Revert "swsusp special saveable pages support" commits
[deliverable/linux.git] / arch / i386 / kernel / cpu / cpufreq / acpi-cpufreq.c
CommitLineData
1da177e4
LT
1/*
2 * acpi-cpufreq.c - ACPI Processor P-States Driver ($Revision: 1.3 $)
3 *
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7 *
8 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or (at
13 * your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, write to the Free Software Foundation, Inc.,
22 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
23 *
24 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25 */
26
27#include <linux/config.h>
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/init.h>
31#include <linux/cpufreq.h>
32#include <linux/proc_fs.h>
33#include <linux/seq_file.h>
d395bf12 34#include <linux/compiler.h>
4e57b681 35#include <linux/sched.h> /* current */
1da177e4
LT
36#include <asm/io.h>
37#include <asm/delay.h>
38#include <asm/uaccess.h>
39
40#include <linux/acpi.h>
41#include <acpi/processor.h>
42
1da177e4
LT
43#define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg)
44
45MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
46MODULE_DESCRIPTION("ACPI Processor P-States Driver");
47MODULE_LICENSE("GPL");
48
49
50struct cpufreq_acpi_io {
09b4d1ee 51 struct acpi_processor_performance *acpi_data;
1da177e4
LT
52 struct cpufreq_frequency_table *freq_table;
53 unsigned int resume;
54};
55
56static struct cpufreq_acpi_io *acpi_io_data[NR_CPUS];
09b4d1ee 57static struct acpi_processor_performance *acpi_perf_data[NR_CPUS];
1da177e4
LT
58
59static struct cpufreq_driver acpi_cpufreq_driver;
60
d395bf12
VP
61static unsigned int acpi_pstate_strict;
62
1da177e4
LT
63static int
64acpi_processor_write_port(
65 u16 port,
66 u8 bit_width,
67 u32 value)
68{
69 if (bit_width <= 8) {
70 outb(value, port);
71 } else if (bit_width <= 16) {
72 outw(value, port);
73 } else if (bit_width <= 32) {
74 outl(value, port);
75 } else {
76 return -ENODEV;
77 }
78 return 0;
79}
80
81static int
82acpi_processor_read_port(
83 u16 port,
84 u8 bit_width,
85 u32 *ret)
86{
87 *ret = 0;
88 if (bit_width <= 8) {
89 *ret = inb(port);
90 } else if (bit_width <= 16) {
91 *ret = inw(port);
92 } else if (bit_width <= 32) {
93 *ret = inl(port);
94 } else {
95 return -ENODEV;
96 }
97 return 0;
98}
99
100static int
101acpi_processor_set_performance (
102 struct cpufreq_acpi_io *data,
103 unsigned int cpu,
104 int state)
105{
106 u16 port = 0;
107 u8 bit_width = 0;
1da177e4 108 int i = 0;
1da177e4
LT
109 int ret = 0;
110 u32 value = 0;
1da177e4 111 int retval;
09b4d1ee 112 struct acpi_processor_performance *perf;
1da177e4
LT
113
114 dprintk("acpi_processor_set_performance\n");
115
09b4d1ee
VP
116 retval = 0;
117 perf = data->acpi_data;
118 if (state == perf->state) {
1da177e4
LT
119 if (unlikely(data->resume)) {
120 dprintk("Called after resume, resetting to P%d\n", state);
121 data->resume = 0;
122 } else {
123 dprintk("Already at target state (P%d)\n", state);
09b4d1ee 124 return (retval);
1da177e4
LT
125 }
126 }
127
09b4d1ee 128 dprintk("Transitioning from P%d to P%d\n", perf->state, state);
1da177e4
LT
129
130 /*
131 * First we write the target state's 'control' value to the
132 * control_register.
133 */
134
09b4d1ee
VP
135 port = perf->control_register.address;
136 bit_width = perf->control_register.bit_width;
137 value = (u32) perf->states[state].control;
1da177e4
LT
138
139 dprintk("Writing 0x%08x to port 0x%04x\n", value, port);
140
141 ret = acpi_processor_write_port(port, bit_width, value);
142 if (ret) {
143 dprintk("Invalid port width 0x%04x\n", bit_width);
09b4d1ee 144 return (ret);
1da177e4
LT
145 }
146
147 /*
d395bf12
VP
148 * Assume the write went through when acpi_pstate_strict is not used.
