C6X: early boot code
[deliverable/linux.git] / arch / c6x / kernel / setup.c
CommitLineData
c1a144d7
AJ
1/*
2 * Port on Texas Instruments TMS320C6x architecture
3 *
4 * Copyright (C) 2004, 2006, 2009, 2010, 2011 Texas Instruments Incorporated
5 * Author: Aurelien Jacquiot (aurelien.jacquiot@jaluna.com)
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/dma-mapping.h>
12#include <linux/memblock.h>
13#include <linux/seq_file.h>
14#include <linux/bootmem.h>
15#include <linux/clkdev.h>
16#include <linux/initrd.h>
17#include <linux/kernel.h>
18#include <linux/module.h>
19#include <linux/of_fdt.h>
20#include <linux/string.h>
21#include <linux/errno.h>
22#include <linux/cache.h>
23#include <linux/delay.h>
24#include <linux/sched.h>
25#include <linux/clk.h>
26#include <linux/fs.h>
27#include <linux/of.h>
28
29
30#include <asm/sections.h>
31#include <asm/div64.h>
32#include <asm/setup.h>
33#include <asm/dscr.h>
34#include <asm/clock.h>
35#include <asm/soc.h>
36
37static const char *c6x_soc_name;
38
39int c6x_num_cores;
40EXPORT_SYMBOL_GPL(c6x_num_cores);
41
42unsigned int c6x_silicon_rev;
43EXPORT_SYMBOL_GPL(c6x_silicon_rev);
44
45/*
46 * Device status register. This holds information
47 * about device configuration needed by some drivers.
48 */
49unsigned int c6x_devstat;
50EXPORT_SYMBOL_GPL(c6x_devstat);
51
52/*
53 * Some SoCs have fuse registers holding a unique MAC
54 * address. This is parsed out of the device tree with
55 * the resulting MAC being held here.
56 */
57unsigned char c6x_fuse_mac[6];
58
59unsigned long memory_start;
60unsigned long memory_end;
61
62unsigned long ram_start;
63unsigned long ram_end;
64
65/* Uncached memory for DMA consistent use (memdma=) */
66static unsigned long dma_start __initdata;
67static unsigned long dma_size __initdata;
68
69char c6x_command_line[COMMAND_LINE_SIZE];
70
71#if defined(CONFIG_CMDLINE_BOOL)
72static const char default_command_line[COMMAND_LINE_SIZE] __section(.cmdline) =
73 CONFIG_CMDLINE;
74#endif
75
76struct cpuinfo_c6x {
77 const char *cpu_name;
78 const char *cpu_voltage;
79 const char *mmu;
80 const char *fpu;
81 char *cpu_rev;
82 unsigned int core_id;
83 char __cpu_rev[5];
84};
85
86static DEFINE_PER_CPU(struct cpuinfo_c6x, cpu_data);
87
88unsigned int ticks_per_ns_scaled;
89EXPORT_SYMBOL(ticks_per_ns_scaled);
90
91unsigned int c6x_core_freq;
92
93static void __init get_cpuinfo(void)
94{
95 unsigned cpu_id, rev_id, csr;
96 struct clk *coreclk = clk_get_sys(NULL, "core");
97 unsigned long core_khz;
98 u64 tmp;
99 struct cpuinfo_c6x *p;
100 struct device_node *node, *np;
101
102 p = &per_cpu(cpu_data, smp_processor_id());
103
104 if (!IS_ERR(coreclk))
105 c6x_core_freq = clk_get_rate(coreclk);
106 else {
107 printk(KERN_WARNING
108 "Cannot find core clock frequency. Using 700MHz\n");
109 c6x_core_freq = 700000000;
110 }
111
112 core_khz = c6x_core_freq / 1000;
113
114 tmp = (uint64_t)core_khz << C6X_NDELAY_SCALE;
115 do_div(tmp, 1000000);
116 ticks_per_ns_scaled = tmp;
117
118 csr = get_creg(CSR);
119 cpu_id = csr >> 24;
120 rev_id = (csr >> 16) & 0xff;
121
122 p->mmu = "none";
123 p->fpu = "none";
