[PATCH] x86_64: fix unlikely profiling & vsyscalls on x86_64
[deliverable/linux.git] / arch / i386 / kernel / smpboot.c
CommitLineData
1da177e4
LT
1/*
2 * x86 SMP booting functions
3 *
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com>
6 *
7 * Much of the core SMP work is based on previous work by Thomas Radke, to
8 * whom a great many thanks are extended.
9 *
10 * Thanks to Intel for making available several different Pentium,
11 * Pentium Pro and Pentium-II/Xeon MP machines.
12 * Original development of Linux SMP code supported by Caldera.
13 *
14 * This code is released under the GNU General Public License version 2 or
15 * later.
16 *
17 * Fixes
18 * Felix Koop : NR_CPUS used properly
19 * Jose Renau : Handle single CPU case.
20 * Alan Cox : By repeated request 8) - Total BogoMIPS report.
21 * Greg Wright : Fix for kernel stacks panic.
22 * Erich Boleyn : MP v1.4 and additional changes.
23 * Matthias Sattler : Changes for 2.1 kernel map.
24 * Michel Lespinasse : Changes for 2.1 kernel map.
25 * Michael Chastain : Change trampoline.S to gnu as.
26 * Alan Cox : Dumb bug: 'B' step PPro's are fine
27 * Ingo Molnar : Added APIC timers, based on code
28 * from Jose Renau
29 * Ingo Molnar : various cleanups and rewrites
30 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
31 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
32 * Martin J. Bligh : Added support for multi-quad systems
33 * Dave Jones : Report invalid combinations of Athlon CPUs.
34* Rusty Russell : Hacked into shape for new "hotplug" boot process. */
35
36#include <linux/module.h>
37#include <linux/config.h>
38#include <linux/init.h>
39#include <linux/kernel.h>
40
41#include <linux/mm.h>
42#include <linux/sched.h>
43#include <linux/kernel_stat.h>
44#include <linux/smp_lock.h>
1da177e4 45#include <linux/bootmem.h>
f3705136
ZM
46#include <linux/notifier.h>
47#include <linux/cpu.h>
48#include <linux/percpu.h>
1da177e4
LT
49
50#include <linux/delay.h>
51#include <linux/mc146818rtc.h>
52#include <asm/tlbflush.h>
53#include <asm/desc.h>
54#include <asm/arch_hooks.h>
55
56#include <mach_apic.h>
57#include <mach_wakecpu.h>
58#include <smpboot_hooks.h>
59
60/* Set if we find a B stepping CPU */
0bb3184d 61static int __devinitdata smp_b_stepping;
1da177e4
LT
62
63/* Number of siblings per CPU package */
64int smp_num_siblings = 1;
129f6946
AD
65#ifdef CONFIG_X86_HT
66EXPORT_SYMBOL(smp_num_siblings);
67#endif
d720803a
LS
68
69/* Package ID of each logical CPU */
6c036527 70int phys_proc_id[NR_CPUS] __read_mostly = {[0 ... NR_CPUS-1] = BAD_APICID};
d720803a
LS
71
72/* Core ID of each logical CPU */
6c036527 73int cpu_core_id[NR_CPUS] __read_mostly = {[0 ... NR_CPUS-1] = BAD_APICID};
1da177e4 74
1e9f28fa
SS
75/* Last level cache ID of each logical CPU */
76int cpu_llc_id[NR_CPUS] __cpuinitdata = {[0 ... NR_CPUS-1] = BAD_APICID};
77
94605eff 78/* representing HT siblings of each logical CPU */
6c036527 79cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
d720803a
LS
80EXPORT_SYMBOL(cpu_sibling_map);
81
94605eff 82/* representing HT and core siblings of each logical CPU */
6c036527 83cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
d720803a
LS
84EXPORT_SYMBOL(cpu_core_map);
85
1da177e4 86/* bitmap of online cpus */
6c036527 87cpumask_t cpu_online_map __read_mostly;
129f6946 88EXPORT_SYMBOL(cpu_online_map);
1da177e4
LT
89
90cpumask_t cpu_callin_map;
91cpumask_t cpu_callout_map;
129f6946 92EXPORT_SYMBOL(cpu_callout_map);
4ad8d383
ZM
93cpumask_t cpu_possible_map;
94EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
95static cpumask_t smp_commenced_mask;
96
e1367daf
LS
97/* TSC's upper 32 bits can't be written in eariler CPU (before prescott), there
98 * is no way to resync one AP against BP. TBD: for prescott and above, we
99 * should use IA64's algorithm
100 */
101static int __devinitdata tsc_sync_disabled;
102
1da177e4
LT
103/* Per CPU bogomips and other parameters */
104struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
129f6946 105EXPORT_SYMBOL(cpu_data);
1da177e4 106
6c036527 107u8 x86_cpu_to_apicid[NR_CPUS] __read_mostly =
1da177e4
LT
108 { [0 ... NR_CPUS-1] = 0xff };
109EXPORT_SYMBOL(x86_cpu_to_apicid);
110
111/*
112 * Trampoline 80x86 program as an array.
113 */
114
115extern unsigned char trampoline_data [];
116extern unsigned char trampoline_end [];
117static unsigned char *trampoline_base;
118static int trampoline_exec;
119
120static void map_cpu_to_logical_apicid(void);
121
f3705136
ZM
122/* State of each CPU. */
123DEFINE_PER_CPU(int, cpu_state) = { 0 };
124
1da177e4
LT
125/*
126 * Currently trivial. Write the real->protected mode
127 * bootstrap into the page concerned. The caller
128 * has made sure it's suitably aligned.
129 */
130
0bb3184d 131static unsigned long __devinit setup_trampoline(void)
1da177e4
LT
132{
133 memcpy(trampoline_base, trampoline_data, trampoline_end - trampoline_data);
134 return virt_to_phys(trampoline_base);
135}
136
137/*
138 * We are called very early to get the low memory for the
139 * SMP bootup trampoline page.
140 */
141void __init smp_alloc_memory(void)
142{
143 trampoline_base = (void *) alloc_bootmem_low_pages(PAGE_SIZE);
144 /*
145 * Has to be in very low memory so we can execute
146 * real-mode AP code.
