[ARM] Update mach-types
[deliverable/linux.git] / arch / arm / mm / proc-xscale.S
CommitLineData
1da177e4
LT
1/*
2 * linux/arch/arm/mm/proc-xscale.S
3 *
4 * Author: Nicolas Pitre
5 * Created: November 2000
6 * Copyright: (C) 2000, 2001 MontaVista Software Inc.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 *
12 * MMU functions for the Intel XScale CPUs
13 *
14 * 2001 Aug 21:
15 * some contributions by Brett Gaines <brett.w.gaines@intel.com>
16 * Copyright 2001 by Intel Corp.
17 *
18 * 2001 Sep 08:
19 * Completely revisited, many important fixes
20 * Nicolas Pitre <nico@cam.org>
21 */
22
23#include <linux/linkage.h>
24#include <linux/init.h>
25#include <asm/assembler.h>
ee90dabc 26#include <asm/elf.h>
1da177e4 27#include <asm/pgtable.h>
0003cedf 28#include <asm/pgtable-hwdef.h>
1da177e4
LT
29#include <asm/page.h>
30#include <asm/ptrace.h>
31#include "proc-macros.S"
32
33/*
34 * This is the maximum size of an area which will be flushed. If the area
35 * is larger than this, then we flush the whole cache
36 */
37#define MAX_AREA_SIZE 32768
38
39/*
40 * the cache line size of the I and D cache
41 */
42#define CACHELINESIZE 32
43
44/*
45 * the size of the data cache
46 */
47#define CACHESIZE 32768
48
49/*
50 * Virtual address used to allocate the cache when flushed
51 *
52 * This must be an address range which is _never_ used. It should
53 * apparently have a mapping in the corresponding page table for
54 * compatibility with future CPUs that _could_ require it. For instance we
55 * don't care.
56 *
57 * This must be aligned on a 2*CACHESIZE boundary. The code selects one of
58 * the 2 areas in alternance each time the clean_d_cache macro is used.
59 * Without this the XScale core exhibits cache eviction problems and no one
60 * knows why.
61 *
62 * Reminder: the vector table is located at 0xffff0000-0xffff0fff.
63 */
64#define CLEAN_ADDR 0xfffe0000
65
66/*
67 * This macro is used to wait for a CP15 write and is needed
68 * when we have to ensure that the last operation to the co-pro
69 * was completed before continuing with operation.
70 */
71 .macro cpwait, rd
72 mrc p15, 0, \rd, c2, c0, 0 @ arbitrary read of cp15
73 mov \rd, \rd @ wait for completion
74 sub pc, pc, #4 @ flush instruction pipeline
75 .endm
76
77 .macro cpwait_ret, lr, rd
78 mrc p15, 0, \rd, c2, c0, 0 @ arbitrary read of cp15
79 sub pc, \lr, \rd, LSR #32 @ wait for completion and
80 @ flush instruction pipeline
81 .endm
82
83/*
84 * This macro cleans the entire dcache using line allocate.
85 * The main loop has been unrolled to reduce loop overhead.
86 * rd and rs are two scratch registers.
87 */
88 .macro clean_d_cache, rd, rs
89 ldr \rs, =clean_addr
90 ldr \rd, [\rs]
91 eor \rd, \rd, #CACHESIZE
92 str \rd, [\rs]
93 add \rs, \rd, #CACHESIZE
941: mcr p15, 0, \rd, c7, c2, 5 @ allocate D cache line
95 add \rd, \rd, #CACHELINESIZE
96 mcr p15, 0, \rd, c7, c2, 5 @ allocate D cache line
97 add \rd, \rd, #CACHELINESIZE
98 mcr p15, 0, \rd, c7, c2, 5 @ allocate D cache line
99 add \rd, \rd, #CACHELINESIZE
100 mcr p15, 0, \rd, c7, c2, 5 @ allocate D cache line
101 add \rd, \rd, #CACHELINESIZE
102 teq \rd, \rs
103 bne 1b
104 .endm
105
106 .data
107clean_addr: .word CLEAN_ADDR
108
109 .text
110
111/*
112 * cpu_xscale_proc_init()
113 *
114 * Nothing too exciting at the moment
115 */
116ENTRY(cpu_xscale_proc_init)
117 mov pc, lr
118
119/*
120 * cpu_xscale_proc_fin()
121 */
122ENTRY(cpu_xscale_proc_fin)
123 str lr, [sp, #-4]!
124 mov r0, #PSR_F_BIT|PSR_I_BIT|SVC_MODE
125 msr cpsr_c, r0
126 bl xscale_flush_kern_cache_all @ clean caches
127 mrc p15, 0, r0, c1, c0, 0 @ ctrl register
128 bic r0, r0, #0x1800 @ ...IZ...........
