[PATCH] x86: #include asm/uaccess.h in asm/checksum.h
[deliverable/linux.git] / arch / i386 / kernel / smp.c
CommitLineData
1da177e4
LT
1/*
2 * Intel SMP support routines.
3 *
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998-99, 2000 Ingo Molnar <mingo@redhat.com>
6 *
7 * This code is released under the GNU General Public License version 2 or
8 * later.
9 */
10
11#include <linux/init.h>
12
13#include <linux/mm.h>
14#include <linux/irq.h>
15#include <linux/delay.h>
16#include <linux/spinlock.h>
17#include <linux/smp_lock.h>
18#include <linux/kernel_stat.h>
19#include <linux/mc146818rtc.h>
20#include <linux/cache.h>
21#include <linux/interrupt.h>
22
23#include <asm/mtrr.h>
24#include <asm/tlbflush.h>
25#include <mach_apic.h>
26
27/*
28 * Some notes on x86 processor bugs affecting SMP operation:
29 *
30 * Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
31 * The Linux implications for SMP are handled as follows:
32 *
33 * Pentium III / [Xeon]
34 * None of the E1AP-E3AP errata are visible to the user.
35 *
36 * E1AP. see PII A1AP
37 * E2AP. see PII A2AP
38 * E3AP. see PII A3AP
39 *
40 * Pentium II / [Xeon]
41 * None of the A1AP-A3AP errata are visible to the user.
42 *
43 * A1AP. see PPro 1AP
44 * A2AP. see PPro 2AP
45 * A3AP. see PPro 7AP
46 *
47 * Pentium Pro
48 * None of 1AP-9AP errata are visible to the normal user,
49 * except occasional delivery of 'spurious interrupt' as trap #15.
50 * This is very rare and a non-problem.
51 *
52 * 1AP. Linux maps APIC as non-cacheable
53 * 2AP. worked around in hardware
54 * 3AP. fixed in C0 and above steppings microcode update.
55 * Linux does not use excessive STARTUP_IPIs.
56 * 4AP. worked around in hardware
57 * 5AP. symmetric IO mode (normal Linux operation) not affected.
58 * 'noapic' mode has vector 0xf filled out properly.
59 * 6AP. 'noapic' mode might be affected - fixed in later steppings
60 * 7AP. We do not assume writes to the LVT deassering IRQs
61 * 8AP. We do not enable low power mode (deep sleep) during MP bootup
62 * 9AP. We do not use mixed mode
63 *
64 * Pentium
65 * There is a marginal case where REP MOVS on 100MHz SMP
66 * machines with B stepping processors can fail. XXX should provide
67 * an L1cache=Writethrough or L1cache=off option.
68 *
69 * B stepping CPUs may hang. There are hardware work arounds
70 * for this. We warn about it in case your board doesn't have the work
71 * arounds. Basically thats so I can tell anyone with a B stepping
72 * CPU and SMP problems "tough".
73 *
74 * Specific items [From Pentium Processor Specification Update]
75 *
76 * 1AP. Linux doesn't use remote read
77 * 2AP. Linux doesn't trust APIC errors
78 * 3AP. We work around this
79 * 4AP. Linux never generated 3 interrupts of the same priority
80 * to cause a lost local interrupt.
81 * 5AP. Remote read is never used
82 * 6AP. not affected - worked around in hardware
83 * 7AP. not affected - worked around in hardware
84 * 8AP. worked around in hardware - we get explicit CS errors if not
85 * 9AP. only 'noapic' mode affected. Might generate spurious
86 * interrupts, we log only the first one and count the
87 * rest silently.
88 * 10AP. not affected - worked around in hardware
89 * 11AP. Linux reads the APIC between writes to avoid this, as per
90 * the documentation. Make sure you preserve this as it affects
91 * the C stepping chips too.