147 */
148 if (__pa(trampoline_base) >= 0x9F000)
149 BUG();
150 /*
151 * Make the SMP trampoline executable:
152 */
153 trampoline_exec = set_kernel_exec((unsigned long)trampoline_base, 1);
154}
155
156/*
157 * The bootstrap kernel entry code has set these up. Save them for
158 * a given CPU
159 */
160
0bb3184d 161static void __devinit smp_store_cpu_info(int id)
1da177e4
LT
162{
163 struct cpuinfo_x86 *c = cpu_data + id;
164
165 *c = boot_cpu_data;
166 if (id!=0)
167 identify_cpu(c);
168 /*
169 * Mask B, Pentium, but not Pentium MMX
170 */
171 if (c->x86_vendor == X86_VENDOR_INTEL &&
172 c->x86 == 5 &&
173 c->x86_mask >= 1 && c->x86_mask <= 4 &&
174 c->x86_model <= 3)
175 /*
176 * Remember we have B step Pentia with bugs
177 */
178 smp_b_stepping = 1;
179
180 /*
181 * Certain Athlons might work (for various values of 'work') in SMP
182 * but they are not certified as MP capable.
183 */
184 if ((c->x86_vendor == X86_VENDOR_AMD) && (c->x86 == 6)) {
185
186 /* Athlon 660/661 is valid. */
187 if ((c->x86_model==6) && ((c->x86_mask==0) || (c->x86_mask==1)))
188 goto valid_k7;
189
190 /* Duron 670 is valid */
191 if ((c->x86_model==7) && (c->x86_mask==0))
192 goto valid_k7;
193
194 /*
195 * Athlon 662, Duron 671, and Athlon >model 7 have capability bit.
196 * It's worth noting that the A5 stepping (662) of some Athlon XP's
197 * have the MP bit set.
198 * See http://www.heise.de/newsticker/data/jow-18.10.01-000 for more.
199 */
200 if (((c->x86_model==6) && (c->x86_mask>=2)) ||
201 ((c->x86_model==7) && (c->x86_mask>=1)) ||
202 (c->x86_model> 7))
203 if (cpu_has_mp)
204 goto valid_k7;
205
206 /* If we get here, it's not a certified SMP capable AMD system. */
9f158333 207 add_taint(TAINT_UNSAFE_SMP);
1da177e4
LT
208 }
209
210valid_k7:
211 ;
212}
213
214/*
215 * TSC synchronization.
216 *
217 * We first check whether all CPUs have their TSC's synchronized,
218 * then we print a warning if not, and always resync.
219 */
220
221static atomic_t tsc_start_flag = ATOMIC_INIT(0);
222static atomic_t tsc_count_start = ATOMIC_INIT(0);
223static atomic_t tsc_count_stop = ATOMIC_INIT(0);
224static unsigned long long tsc_values[NR_CPUS];
225
226#define NR_LOOPS 5
227
228static void __init synchronize_tsc_bp (void)
229{
230 int i;
231 unsigned long long t0;
232 unsigned long long sum, avg;
233 long long delta;
a3a255e7 234 unsigned int one_usec;
1da177e4
LT
235 int buggy = 0;
236
237 printk(KERN_INFO "checking TSC synchronization across %u CPUs: ", num_booting_cpus());
238
239 /* convert from kcyc/sec to cyc/usec */
240 one_usec = cpu_khz / 1000;
241
242 atomic_set(&tsc_start_flag, 1);
243 wmb();
244
245 /*
246 * We loop a few times to get a primed instruction cache,
247 * then the last pass is more or less synchronized and
248 * the BP and APs set their cycle counters to zero all at
249 * once. This reduces the chance of having random offsets
250 * between the processors, and guarantees that the maximum
251 * delay between the cycle counters is never bigger than
252 * the latency of information-passing (cachelines) between
253 * two CPUs.
254 */
255 for (i = 0; i < NR_LOOPS; i++) {
256 /*
257 * all APs synchronize but they loop on '== num_cpus'
258 */
259 while (atomic_read(&tsc_count_start) != num_booting_cpus()-1)
18698917 260 cpu_relax();
1da177e4
LT
261 atomic_set(&tsc_count_stop, 0);
262 wmb();
263 /*
264 * this lets the APs save their current TSC:
265 */
266 atomic_inc(&tsc_count_start);
267
268 rdtscll(tsc_values[smp_processor_id()]);
269 /*
270 * We clear the TSC in the last loop:
271 */
272 if (i == NR_LOOPS-1)
273 write_tsc(0, 0);
274
275 /*
276 * Wait for all APs to leave the synchronization point:
277 */
278 while (atomic_read(&tsc_count_stop) != num_booting_cpus()-1)
18698917 279 cpu_relax();
1da177e4
LT
280 atomic_set(&tsc_count_start, 0);
281 wmb();
282 atomic_inc(&tsc_count_stop);
283 }
284
285 sum = 0;
286 for (i = 0; i < NR_CPUS; i++) {
287 if (cpu_isset(i, cpu_callout_map)) {
288 t0 = tsc_values[i];
289 sum += t0;
290 }
291 }
292 avg = sum;
293 do_div(avg, num_booting_cpus());
294
295 sum = 0;
296 for (i = 0; i < NR_CPUS; i++) {
297 if (!cpu_isset(i, cpu_callout_map))
298 continue;
299 delta = tsc_values[i] - avg;
300 if (delta < 0)
301 delta = -delta;
302 /*
303 * We report bigger than 2 microseconds clock differences.
304 */
305 if (delta > 2*one_usec) {
306 long realdelta;
307 if (!buggy) {
308 buggy = 1;
309 printk("\n");
310 }
311 realdelta = delta;
312 do_div(realdelta, one_usec);
313 if (tsc_values[i] < avg)
314 realdelta = -realdelta;
315
7f5910ec
DJ
316 if (realdelta > 0)
317 printk(KERN_INFO "CPU#%d had %ld usecs TSC "
318 "skew, fixed it up.\n", i, realdelta);
1da177e4
LT
319 }
320
321 sum += delta;
322 }
323 if (!buggy)
324 printk("passed.\n");
325}
326
327static void __init synchronize_tsc_ap (void)
328{
329 int i;
330
331 /*
332 * Not every cpu is online at the time
333 * this gets called, so we first wait for the BP to
334 * finish SMP initialization:
335 */
18698917
AM
336 while (!atomic_read(&tsc_start_flag))
337 cpu_relax();
1da177e4
LT
338
339 for (i = 0; i < NR_LOOPS; i++) {
340 atomic_inc(&tsc_count_start);
341 while (atomic_read(&tsc_count_start) != num_booting_cpus())
18698917 342 cpu_relax();
1da177e4
LT
343
344 rdtscll(tsc_values[smp_processor_id()]);
345 if (i == NR_LOOPS-1)
346 write_tsc(0, 0);
347
348 atomic_inc(&tsc_count_stop);
18698917
AM
349 while (atomic_read(&tsc_count_stop) != num_booting_cpus())
350 cpu_relax();
1da177e4
LT
351 }
352}
353#undef NR_LOOPS
354
355extern void calibrate_delay(void);
356
357static atomic_t init_deasserted;
358
0bb3184d 359static void __devinit smp_callin(void)
1da177e4
LT
360{
361 int cpuid, phys_id;
362 unsigned long timeout;
363
364 /*
365 * If waken up by an INIT in an 82489DX configuration
366 * we may get here before an INIT-deassert IPI reaches
367 * our local APIC. We have to wait for the IPI or we'll
368 * lock up on an APIC access.