124 p->cpu_voltage = "unknown";
125
126 switch (cpu_id) {
127 case 0:
128 p->cpu_name = "C67x";
129 p->fpu = "yes";
130 break;
131 case 2:
132 p->cpu_name = "C62x";
133 break;
134 case 8:
135 p->cpu_name = "C64x";
136 break;
137 case 12:
138 p->cpu_name = "C64x";
139 break;
140 case 16:
141 p->cpu_name = "C64x+";
142 p->cpu_voltage = "1.2";
143 break;
144 default:
145 p->cpu_name = "unknown";
146 break;
147 }
148
149 if (cpu_id < 16) {
150 switch (rev_id) {
151 case 0x1:
152 if (cpu_id > 8) {
153 p->cpu_rev = "DM640/DM641/DM642/DM643";
154 p->cpu_voltage = "1.2 - 1.4";
155 } else {
156 p->cpu_rev = "C6201";
157 p->cpu_voltage = "2.5";
158 }
159 break;
160 case 0x2:
161 p->cpu_rev = "C6201B/C6202/C6211";
162 p->cpu_voltage = "1.8";
163 break;
164 case 0x3:
165 p->cpu_rev = "C6202B/C6203/C6204/C6205";
166 p->cpu_voltage = "1.5";
167 break;
168 case 0x201:
169 p->cpu_rev = "C6701 revision 0 (early CPU)";
170 p->cpu_voltage = "1.8";
171 break;
172 case 0x202:
173 p->cpu_rev = "C6701/C6711/C6712";
174 p->cpu_voltage = "1.8";
175 break;
176 case 0x801:
177 p->cpu_rev = "C64x";
178 p->cpu_voltage = "1.5";
179 break;
180 default:
181 p->cpu_rev = "unknown";
182 }
183 } else {
184 p->cpu_rev = p->__cpu_rev;
185 snprintf(p->__cpu_rev, sizeof(p->__cpu_rev), "0x%x", cpu_id);
186 }
187
188 p->core_id = get_coreid();
189
190 node = of_find_node_by_name(NULL, "cpus");
191 if (node) {
192 for_each_child_of_node(node, np)
193 if (!strcmp("cpu", np->name))
194 ++c6x_num_cores;
195 of_node_put(node);
196 }
197
198 node = of_find_node_by_name(NULL, "soc");
199 if (node) {
200 if (of_property_read_string(node, "model", &c6x_soc_name))
201 c6x_soc_name = "unknown";
202 of_node_put(node);
203 } else
204 c6x_soc_name = "unknown";
205
206 printk(KERN_INFO "CPU%d: %s rev %s, %s volts, %uMHz\n",
207 p->core_id, p->cpu_name, p->cpu_rev,
208 p->cpu_voltage, c6x_core_freq / 1000000);
209}
210
211/*
212 * Early parsing of the command line
213 */
214static u32 mem_size __initdata;
215
216/* "mem=" parsing. */
217static int __init early_mem(char *p)
218{
219 if (!p)
220 return -EINVAL;
221
222 mem_size = memparse(p, &p);
223 /* don't remove all of memory when handling "mem={invalid}" */
224 if (mem_size == 0)
225 return -EINVAL;
226
227 return 0;
228}
229early_param("mem", early_mem);
230
231/* "memdma=<size>[@<address>]" parsing. */
232static int __init early_memdma(char *p)
233{
234 if (!p)
235 return -EINVAL;
236
237 dma_size = memparse(p, &p);
238 if (*p == '@')
239 dma_start = memparse(p, &p);
240
241 return 0;
242}
243early_param("memdma", early_memdma);
244
245int __init c6x_add_memory(phys_addr_t start, unsigned long size)
246{
247 static int ram_found __initdata;
248
249 /* We only handle one bank (the one with PAGE_OFFSET) for now */
250 if (ram_found)
251 return -EINVAL;
252
253 if (start > PAGE_OFFSET || PAGE_OFFSET >= (start + size))
254 return 0;
255
256 ram_start = start;
257 ram_end = start + size;
258
259 ram_found = 1;
260 return 0;
261}
262
263/*
264 * Do early machine setup and device tree parsing. This is called very
265 * early on the boot process.