129 bic r0, r0, #0x0006 @ .............CA.
130 mcr p15, 0, r0, c1, c0, 0 @ disable caches
131 ldr pc, [sp], #4
132
133/*
134 * cpu_xscale_reset(loc)
135 *
136 * Perform a soft reset of the system. Put the CPU into the
137 * same state as it would be if it had been reset, and branch
138 * to what would be the reset vector.
139 *
140 * loc: location to jump to for soft reset
2dc7667b
NP
141 *
142 * Beware PXA270 erratum E7.
1da177e4
LT
143 */
144 .align 5
145ENTRY(cpu_xscale_reset)
146 mov r1, #PSR_F_BIT|PSR_I_BIT|SVC_MODE
147 msr cpsr_c, r1 @ reset CPSR
2dc7667b
NP
148 mcr p15, 0, r1, c10, c4, 1 @ unlock I-TLB
149 mcr p15, 0, r1, c8, c5, 0 @ invalidate I-TLB
1da177e4
LT
150 mrc p15, 0, r1, c1, c0, 0 @ ctrl register
151 bic r1, r1, #0x0086 @ ........B....CA.
152 bic r1, r1, #0x3900 @ ..VIZ..S........
2dc7667b
NP
153 sub pc, pc, #4 @ flush pipeline
154 @ *** cache line aligned ***
1da177e4 155 mcr p15, 0, r1, c1, c0, 0 @ ctrl register
1da177e4 156 bic r1, r1, #0x0001 @ ...............M
2dc7667b 157 mcr p15, 0, ip, c7, c7, 0 @ invalidate I,D caches & BTB
1da177e4
LT
158 mcr p15, 0, r1, c1, c0, 0 @ ctrl register
159 @ CAUTION: MMU turned off from this point. We count on the pipeline
160 @ already containing those two last instructions to survive.
161 mcr p15, 0, ip, c8, c7, 0 @ invalidate I & D TLBs
162 mov pc, r0
163
164/*
165 * cpu_xscale_do_idle()
166 *
167 * Cause the processor to idle
168 *
169 * For now we do nothing but go to idle mode for every case
170 *
171 * XScale supports clock switching, but using idle mode support
172 * allows external hardware to react to system state changes.
173 */
174 .align 5
175
176ENTRY(cpu_xscale_do_idle)
177 mov r0, #1
178 mcr p14, 0, r0, c7, c0, 0 @ Go to IDLE
179 mov pc, lr
180
181/* ================================= CACHE ================================ */
182
183/*
184 * flush_user_cache_all()
185 *
186 * Invalidate all cache entries in a particular address
187 * space.
188 */
189ENTRY(xscale_flush_user_cache_all)
190 /* FALLTHROUGH */
191
192/*
193 * flush_kern_cache_all()
194 *
195 * Clean and invalidate the entire cache.
196 */
197ENTRY(xscale_flush_kern_cache_all)
198 mov r2, #VM_EXEC
199 mov ip, #0
200__flush_whole_cache:
201 clean_d_cache r0, r1
202 tst r2, #VM_EXEC
203 mcrne p15, 0, ip, c7, c5, 0 @ Invalidate I cache & BTB
204 mcrne p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer
205 mov pc, lr
206
207/*
208 * flush_user_cache_range(start, end, vm_flags)
209 *
210 * Invalidate a range of cache entries in the specified
211 * address space.
212 *
213 * - start - start address (may not be aligned)
214 * - end - end address (exclusive, may not be aligned)
215 * - vma - vma_area_struct describing address space
216 */
217 .align 5
218ENTRY(xscale_flush_user_cache_range)
219 mov ip, #0
220 sub r3, r1, r0 @ calculate total size
221 cmp r3, #MAX_AREA_SIZE
222 bhs __flush_whole_cache
223
2241: tst r2, #VM_EXEC
225 mcrne p15, 0, r0, c7, c5, 1 @ Invalidate I cache line
226 mcr p15, 0, r0, c7, c10, 1 @ Clean D cache line
227 mcr p15, 0, r0, c7, c6, 1 @ Invalidate D cache line
228 add r0, r0, #CACHELINESIZE
229 cmp r0, r1
230 blo 1b
231 tst r2, #VM_EXEC
232 mcrne p15, 0, ip, c7, c5, 6 @ Invalidate BTB
233 mcrne p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer
234 mov pc, lr
235
236/*
237 * coherent_kern_range(start, end)
238 *
239 * Ensure coherency between the Icache and the Dcache in the
240 * region described by start. If you have non-snooping
241 * Harvard caches, you need to implement this function.