369 */
370 wait_for_init_deassert(&init_deasserted);
371
372 /*
373 * (This works even if the APIC is not enabled.)
374 */
375 phys_id = GET_APIC_ID(apic_read(APIC_ID));
376 cpuid = smp_processor_id();
377 if (cpu_isset(cpuid, cpu_callin_map)) {
378 printk("huh, phys CPU#%d, CPU#%d already present??\n",
379 phys_id, cpuid);
380 BUG();
381 }
382 Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
383
384 /*
385 * STARTUP IPIs are fragile beasts as they might sometimes
386 * trigger some glue motherboard logic. Complete APIC bus
387 * silence for 1 second, this overestimates the time the
388 * boot CPU is spending to send the up to 2 STARTUP IPIs
389 * by a factor of two. This should be enough.
390 */
391
392 /*
393 * Waiting 2s total for startup (udelay is not yet working)
394 */
395 timeout = jiffies + 2*HZ;
396 while (time_before(jiffies, timeout)) {
397 /*
398 * Has the boot CPU finished it's STARTUP sequence?
399 */
400 if (cpu_isset(cpuid, cpu_callout_map))
401 break;
402 rep_nop();
403 }
404
405 if (!time_before(jiffies, timeout)) {
406 printk("BUG: CPU%d started up but did not get a callout!\n",
407 cpuid);
408 BUG();
409 }
410
411 /*
412 * the boot CPU has finished the init stage and is spinning
413 * on callin_map until we finish. We are free to set up this
414 * CPU, first the APIC. (this is probably redundant on most
415 * boards)
416 */
417
418 Dprintk("CALLIN, before setup_local_APIC().\n");
419 smp_callin_clear_local_apic();
420 setup_local_APIC();
421 map_cpu_to_logical_apicid();
422
423 /*
424 * Get our bogomips.
425 */
426 calibrate_delay();
427 Dprintk("Stack at about %p\n",&cpuid);
428
429 /*
430 * Save our processor parameters
431 */
432 smp_store_cpu_info(cpuid);
433
434 disable_APIC_timer();
435
436 /*
437 * Allow the master to continue.
438 */
439 cpu_set(cpuid, cpu_callin_map);
440
441 /*
442 * Synchronize the TSC with the BP
443 */
e1367daf 444 if (cpu_has_tsc && cpu_khz && !tsc_sync_disabled)
1da177e4
LT
445 synchronize_tsc_ap();
446}
447
448static int cpucount;
449
1e9f28fa
SS
450/* maps the cpu to the sched domain representing multi-core */
451cpumask_t cpu_coregroup_map(int cpu)
452{
453 struct cpuinfo_x86 *c = cpu_data + cpu;
454 /*
455 * For perf, we return last level cache shared map.
456 * TBD: when power saving sched policy is added, we will return
457 * cpu_core_map when power saving policy is enabled
458 */
459 return c->llc_shared_map;
460}
461
94605eff
SS
462/* representing cpus for which sibling maps can be computed */
463static cpumask_t cpu_sibling_setup_map;
464
d720803a
LS
465static inline void
466set_cpu_sibling_map(int cpu)
467{
468 int i;
94605eff
SS
469 struct cpuinfo_x86 *c = cpu_data;
470
471 cpu_set(cpu, cpu_sibling_setup_map);
d720803a
LS
472
473 if (smp_num_siblings > 1) {
94605eff
SS
474 for_each_cpu_mask(i, cpu_sibling_setup_map) {
475 if (phys_proc_id[cpu] == phys_proc_id[i] &&
476 cpu_core_id[cpu] == cpu_core_id[i]) {
d720803a
LS
477 cpu_set(i, cpu_sibling_map[cpu]);
478 cpu_set(cpu, cpu_sibling_map[i]);
94605eff
SS
479 cpu_set(i, cpu_core_map[cpu]);
480 cpu_set(cpu, cpu_core_map[i]);
1e9f28fa
SS
481 cpu_set(i, c[cpu].llc_shared_map);
482 cpu_set(cpu, c[i].llc_shared_map);
d720803a
LS
483 }
484 }
485 } else {
486 cpu_set(cpu, cpu_sibling_map[cpu]);
487 }
488
1e9f28fa
SS
489 cpu_set(cpu, c[cpu].llc_shared_map);
490
94605eff 491 if (current_cpu_data.x86_max_cores == 1) {
d720803a 492 cpu_core_map[cpu] = cpu_sibling_map[cpu];
94605eff
SS
493 c[cpu].booted_cores = 1;
494 return;
495 }
496
497 for_each_cpu_mask(i, cpu_sibling_setup_map) {
1e9f28fa
SS
498 if (cpu_llc_id[cpu] != BAD_APICID &&
499 cpu_llc_id[cpu] == cpu_llc_id[i]) {
500 cpu_set(i, c[cpu].llc_shared_map);
501 cpu_set(cpu, c[i].llc_shared_map);
502 }
94605eff
SS
503 if (phys_proc_id[cpu] == phys_proc_id[i]) {
504 cpu_set(i, cpu_core_map[cpu]);
505 cpu_set(cpu, cpu_core_map[i]);
506 /*
507 * Does this new cpu bringup a new core?
508 */
509 if (cpus_weight(cpu_sibling_map[cpu]) == 1) {
510 /*
511 * for each core in package, increment
512 * the booted_cores for this new cpu
513 */
514 if (first_cpu(cpu_sibling_map[i]) == i)
515 c[cpu].booted_cores++;
516 /*
517 * increment the core count for all
518 * the other cpus in this package
519 */
520 if (i != cpu)
521 c[i].booted_cores++;
522 } else if (i != cpu && !c[cpu].booted_cores)
523 c[cpu].booted_cores = c[i].booted_cores;
524 }
d720803a
LS
525 }
526}
527
1da177e4
LT
528/*
529 * Activate a secondary processor.
530 */
0bb3184d 531static void __devinit start_secondary(void *unused)
1da177e4
LT
532{
533 /*
534 * Dont put anything before smp_callin(), SMP
535 * booting is too fragile that we want to limit the
536 * things done here to the most necessary things.