266 */
267notrace void __init machine_init(unsigned long dt_ptr)
268{
269 struct boot_param_header *dtb = __va(dt_ptr);
270 struct boot_param_header *fdt = (struct boot_param_header *)_fdt_start;
271
272 /* interrupts must be masked */
273 set_creg(IER, 2);
274
275 /*
276 * Set the Interrupt Service Table (IST) to the beginning of the
277 * vector table.
278 */
279 set_ist(_vectors_start);
280
281 lockdep_init();
282
283 /*
284 * dtb is passed in from bootloader.
285 * fdt is linked in blob.
286 */
287 if (dtb && dtb != fdt)
288 fdt = dtb;
289
290 /* Do some early initialization based on the flat device tree */
291 early_init_devtree(fdt);
292
293 /* parse_early_param needs a boot_command_line */
294 strlcpy(boot_command_line, c6x_command_line, COMMAND_LINE_SIZE);
295 parse_early_param();
296}
297
298void __init setup_arch(char **cmdline_p)
299{
300 int bootmap_size;
301 struct memblock_region *reg;
302
303 printk(KERN_INFO "Initializing kernel\n");
304
305 /* Initialize command line */
306 *cmdline_p = c6x_command_line;
307
308 memblock_init();
309
310 memory_end = ram_end;
311 memory_end &= ~(PAGE_SIZE - 1);
312
313 if (mem_size && (PAGE_OFFSET + PAGE_ALIGN(mem_size)) < memory_end)
314 memory_end = PAGE_OFFSET + PAGE_ALIGN(mem_size);
315
316 /* add block that this kernel can use */
317 memblock_add(PAGE_OFFSET, memory_end - PAGE_OFFSET);
318
319 /* reserve kernel text/data/bss */
320 memblock_reserve(PAGE_OFFSET,
321 PAGE_ALIGN((unsigned long)&_end - PAGE_OFFSET));
322
323 if (dma_size) {
324 /* align to cacheability granularity */
325 dma_size = CACHE_REGION_END(dma_size);
326
327 if (!dma_start)
328 dma_start = memory_end - dma_size;
329
330 /* align to cacheability granularity */
331 dma_start = CACHE_REGION_START(dma_start);
332
333 /* reserve DMA memory taken from kernel memory */
334 if (memblock_is_region_memory(dma_start, dma_size))
335 memblock_reserve(dma_start, dma_size);
336 }
337
338 memory_start = PAGE_ALIGN((unsigned int) &_end);
339
340 printk(KERN_INFO "Memory Start=%08lx, Memory End=%08lx\n",
341 memory_start, memory_end);
342
343#ifdef CONFIG_BLK_DEV_INITRD
344 /*
345 * Reserve initrd memory if in kernel memory.
346 */
347 if (initrd_start < initrd_end)
348 if (memblock_is_region_memory(initrd_start,
349 initrd_end - initrd_start))
350 memblock_reserve(initrd_start,
351 initrd_end - initrd_start);
352#endif
353
354 init_mm.start_code = (unsigned long) &_stext;
355 init_mm.end_code = (unsigned long) &_etext;
356 init_mm.end_data = memory_start;
357 init_mm.brk = memory_start;
358
359 /*
360 * Give all the memory to the bootmap allocator, tell it to put the
361 * boot mem_map at the start of memory
362 */
363 bootmap_size = init_bootmem_node(NODE_DATA(0),
364 memory_start >> PAGE_SHIFT,
365 PAGE_OFFSET >> PAGE_SHIFT,
366 memory_end >> PAGE_SHIFT);
367 memblock_reserve(memory_start, bootmap_size);
368
369 memblock_analyze();
370 unflatten_device_tree();
371
372 c6x_cache_init();
373
374 /* Set the whole external memory as non-cacheable */
375 disable_caching(ram_start, ram_end - 1);
376
377 /* Set caching of external RAM used by Linux */
378 for_each_memblock(memory, reg)
379 enable_caching(CACHE_REGION_START(reg->base),
380 CACHE_REGION_START(reg->base + reg->size - 1));
381
382#ifdef CONFIG_BLK_DEV_INITRD
383 /*
384 * Enable caching for initrd which falls outside kernel memory.