92 * 12AP. not affected - worked around in hardware
93 * 13AP. not affected - worked around in hardware
94 * 14AP. we always deassert INIT during bootup
95 * 15AP. not affected - worked around in hardware
96 * 16AP. not affected - worked around in hardware
97 * 17AP. not affected - worked around in hardware
98 * 18AP. not affected - worked around in hardware
99 * 19AP. not affected - worked around in BIOS
100 *
101 * If this sounds worrying believe me these bugs are either ___RARE___,
102 * or are signal timing bugs worked around in hardware and there's
103 * about nothing of note with C stepping upwards.
104 */
105
106DEFINE_PER_CPU(struct tlb_state, cpu_tlbstate) ____cacheline_aligned = { &init_mm, 0, };
107
108/*
109 * the following functions deal with sending IPIs between CPUs.
110 *
111 * We use 'broadcast', CPU->CPU IPIs and self-IPIs too.
112 */
113
114static inline int __prepare_ICR (unsigned int shortcut, int vector)
115{
116 return APIC_DM_FIXED | shortcut | vector | APIC_DEST_LOGICAL;
117}
118
119static inline int __prepare_ICR2 (unsigned int mask)
120{
121 return SET_APIC_DEST_FIELD(mask);
122}
123
124void __send_IPI_shortcut(unsigned int shortcut, int vector)
125{
126 /*
127 * Subtle. In the case of the 'never do double writes' workaround
128 * we have to lock out interrupts to be safe. As we don't care
129 * of the value read we use an atomic rmw access to avoid costly
130 * cli/sti. Otherwise we use an even cheaper single atomic write
131 * to the APIC.
132 */
133 unsigned int cfg;
134
135 /*
136 * Wait for idle.
137 */
138 apic_wait_icr_idle();
139
140 /*
141 * No need to touch the target chip field
142 */
143 cfg = __prepare_ICR(shortcut, vector);
144
145 /*
146 * Send the IPI. The write to APIC_ICR fires this off.
147 */
148 apic_write_around(APIC_ICR, cfg);
149}
150
151void fastcall send_IPI_self(int vector)
152{
153 __send_IPI_shortcut(APIC_DEST_SELF, vector);
154}
155
156/*
157 * This is only used on smaller machines.
158 */
159void send_IPI_mask_bitmask(cpumask_t cpumask, int vector)
160{
161 unsigned long mask = cpus_addr(cpumask)[0];
162 unsigned long cfg;
163 unsigned long flags;
164
165 local_irq_save(flags);
166
167 /*
168 * Wait for idle.
169 */
170 apic_wait_icr_idle();
171
172 /*
173 * prepare target chip field
174 */
175 cfg = __prepare_ICR2(mask);
176 apic_write_around(APIC_ICR2, cfg);
177
178 /*
179 * program the ICR
180 */
181 cfg = __prepare_ICR(0, vector);
182
183 /*
184 * Send the IPI. The write to APIC_ICR fires this off.
185 */
186 apic_write_around(APIC_ICR, cfg);
187
188 local_irq_restore(flags);
189}
190
191void send_IPI_mask_sequence(cpumask_t mask, int vector)
192{
193 unsigned long cfg, flags;
194 unsigned int query_cpu;
195
196 /*
197 * Hack. The clustered APIC addressing mode doesn't allow us to send
198 * to an arbitrary mask, so I do a unicasts to each CPU instead. This
199 * should be modified to do 1 message per cluster ID - mbligh
200 */
201
202 local_irq_save(flags);
203
204 for (query_cpu = 0; query_cpu < NR_CPUS; ++query_cpu) {
205 if (cpu_isset(query_cpu, mask)) {
206
207 /*
208 * Wait for idle.
209 */
210 apic_wait_icr_idle();
211
212 /*
213 * prepare target chip field
214 */
215 cfg = __prepare_ICR2(cpu_to_logical_apicid(query_cpu));
216 apic_write_around(APIC_ICR2, cfg);
217
218 /*
219 * program the ICR
220 */
221 cfg = __prepare_ICR(0, vector);
222
223 /*
224 * Send the IPI. The write to APIC_ICR fires this off.