537 */
538 cpu_init();
5bfb5d69 539 preempt_disable();
1da177e4
LT
540 smp_callin();
541 while (!cpu_isset(smp_processor_id(), smp_commenced_mask))
542 rep_nop();
543 setup_secondary_APIC_clock();
544 if (nmi_watchdog == NMI_IO_APIC) {
545 disable_8259A_irq(0);
546 enable_NMI_through_LVT0(NULL);
547 enable_8259A_irq(0);
548 }
549 enable_APIC_timer();
550 /*
551 * low-memory mappings have been cleared, flush them from
552 * the local TLBs too.
553 */
554 local_flush_tlb();
6fe940d6 555
d720803a
LS
556 /* This must be done before setting cpu_online_map */
557 set_cpu_sibling_map(raw_smp_processor_id());
558 wmb();
559
6fe940d6
LS
560 /*
561 * We need to hold call_lock, so there is no inconsistency
562 * between the time smp_call_function() determines number of
563 * IPI receipients, and the time when the determination is made
564 * for which cpus receive the IPI. Holding this
565 * lock helps us to not include this cpu in a currently in progress
566 * smp_call_function().
567 */
568 lock_ipi_call_lock();
1da177e4 569 cpu_set(smp_processor_id(), cpu_online_map);
6fe940d6 570 unlock_ipi_call_lock();
e1367daf 571 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
1da177e4
LT
572
573 /* We can take interrupts now: we're officially "up". */
574 local_irq_enable();
575
576 wmb();
577 cpu_idle();
578}
579
580/*
581 * Everything has been set up for the secondary
582 * CPUs - they just need to reload everything
583 * from the task structure
584 * This function must not return.
585 */
0bb3184d 586void __devinit initialize_secondary(void)
1da177e4
LT
587{
588 /*
589 * We don't actually need to load the full TSS,
590 * basically just the stack pointer and the eip.
591 */
592
593 asm volatile(
594 "movl %0,%%esp\n\t"
595 "jmp *%1"
596 :
597 :"r" (current->thread.esp),"r" (current->thread.eip));
598}
599
600extern struct {
601 void * esp;
602 unsigned short ss;
603} stack_start;
604
605#ifdef CONFIG_NUMA
606
607/* which logical CPUs are on which nodes */
6c036527 608cpumask_t node_2_cpu_mask[MAX_NUMNODES] __read_mostly =
1da177e4
LT
609 { [0 ... MAX_NUMNODES-1] = CPU_MASK_NONE };
610/* which node each logical CPU is on */
6c036527 611int cpu_2_node[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = 0 };
1da177e4
LT
612EXPORT_SYMBOL(cpu_2_node);
613
614/* set up a mapping between cpu and node. */
615static inline void map_cpu_to_node(int cpu, int node)
616{
617 printk("Mapping cpu %d to node %d\n", cpu, node);
618 cpu_set(cpu, node_2_cpu_mask[node]);
619 cpu_2_node[cpu] = node;
620}
621
622/* undo a mapping between cpu and node. */
623static inline void unmap_cpu_to_node(int cpu)
624{
625 int node;
626
627 printk("Unmapping cpu %d from all nodes\n", cpu);
628 for (node = 0; node < MAX_NUMNODES; node ++)
629 cpu_clear(cpu, node_2_cpu_mask[node]);
630 cpu_2_node[cpu] = 0;
631}
632#else /* !CONFIG_NUMA */
633
634#define map_cpu_to_node(cpu, node) ({})
635#define unmap_cpu_to_node(cpu) ({})
636
637#endif /* CONFIG_NUMA */
638
6c036527 639u8 cpu_2_logical_apicid[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = BAD_APICID };
1da177e4
LT
640
641static void map_cpu_to_logical_apicid(void)
642{
643 int cpu = smp_processor_id();
644 int apicid = logical_smp_processor_id();
645
646 cpu_2_logical_apicid[cpu] = apicid;
647 map_cpu_to_node(cpu, apicid_to_node(apicid));
648}
649
650static void unmap_cpu_to_logical_apicid(int cpu)
651{
652 cpu_2_logical_apicid[cpu] = BAD_APICID;
653 unmap_cpu_to_node(cpu);
654}
655
656#if APIC_DEBUG
657static inline void __inquire_remote_apic(int apicid)
658{
659 int i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
660 char *names[] = { "ID", "VERSION", "SPIV" };
661 int timeout, status;
662
663 printk("Inquiring remote APIC #%d...\n", apicid);
664
38e548ee 665 for (i = 0; i < ARRAY_SIZE(regs); i++) {
1da177e4
LT
666 printk("... APIC #%d %s: ", apicid, names[i]);
667
668 /*
669 * Wait for idle.
670 */
671 apic_wait_icr_idle();
672
673 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
674 apic_write_around(APIC_ICR, APIC_DM_REMRD | regs[i]);
675
676 timeout = 0;
677 do {
678 udelay(100);
679 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
680 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
681
682 switch (status) {
683 case APIC_ICR_RR_VALID:
684 status = apic_read(APIC_RRR);
685 printk("%08x\n", status);
686 break;
687 default:
688 printk("failed\n");
689 }
690 }
691}
692#endif
693
694#ifdef WAKE_SECONDARY_VIA_NMI
695/*
696 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
697 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
698 * won't ... remember to clear down the APIC, etc later.
699 */
0bb3184d 700static int __devinit
1da177e4
LT
701wakeup_secondary_cpu(int logical_apicid, unsigned long start_eip)
702{
703 unsigned long send_status = 0, accept_status = 0;
704 int timeout, maxlvt;
705
706 /* Target chip */
707 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(logical_apicid));
708
709 /* Boot on the stack */
710 /* Kick the second */
711 apic_write_around(APIC_ICR, APIC_DM_NMI | APIC_DEST_LOGICAL);
712
713 Dprintk("Waiting for send to finish...\n");
714 timeout = 0;
715 do {
716 Dprintk("+");
717 udelay(100);
718 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
719 } while (send_status && (timeout++ < 1000));
720
721 /*
722 * Give the other CPU some time to accept the IPI.
723 */
724 udelay(200);
725 /*
726 * Due to the Pentium erratum 3AP.
727 */
728 maxlvt = get_maxlvt();
729 if (maxlvt > 3) {
730 apic_read_around(APIC_SPIV);
731 apic_write(APIC_ESR, 0);
732 }
733 accept_status = (apic_read(APIC_ESR) & 0xEF);
734 Dprintk("NMI sent.\n");
735
736 if (send_status)
737 printk("APIC never delivered???\n");
738 if (accept_status)
739 printk("APIC delivery error (%lx).\n", accept_status);
740
741 return (send_status | accept_status);
742}
743#endif /* WAKE_SECONDARY_VIA_NMI */
744
745#ifdef WAKE_SECONDARY_VIA_INIT
0bb3184d 746static int __devinit
1da177e4
LT
747wakeup_secondary_cpu(int phys_apicid, unsigned long start_eip)
748{
749 unsigned long send_status = 0, accept_status = 0;
750 int maxlvt, timeout, num_starts, j;
751
752 /*
753 * Be paranoid about clearing APIC errors.