385 */
386 if (initrd_start < initrd_end) {
387 if (!memblock_is_region_memory(initrd_start,
388 initrd_end - initrd_start))
389 enable_caching(CACHE_REGION_START(initrd_start),
390 CACHE_REGION_START(initrd_end - 1));
391 }
392#endif
393
394 /*
395 * Disable caching for dma coherent memory taken from kernel memory.
396 */
397 if (dma_size && memblock_is_region_memory(dma_start, dma_size))
398 disable_caching(dma_start,
399 CACHE_REGION_START(dma_start + dma_size - 1));
400
401 /* Initialize the coherent memory allocator */
402 coherent_mem_init(dma_start, dma_size);
403
404 /*
405 * Free all memory as a starting point.
406 */
407 free_bootmem(PAGE_OFFSET, memory_end - PAGE_OFFSET);
408
409 /*
410 * Then reserve memory which is already being used.
411 */
412 for_each_memblock(reserved, reg) {
413 pr_debug("reserved - 0x%08x-0x%08x\n",
414 (u32) reg->base, (u32) reg->size);
415 reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);
416 }
417
418 max_low_pfn = PFN_DOWN(memory_end);
419 min_low_pfn = PFN_UP(memory_start);
420 max_mapnr = max_low_pfn - min_low_pfn;
421
422 /* Get kmalloc into gear */
423 paging_init();
424
425 /*
426 * Probe for Device State Configuration Registers.
427 * We have to do this early in case timer needs to be enabled
428 * through DSCR.
429 */
430 dscr_probe();
431
432 /* We do this early for timer and core clock frequency */
433 c64x_setup_clocks();
434
435 /* Get CPU info */
436 get_cpuinfo();
437
438#if defined(CONFIG_VT) && defined(CONFIG_DUMMY_CONSOLE)
439 conswitchp = &dummy_con;
440#endif
441}
442
443#define cpu_to_ptr(n) ((void *)((long)(n)+1))
444#define ptr_to_cpu(p) ((long)(p) - 1)
445
446static int show_cpuinfo(struct seq_file *m, void *v)
447{
448 int n = ptr_to_cpu(v);
449 struct cpuinfo_c6x *p = &per_cpu(cpu_data, n);
450
451 if (n == 0) {
452 seq_printf(m,
453 "soc\t\t: %s\n"
454 "soc revision\t: 0x%x\n"
455 "soc cores\t: %d\n",
456 c6x_soc_name, c6x_silicon_rev, c6x_num_cores);
457 }
458
459 seq_printf(m,
460 "\n"
461 "processor\t: %d\n"
462 "cpu\t\t: %s\n"
463 "core revision\t: %s\n"
464 "core voltage\t: %s\n"
465 "core id\t\t: %d\n"
466 "mmu\t\t: %s\n"
467 "fpu\t\t: %s\n"
468 "cpu MHz\t\t: %u\n"
469 "bogomips\t: %lu.%02lu\n\n",
470 n,
471 p->cpu_name, p->cpu_rev, p->cpu_voltage,
472 p->core_id, p->mmu, p->fpu,
473 (c6x_core_freq + 500000) / 1000000,
474 (loops_per_jiffy/(500000/HZ)),
475 (loops_per_jiffy/(5000/HZ))%100);
476
477 return 0;
478}
479
480static void *c_start(struct seq_file *m, loff_t *pos)
481{
482 return *pos < nr_cpu_ids ? cpu_to_ptr(*pos) : NULL;
483}
484static void *c_next(struct seq_file *m, void *v, loff_t *pos)
485{
486 ++*pos;
487 return NULL;
488}
489static void c_stop(struct seq_file *m, void *v)
490{
491}
492
493const struct seq_operations cpuinfo_op = {
494 c_start,
495 c_stop,
496 c_next,
497 show_cpuinfo
498};
This page took 0.044535 seconds and 5 git commands to generate.