225 */
226 apic_write_around(APIC_ICR, cfg);
227 }
228 }
229 local_irq_restore(flags);
230}
231
232#include <mach_ipi.h> /* must come after the send_IPI functions above for inlining */
233
234/*
235 * Smarter SMP flushing macros.
236 * c/o Linus Torvalds.
237 *
238 * These mean you can really definitely utterly forget about
239 * writing to user space from interrupts. (Its not allowed anyway).
240 *
241 * Optimizations Manfred Spraul <manfred@colorfullife.com>
242 */
243
244static cpumask_t flush_cpumask;
245static struct mm_struct * flush_mm;
246static unsigned long flush_va;
247static DEFINE_SPINLOCK(tlbstate_lock);
248#define FLUSH_ALL 0xffffffff
249
250/*
251 * We cannot call mmdrop() because we are in interrupt context,
252 * instead update mm->cpu_vm_mask.
253 *
254 * We need to reload %cr3 since the page tables may be going
255 * away from under us..
256 */
257static inline void leave_mm (unsigned long cpu)
258{
259 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK)
260 BUG();
261 cpu_clear(cpu, per_cpu(cpu_tlbstate, cpu).active_mm->cpu_vm_mask);
262 load_cr3(swapper_pg_dir);
263}
264
265/*
266 *
267 * The flush IPI assumes that a thread switch happens in this order:
268 * [cpu0: the cpu that switches]
269 * 1) switch_mm() either 1a) or 1b)
270 * 1a) thread switch to a different mm
271 * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask);
272 * Stop ipi delivery for the old mm. This is not synchronized with
273 * the other cpus, but smp_invalidate_interrupt ignore flush ipis
274 * for the wrong mm, and in the worst case we perform a superflous
275 * tlb flush.
276 * 1a2) set cpu_tlbstate to TLBSTATE_OK
277 * Now the smp_invalidate_interrupt won't call leave_mm if cpu0
278 * was in lazy tlb mode.
279 * 1a3) update cpu_tlbstate[].active_mm
280 * Now cpu0 accepts tlb flushes for the new mm.
281 * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask);
282 * Now the other cpus will send tlb flush ipis.
283 * 1a4) change cr3.
284 * 1b) thread switch without mm change
285 * cpu_tlbstate[].active_mm is correct, cpu0 already handles
286 * flush ipis.
287 * 1b1) set cpu_tlbstate to TLBSTATE_OK
288 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
289 * Atomically set the bit [other cpus will start sending flush ipis],
290 * and test the bit.
291 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
292 * 2) switch %%esp, ie current
293 *
294 * The interrupt must handle 2 special cases:
295 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
296 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
297 * runs in kernel space, the cpu could load tlb entries for user space
298 * pages.
299 *
300 * The good news is that cpu_tlbstate is local to each cpu, no
301 * write/read ordering problems.
302 */
303
304/*
305 * TLB flush IPI:
306 *
307 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
308 * 2) Leave the mm if we are in the lazy tlb mode.
309 */
310
311fastcall void smp_invalidate_interrupt(struct pt_regs *regs)
312{
313 unsigned long cpu;
314
315 cpu = get_cpu();
316
317 if (!cpu_isset(cpu, flush_cpumask))
318 goto out;
319 /*
320 * This was a BUG() but until someone can quote me the
321 * line from the intel manual that guarantees an IPI to
322 * multiple CPUs is retried _only_ on the erroring CPUs
323 * its staying as a return
324 *
325 * BUG();
326 */
327
328 if (flush_mm == per_cpu(cpu_tlbstate, cpu).active_mm) {
329 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) {
330 if (flush_va == FLUSH_ALL)
331 local_flush_tlb();
332 else
333 __flush_tlb_one(flush_va);
334 } else
335 leave_mm(cpu);
336 }
337 ack_APIC_irq();
338 smp_mb__before_clear_bit();
339 cpu_clear(cpu, flush_cpumask);
340 smp_mb__after_clear_bit();
341out:
342 put_cpu_no_resched();
343}
344
345static void flush_tlb_others(cpumask_t cpumask, struct mm_struct *mm,
346 unsigned long va)
347{
348 cpumask_t tmp;
349 /*
350 * A couple of (to be removed) sanity checks:
351 *
352 * - we do not send IPIs to not-yet booted CPUs.
