspace.
443 */
444 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
445 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
446 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
1b6ba46b 447#endif
ae8f1541 448
f00ec48f
RK
449 if (is_smp()) {
450 /*
451 * Mark memory with the "shared" attribute
452 * for SMP systems
453 */
454 user_pgprot |= L_PTE_SHARED;
455 kern_pgprot |= L_PTE_SHARED;
456 vecs_pgprot |= L_PTE_SHARED;
457 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
458 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
459 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
460 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
461 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
462 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
463 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
464 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
465 }
ae8f1541
RK
466 }
467
e4707dd3
PW
468 /*
469 * Non-cacheable Normal - intended for memory areas that must
470 * not cause dirty cache line writebacks when used
471 */
472 if (cpu_arch >= CPU_ARCH_ARMv6) {
473 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
474 /* Non-cacheable Normal is XCB = 001 */
475 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
476 PMD_SECT_BUFFERED;
477 } else {
478 /* For both ARMv6 and non-TEX-remapping ARMv7 */
479 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
480 PMD_SECT_TEX(1);
481 }
482 } else {
483 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
484 }
485
1b6ba46b
CM
486#ifdef CONFIG_ARM_LPAE
487 /*
488 * Do not generate access flag faults for the kernel mappings.
489 */
490 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
491 mem_types[i].prot_pte |= PTE_EXT_AF;
492 mem_types[i].prot_sect |= PMD_SECT_AF;
493 }
494 kern_pgprot |= PTE_EXT_AF;
495 vecs_pgprot |= PTE_EXT_AF;
496#endif
497
ae8f1541
RK
498 for (i = 0; i < 16; i++) {
499 unsigned long v = pgprot_val(protection_map[i]);
bb30f36f 500 protection_map[i] = __pgprot(v | user_pgprot);
ae8f1541
RK
501 }
502
bb30f36f
RK
503 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
504 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
ae8f1541 505
44b18693 506 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
ae8f1541 507 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
36bb94ba 508 L_PTE_DIRTY | kern_pgprot);
ae8f1541
RK
509
510 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
511 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
512 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
f1a2481c
SS
513 mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
514 mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
ae8f1541
RK
515 mem_types[MT_ROM].prot_sect |= cp->pmd;
516
517 switch (cp->pmd) {
518 case PMD_SECT_WT:
519 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
520 break;
521 case PMD_SECT_WB:
522 case PMD_SECT_WBWA:
523 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
524 break;
525 }
526 printk("Memory policy: ECC %sabled, Data cache %s\n",
527 ecc_mask ? "en" : "dis", cp->policy);
2497f0a8
RK
528
529 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
530 struct mem_type *t = &mem_types[i];
531 if (t->prot_l1)
532 t->prot_l1 |= PMD_DOMAIN(t->domain);
533 if (t->prot_sect)
534 t->prot_sect |= PMD_DOMAIN(t->domain);
535 }
ae8f1541
RK
536}
537
d907387c
CM
538#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
539pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
540 unsigned long size, pgprot_t vma_prot)
541{
542 if (!pfn_valid(pfn))
543 return pgprot_noncached(vma_prot);
544 else if (file->f_flags & O_SYNC)
545 return pgprot_writecombine(vma_prot);
546 return vma_prot;
547}
548EXPORT_SYMBOL(phys_mem_access_prot);
549#endif
550
ae8f1541
RK
551#define vectors_base() (vectors_high() ? 0xffff0000 : 0)
552
0536bdf3 553static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
3abe9d33 554{
0536bdf3 555 void *ptr = __va(memblock_alloc(sz, align));
2778f620
RK
556 memset(ptr, 0, sz);
557 return ptr;
3abe9d33
RK
558}
559
0536bdf3
NP
560static void __init *early_alloc(unsigned long sz)
561{
562 return early_alloc_aligned(sz, sz);
563}
564
4bb2e27d 565static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
ae8f1541 566{
24e6c699 567 if (pmd_none(*pmd)) {
410f1483 568 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
97092e0c 569 __pmd_populate(pmd, __pa(pte), prot);
24e6c699 570 }
4bb2e27d
RK
571 BUG_ON(pmd_bad(*pmd));
572 return pte_offset_kernel(pmd, addr);
573}
ae8f1541 574
4bb2e27d
RK
575static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
576 unsigned long end, unsigned long pfn,
577 const struct mem_type *type)
578{
579 pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
24e6c699 580 do {
40d192b6 581 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
24e6c699
RK
582 pfn++;
583 } while (pte++, addr += PAGE_SIZE, addr != end);
ae8f1541
RK
584}
585
516295e5 586static void __init alloc_init_section(pud_t *pud, unsigned long addr,
97092e0c 587 unsigned long end, phys_addr_t phys,
24e6c699 588 const struct mem_type *type)
ae8f1541 589{
516295e5 590 pmd_t *pmd = pmd_offset(pud, addr);
ae8f1541 591
24e6c699
RK
592 /*
593 * Try a section mapping - end, addr and phys must all be aligned
594 * to a section boundary. Note that PMDs refer to the individual
595 * L1 entries, whereas PGDs refer to a group of L1 entries making
596 * up one logical pointer to an L2 table.