149 * As read status_register is an expensive operation and there
150 * are no specific error cases where an IO port write will fail.
1da177e4 151 */
d395bf12
VP
152 if (acpi_pstate_strict) {
153 /* Then we read the 'status_register' and compare the value
154 * with the target state's 'status' to make sure the
155 * transition was successful.
156 * Note that we'll poll for up to 1ms (100 cycles of 10us)
157 * before giving up.
158 */
159
09b4d1ee
VP
160 port = perf->status_register.address;
161 bit_width = perf->status_register.bit_width;
d395bf12
VP
162
163 dprintk("Looking for 0x%08x from port 0x%04x\n",
09b4d1ee 164 (u32) perf->states[state].status, port);
d395bf12 165
09b4d1ee 166 for (i = 0; i < 100; i++) {
d395bf12
VP
167 ret = acpi_processor_read_port(port, bit_width, &value);
168 if (ret) {
169 dprintk("Invalid port width 0x%04x\n", bit_width);
09b4d1ee 170 return (ret);
d395bf12 171 }
09b4d1ee 172 if (value == (u32) perf->states[state].status)
d395bf12
VP
173 break;
174 udelay(10);
1da177e4 175 }
d395bf12 176 } else {
09b4d1ee 177 value = (u32) perf->states[state].status;
1da177e4
LT
178 }
179
09b4d1ee 180 if (unlikely(value != (u32) perf->states[state].status)) {
1da177e4
LT
181 printk(KERN_WARNING "acpi-cpufreq: Transition failed\n");
182 retval = -ENODEV;
09b4d1ee 183 return (retval);
1da177e4
LT
184 }
185
186 dprintk("Transition successful after %d microseconds\n", i * 10);
187
09b4d1ee 188 perf->state = state;
1da177e4
LT
189 return (retval);
190}
191
192
193static int
194acpi_cpufreq_target (
195 struct cpufreq_policy *policy,
196 unsigned int target_freq,
197 unsigned int relation)
198{
199 struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
09b4d1ee
VP
200 struct acpi_processor_performance *perf;
201 struct cpufreq_freqs freqs;
202 cpumask_t online_policy_cpus;
203 cpumask_t saved_mask;
204 cpumask_t set_mask;
205 cpumask_t covered_cpus;
206 unsigned int cur_state = 0;
1da177e4
LT
207 unsigned int next_state = 0;
208 unsigned int result = 0;
09b4d1ee
VP
209 unsigned int j;
210 unsigned int tmp;
1da177e4
LT
211
212 dprintk("acpi_cpufreq_setpolicy\n");
213
214 result = cpufreq_frequency_table_target(policy,
215 data->freq_table,
216 target_freq,
217 relation,
218 &next_state);
09b4d1ee 219 if (unlikely(result))
1da177e4
LT
220 return (result);
221
09b4d1ee
VP
222 perf = data->acpi_data;
223 cur_state = perf->state;
224 freqs.old = data->freq_table[cur_state].frequency;
225 freqs.new = data->freq_table[next_state].frequency;
226
7e1f19e5 227#ifdef CONFIG_HOTPLUG_CPU
09b4d1ee
VP
228 /* cpufreq holds the hotplug lock, so we are safe from here on */
229 cpus_and(online_policy_cpus, cpu_online_map, policy->cpus);
7e1f19e5
AM
230#else
231 online_policy_cpus = policy->cpus;
232#endif
1da177e4 233
09b4d1ee
VP
234 for_each_cpu_mask(j, online_policy_cpus) {
235 freqs.cpu = j;
236 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
237 }
238
239 /*
240 * We need to call driver->target() on all or any CPU in
241 * policy->cpus, depending on policy->shared_type.
242 */
243 saved_mask = current->cpus_allowed;
244 cpus_clear(covered_cpus);
245 for_each_cpu_mask(j, online_policy_cpus) {
246 /*
247 * Support for SMP systems.