754 */
755 if (APIC_INTEGRATED(apic_version[phys_apicid])) {
756 apic_read_around(APIC_SPIV);
757 apic_write(APIC_ESR, 0);
758 apic_read(APIC_ESR);
759 }
760
761 Dprintk("Asserting INIT.\n");
762
763 /*
764 * Turn INIT on target chip
765 */
766 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
767
768 /*
769 * Send IPI
770 */
771 apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT
772 | APIC_DM_INIT);
773
774 Dprintk("Waiting for send to finish...\n");
775 timeout = 0;
776 do {
777 Dprintk("+");
778 udelay(100);
779 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
780 } while (send_status && (timeout++ < 1000));
781
782 mdelay(10);
783
784 Dprintk("Deasserting INIT.\n");
785
786 /* Target chip */
787 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
788
789 /* Send IPI */
790 apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);
791
792 Dprintk("Waiting for send to finish...\n");
793 timeout = 0;
794 do {
795 Dprintk("+");
796 udelay(100);
797 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
798 } while (send_status && (timeout++ < 1000));
799
800 atomic_set(&init_deasserted, 1);
801
802 /*
803 * Should we send STARTUP IPIs ?
804 *
805 * Determine this based on the APIC version.
806 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
807 */
808 if (APIC_INTEGRATED(apic_version[phys_apicid]))
809 num_starts = 2;
810 else
811 num_starts = 0;
812
813 /*
814 * Run STARTUP IPI loop.
815 */
816 Dprintk("#startup loops: %d.\n", num_starts);
817
818 maxlvt = get_maxlvt();
819
820 for (j = 1; j <= num_starts; j++) {
821 Dprintk("Sending STARTUP #%d.\n",j);
822 apic_read_around(APIC_SPIV);
823 apic_write(APIC_ESR, 0);
824 apic_read(APIC_ESR);
825 Dprintk("After apic_write.\n");
826
827 /*
828 * STARTUP IPI
829 */
830
831 /* Target chip */
832 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
833
834 /* Boot on the stack */
835 /* Kick the second */
836 apic_write_around(APIC_ICR, APIC_DM_STARTUP
837 | (start_eip >> 12));
838
839 /*
840 * Give the other CPU some time to accept the IPI.
841 */
842 udelay(300);
843
844 Dprintk("Startup point 1.\n");
845
846 Dprintk("Waiting for send to finish...\n");
847 timeout = 0;
848 do {
849 Dprintk("+");
850 udelay(100);
851 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
852 } while (send_status && (timeout++ < 1000));
853
854 /*
855 * Give the other CPU some time to accept the IPI.
856 */
857 udelay(200);
858 /*
859 * Due to the Pentium erratum 3AP.
860 */
861 if (maxlvt > 3) {
862 apic_read_around(APIC_SPIV);
863 apic_write(APIC_ESR, 0);
864 }
865 accept_status = (apic_read(APIC_ESR) & 0xEF);
866 if (send_status || accept_status)
867 break;
868 }
869 Dprintk("After Startup.\n");
870
871 if (send_status)
872 printk("APIC never delivered???\n");
873 if (accept_status)
874 printk("APIC delivery error (%lx).\n", accept_status);
875
876 return (send_status | accept_status);
877}
878#endif /* WAKE_SECONDARY_VIA_INIT */
879
880extern cpumask_t cpu_initialized;
e1367daf
LS
881static inline int alloc_cpu_id(void)
882{
883 cpumask_t tmp_map;
884 int cpu;
885 cpus_complement(tmp_map, cpu_present_map);
886 cpu = first_cpu(tmp_map);
887 if (cpu >= NR_CPUS)
888 return -ENODEV;
889 return cpu;
890}
891
892#ifdef CONFIG_HOTPLUG_CPU
893static struct task_struct * __devinitdata cpu_idle_tasks[NR_CPUS];
894static inline struct task_struct * alloc_idle_task(int cpu)
895{
896 struct task_struct *idle;
897
898 if ((idle = cpu_idle_tasks[cpu]) != NULL) {
899 /* initialize thread_struct. we really want to avoid destroy
900 * idle tread
901 */
07b047fc 902 idle->thread.esp = (unsigned long)task_pt_regs(idle);
e1367daf
LS
903 init_idle(idle, cpu);
904 return idle;
905 }
906 idle = fork_idle(cpu);
907
908 if (!IS_ERR(idle))
909 cpu_idle_tasks[cpu] = idle;
910 return idle;
911}
912#else
913#define alloc_idle_task(cpu) fork_idle(cpu)
914#endif
1da177e4 915
e1367daf 916static int __devinit do_boot_cpu(int apicid, int cpu)
1da177e4
LT
917/*
918 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
919 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
920 * Returns zero if CPU booted OK, else error code from wakeup_secondary_cpu.
921 */
922{
923 struct task_struct *idle;
924 unsigned long boot_error;
e1367daf 925 int timeout;
1da177e4
LT
926 unsigned long start_eip;
927 unsigned short nmi_high = 0, nmi_low = 0;
928
e1367daf 929 ++cpucount;
9a0b5817 930 alternatives_smp_switch(1);
e1367daf 931
1da177e4
LT
932 /*
933 * We can't use kernel_thread since we must avoid to
934 * reschedule the child.
935 */
e1367daf 936 idle = alloc_idle_task(cpu);
1da177e4
LT
937 if (IS_ERR(idle))
938 panic("failed fork for CPU %d", cpu);
939 idle->thread.eip = (unsigned long) start_secondary;
940 /* start_eip had better be page-aligned! */
941 start_eip = setup_trampoline();
942
943 /* So we see what's up */
944 printk("Booting processor %d/%d eip %lx\n", cpu, apicid, start_eip);
945 /* Stack for startup_32 can be just as for start_secondary onwards */
946 stack_start.esp = (void *) idle->thread.esp;
947
948 irq_ctx_init(cpu);
949
950 /*
951 * This grunge runs the startup process for
952 * the targeted processor.
953 */
954
955 atomic_set(&init_deasserted, 0);
956
957 Dprintk("Setting warm reset code and vector.\n");
958
959 store_NMI_vector(&nmi_high, &nmi_low);
960
961 smpboot_setup_warm_reset_vector(start_eip);
962
963 /*
964 * Starting actual IPI sequence...