597 */
598 if (((addr | end | phys) & ~SECTION_MASK) == 0) {
599 pmd_t *p = pmd;
ae8f1541 600
1b6ba46b 601#ifndef CONFIG_ARM_LPAE
24e6c699
RK
602 if (addr & SECTION_SIZE)
603 pmd++;
1b6ba46b 604#endif
24e6c699
RK
605
606 do {
607 *pmd = __pmd(phys | type->prot_sect);
608 phys += SECTION_SIZE;
609 } while (pmd++, addr += SECTION_SIZE, addr != end);
ae8f1541 610
24e6c699
RK
611 flush_pmd_entry(p);
612 } else {
613 /*
614 * No need to loop; pte's aren't interested in the
615 * individual L1 entries.
616 */
617 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
618 }
ae8f1541
RK
619}
620
516295e5
RK
621static void alloc_init_pud(pgd_t *pgd, unsigned long addr, unsigned long end,
622 unsigned long phys, const struct mem_type *type)
623{
624 pud_t *pud = pud_offset(pgd, addr);
625 unsigned long next;
626
627 do {
628 next = pud_addr_end(addr, end);
629 alloc_init_section(pud, addr, next, phys, type);
630 phys += next - addr;
631 } while (pud++, addr = next, addr != end);
632}
633
1b6ba46b 634#ifndef CONFIG_ARM_LPAE
4a56c1e4
RK
635static void __init create_36bit_mapping(struct map_desc *md,
636 const struct mem_type *type)
637{
97092e0c
RK
638 unsigned long addr, length, end;
639 phys_addr_t phys;
4a56c1e4
RK
640 pgd_t *pgd;
641
642 addr = md->virtual;
cae6292b 643 phys = __pfn_to_phys(md->pfn);
4a56c1e4
RK
644 length = PAGE_ALIGN(md->length);
645
646 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
647 printk(KERN_ERR "MM: CPU does not support supersection "
648 "mapping for 0x%08llx at 0x%08lx\n",
29a38193 649 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
650 return;
651 }
652
653 /* N.B. ARMv6 supersections are only defined to work with domain 0.
654 * Since domain assignments can in fact be arbitrary, the
655 * 'domain == 0' check below is required to insure that ARMv6
656 * supersections are only allocated for domain 0 regardless
657 * of the actual domain assignments in use.
658 */
659 if (type->domain) {
660 printk(KERN_ERR "MM: invalid domain in supersection "
661 "mapping for 0x%08llx at 0x%08lx\n",
29a38193 662 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
663 return;
664 }
665
666 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
29a38193
WD
667 printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
668 " at 0x%08lx invalid alignment\n",
669 (long long)__pfn_to_phys((u64)md->pfn), addr);
4a56c1e4
RK
670 return;
671 }
672
673 /*
674 * Shift bits [35:32] of address into bits [23:20] of PMD
675 * (See ARMv6 spec).
