[PATCH] sched_domai: Allocate sched_group structures dynamically
[deliverable/linux.git] / arch / i386 / kernel / smpboot.c
CommitLineData
1da177e4
LT
1/*
2 * x86 SMP booting functions
3 *
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com>
6 *
7 * Much of the core SMP work is based on previous work by Thomas Radke, to
8 * whom a great many thanks are extended.
9 *
10 * Thanks to Intel for making available several different Pentium,
11 * Pentium Pro and Pentium-II/Xeon MP machines.
12 * Original development of Linux SMP code supported by Caldera.
13 *
14 * This code is released under the GNU General Public License version 2 or
15 * later.
16 *
17 * Fixes
18 * Felix Koop : NR_CPUS used properly
19 * Jose Renau : Handle single CPU case.
20 * Alan Cox : By repeated request 8) - Total BogoMIPS report.
21 * Greg Wright : Fix for kernel stacks panic.
22 * Erich Boleyn : MP v1.4 and additional changes.
23 * Matthias Sattler : Changes for 2.1 kernel map.
24 * Michel Lespinasse : Changes for 2.1 kernel map.
25 * Michael Chastain : Change trampoline.S to gnu as.
26 * Alan Cox : Dumb bug: 'B' step PPro's are fine
27 * Ingo Molnar : Added APIC timers, based on code
28 * from Jose Renau
29 * Ingo Molnar : various cleanups and rewrites
30 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
31 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
32 * Martin J. Bligh : Added support for multi-quad systems
33 * Dave Jones : Report invalid combinations of Athlon CPUs.
34* Rusty Russell : Hacked into shape for new "hotplug" boot process. */
35
36#include <linux/module.h>
37#include <linux/config.h>
38#include <linux/init.h>
39#include <linux/kernel.h>
40
41#include <linux/mm.h>
42#include <linux/sched.h>
43#include <linux/kernel_stat.h>
44#include <linux/smp_lock.h>
1da177e4 45#include <linux/bootmem.h>
f3705136
ZM
46#include <linux/notifier.h>
47#include <linux/cpu.h>
48#include <linux/percpu.h>
1da177e4
LT
49
50#include <linux/delay.h>
51#include <linux/mc146818rtc.h>
52#include <asm/tlbflush.h>
53#include <asm/desc.h>
54#include <asm/arch_hooks.h>
3e4ff115 55#include <asm/nmi.h>
1da177e4
LT
56
57#include <mach_apic.h>
58#include <mach_wakecpu.h>
59#include <smpboot_hooks.h>
60
61/* Set if we find a B stepping CPU */
0bb3184d 62static int __devinitdata smp_b_stepping;
1da177e4
LT
63
64/* Number of siblings per CPU package */
65int smp_num_siblings = 1;
129f6946
AD
66#ifdef CONFIG_X86_HT
67EXPORT_SYMBOL(smp_num_siblings);
68#endif
d720803a 69
1e9f28fa
SS
70/* Last level cache ID of each logical CPU */
71int cpu_llc_id[NR_CPUS] __cpuinitdata = {[0 ... NR_CPUS-1] = BAD_APICID};
72
94605eff 73/* representing HT siblings of each logical CPU */
6c036527 74cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
d720803a
LS
75EXPORT_SYMBOL(cpu_sibling_map);
76
94605eff 77/* representing HT and core siblings of each logical CPU */
6c036527 78cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
d720803a
LS
79EXPORT_SYMBOL(cpu_core_map);
80
1da177e4 81/* bitmap of online cpus */
6c036527 82cpumask_t cpu_online_map __read_mostly;
129f6946 83EXPORT_SYMBOL(cpu_online_map);
1da177e4
LT
84
85cpumask_t cpu_callin_map;
86cpumask_t cpu_callout_map;
129f6946 87EXPORT_SYMBOL(cpu_callout_map);
4ad8d383
ZM
88cpumask_t cpu_possible_map;
89EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
90static cpumask_t smp_commenced_mask;
91
e1367daf
LS
92/* TSC's upper 32 bits can't be written in eariler CPU (before prescott), there
93 * is no way to resync one AP against BP. TBD: for prescott and above, we
94 * should use IA64's algorithm
95 */
96static int __devinitdata tsc_sync_disabled;
97
1da177e4
LT
98/* Per CPU bogomips and other parameters */
99struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
129f6946 100EXPORT_SYMBOL(cpu_data);
1da177e4 101
6c036527 102u8 x86_cpu_to_apicid[NR_CPUS] __read_mostly =
1da177e4
LT
103 { [0 ... NR_CPUS-1] = 0xff };
104EXPORT_SYMBOL(x86_cpu_to_apicid);
105
106/*
107 * Trampoline 80x86 program as an array.