965 */
966 boot_error = wakeup_secondary_cpu(apicid, start_eip);
967
968 if (!boot_error) {
969 /*
970 * allow APs to start initializing.
971 */
972 Dprintk("Before Callout %d.\n", cpu);
973 cpu_set(cpu, cpu_callout_map);
974 Dprintk("After Callout %d.\n", cpu);
975
976 /*
977 * Wait 5s total for a response
978 */
979 for (timeout = 0; timeout < 50000; timeout++) {
980 if (cpu_isset(cpu, cpu_callin_map))
981 break; /* It has booted */
982 udelay(100);
983 }
984
985 if (cpu_isset(cpu, cpu_callin_map)) {
986 /* number CPUs logically, starting from 1 (BSP is 0) */
987 Dprintk("OK.\n");
988 printk("CPU%d: ", cpu);
989 print_cpu_info(&cpu_data[cpu]);
990 Dprintk("CPU has booted.\n");
991 } else {
992 boot_error= 1;
993 if (*((volatile unsigned char *)trampoline_base)
994 == 0xA5)
995 /* trampoline started but...? */
996 printk("Stuck ??\n");
997 else
998 /* trampoline code not run */
999 printk("Not responding.\n");
1000 inquire_remote_apic(apicid);
1001 }
1002 }
e1367daf 1003
1da177e4
LT
1004 if (boot_error) {
1005 /* Try to put things back the way they were before ... */
1006 unmap_cpu_to_logical_apicid(cpu);
1007 cpu_clear(cpu, cpu_callout_map); /* was set here (do_boot_cpu()) */
1008 cpu_clear(cpu, cpu_initialized); /* was set by cpu_init() */
1009 cpucount--;
e1367daf
LS
1010 } else {
1011 x86_cpu_to_apicid[cpu] = apicid;
1012 cpu_set(cpu, cpu_present_map);
1da177e4
LT
1013 }
1014
1015 /* mark "stuck" area as not stuck */
1016 *((volatile unsigned long *)trampoline_base) = 0;
1017
1018 return boot_error;
1019}
1020
e1367daf
LS
1021#ifdef CONFIG_HOTPLUG_CPU
1022void cpu_exit_clear(void)
1023{
1024 int cpu = raw_smp_processor_id();
1025
1026 idle_task_exit();
1027
1028 cpucount --;
1029 cpu_uninit();
1030 irq_ctx_exit(cpu);
1031
1032 cpu_clear(cpu, cpu_callout_map);
1033 cpu_clear(cpu, cpu_callin_map);
e1367daf
LS
1034
1035 cpu_clear(cpu, smp_commenced_mask);
1036 unmap_cpu_to_logical_apicid(cpu);
1037}
1038
1039struct warm_boot_cpu_info {
1040 struct completion *complete;
1041 int apicid;
1042 int cpu;
1043};
1044
34f361ad 1045static void __cpuinit do_warm_boot_cpu(void *p)
e1367daf
LS
1046{
1047 struct warm_boot_cpu_info *info = p;
1048 do_boot_cpu(info->apicid, info->cpu);
1049 complete(info->complete);
1050}
1051
34f361ad 1052static int __cpuinit __smp_prepare_cpu(int cpu)
e1367daf
LS
1053{
1054 DECLARE_COMPLETION(done);
1055 struct warm_boot_cpu_info info;
1056 struct work_struct task;
1057 int apicid, ret;
1058
e1367daf
LS
1059 apicid = x86_cpu_to_apicid[cpu];
1060 if (apicid == BAD_APICID) {
1061 ret = -ENODEV;
1062 goto exit;
1063 }
1064
1065 info.complete = &done;
1066 info.apicid = apicid;
1067 info.cpu = cpu;
1068 INIT_WORK(&task, do_warm_boot_cpu, &info);
1069
1070 tsc_sync_disabled = 1;
1071
1072 /* init low mem mapping */
d7271b14
ZA
1073 clone_pgd_range(swapper_pg_dir, swapper_pg_dir + USER_PGD_PTRS,
1074 KERNEL_PGD_PTRS);
e1367daf
LS
1075 flush_tlb_all();
1076 schedule_work(&task);
1077 wait_for_completion(&done);
1078
1079 tsc_sync_disabled = 0;
1080 zap_low_mappings();
1081 ret = 0;
1082exit:
e1367daf
LS
1083 return ret;
1084}
1085#endif
1086
1da177e4
LT
1087static void smp_tune_scheduling (void)
1088{
1089 unsigned long cachesize; /* kB */
1090 unsigned long bandwidth = 350; /* MB/s */
1091 /*
1092 * Rough estimation for SMP scheduling, this is the number of
1093 * cycles it takes for a fully memory-limited process to flush
1094 * the SMP-local cache.
1095 *
1096 * (For a P5 this pretty much means we will choose another idle
1097 * CPU almost always at wakeup time (this is due to the small
1098 * L1 cache), on PIIs it's around 50-100 usecs, depending on
1099 * the cache size)
1100 */
1101
1102 if (!cpu_khz) {
1103 /*
1104 * this basically disables processor-affinity
1105 * scheduling on SMP without a TSC.
1106 */
1107 return;
1108 } else {
1109 cachesize = boot_cpu_data.x86_cache_size;
1110 if (cachesize == -1) {
1111 cachesize = 16; /* Pentiums, 2x8kB cache */
1112 bandwidth = 100;
1113 }
198e2f18 1114 max_cache_size = cachesize * 1024;
1da177e4
LT
1115 }
1116}
1117
1118/*
1119 * Cycle through the processors sending APIC IPIs to boot each.
1120 */
1121
1122static int boot_cpu_logical_apicid;
1123/* Where the IO area was mapped on multiquad, always 0 otherwise */
1124void *xquad_portio;
129f6946
AD
1125#ifdef CONFIG_X86_NUMAQ
1126EXPORT_SYMBOL(xquad_portio);
1127#endif
1da177e4 1128
1da177e4
LT
1129static void __init smp_boot_cpus(unsigned int max_cpus)
1130{
1131 int apicid, cpu, bit, kicked;
1132 unsigned long bogosum = 0;
1133
1134 /*
1135 * Setup boot CPU information
1136 */
1137 smp_store_cpu_info(0); /* Final full version of the data */
1138 printk("CPU%d: ", 0);
1139 print_cpu_info(&cpu_data[0]);
1140
1e4c85f9 1141 boot_cpu_physical_apicid = GET_APIC_ID(apic_read(APIC_ID));
1da177e4
LT
1142 boot_cpu_logical_apicid = logical_smp_processor_id();
1143 x86_cpu_to_apicid[0] = boot_cpu_physical_apicid;
1144
1145 current_thread_info()->cpu = 0;
1146 smp_tune_scheduling();
1da177e4 1147
94605eff 1148 set_cpu_sibling_map(0);
3dd9d514 1149
1da177e4
LT
1150 /*
1151 * If we couldn't find an SMP configuration at boot time,
1152 * get out of here now!