676 */
677 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
678
679 pgd = pgd_offset_k(addr);
680 end = addr + length;
681 do {
516295e5
RK
682 pud_t *pud = pud_offset(pgd, addr);
683 pmd_t *pmd = pmd_offset(pud, addr);
4a56c1e4
RK
684 int i;
685
686 for (i = 0; i < 16; i++)
687 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
688
689 addr += SUPERSECTION_SIZE;
690 phys += SUPERSECTION_SIZE;
691 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
692 } while (addr != end);
693}
1b6ba46b 694#endif /* !CONFIG_ARM_LPAE */
4a56c1e4 695
ae8f1541
RK
696/*
697 * Create the page directory entries and any necessary
698 * page tables for the mapping specified by `md'. We
699 * are able to cope here with varying sizes and address
700 * offsets, and we take full advantage of sections and
701 * supersections.
702 */
a2227120 703static void __init create_mapping(struct map_desc *md)
ae8f1541 704{
cae6292b
WD
705 unsigned long addr, length, end;
706 phys_addr_t phys;
d5c98176 707 const struct mem_type *type;
24e6c699 708 pgd_t *pgd;
ae8f1541
RK
709
710 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
29a38193
WD
711 printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
712 " at 0x%08lx in user region\n",
713 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
ae8f1541
RK
714 return;
715 }
716
717 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
0536bdf3
NP
718 md->virtual >= PAGE_OFFSET &&
719 (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
29a38193 720 printk(KERN_WARNING "BUG: mapping for 0x%08llx"
0536bdf3 721 " at 0x%08lx out of vmalloc space\n",
29a38193 722 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
ae8f1541
RK
723 }
724
d5c98176 725 type = &mem_types[md->type];
ae8f1541 726
1b6ba46b 727#ifndef CONFIG_ARM_LPAE
ae8f1541
RK
728 /*
729 * Catch 36-bit addresses
730 */
4a56c1e4
RK
731 if (md->pfn >= 0x100000) {
732 create_36bit_mapping(md, type);
733 return;
ae8f1541 734 }
1b6ba46b 735#endif
ae8f1541 736
7b9c7b4d 737 addr = md->virtual & PAGE_MASK;
cae6292b 738 phys = __pfn_to_phys(md->pfn);
7b9c7b4d 739 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
ae8f1541 740
24e6c699 741 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
29a38193 742 printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
ae8f1541 743 "be mapped using pages, ignoring.\n",
29a38193 744 (long long)__pfn_to_phys(md->pfn), addr);
ae8f1541
RK
745 return;
746 }
747
24e6c699
RK
748 pgd = pgd_offset_k(addr);
749 end = addr + length;
750 do {
751 unsigned long next = pgd_addr_end(addr, end);
ae8f1541 752
516295e5 753 alloc_init_pud(pgd, addr, next, phys, type);
ae8f1541 754
24e6c699
RK
755 phys += next - addr;
756 addr = next;
757 } while (pgd++, addr != end);
ae8f1541
RK
758}
759
760/*
761 * Create the architecture specific mappings
762 */
763void __init iotable_init(struct map_desc *io_desc, int nr)
764{
0536bdf3
NP
765 struct map_desc *md;
766 struct vm_struct *vm;
767
768 if (!nr)
769 return;
ae8f1541 770
0536bdf3
NP
771 vm = early_alloc_aligned(sizeof(*vm) * nr, __alignof__(*vm));
772
773 for (md = io_desc; nr; md++, nr--) {
774 create_mapping(md);
775 vm->addr = (void *)(md->virtual & PAGE_MASK);
776 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
777 vm->phys_addr = __pfn_to_phys(md->pfn);
576d2f25
NP
778 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
779 vm->flags |= VM_ARM_MTYPE(md->type);
0536bdf3
NP
780 vm->caller = iotable_init;
781 vm_area_add_early(vm++);
782 }
ae8f1541
RK
783}
784
0536bdf3
NP
785static void * __initdata vmalloc_min =
786 (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
6c5da7ac
RK
787
788/*
789 * vmalloc=size forces the vmalloc area to be exactly 'size'
790 * bytes. This can be used to increase (or decrease) the vmalloc
0536bdf3 791 * area - the default is 240m.