353 * - current CPU must not be in mask
354 * - mask must exist :)
355 */
356 BUG_ON(cpus_empty(cpumask));
357
358 cpus_and(tmp, cpumask, cpu_online_map);
359 BUG_ON(!cpus_equal(cpumask, tmp));
360 BUG_ON(cpu_isset(smp_processor_id(), cpumask));
361 BUG_ON(!mm);
362
363 /*
364 * i'm not happy about this global shared spinlock in the
365 * MM hot path, but we'll see how contended it is.
366 * Temporarily this turns IRQs off, so that lockups are
367 * detected by the NMI watchdog.
368 */
369 spin_lock(&tlbstate_lock);
370
371 flush_mm = mm;
372 flush_va = va;
373#if NR_CPUS <= BITS_PER_LONG
374 atomic_set_mask(cpumask, &flush_cpumask);
375#else
376 {
377 int k;
378 unsigned long *flush_mask = (unsigned long *)&flush_cpumask;
379 unsigned long *cpu_mask = (unsigned long *)&cpumask;
380 for (k = 0; k < BITS_TO_LONGS(NR_CPUS); ++k)
381 atomic_set_mask(cpu_mask[k], &flush_mask[k]);
382 }
383#endif
384 /*
385 * We have to send the IPI only to
386 * CPUs affected.
387 */
388 send_IPI_mask(cpumask, INVALIDATE_TLB_VECTOR);
389
390 while (!cpus_empty(flush_cpumask))
391 /* nothing. lockup detection does not belong here */
392 mb();
393
394 flush_mm = NULL;
395 flush_va = 0;
396 spin_unlock(&tlbstate_lock);
397}
398
399void flush_tlb_current_task(void)
400{
401 struct mm_struct *mm = current->mm;
402 cpumask_t cpu_mask;
403
404 preempt_disable();
405 cpu_mask = mm->cpu_vm_mask;
406 cpu_clear(smp_processor_id(), cpu_mask);
407
408 local_flush_tlb();
409 if (!cpus_empty(cpu_mask))
410 flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
411 preempt_enable();
412}
413
414void flush_tlb_mm (struct mm_struct * mm)
415{
416 cpumask_t cpu_mask;
417
418 preempt_disable();
419 cpu_mask = mm->cpu_vm_mask;
420 cpu_clear(smp_processor_id(), cpu_mask);
421
422 if (current->active_mm == mm) {
423 if (current->mm)
424 local_flush_tlb();
425 else
426 leave_mm(smp_processor_id());
427 }
428 if (!cpus_empty(cpu_mask))
429 flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
430
431 preempt_enable();
432}
433
434void flush_tlb_page(struct vm_area_struct * vma, unsigned long va)
435{
436 struct mm_struct *mm = vma->vm_mm;
437 cpumask_t cpu_mask;
438
439 preempt_disable();
440 cpu_mask = mm->cpu_vm_mask;
441 cpu_clear(smp_processor_id(), cpu_mask);
442
443 if (current->active_mm == mm) {
444 if(current->mm)
445 __flush_tlb_one(va);
446 else
447 leave_mm(smp_processor_id());
448 }
449
450 if (!cpus_empty(cpu_mask))
451 flush_tlb_others(cpu_mask, mm, va);
452
453 preempt_enable();
454}
455
456static void do_flush_tlb_all(void* info)
457{
458 unsigned long cpu = smp_processor_id();
459
460 __flush_tlb_all();
461 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_LAZY)
462 leave_mm(cpu);
463}
464
465void flush_tlb_all(void)
466{
467 on_each_cpu(do_flush_tlb_all, NULL, 1, 1);
468}
469
470/*
471 * this function sends a 'reschedule' IPI to another CPU.
472 * it goes straight through and wastes no time serializing
473 * anything. Worst case is that we lose a reschedule ...