248 * Make sure we are running on CPU that wants to change freq
249 */
250 cpus_clear(set_mask);
251 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY)
252 cpus_or(set_mask, set_mask, online_policy_cpus);
253 else
254 cpu_set(j, set_mask);
255
256 set_cpus_allowed(current, set_mask);
257 if (unlikely(!cpu_isset(smp_processor_id(), set_mask))) {
258 dprintk("couldn't limit to CPUs in this domain\n");
259 result = -EAGAIN;
260 break;
261 }
262
263 result = acpi_processor_set_performance (data, j, next_state);
264 if (result) {
265 result = -EAGAIN;
266 break;
267 }
268
269 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY)
270 break;
271
272 cpu_set(j, covered_cpus);
273 }
274
275 for_each_cpu_mask(j, online_policy_cpus) {
276 freqs.cpu = j;
277 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
278 }
1da177e4 279
09b4d1ee
VP
280 if (unlikely(result)) {
281 /*
282 * We have failed halfway through the frequency change.
283 * We have sent callbacks to online_policy_cpus and
284 * acpi_processor_set_performance() has been called on
285 * coverd_cpus. Best effort undo..
286 */
287
288 if (!cpus_empty(covered_cpus)) {
289 for_each_cpu_mask(j, covered_cpus) {
290 policy->cpu = j;
291 acpi_processor_set_performance (data,
292 j,
293 cur_state);
294 }
295 }
296
297 tmp = freqs.new;
298 freqs.new = freqs.old;
299 freqs.old = tmp;
300 for_each_cpu_mask(j, online_policy_cpus) {
301 freqs.cpu = j;
302 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
303 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
304 }
305 }
306
307 set_cpus_allowed(current, saved_mask);
1da177e4
LT
308 return (result);
309}
310
311
312static int
313acpi_cpufreq_verify (
314 struct cpufreq_policy *policy)
315{
316 unsigned int result = 0;
317 struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
318
319 dprintk("acpi_cpufreq_verify\n");
320
321 result = cpufreq_frequency_table_verify(policy,
322 data->freq_table);
323
324 return (result);
325}
326
327
328static unsigned long
329acpi_cpufreq_guess_freq (
330 struct cpufreq_acpi_io *data,
331 unsigned int cpu)
332{
09b4d1ee
VP
333 struct acpi_processor_performance *perf = data->acpi_data;
334
1da177e4
LT
335 if (cpu_khz) {
336 /* search the closest match to cpu_khz */
337 unsigned int i;
338 unsigned long freq;
09b4d1ee 339 unsigned long freqn = perf->states[0].core_frequency * 1000;
1da177e4 340
09b4d1ee 341 for (i = 0; i < (perf->state_count - 1); i++) {
1da177e4 342 freq = freqn;
09b4d1ee 343 freqn = perf->states[i+1].core_frequency * 1000;
1da177e4 344 if ((2 * cpu_khz) > (freqn + freq)) {
09b4d1ee 345 perf->state = i;
1da177e4
LT
346 return (freq);
347 }
348 }
09b4d1ee 349 perf->state = perf->state_count - 1;
1da177e4 350 return (freqn);
09b4d1ee 351 } else {
1da177e4 352 /* assume CPU is at P0... */
09b4d1ee
VP
353 perf->state = 0;
354 return perf->states[0].core_frequency * 1000;
355 }
1da177e4
LT
356}
357
358
09b4d1ee
VP
359/*
360 * acpi_cpufreq_early_init - initialize ACPI P-States library
361 *
362 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
363 * in order to determine correct frequency and voltage pairings. We can
364 * do _PDC and _PSD and find out the processor dependency for the
365 * actual init that will happen later...