6c5da7ac 792 */
2b0d8c25 793static int __init early_vmalloc(char *arg)
6c5da7ac 794{
79612395 795 unsigned long vmalloc_reserve = memparse(arg, NULL);
6c5da7ac
RK
796
797 if (vmalloc_reserve < SZ_16M) {
798 vmalloc_reserve = SZ_16M;
799 printk(KERN_WARNING
800 "vmalloc area too small, limiting to %luMB\n",
801 vmalloc_reserve >> 20);
802 }
9210807c
NP
803
804 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
805 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
806 printk(KERN_WARNING
807 "vmalloc area is too big, limiting to %luMB\n",
808 vmalloc_reserve >> 20);
809 }
79612395
RK
810
811 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
2b0d8c25 812 return 0;
6c5da7ac 813}
2b0d8c25 814early_param("vmalloc", early_vmalloc);
6c5da7ac 815
8df65168
RK
816static phys_addr_t lowmem_limit __initdata = 0;
817
0371d3f7 818void __init sanity_check_meminfo(void)
60296c71 819{
dde5828f 820 int i, j, highmem = 0;
60296c71 821
4b5f32ce 822 for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
a1bbaec0
NP
823 struct membank *bank = &meminfo.bank[j];
824 *bank = meminfo.bank[i];
60296c71 825
77f73a2c
WD
826 if (bank->start > ULONG_MAX)
827 highmem = 1;
828
a1bbaec0 829#ifdef CONFIG_HIGHMEM
40f7bfe4 830 if (__va(bank->start) >= vmalloc_min ||
dde5828f
RK
831 __va(bank->start) < (void *)PAGE_OFFSET)
832 highmem = 1;
833
834 bank->highmem = highmem;
835
a1bbaec0
NP
836 /*
837 * Split those memory banks which are partially overlapping
838 * the vmalloc area greatly simplifying things later.
839 */
77f73a2c 840 if (!highmem && __va(bank->start) < vmalloc_min &&
79612395 841 bank->size > vmalloc_min - __va(bank->start)) {
a1bbaec0
NP
842 if (meminfo.nr_banks >= NR_BANKS) {
843 printk(KERN_CRIT "NR_BANKS too low, "
844 "ignoring high memory\n");
845 } else {
846 memmove(bank + 1, bank,
847 (meminfo.nr_banks - i) * sizeof(*bank));
848 meminfo.nr_banks++;
849 i++;
79612395
RK
850 bank[1].size -= vmalloc_min - __va(bank->start);
851 bank[1].start = __pa(vmalloc_min - 1) + 1;
dde5828f 852 bank[1].highmem = highmem = 1;
a1bbaec0
NP
853 j++;
854 }
79612395 855 bank->size = vmalloc_min - __va(bank->start);
a1bbaec0
NP
856 }
857#else
041d785f
RK
858 bank->highmem = highmem;
859
77f73a2c
WD
860 /*
861 * Highmem banks not allowed with !CONFIG_HIGHMEM.
862 */
863 if (highmem) {
864 printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
865 "(!CONFIG_HIGHMEM).\n",
866 (unsigned long long)bank->start,
867 (unsigned long long)bank->start + bank->size - 1);
868 continue;
869 }
870
a1bbaec0
NP
871 /*
872 * Check whether this memory bank would entirely overlap
873 * the vmalloc area.
874 */
79612395 875 if (__va(bank->start) >= vmalloc_min ||
f0bba9f9 876 __va(bank->start) < (void *)PAGE_OFFSET) {
e33b9d08 877 printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
a1bbaec0 878 "(vmalloc region overlap).\n",
e33b9d08
RK
879 (unsigned long long)bank->start,
880 (unsigned long long)bank->start + bank->size - 1);
a1bbaec0
NP
881 continue;
882 }
60296c71 883
a1bbaec0
NP
884 /*
885 * Check whether this memory bank would partially overlap
886 * the vmalloc area.
887 */
79612395 888 if (__va(bank->start + bank->size) > vmalloc_min ||
a1bbaec0 889 __va(bank->start + bank->size) < __va(bank->start)) {
79612395 890 unsigned long newsize = vmalloc_min - __va(bank->start);
e33b9d08
RK
891 printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
892 "to -%.8llx (vmalloc region overlap).\n",
893 (unsigned long long)bank->start,
894 (unsigned long long)bank->start + bank->size - 1,
895 (unsigned long long)bank->start + newsize - 1);
a1bbaec0
NP
896 bank->size = newsize;
897 }
898#endif
40f7bfe4
WD
899 if (!bank->highmem && bank->start + bank->size > lowmem_limit)
900 lowmem_limit = bank->start + bank->size;
901
a1bbaec0 902 j++;
60296c71 903 }
e616c591
RK
904#ifdef CONFIG_HIGHMEM
905 if (highmem) {
906 const char *reason = NULL;
907
908 if (cache_is_vipt_aliasing()) {
909 /*
910 * Interactions between kmap and other mappings
911 * make highmem support with aliasing VIPT caches
912 * rather difficult.