474 */
475void smp_send_reschedule(int cpu)
476{
477 send_IPI_mask(cpumask_of_cpu(cpu), RESCHEDULE_VECTOR);
478}
479
480/*
481 * Structure and data for smp_call_function(). This is designed to minimise
482 * static memory requirements. It also looks cleaner.
483 */
484static DEFINE_SPINLOCK(call_lock);
485
486struct call_data_struct {
487 void (*func) (void *info);
488 void *info;
489 atomic_t started;
490 atomic_t finished;
491 int wait;
492};
493
494static struct call_data_struct * call_data;
495
496/*
497 * this function sends a 'generic call function' IPI to all other CPUs
498 * in the system.
499 */
500
501int smp_call_function (void (*func) (void *info), void *info, int nonatomic,
502 int wait)
503/*
504 * [SUMMARY] Run a function on all other CPUs.
505 * <func> The function to run. This must be fast and non-blocking.
506 * <info> An arbitrary pointer to pass to the function.
507 * <nonatomic> currently unused.
508 * <wait> If true, wait (atomically) until function has completed on other CPUs.
509 * [RETURNS] 0 on success, else a negative status code. Does not return until
510 * remote CPUs are nearly ready to execute <<func>> or are or have executed.
511 *
512 * You must not call this function with disabled interrupts or from a
513 * hardware interrupt handler or from a bottom half handler.
514 */
515{
516 struct call_data_struct data;
517 int cpus = num_online_cpus()-1;
518
519 if (!cpus)
520 return 0;
521
522 /* Can deadlock when called with interrupts disabled */
523 WARN_ON(irqs_disabled());
524
525 data.func = func;
526 data.info = info;
527 atomic_set(&data.started, 0);
528 data.wait = wait;
529 if (wait)
530 atomic_set(&data.finished, 0);
531
532 spin_lock(&call_lock);
533 call_data = &data;
534 mb();
535
536 /* Send a message to all other CPUs and wait for them to respond */
537 send_IPI_allbutself(CALL_FUNCTION_VECTOR);
538
539 /* Wait for response */
540 while (atomic_read(&data.started) != cpus)
541 cpu_relax();
542
543 if (wait)
544 while (atomic_read(&data.finished) != cpus)
545 cpu_relax();
546 spin_unlock(&call_lock);
547
548 return 0;
549}
550
551static void stop_this_cpu (void * dummy)
552{
553 /*
554 * Remove this CPU:
555 */
556 cpu_clear(smp_processor_id(), cpu_online_map);
557 local_irq_disable();
558 disable_local_APIC();
559 if (cpu_data[smp_processor_id()].hlt_works_ok)
560 for(;;) __asm__("hlt");
561 for (;;);
562}
563
564/*
565 * this function calls the 'stop' function on all other CPUs in the system.
566 */
567
568void smp_send_stop(void)
569{
570 smp_call_function(stop_this_cpu, NULL, 1, 0);
571
572 local_irq_disable();
573 disable_local_APIC();
574 local_irq_enable();
575}
576
577/*
578 * Reschedule call back. Nothing to do,
579 * all the work is done automatically when
580 * we return from the interrupt.
581 */
582fastcall void smp_reschedule_interrupt(struct pt_regs *regs)
583{
584 ack_APIC_irq();
585}
586
587fastcall void smp_call_function_interrupt(struct pt_regs *regs)
588{
589 void (*func) (void *info) = call_data->func;
590 void *info = call_data->info;
591 int wait = call_data->wait;
592
593 ack_APIC_irq();
594 /*
595 * Notify initiating CPU that I've grabbed the data and am
596 * about to execute the function
597 */
598 mb();
599 atomic_inc(&call_data->started);
600 /*
601 * At this point the info structure may be out of scope unless wait==1
602 */
603 irq_enter();
604 (*func)(info);
605 irq_exit();
606
607 if (wait) {
608 mb();
609 atomic_inc(&call_data->finished);
610 }
611}
612
This page took 0.059262 seconds and 5 git commands to generate.