366 */
367static int acpi_cpufreq_early_init_acpi(void)
368{
369 struct acpi_processor_performance *data;
370 unsigned int i, j;
371
372 dprintk("acpi_cpufreq_early_init\n");
373
fb1bb34d 374 for_each_possible_cpu(i) {
09b4d1ee
VP
375 data = kzalloc(sizeof(struct acpi_processor_performance),
376 GFP_KERNEL);
377 if (!data) {
fb1bb34d 378 for_each_possible_cpu(j) {
09b4d1ee
VP
379 kfree(acpi_perf_data[j]);
380 acpi_perf_data[j] = NULL;
381 }
382 return (-ENOMEM);
383 }
384 acpi_perf_data[i] = data;
385 }
386
387 /* Do initialization in ACPI core */
388 acpi_processor_preregister_performance(acpi_perf_data);
389 return 0;
390}
391
1da177e4
LT
392static int
393acpi_cpufreq_cpu_init (
394 struct cpufreq_policy *policy)
395{
396 unsigned int i;
397 unsigned int cpu = policy->cpu;
398 struct cpufreq_acpi_io *data;
399 unsigned int result = 0;
152bf8c5 400 struct cpuinfo_x86 *c = &cpu_data[policy->cpu];
09b4d1ee 401 struct acpi_processor_performance *perf;
1da177e4 402
1da177e4 403 dprintk("acpi_cpufreq_cpu_init\n");
1da177e4 404
09b4d1ee
VP
405 if (!acpi_perf_data[cpu])
406 return (-ENODEV);
407
bfdc708d 408 data = kzalloc(sizeof(struct cpufreq_acpi_io), GFP_KERNEL);
1da177e4
LT
409 if (!data)
410 return (-ENOMEM);
1da177e4 411
09b4d1ee 412 data->acpi_data = acpi_perf_data[cpu];
1da177e4
LT
413 acpi_io_data[cpu] = data;
414
09b4d1ee 415 result = acpi_processor_register_performance(data->acpi_data, cpu);
1da177e4
LT
416
417 if (result)
418 goto err_free;
419
09b4d1ee
VP
420 perf = data->acpi_data;
421 policy->cpus = perf->shared_cpu_map;
422 policy->shared_type = perf->shared_type;
423
152bf8c5 424 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) {
1da177e4
LT
425 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
426 }
427
428 /* capability check */
09b4d1ee 429 if (perf->state_count <= 1) {
1da177e4
LT
430 dprintk("No P-States\n");
431 result = -ENODEV;
432 goto err_unreg;
433 }
09b4d1ee
VP
434
435 if ((perf->control_register.space_id != ACPI_ADR_SPACE_SYSTEM_IO) ||
436 (perf->status_register.space_id != ACPI_ADR_SPACE_SYSTEM_IO)) {
1da177e4 437 dprintk("Unsupported address space [%d, %d]\n",
09b4d1ee
VP
438 (u32) (perf->control_register.space_id),
439 (u32) (perf->status_register.space_id));
1da177e4
LT
440 result = -ENODEV;
441 goto err_unreg;
442 }
443
444 /* alloc freq_table */
09b4d1ee 445 data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) * (perf->state_count + 1), GFP_KERNEL);
1da177e4
LT
446 if (!data->freq_table) {
447 result = -ENOMEM;
448 goto err_unreg;
449 }
450
451 /* detect transition latency */
452 policy->cpuinfo.transition_latency = 0;
09b4d1ee
VP
453 for (i=0; i<perf->state_count; i++) {
454 if ((perf->states[i].transition_latency * 1000) > policy->cpuinfo.transition_latency)
455 policy->cpuinfo.transition_latency = perf->states[i].transition_latency * 1000;
1da177e4
LT
456 }
457 policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
458
459 /* The current speed is unknown and not detectable by ACPI... */
460 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
461
462 /* table init */
09b4d1ee 463 for (i=0; i<=perf->state_count; i++)
1da177e4
LT
464 {
465 data->freq_table[i].index = i;
09b4d1ee
VP
466 if (i<perf->state_count)
467 data->freq_table[i].frequency = perf->states[i].core_frequency * 1000;
1da177e4
LT
468 else
469 data->freq_table[i].frequency = CPUFREQ_TABLE_END;
470 }
471
472 result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
473 if (result) {
474 goto err_freqfree;
475 }
476
477 /* notify BIOS that we exist */
478 acpi_processor_notify_smm(THIS_MODULE);
479
480 printk(KERN_INFO "acpi-cpufreq: CPU%u - ACPI performance management activated.\n",
481 cpu);
09b4d1ee 482 for (i = 0; i < perf->state_count; i++)
1da177e4 483 dprintk(" %cP%d: %d MHz, %d mW, %d uS\n",
09b4d1ee
VP
484 (i == perf->state?'*':' '), i,
485 (u32) perf->states[i].core_frequency,
486 (u32) perf->states[i].power,
487 (u32) perf->states[i].transition_latency);
1da177e4
LT
488
489 cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
4b31e774
DB
490
491 /*
492 * the first call to ->target() should result in us actually
493 * writing something to the appropriate registers.