242 *
243 * - start - virtual start address
244 * - end - virtual end address
245 *
246 * Note: single I-cache line invalidation isn't used here since
247 * it also trashes the mini I-cache used by JTAG debuggers.
248 */
249ENTRY(xscale_coherent_kern_range)
8a052e0b
NP
250 bic r0, r0, #CACHELINESIZE - 1
2511: mcr p15, 0, r0, c7, c10, 1 @ clean D entry
252 add r0, r0, #CACHELINESIZE
253 cmp r0, r1
254 blo 1b
255 mov r0, #0
256 mcr p15, 0, r0, c7, c5, 0 @ Invalidate I cache & BTB
257 mcr p15, 0, r0, c7, c10, 4 @ Drain Write (& Fill) Buffer
258 mov pc, lr
1da177e4
LT
259
260/*
261 * coherent_user_range(start, end)
262 *
263 * Ensure coherency between the Icache and the Dcache in the
264 * region described by start. If you have non-snooping
265 * Harvard caches, you need to implement this function.
266 *
267 * - start - virtual start address
268 * - end - virtual end address
1da177e4
LT
269 */
270ENTRY(xscale_coherent_user_range)
271 bic r0, r0, #CACHELINESIZE - 1
2721: mcr p15, 0, r0, c7, c10, 1 @ clean D entry
8a052e0b 273 mcr p15, 0, r0, c7, c5, 1 @ Invalidate I cache entry
1da177e4
LT
274 add r0, r0, #CACHELINESIZE
275 cmp r0, r1
276 blo 1b
277 mov r0, #0
8a052e0b 278 mcr p15, 0, r0, c7, c5, 6 @ Invalidate BTB
1da177e4
LT
279 mcr p15, 0, r0, c7, c10, 4 @ Drain Write (& Fill) Buffer
280 mov pc, lr
281
282/*
283 * flush_kern_dcache_page(void *page)
284 *
285 * Ensure no D cache aliasing occurs, either with itself or
286 * the I cache
287 *
288 * - addr - page aligned address
289 */
290ENTRY(xscale_flush_kern_dcache_page)
291 add r1, r0, #PAGE_SZ
2921: mcr p15, 0, r0, c7, c10, 1 @ clean D entry
293 mcr p15, 0, r0, c7, c6, 1 @ invalidate D entry
294 add r0, r0, #CACHELINESIZE
295 cmp r0, r1
296 blo 1b
297 mov r0, #0
298 mcr p15, 0, r0, c7, c5, 0 @ Invalidate I cache & BTB
299 mcr p15, 0, r0, c7, c10, 4 @ Drain Write (& Fill) Buffer
300 mov pc, lr
301
302/*
303 * dma_inv_range(start, end)
304 *
305 * Invalidate (discard) the specified virtual address range.
306 * May not write back any entries. If 'start' or 'end'
307 * are not cache line aligned, those lines must be written
308 * back.
309 *
310 * - start - virtual start address
311 * - end - virtual end address
312 */
313ENTRY(xscale_dma_inv_range)
1da177e4
LT
314 tst r0, #CACHELINESIZE - 1
315 bic r0, r0, #CACHELINESIZE - 1
316 mcrne p15, 0, r0, c7, c10, 1 @ clean D entry
317 tst r1, #CACHELINESIZE - 1
318 mcrne p15, 0, r1, c7, c10, 1 @ clean D entry
3191: mcr p15, 0, r0, c7, c6, 1 @ invalidate D entry
320 add r0, r0, #CACHELINESIZE
321 cmp r0, r1
322 blo 1b
323 mcr p15, 0, r0, c7, c10, 4 @ Drain Write (& Fill) Buffer
324 mov pc, lr
325
326/*
327 * dma_clean_range(start, end)
328 *
329 * Clean the specified virtual address range.
330 *
331 * - start - virtual start address
332 * - end - virtual end address
333 */
334ENTRY(xscale_dma_clean_range)
335 bic r0, r0, #CACHELINESIZE - 1
3361: mcr p15, 0, r0, c7, c10, 1 @ clean D entry
337 add r0, r0, #CACHELINESIZE
338 cmp r0, r1
339 blo 1b
340 mcr p15, 0, r0, c7, c10, 4 @ Drain Write (& Fill) Buffer
341 mov pc, lr
342
343/*
344 * dma_flush_range(start, end)
345 *
346 * Clean and invalidate the specified virtual address range.