108 */
109
110extern unsigned char trampoline_data [];
111extern unsigned char trampoline_end [];
112static unsigned char *trampoline_base;
113static int trampoline_exec;
114
115static void map_cpu_to_logical_apicid(void);
116
f3705136
ZM
117/* State of each CPU. */
118DEFINE_PER_CPU(int, cpu_state) = { 0 };
119
1da177e4
LT
120/*
121 * Currently trivial. Write the real->protected mode
122 * bootstrap into the page concerned. The caller
123 * has made sure it's suitably aligned.
124 */
125
0bb3184d 126static unsigned long __devinit setup_trampoline(void)
1da177e4
LT
127{
128 memcpy(trampoline_base, trampoline_data, trampoline_end - trampoline_data);
129 return virt_to_phys(trampoline_base);
130}
131
132/*
133 * We are called very early to get the low memory for the
134 * SMP bootup trampoline page.
135 */
136void __init smp_alloc_memory(void)
137{
138 trampoline_base = (void *) alloc_bootmem_low_pages(PAGE_SIZE);
139 /*
140 * Has to be in very low memory so we can execute
141 * real-mode AP code.
142 */
143 if (__pa(trampoline_base) >= 0x9F000)
144 BUG();
145 /*
146 * Make the SMP trampoline executable:
147 */
148 trampoline_exec = set_kernel_exec((unsigned long)trampoline_base, 1);
149}
150
151/*
152 * The bootstrap kernel entry code has set these up. Save them for
153 * a given CPU
154 */
155
0bb3184d 156static void __devinit smp_store_cpu_info(int id)
1da177e4
LT
157{
158 struct cpuinfo_x86 *c = cpu_data + id;
159
160 *c = boot_cpu_data;
161 if (id!=0)
162 identify_cpu(c);
163 /*
164 * Mask B, Pentium, but not Pentium MMX
165 */
166 if (c->x86_vendor == X86_VENDOR_INTEL &&
167 c->x86 == 5 &&
168 c->x86_mask >= 1 && c->x86_mask <= 4 &&
169 c->x86_model <= 3)
170 /*
171 * Remember we have B step Pentia with bugs
172 */
173 smp_b_stepping = 1;
174
175 /*
176 * Certain Athlons might work (for various values of 'work') in SMP
177 * but they are not certified as MP capable.
178 */
179 if ((c->x86_vendor == X86_VENDOR_AMD) && (c->x86 == 6)) {
180
181 /* Athlon 660/661 is valid. */
182 if ((c->x86_model==6) && ((c->x86_mask==0) || (c->x86_mask==1)))
183 goto valid_k7;
184
185 /* Duron 670 is valid */
186 if ((c->x86_model==7) && (c->x86_mask==0))
187 goto valid_k7;
188
189 /*
190 * Athlon 662, Duron 671, and Athlon >model 7 have capability bit.
191 * It's worth noting that the A5 stepping (662) of some Athlon XP's
192 * have the MP bit set.
193 * See http://www.heise.de/newsticker/data/jow-18.10.01-000 for more.
194 */
195 if (((c->x86_model==6) && (c->x86_mask>=2)) ||
196 ((c->x86_model==7) && (c->x86_mask>=1)) ||
197 (c->x86_model> 7))
198 if (cpu_has_mp)
199 goto valid_k7;
200
201 /* If we get here, it's not a certified SMP capable AMD system. */
9f158333 202 add_taint(TAINT_UNSAFE_SMP);
1da177e4
LT
203 }
204
205valid_k7:
206 ;
207}
208
209/*
210 * TSC synchronization.
211 *
212 * We first check whether all CPUs have their TSC's synchronized,
213 * then we print a warning if not, and always resync.