913 */
914 reason = "with VIPT aliasing cache";
e616c591
RK
915 }
916 if (reason) {
917 printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
918 reason);
919 while (j > 0 && meminfo.bank[j - 1].highmem)
920 j--;
921 }
922 }
923#endif
4b5f32ce 924 meminfo.nr_banks = j;
55a8173c 925 high_memory = __va(lowmem_limit - 1) + 1;
40f7bfe4 926 memblock_set_current_limit(lowmem_limit);
60296c71
LB
927}
928
4b5f32ce 929static inline void prepare_page_table(void)
d111e8f9
RK
930{
931 unsigned long addr;
8df65168 932 phys_addr_t end;
d111e8f9
RK
933
934 /*
935 * Clear out all the mappings below the kernel image.
936 */
e73fc88e 937 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
d111e8f9
RK
938 pmd_clear(pmd_off_k(addr));
939
940#ifdef CONFIG_XIP_KERNEL
941 /* The XIP kernel is mapped in the module area -- skip over it */
e73fc88e 942 addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
d111e8f9 943#endif
e73fc88e 944 for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
d111e8f9
RK
945 pmd_clear(pmd_off_k(addr));
946
8df65168
RK
947 /*
948 * Find the end of the first block of lowmem.
949 */
950 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
951 if (end >= lowmem_limit)
952 end = lowmem_limit;
953
d111e8f9
RK
954 /*
955 * Clear out all the kernel space mappings, except for the first
0536bdf3 956 * memory bank, up to the vmalloc region.
d111e8f9 957 */
8df65168 958 for (addr = __phys_to_virt(end);
0536bdf3 959 addr < VMALLOC_START; addr += PMD_SIZE)
d111e8f9
RK
960 pmd_clear(pmd_off_k(addr));
961}
962
1b6ba46b
CM
963#ifdef CONFIG_ARM_LPAE
964/* the first page is reserved for pgd */
965#define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
966 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
967#else
e73fc88e 968#define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1b6ba46b 969#endif
e73fc88e 970
d111e8f9 971/*
2778f620 972 * Reserve the special regions of memory
d111e8f9 973 */
2778f620 974void __init arm_mm_memblock_reserve(void)
d111e8f9 975{
d111e8f9
RK
976 /*
977 * Reserve the page tables. These are already in use,
978 * and can only be in node 0.
979 */
e73fc88e 980 memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
d111e8f9 981
d111e8f9
RK
982#ifdef CONFIG_SA1111
983 /*
984 * Because of the SA1111 DMA bug, we want to preserve our
985 * precious DMA-able memory...
986 */
2778f620 987 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
d111e8f9 988#endif
d111e8f9
RK
989}
990
991/*
0536bdf3
NP
992 * Set up the device mappings. Since we clear out the page tables for all
993 * mappings above VMALLOC_START, we will remove any debug device mappings.
d111e8f9
RK
994 * This means you have to be careful how you debug this function, or any
995 * called function. This means you can't use any function or debugging
996 * method which may touch any device, otherwise the kernel _will_ crash.
997 */
998static void __init devicemaps_init(struct machine_desc *mdesc)
999{
1000 struct map_desc map;
1001 unsigned long addr;
d111e8f9
RK
1002
1003 /*
1004 * Allocate the vector page early.
1005 */
247055aa 1006 vectors_page = early_alloc(PAGE_SIZE);
d111e8f9 1007
0536bdf3 1008 for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
d111e8f9
RK
1009 pmd_clear(pmd_off_k(addr));
1010
1011 /*
1012 * Map the kernel if it is XIP.
1013 * It is always first in the modulearea.
1014 */
1015#ifdef CONFIG_XIP_KERNEL
1016 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
ab4f2ee1 1017 map.virtual = MODULES_VADDR;
37efe642 1018 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
d111e8f9
RK
1019 map.type = MT_ROM;
1020 create_mapping(&map);
1021#endif
1022
1023 /*
1024 * Map the cache flushing regions.