347 *
348 * - start - virtual start address
349 * - end - virtual end address
350 */
351ENTRY(xscale_dma_flush_range)
352 bic r0, r0, #CACHELINESIZE - 1
3531: mcr p15, 0, r0, c7, c10, 1 @ clean D entry
354 mcr p15, 0, r0, c7, c6, 1 @ invalidate D entry
355 add r0, r0, #CACHELINESIZE
356 cmp r0, r1
357 blo 1b
358 mcr p15, 0, r0, c7, c10, 4 @ Drain Write (& Fill) Buffer
359 mov pc, lr
360
361ENTRY(xscale_cache_fns)
362 .long xscale_flush_kern_cache_all
363 .long xscale_flush_user_cache_all
364 .long xscale_flush_user_cache_range
365 .long xscale_coherent_kern_range
366 .long xscale_coherent_user_range
367 .long xscale_flush_kern_dcache_page
368 .long xscale_dma_inv_range
369 .long xscale_dma_clean_range
370 .long xscale_dma_flush_range
371
197c9444
LB
372/*
373 * On stepping A0/A1 of the 80200, invalidating D-cache by line doesn't
374 * clear the dirty bits, which means that if we invalidate a dirty line,
375 * the dirty data can still be written back to external memory later on.
376 *
377 * The recommended workaround is to always do a clean D-cache line before
378 * doing an invalidate D-cache line, so on the affected processors,
379 * dma_inv_range() is implemented as dma_flush_range().
380 *
381 * See erratum #25 of "Intel 80200 Processor Specification Update",
382 * revision January 22, 2003, available at:
383 * http://www.intel.com/design/iio/specupdt/273415.htm
384 */
385ENTRY(xscale_80200_A0_A1_cache_fns)
386 .long xscale_flush_kern_cache_all
387 .long xscale_flush_user_cache_all
388 .long xscale_flush_user_cache_range
389 .long xscale_coherent_kern_range
390 .long xscale_coherent_user_range
391 .long xscale_flush_kern_dcache_page
392 .long xscale_dma_flush_range
393 .long xscale_dma_clean_range
394 .long xscale_dma_flush_range
395
1da177e4
LT
396ENTRY(cpu_xscale_dcache_clean_area)
3971: mcr p15, 0, r0, c7, c10, 1 @ clean D entry
398 add r0, r0, #CACHELINESIZE
399 subs r1, r1, #CACHELINESIZE
400 bhi 1b
401 mov pc, lr
402
1da177e4
LT
403/* =============================== PageTable ============================== */
404
405#define PTE_CACHE_WRITE_ALLOCATE 0
406
407/*
408 * cpu_xscale_switch_mm(pgd)
409 *
410 * Set the translation base pointer to be as described by pgd.
411 *
412 * pgd: new page tables
413 */
414 .align 5
415ENTRY(cpu_xscale_switch_mm)
416 clean_d_cache r1, r2
417 mcr p15, 0, ip, c7, c5, 0 @ Invalidate I cache & BTB
418 mcr p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer
419 mcr p15, 0, r0, c2, c0, 0 @ load page table pointer
420 mcr p15, 0, ip, c8, c7, 0 @ invalidate I & D TLBs
421 cpwait_ret lr, ip
422
423/*
ad1ae2fe 424 * cpu_xscale_set_pte_ext(ptep, pte, ext)
1da177e4
LT
425 *
426 * Set a PTE and flush it out
427 *
428 * Errata 40: must set memory to write-through for user read-only pages.
429 */
430 .align 5
ad1ae2fe 431ENTRY(cpu_xscale_set_pte_ext)
1da177e4
LT
432 str r1, [r0], #-2048 @ linux version
433
434 bic r2, r1, #0xff0
435 orr r2, r2, #PTE_TYPE_EXT @ extended page
436
437 eor r3, r1, #L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_WRITE | L_PTE_DIRTY
438
439 tst r3, #L_PTE_USER @ User?
440 orrne r2, r2, #PTE_EXT_AP_URO_SRW @ yes -> user r/o, system r/w
441
442 tst r3, #L_PTE_WRITE | L_PTE_DIRTY @ Write and Dirty?
443 orreq r2, r2, #PTE_EXT_AP_UNO_SRW @ yes -> user n/a, system r/w
444 @ combined with user -> user r/w
445
446 @
447 @ Handle the X bit. We want to set this bit for the minicache
448 @ (U = E = B = W = 0, C = 1) or when write allocate is enabled,
449 @ and we have a writeable, cacheable region. If we ignore the
450 @ U and E bits, we can allow user space to use the minicache as
451 @ well.
452 @
453 @ X = (C & ~W & ~B) | (C & W & B & write_allocate)
454 @
455 eor ip, r1, #L_PTE_CACHEABLE
456 tst ip, #L_PTE_CACHEABLE | L_PTE_WRITE | L_PTE_BUFFERABLE
457#if PTE_CACHE_WRITE_ALLOCATE
458 eorne ip, r1, #L_PTE_CACHEABLE | L_PTE_WRITE | L_PTE_BUFFERABLE
459 tstne ip, #L_PTE_CACHEABLE | L_PTE_WRITE | L_PTE_BUFFERABLE
460#endif
461 orreq r2, r2, #PTE_EXT_TEX(1)
462
463 @
464 @ Erratum 40: The B bit must be cleared for a user read-only
465 @ cacheable page.