1153 */
1154 if (!smp_found_config && !acpi_lapic) {
1155 printk(KERN_NOTICE "SMP motherboard not detected.\n");
1e4c85f9
LT
1156 smpboot_clear_io_apic_irqs();
1157 phys_cpu_present_map = physid_mask_of_physid(0);
1158 if (APIC_init_uniprocessor())
1159 printk(KERN_NOTICE "Local APIC not detected."
1160 " Using dummy APIC emulation.\n");
1161 map_cpu_to_logical_apicid();
1162 cpu_set(0, cpu_sibling_map[0]);
1163 cpu_set(0, cpu_core_map[0]);
1164 return;
1165 }
1166
1167 /*
1168 * Should not be necessary because the MP table should list the boot
1169 * CPU too, but we do it for the sake of robustness anyway.
1170 * Makes no sense to do this check in clustered apic mode, so skip it
1171 */
1172 if (!check_phys_apicid_present(boot_cpu_physical_apicid)) {
1173 printk("weird, boot CPU (#%d) not listed by the BIOS.\n",
1174 boot_cpu_physical_apicid);
1175 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1176 }
1177
1178 /*
1179 * If we couldn't find a local APIC, then get out of here now!
1180 */
1181 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) && !cpu_has_apic) {
1182 printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n",
1183 boot_cpu_physical_apicid);
1184 printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n");
1185 smpboot_clear_io_apic_irqs();
1186 phys_cpu_present_map = physid_mask_of_physid(0);
1187 cpu_set(0, cpu_sibling_map[0]);
1188 cpu_set(0, cpu_core_map[0]);
1da177e4
LT
1189 return;
1190 }
1191
1e4c85f9
LT
1192 verify_local_APIC();
1193
1da177e4
LT
1194 /*
1195 * If SMP should be disabled, then really disable it!
1196 */
1e4c85f9
LT
1197 if (!max_cpus) {
1198 smp_found_config = 0;
1199 printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n");
1200 smpboot_clear_io_apic_irqs();
1201 phys_cpu_present_map = physid_mask_of_physid(0);
1202 cpu_set(0, cpu_sibling_map[0]);
1203 cpu_set(0, cpu_core_map[0]);
1da177e4
LT
1204 return;
1205 }
1206
1e4c85f9
LT
1207 connect_bsp_APIC();
1208 setup_local_APIC();
1209 map_cpu_to_logical_apicid();
1210
1211
1da177e4
LT
1212 setup_portio_remap();
1213
1214 /*
1215 * Scan the CPU present map and fire up the other CPUs via do_boot_cpu
1216 *
1217 * In clustered apic mode, phys_cpu_present_map is a constructed thus:
1218 * bits 0-3 are quad0, 4-7 are quad1, etc. A perverse twist on the
1219 * clustered apic ID.
1220 */
1221 Dprintk("CPU present map: %lx\n", physids_coerce(phys_cpu_present_map));
1222
1223 kicked = 1;
1224 for (bit = 0; kicked < NR_CPUS && bit < MAX_APICS; bit++) {
1225 apicid = cpu_present_to_apicid(bit);
1226 /*
1227 * Don't even attempt to start the boot CPU!
1228 */
1229 if ((apicid == boot_cpu_apicid) || (apicid == BAD_APICID))
1230 continue;
1231
1232 if (!check_apicid_present(bit))
1233 continue;
1234 if (max_cpus <= cpucount+1)
1235 continue;
1236
e1367daf 1237 if (((cpu = alloc_cpu_id()) <= 0) || do_boot_cpu(apicid, cpu))
1da177e4
LT
1238 printk("CPU #%d not responding - cannot use it.\n",
1239 apicid);
1240 else
1241 ++kicked;
1242 }
1243
1244 /*
1245 * Cleanup possible dangling ends...
1246 */
1247 smpboot_restore_warm_reset_vector();
1248
1249 /*
1250 * Allow the user to impress friends.
1251 */
1252 Dprintk("Before bogomips.\n");
1253 for (cpu = 0; cpu < NR_CPUS; cpu++)
1254 if (cpu_isset(cpu, cpu_callout_map))
1255 bogosum += cpu_data[cpu].loops_per_jiffy;
1256 printk(KERN_INFO
1257 "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
1258 cpucount+1,
1259 bogosum/(500000/HZ),
1260 (bogosum/(5000/HZ))%100);
1261
1262 Dprintk("Before bogocount - setting activated=1.\n");
1263
1264 if (smp_b_stepping)
1265 printk(KERN_WARNING "WARNING: SMP operation may be unreliable with B stepping processors.\n");
1266
1267 /*
1268 * Don't taint if we are running SMP kernel on a single non-MP
1269 * approved Athlon
1270 */
1271 if (tainted & TAINT_UNSAFE_SMP) {
1272 if (cpucount)
1273 printk (KERN_INFO "WARNING: This combination of AMD processors is not suitable for SMP.\n");
1274 else
1275 tainted &= ~TAINT_UNSAFE_SMP;
1276 }
1277
1278 Dprintk("Boot done.\n");
1279
1280 /*
1281 * construct cpu_sibling_map[], so that we can tell sibling CPUs
1282 * efficiently.