1025 */
1026#ifdef FLUSH_BASE
1027 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1028 map.virtual = FLUSH_BASE;
1029 map.length = SZ_1M;
1030 map.type = MT_CACHECLEAN;
1031 create_mapping(&map);
1032#endif
1033#ifdef FLUSH_BASE_MINICACHE
1034 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1035 map.virtual = FLUSH_BASE_MINICACHE;
1036 map.length = SZ_1M;
1037 map.type = MT_MINICLEAN;
1038 create_mapping(&map);
1039#endif
1040
1041 /*
1042 * Create a mapping for the machine vectors at the high-vectors
1043 * location (0xffff0000). If we aren't using high-vectors, also
1044 * create a mapping at the low-vectors virtual address.
1045 */
247055aa 1046 map.pfn = __phys_to_pfn(virt_to_phys(vectors_page));
d111e8f9
RK
1047 map.virtual = 0xffff0000;
1048 map.length = PAGE_SIZE;
1049 map.type = MT_HIGH_VECTORS;
1050 create_mapping(&map);
1051
1052 if (!vectors_high()) {
1053 map.virtual = 0;
1054 map.type = MT_LOW_VECTORS;
1055 create_mapping(&map);
1056 }
1057
1058 /*
1059 * Ask the machine support to map in the statically mapped devices.
1060 */
1061 if (mdesc->map_io)
1062 mdesc->map_io();
1063
1064 /*
1065 * Finally flush the caches and tlb to ensure that we're in a
1066 * consistent state wrt the writebuffer. This also ensures that
1067 * any write-allocated cache lines in the vector page are written
1068 * back. After this point, we can start to touch devices again.
1069 */
1070 local_flush_tlb_all();
1071 flush_cache_all();
1072}
1073
d73cd428
NP
1074static void __init kmap_init(void)
1075{
1076#ifdef CONFIG_HIGHMEM
4bb2e27d
RK
1077 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1078 PKMAP_BASE, _PAGE_KERNEL_TABLE);
d73cd428
NP
1079#endif
1080}
1081
a2227120
RK
1082static void __init map_lowmem(void)
1083{
8df65168 1084 struct memblock_region *reg;
a2227120
RK
1085
1086 /* Map all the lowmem memory banks. */
8df65168
RK
1087 for_each_memblock(memory, reg) {
1088 phys_addr_t start = reg->base;
1089 phys_addr_t end = start + reg->size;
1090 struct map_desc map;
1091
1092 if (end > lowmem_limit)
1093 end = lowmem_limit;
1094 if (start >= end)
1095 break;
1096
1097 map.pfn = __phys_to_pfn(start);
1098 map.virtual = __phys_to_virt(start);
1099 map.length = end - start;
1100 map.type = MT_MEMORY;
a2227120 1101
8df65168 1102 create_mapping(&map);
a2227120
RK
1103 }
1104}
1105
d111e8f9
RK
1106/*
1107 * paging_init() sets up the page tables, initialises the zone memory
1108 * maps, and sets up the zero page, bad page and bad page tables.
1109 */
4b5f32ce 1110void __init paging_init(struct machine_desc *mdesc)
d111e8f9
RK
1111{
1112 void *zero_page;
1113
0371d3f7
RK
1114 memblock_set_current_limit(lowmem_limit);
1115
d111e8f9 1116 build_mem_type_table();
4b5f32ce 1117 prepare_page_table();
a2227120 1118 map_lowmem();
d111e8f9 1119 devicemaps_init(mdesc);
d73cd428 1120 kmap_init();
d111e8f9
RK
1121
1122 top_pmd = pmd_off_k(0xffff0000);
1123
3abe9d33
RK
1124 /* allocate the zero page. */
1125 zero_page = early_alloc(PAGE_SIZE);
2778f620 1126
8d717a52 1127 bootmem_init();
2778f620 1128
d111e8f9 1129 empty_zero_page = virt_to_page(zero_page);
421fe93c 1130 __flush_dcache_page(NULL, empty_zero_page);
d111e8f9 1131}
This page took 0.477946 seconds and 5 git commands to generate.