466 @
467 @ B = B & ~(U & C & ~W)
468 @
469 and ip, r1, #L_PTE_USER | L_PTE_WRITE | L_PTE_CACHEABLE
470 teq ip, #L_PTE_USER | L_PTE_CACHEABLE
471 biceq r2, r2, #PTE_BUFFERABLE
472
473 tst r3, #L_PTE_PRESENT | L_PTE_YOUNG @ Present and Young?
474 movne r2, #0 @ no -> fault
475
476 str r2, [r0] @ hardware version
477 mov ip, #0
478 mcr p15, 0, r0, c7, c10, 1 @ Clean D cache line
479 mcr p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer
480 mov pc, lr
481
482
483 .ltorg
484
485 .align
486
487 __INIT
488
489 .type __xscale_setup, #function
490__xscale_setup:
491 mcr p15, 0, ip, c7, c7, 0 @ invalidate I, D caches & BTB
492 mcr p15, 0, ip, c7, c10, 4 @ Drain Write (& Fill) Buffer
493 mcr p15, 0, ip, c8, c7, 0 @ invalidate I, D TLBs
afe4b25e 494 mov r0, #1 << 6 @ cp6 for IOP3xx and Bulverde
1da177e4
LT
495 orr r0, r0, #1 << 13 @ Its undefined whether this
496 mcr p15, 0, r0, c15, c1, 0 @ affects USR or SVC modes
22b19086
RK
497
498 adr r5, xscale_crval
499 ldmia r5, {r5, r6}
1da177e4 500 mrc p15, 0, r0, c1, c0, 0 @ get control register
1da177e4 501 bic r0, r0, r5
22b19086 502 orr r0, r0, r6
1da177e4
LT
503 mov pc, lr
504 .size __xscale_setup, . - __xscale_setup
505
506 /*
507 * R
508 * .RVI ZFRS BLDP WCAM
509 * ..11 1.01 .... .101
510 *
511 */
22b19086
RK
512 .type xscale_crval, #object
513xscale_crval:
514 crval clear=0x00003b07, mmuset=0x00003905, ucset=0x00001900
1da177e4
LT
515
516 __INITDATA
517
518/*
519 * Purpose : Function pointers used to access above functions - all calls
520 * come through these
521 */
522
523 .type xscale_processor_functions, #object
524ENTRY(xscale_processor_functions)
525 .word v5t_early_abort
526 .word cpu_xscale_proc_init
527 .word cpu_xscale_proc_fin
528 .word cpu_xscale_reset
529 .word cpu_xscale_do_idle
530 .word cpu_xscale_dcache_clean_area
531 .word cpu_xscale_switch_mm
ad1ae2fe 532 .word cpu_xscale_set_pte_ext
1da177e4
LT
533 .size xscale_processor_functions, . - xscale_processor_functions
534
535 .section ".rodata"
536
537 .type cpu_arch_name, #object
538cpu_arch_name:
539 .asciz "armv5te"
540 .size cpu_arch_name, . - cpu_arch_name
541
542 .type cpu_elf_name, #object
543cpu_elf_name:
544 .asciz "v5"
545 .size cpu_elf_name, . - cpu_elf_name
546
197c9444
LB
547 .type cpu_80200_A0_A1_name, #object
548cpu_80200_A0_A1_name:
549 .asciz "XScale-80200 A0/A1"
550 .size cpu_80200_A0_A1_name, . - cpu_80200_A0_A1_name
551
1da177e4
LT
552 .type cpu_80200_name, #object
553cpu_80200_name:
554 .asciz "XScale-80200"
555 .size cpu_80200_name, . - cpu_80200_name
556
a6a38a66
LB
557 .type cpu_80219_name, #object
558cpu_80219_name:
559 .asciz "XScale-80219"
560 .size cpu_80219_name, . - cpu_80219_name
561
1da177e4
LT
562 .type cpu_8032x_name, #object
563cpu_8032x_name:
564 .asciz "XScale-IOP8032x Family"
565 .size cpu_8032x_name, . - cpu_8032x_name
566
567 .type cpu_8033x_name, #object
568cpu_8033x_name:
569 .asciz "XScale-IOP8033x Family"
570 .size cpu_8033x_name, . - cpu_8033x_name
571
572 .type cpu_pxa250_name, #object
573cpu_pxa250_name:
574 .asciz "XScale-PXA250"
575 .size cpu_pxa250_name, . - cpu_pxa250_name
576
577 .type cpu_pxa210_name, #object
578cpu_pxa210_name:
579 .asciz "XScale-PXA210"
580 .size cpu_pxa210_name, . - cpu_pxa210_name
581