494 */
495 data->resume = 1;
496
1da177e4
LT
497 return (result);
498
499 err_freqfree:
500 kfree(data->freq_table);
501 err_unreg:
09b4d1ee 502 acpi_processor_unregister_performance(perf, cpu);
1da177e4
LT
503 err_free:
504 kfree(data);
505 acpi_io_data[cpu] = NULL;
506
507 return (result);
508}
509
510
511static int
512acpi_cpufreq_cpu_exit (
513 struct cpufreq_policy *policy)
514{
515 struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
516
517
518 dprintk("acpi_cpufreq_cpu_exit\n");
519
520 if (data) {
521 cpufreq_frequency_table_put_attr(policy->cpu);
522 acpi_io_data[policy->cpu] = NULL;
09b4d1ee 523 acpi_processor_unregister_performance(data->acpi_data, policy->cpu);
1da177e4
LT
524 kfree(data);
525 }
526
527 return (0);
528}
529
530static int
531acpi_cpufreq_resume (
532 struct cpufreq_policy *policy)
533{
534 struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
535
536
537 dprintk("acpi_cpufreq_resume\n");
538
539 data->resume = 1;
540
541 return (0);
542}
543
544
545static struct freq_attr* acpi_cpufreq_attr[] = {
546 &cpufreq_freq_attr_scaling_available_freqs,
547 NULL,
548};
549
550static struct cpufreq_driver acpi_cpufreq_driver = {
911cb74b
DJ
551 .verify = acpi_cpufreq_verify,
552 .target = acpi_cpufreq_target,
553 .init = acpi_cpufreq_cpu_init,
554 .exit = acpi_cpufreq_cpu_exit,
555 .resume = acpi_cpufreq_resume,
556 .name = "acpi-cpufreq",
557 .owner = THIS_MODULE,
558 .attr = acpi_cpufreq_attr,
559 .flags = CPUFREQ_STICKY,
1da177e4
LT
560};
561
562
563static int __init
564acpi_cpufreq_init (void)
565{
566 int result = 0;
567
568 dprintk("acpi_cpufreq_init\n");
569
09b4d1ee
VP
570 result = acpi_cpufreq_early_init_acpi();
571
572 if (!result)
573 result = cpufreq_register_driver(&acpi_cpufreq_driver);
1da177e4
LT
574
575 return (result);
576}
577
578
579static void __exit
580acpi_cpufreq_exit (void)
581{
09b4d1ee 582 unsigned int i;
1da177e4
LT
583 dprintk("acpi_cpufreq_exit\n");
584
585 cpufreq_unregister_driver(&acpi_cpufreq_driver);
586
fb1bb34d 587 for_each_possible_cpu(i) {
09b4d1ee
VP
588 kfree(acpi_perf_data[i]);
589 acpi_perf_data[i] = NULL;
590 }
1da177e4
LT
591 return;
592}
593
d395bf12
VP
594module_param(acpi_pstate_strict, uint, 0644);
595MODULE_PARM_DESC(acpi_pstate_strict, "value 0 or non-zero. non-zero -> strict ACPI checks are performed during frequency changes.");
1da177e4
LT
596
597late_initcall(acpi_cpufreq_init);
598module_exit(acpi_cpufreq_exit);
599
600MODULE_ALIAS("acpi");
This page took 0.238094 seconds and 5 git commands to generate.