1283 */
3dd9d514 1284 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1da177e4 1285 cpus_clear(cpu_sibling_map[cpu]);
3dd9d514
AK
1286 cpus_clear(cpu_core_map[cpu]);
1287 }
1da177e4 1288
d720803a
LS
1289 cpu_set(0, cpu_sibling_map[0]);
1290 cpu_set(0, cpu_core_map[0]);
1da177e4 1291
1e4c85f9
LT
1292 smpboot_setup_io_apic();
1293
1294 setup_boot_APIC_clock();
1295
1da177e4
LT
1296 /*
1297 * Synchronize the TSC with the AP
1298 */
1299 if (cpu_has_tsc && cpucount && cpu_khz)
1300 synchronize_tsc_bp();
1301}
1302
1303/* These are wrappers to interface to the new boot process. Someone
1304 who understands all this stuff should rewrite it properly. --RR 15/Jul/02 */
1305void __init smp_prepare_cpus(unsigned int max_cpus)
1306{
f3705136
ZM
1307 smp_commenced_mask = cpumask_of_cpu(0);
1308 cpu_callin_map = cpumask_of_cpu(0);
1309 mb();
1da177e4
LT
1310 smp_boot_cpus(max_cpus);
1311}
1312
1313void __devinit smp_prepare_boot_cpu(void)
1314{
1315 cpu_set(smp_processor_id(), cpu_online_map);
1316 cpu_set(smp_processor_id(), cpu_callout_map);
e1367daf 1317 cpu_set(smp_processor_id(), cpu_present_map);
4ad8d383 1318 cpu_set(smp_processor_id(), cpu_possible_map);
e1367daf 1319 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
1da177e4
LT
1320}
1321
f3705136 1322#ifdef CONFIG_HOTPLUG_CPU
e1367daf
LS
1323static void
1324remove_siblinginfo(int cpu)
1da177e4 1325{
e1367daf 1326 int sibling;
94605eff 1327 struct cpuinfo_x86 *c = cpu_data;
e1367daf 1328
94605eff
SS
1329 for_each_cpu_mask(sibling, cpu_core_map[cpu]) {
1330 cpu_clear(cpu, cpu_core_map[sibling]);
1331 /*
1332 * last thread sibling in this cpu core going down
1333 */
1334 if (cpus_weight(cpu_sibling_map[cpu]) == 1)
1335 c[sibling].booted_cores--;
1336 }
1337
e1367daf
LS
1338 for_each_cpu_mask(sibling, cpu_sibling_map[cpu])
1339 cpu_clear(cpu, cpu_sibling_map[sibling]);
e1367daf
LS
1340 cpus_clear(cpu_sibling_map[cpu]);
1341 cpus_clear(cpu_core_map[cpu]);
1342 phys_proc_id[cpu] = BAD_APICID;
1343 cpu_core_id[cpu] = BAD_APICID;
94605eff 1344 cpu_clear(cpu, cpu_sibling_setup_map);
f3705136
ZM
1345}
1346
1347int __cpu_disable(void)
1348{
1349 cpumask_t map = cpu_online_map;
1350 int cpu = smp_processor_id();
1351
1352 /*
1353 * Perhaps use cpufreq to drop frequency, but that could go
1354 * into generic code.
1355 *
1356 * We won't take down the boot processor on i386 due to some
1357 * interrupts only being able to be serviced by the BSP.
1358 * Especially so if we're not using an IOAPIC -zwane
1359 */
1360 if (cpu == 0)
1361 return -EBUSY;
1362
5e9ef02e 1363 clear_local_APIC();
f3705136
ZM
1364 /* Allow any queued timer interrupts to get serviced */
1365 local_irq_enable();
1366 mdelay(1);
1367 local_irq_disable();
1368
e1367daf
LS
1369 remove_siblinginfo(cpu);
1370
f3705136
ZM
1371 cpu_clear(cpu, map);
1372 fixup_irqs(map);
1373 /* It's now safe to remove this processor from the online map */
1374 cpu_clear(cpu, cpu_online_map);
1375 return 0;
1376}
1377
1378void __cpu_die(unsigned int cpu)
1379{
1380 /* We don't do anything here: idle task is faking death itself. */
1381 unsigned int i;
1382
1383 for (i = 0; i < 10; i++) {
1384 /* They ack this in play_dead by setting CPU_DEAD */
e1367daf
LS
1385 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1386 printk ("CPU %d is now offline\n", cpu);
9a0b5817
GH
1387 if (1 == num_online_cpus())
1388 alternatives_smp_switch(0);
f3705136 1389 return;
e1367daf 1390 }
aeb8397b 1391 msleep(100);
1da177e4 1392 }
f3705136
ZM
1393 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1394}
1395#else /* ... !CONFIG_HOTPLUG_CPU */
1396int __cpu_disable(void)
1397{
1398 return -ENOSYS;
1399}
1da177e4 1400
f3705136
ZM
1401void __cpu_die(unsigned int cpu)
1402{
1403 /* We said "no" in __cpu_disable */
1404 BUG();
1405}
1406#endif /* CONFIG_HOTPLUG_CPU */
1407
1408int __devinit __cpu_up(unsigned int cpu)
1409{
34f361ad
AR
1410#ifdef CONFIG_HOTPLUG_CPU
1411 int ret=0;
1412
1413 /*
1414 * We do warm boot only on cpus that had booted earlier
1415 * Otherwise cold boot is all handled from smp_boot_cpus().
1416 * cpu_callin_map is set during AP kickstart process. Its reset
1417 * when a cpu is taken offline from cpu_exit_clear().
1418 */
1419 if (!cpu_isset(cpu, cpu_callin_map))
1420 ret = __smp_prepare_cpu(cpu);
1421
1422 if (ret)
1423 return -EIO;
1424#endif
1425
1da177e4
LT
1426 /* In case one didn't come up */
1427 if (!cpu_isset(cpu, cpu_callin_map)) {
f3705136 1428 printk(KERN_DEBUG "skipping cpu%d, didn't come online\n", cpu);
1da177e4
LT
1429 local_irq_enable();
1430 return -EIO;
1431 }
1432
1433 local_irq_enable();
e1367daf 1434 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1da177e4
LT
1435 /* Unleash the CPU! */
1436 cpu_set(cpu, smp_commenced_mask);
1437 while (!cpu_isset(cpu, cpu_online_map))
18698917 1438 cpu_relax();
1da177e4
LT
1439 return 0;
1440}
1441
1442void __init smp_cpus_done(unsigned int max_cpus)
1443{
1444#ifdef CONFIG_X86_IO_APIC
1445 setup_ioapic_dest();
1446#endif
1447 zap_low_mappings();
e1367daf 1448#ifndef CONFIG_HOTPLUG_CPU
1da177e4
LT
1449 /*
1450 * Disable executability of the SMP trampoline:
1451 */
1452 set_kernel_exec((unsigned long)trampoline_base, trampoline_exec);
e1367daf 1453#endif
1da177e4
LT
1454}
1455
1456void __init smp_intr_init(void)
1457{
1458 /*
1459 * IRQ0 must be given a fixed assignment and initialized,
1460 * because it's used before the IO-APIC is set up.
1461 */
1462 set_intr_gate(FIRST_DEVICE_VECTOR, interrupt[0]);
1463
1464 /*
1465 * The reschedule interrupt is a CPU-to-CPU reschedule-helper
1466 * IPI, driven by wakeup.
1467 */
1468 set_intr_gate(RESCHEDULE_VECTOR, reschedule_interrupt);
1469
1470 /* IPI for invalidation */
1471 set_intr_gate(INVALIDATE_TLB_VECTOR, invalidate_interrupt);
1472
1473 /* IPI for generic function call */
1474 set_intr_gate(CALL_FUNCTION_VECTOR, call_function_interrupt);
1475}
This page took 0.26317 seconds and 5 git commands to generate.