582 .type cpu_ixp42x_name, #object
583cpu_ixp42x_name:
584 .asciz "XScale-IXP42x Family"
585 .size cpu_ixp42x_name, . - cpu_ixp42x_name
586
587 .type cpu_ixp46x_name, #object
588cpu_ixp46x_name:
589 .asciz "XScale-IXP46x Family"
590 .size cpu_ixp46x_name, . - cpu_ixp46x_name
591
592 .type cpu_ixp2400_name, #object
593cpu_ixp2400_name:
594 .asciz "XScale-IXP2400"
595 .size cpu_ixp2400_name, . - cpu_ixp2400_name
596
597 .type cpu_ixp2800_name, #object
598cpu_ixp2800_name:
599 .asciz "XScale-IXP2800"
600 .size cpu_ixp2800_name, . - cpu_ixp2800_name
601
602 .type cpu_pxa255_name, #object
603cpu_pxa255_name:
604 .asciz "XScale-PXA255"
605 .size cpu_pxa255_name, . - cpu_pxa255_name
606
607 .type cpu_pxa270_name, #object
608cpu_pxa270_name:
609 .asciz "XScale-PXA270"
610 .size cpu_pxa270_name, . - cpu_pxa270_name
611
612 .align
613
02b7dd12 614 .section ".proc.info.init", #alloc, #execinstr
1da177e4 615
197c9444
LB
616 .type __80200_A0_A1_proc_info,#object
617__80200_A0_A1_proc_info:
618 .long 0x69052000
619 .long 0xfffffffe
620 .long PMD_TYPE_SECT | \
621 PMD_SECT_BUFFERABLE | \
622 PMD_SECT_CACHEABLE | \
623 PMD_SECT_AP_WRITE | \
624 PMD_SECT_AP_READ
625 .long PMD_TYPE_SECT | \
626 PMD_SECT_AP_WRITE | \
627 PMD_SECT_AP_READ
628 b __xscale_setup
629 .long cpu_arch_name
630 .long cpu_elf_name
631 .long HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
632 .long cpu_80200_name
633 .long xscale_processor_functions
634 .long v4wbi_tlb_fns
635 .long xscale_mc_user_fns
636 .long xscale_80200_A0_A1_cache_fns
637 .size __80200_A0_A1_proc_info, . - __80200_A0_A1_proc_info
638
1da177e4
LT
639 .type __80200_proc_info,#object
640__80200_proc_info:
641 .long 0x69052000
642 .long 0xfffffff0
643 .long PMD_TYPE_SECT | \
644 PMD_SECT_BUFFERABLE | \
645 PMD_SECT_CACHEABLE | \
646 PMD_SECT_AP_WRITE | \
647 PMD_SECT_AP_READ
8799ee9f
RK
648 .long PMD_TYPE_SECT | \
649 PMD_SECT_AP_WRITE | \
650 PMD_SECT_AP_READ
1da177e4
LT
651 b __xscale_setup
652 .long cpu_arch_name
653 .long cpu_elf_name
654 .long HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
655 .long cpu_80200_name
656 .long xscale_processor_functions
657 .long v4wbi_tlb_fns
658 .long xscale_mc_user_fns
659 .long xscale_cache_fns
660 .size __80200_proc_info, . - __80200_proc_info
661
a6a38a66
LB
662 .type __80219_proc_info,#object
663__80219_proc_info:
664 .long 0x69052e20
665 .long 0xffffffe0
666 .long PMD_TYPE_SECT | \
667 PMD_SECT_BUFFERABLE | \
668 PMD_SECT_CACHEABLE | \
669 PMD_SECT_AP_WRITE | \
670 PMD_SECT_AP_READ
671 .long PMD_TYPE_SECT | \
672 PMD_SECT_AP_WRITE | \
673 PMD_SECT_AP_READ
674 b __xscale_setup
675 .long cpu_arch_name
676 .long cpu_elf_name
677 .long HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
678 .long cpu_80219_name
679 .long xscale_processor_functions
680 .long v4wbi_tlb_fns
681 .long xscale_mc_user_fns
682 .long xscale_cache_fns
683 .size __80219_proc_info, . - __80219_proc_info
684
1da177e4
LT
685 .type __8032x_proc_info,#object
686__8032x_proc_info:
687 .long 0x69052420
36694a4c 688 .long 0xfffff7e0
1da177e4
LT
689 .long PMD_TYPE_SECT | \
690 PMD_SECT_BUFFERABLE | \
691 PMD_SECT_CACHEABLE | \
692 PMD_SECT_AP_WRITE | \
693 PMD_SECT_AP_READ
8799ee9f
RK
694 .long PMD_TYPE_SECT | \
695 PMD_SECT_AP_WRITE | \
696 PMD_SECT_AP_READ
1da177e4
LT
697 b __xscale_setup
698 .long cpu_arch_name
699 .long cpu_elf_name
700 .long HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
701 .long cpu_8032x_name
702 .long xscale_processor_functions
703 .long v4wbi_tlb_fns
704 .long xscale_mc_user_fns
705 .long xscale_cache_fns
706 .size __8032x_proc_info, . - __8032x_proc_info
707
708 .type __8033x_proc_info,#object
709__8033x_proc_info:
710 .long 0x69054010
711 .long 0xffffff30
712 .long PMD_TYPE_SECT | \
713 PMD_SECT_BUFFERABLE | \
714 PMD_SECT_CACHEABLE | \
715 PMD_SECT_AP_WRITE | \
716 PMD_SECT_AP_READ
8799ee9f
RK
717 .long PMD_TYPE_SECT | \
718 PMD_SECT_AP_WRITE | \
719 PMD_SECT_AP_READ
1da177e4
LT
720 b __xscale_setup
721 .long cpu_arch_name
722 .long cpu_elf_name
723 .long HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
724 .long cpu_8033x_name
725 .long xscale_processor_functions
726 .long v4wbi_tlb_fns
727 .long xscale_mc_user_fns
728 .long xscale_cache_fns
729 .size __8033x_proc_info, . - __8033x_proc_info
730
731 .type __pxa250_proc_info,#object
732__pxa250_proc_info:
733 .long 0x69052100
734 .long 0xfffff7f0
735 .long PMD_TYPE_SECT | \
736 PMD_SECT_BUFFERABLE | \
737 PMD_SECT_CACHEABLE | \
738 PMD_SECT_AP_WRITE | \
739 PMD_SECT_AP_READ
8799ee9f
RK
740 .long PMD_TYPE_SECT | \
741 PMD_SECT_AP_WRITE | \
742 PMD_SECT_AP_READ
1da177e4
LT
743 b __xscale_setup
744 .long cpu_arch_name
745 .long cpu_elf_name
746 .long HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
747 .long cpu_pxa250_name
748 .long xscale_processor_functions
749 .long v4wbi_tlb_fns
750 .long xscale_mc_user_fns
751 .long xscale_cache_fns
752 .size __pxa250_proc_info, . - __pxa250_proc_info
753
754 .type __pxa210_proc_info,#object
755__pxa210_proc_info:
756 .long 0x69052120
757 .long 0xfffff3f0
758 .long PMD_TYPE_SECT | \
759 PMD_SECT_BUFFERABLE | \
760 PMD_SECT_CACHEABLE | \
761 PMD_SECT_AP_WRITE | \
762 PMD_SECT_AP_READ
8799ee9f
RK
763 .long PMD_TYPE_SECT | \
764 PMD_SECT_AP_WRITE | \
765 PMD_SECT_AP_READ
1da177e4
LT
766 b __xscale_setup
767 .long cpu_arch_name
768 .long cpu_elf_name
769 .long HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
770 .long cpu_pxa210_name
771 .long xscale_processor_functions
772 .long v4wbi_tlb_fns
773 .long xscale_mc_user_fns
774 .long xscale_cache_fns
775 .size __pxa210_proc_info, . - __pxa210_proc_info
776
777 .type __ixp2400_proc_info, #object
778__ixp2400_proc_info:
779 .long 0x69054190
780 .long 0xfffffff0
781 .long PMD_TYPE_SECT | \
782 PMD_SECT_BUFFERABLE | \
783 PMD_SECT_CACHEABLE | \
784 PMD_SECT_AP_WRITE | \
785 PMD_SECT_AP_READ
8799ee9f
RK
786 .long PMD_TYPE_SECT | \
787 PMD_SECT_AP_WRITE | \
788 PMD_SECT_AP_READ
1da177e4
LT
789 b __xscale_setup
790 .long cpu_arch_name
791 .long cpu_elf_name
792 .long HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
793 .long cpu_ixp2400_name
794 .long xscale_processor_functions
795 .long v4wbi_tlb_fns
796 .long xscale_mc_user_fns
797 .long xscale_cache_fns
798 .size __ixp2400_proc_info, . - __ixp2400_proc_info
799
800 .type __ixp2800_proc_info, #object
801__ixp2800_proc_info:
802 .long 0x690541a0
803 .long 0xfffffff0
804 .long PMD_TYPE_SECT | \
805 PMD_SECT_BUFFERABLE | \
806 PMD_SECT_CACHEABLE | \
807 PMD_SECT_AP_WRITE | \
808 PMD_SECT_AP_READ
8799ee9f
RK
809 .long PMD_TYPE_SECT | \
810 PMD_SECT_AP_WRITE | \
811 PMD_SECT_AP_READ
1da177e4
LT
812 b __xscale_setup
813 .long cpu_arch_name
814 .long cpu_elf_name
815 .long HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
816 .long cpu_ixp2800_name
817 .long xscale_processor_functions
818 .long v4wbi_tlb_fns
819 .long xscale_mc_user_fns
820 .long xscale_cache_fns
821 .size __ixp2800_proc_info, . - __ixp2800_proc_info
822
823 .type __ixp42x_proc_info, #object
824__ixp42x_proc_info:
825 .long 0x690541c0
826 .long 0xffffffc0
827 .long PMD_TYPE_SECT | \
828 PMD_SECT_BUFFERABLE | \
829 PMD_SECT_CACHEABLE | \
830 PMD_SECT_AP_WRITE | \
831 PMD_SECT_AP_READ
8799ee9f
RK
832 .long PMD_TYPE_SECT | \
833 PMD_SECT_AP_WRITE | \
834 PMD_SECT_AP_READ
1da177e4
LT
835 b __xscale_setup
836 .long cpu_arch_name
837 .long cpu_elf_name
838 .long HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
839 .long cpu_ixp42x_name
840 .long xscale_processor_functions
841 .long v4wbi_tlb_fns
842 .long xscale_mc_user_fns
843 .long xscale_cache_fns
844 .size __ixp42x_proc_info, . - __ixp42x_proc_info
845
846 .type __ixp46x_proc_info, #object
847__ixp46x_proc_info:
848 .long 0x69054200
849 .long 0xffffff00
8799ee9f
RK
850 .long PMD_TYPE_SECT | \
851 PMD_SECT_BUFFERABLE | \
852 PMD_SECT_CACHEABLE | \
853 PMD_SECT_AP_WRITE | \
854 PMD_SECT_AP_READ
855 .long PMD_TYPE_SECT | \
856 PMD_SECT_AP_WRITE | \
857 PMD_SECT_AP_READ
1da177e4
LT
858 b __xscale_setup
859 .long cpu_arch_name
860 .long cpu_elf_name
861 .long HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
862 .long cpu_ixp46x_name
863 .long xscale_processor_functions
864 .long v4wbi_tlb_fns
865 .long xscale_mc_user_fns
866 .long xscale_cache_fns
867 .size __ixp46x_proc_info, . - __ixp46x_proc_info
868
869 .type __pxa255_proc_info,#object
870__pxa255_proc_info:
871 .long 0x69052d00
872 .long 0xfffffff0
873 .long PMD_TYPE_SECT | \
874 PMD_SECT_BUFFERABLE | \
875 PMD_SECT_CACHEABLE | \
876 PMD_SECT_AP_WRITE | \
877 PMD_SECT_AP_READ
8799ee9f
RK
878 .long PMD_TYPE_SECT | \
879 PMD_SECT_AP_WRITE | \
880 PMD_SECT_AP_READ
1da177e4
LT
881 b __xscale_setup
882 .long cpu_arch_name
883 .long cpu_elf_name
884 .long HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
885 .long cpu_pxa255_name
886 .long xscale_processor_functions
887 .long v4wbi_tlb_fns
888 .long xscale_mc_user_fns
889 .long xscale_cache_fns
890 .size __pxa255_proc_info, . - __pxa255_proc_info
891
892 .type __pxa270_proc_info,#object
893__pxa270_proc_info:
894 .long 0x69054110
895 .long 0xfffffff0
896 .long PMD_TYPE_SECT | \
897 PMD_SECT_BUFFERABLE | \
898 PMD_SECT_CACHEABLE | \
899 PMD_SECT_AP_WRITE | \
900 PMD_SECT_AP_READ
8799ee9f
RK
901 .long PMD_TYPE_SECT | \
902 PMD_SECT_AP_WRITE | \
903 PMD_SECT_AP_READ
1da177e4
LT
904 b __xscale_setup
905 .long cpu_arch_name
906 .long cpu_elf_name
afe4b25e 907 .long HWCAP_SWP|HWCAP_HALF|HWCAP_THUMB|HWCAP_FAST_MULT|HWCAP_EDSP
1da177e4
LT
908 .long cpu_pxa270_name
909 .long xscale_processor_functions
910 .long v4wbi_tlb_fns
911 .long xscale_mc_user_fns
912 .long xscale_cache_fns
913 .size __pxa270_proc_info, . - __pxa270_proc_info
914
This page took 0.2367 seconds and 5 git commands to generate.