214 */
215
216static atomic_t tsc_start_flag = ATOMIC_INIT(0);
217static atomic_t tsc_count_start = ATOMIC_INIT(0);
218static atomic_t tsc_count_stop = ATOMIC_INIT(0);
219static unsigned long long tsc_values[NR_CPUS];
220
221#define NR_LOOPS 5
222
223static void __init synchronize_tsc_bp (void)
224{
225 int i;
226 unsigned long long t0;
227 unsigned long long sum, avg;
228 long long delta;
a3a255e7 229 unsigned int one_usec;
1da177e4
LT
230 int buggy = 0;
231
232 printk(KERN_INFO "checking TSC synchronization across %u CPUs: ", num_booting_cpus());
233
234 /* convert from kcyc/sec to cyc/usec */
235 one_usec = cpu_khz / 1000;
236
237 atomic_set(&tsc_start_flag, 1);
238 wmb();
239
240 /*
241 * We loop a few times to get a primed instruction cache,
242 * then the last pass is more or less synchronized and
243 * the BP and APs set their cycle counters to zero all at
244 * once. This reduces the chance of having random offsets
245 * between the processors, and guarantees that the maximum
246 * delay between the cycle counters is never bigger than
247 * the latency of information-passing (cachelines) between
248 * two CPUs.
249 */
250 for (i = 0; i < NR_LOOPS; i++) {
251 /*
252 * all APs synchronize but they loop on '== num_cpus'
253 */
254 while (atomic_read(&tsc_count_start) != num_booting_cpus()-1)
18698917 255 cpu_relax();
1da177e4
LT
256 atomic_set(&tsc_count_stop, 0);
257 wmb();
258 /*
259 * this lets the APs save their current TSC:
260 */
261 atomic_inc(&tsc_count_start);
262
263 rdtscll(tsc_values[smp_processor_id()]);
264 /*
265 * We clear the TSC in the last loop:
266 */
267 if (i == NR_LOOPS-1)
268 write_tsc(0, 0);
269
270 /*
271 * Wait for all APs to leave the synchronization point:
272 */
273 while (atomic_read(&tsc_count_stop) != num_booting_cpus()-1)
18698917 274 cpu_relax();
1da177e4
LT
275 atomic_set(&tsc_count_start, 0);
276 wmb();
277 atomic_inc(&tsc_count_stop);
278 }
279
280 sum = 0;
281 for (i = 0; i < NR_CPUS; i++) {
282 if (cpu_isset(i, cpu_callout_map)) {
283 t0 = tsc_values[i];
284 sum += t0;
285 }
286 }
287 avg = sum;
288 do_div(avg, num_booting_cpus());
289
290 sum = 0;
291 for (i = 0; i < NR_CPUS; i++) {
292 if (!cpu_isset(i, cpu_callout_map))
293 continue;
294 delta = tsc_values[i] - avg;
295 if (delta < 0)
296 delta = -delta;
297 /*
298 * We report bigger than 2 microseconds clock differences.
299 */
300 if (delta > 2*one_usec) {
301 long realdelta;
302 if (!buggy) {
303 buggy = 1;
304 printk("\n");
305 }
306 realdelta = delta;
307 do_div(realdelta, one_usec);
308 if (tsc_values[i] < avg)
309 realdelta = -realdelta;
310
7f5910ec
DJ
311 if (realdelta > 0)
312 printk(KERN_INFO "CPU#%d had %ld usecs TSC "
313 "skew, fixed it up.\n", i, realdelta);
1da177e4
LT
314 }
315
316 sum += delta;
317 }
318 if (!buggy)
319 printk("passed.\n");
320}
321
322static void __init synchronize_tsc_ap (void)
323{
324 int i;
325
326 /*
327 * Not every cpu is online at the time
328 * this gets called, so we first wait for the BP to
329 * finish SMP initialization:
330 */
18698917
AM
331 while (!atomic_read(&tsc_start_flag))
332 cpu_relax();
1da177e4
LT
333
334 for (i = 0; i < NR_LOOPS; i++) {
335 atomic_inc(&tsc_count_start);
336 while (atomic_read(&tsc_count_start) != num_booting_cpus())
18698917 337 cpu_relax();
1da177e4
LT
338
339 rdtscll(tsc_values[smp_processor_id()]);
340 if (i == NR_LOOPS-1)
341 write_tsc(0, 0);
342
343 atomic_inc(&tsc_count_stop);
18698917
AM
344 while (atomic_read(&tsc_count_stop) != num_booting_cpus())
345 cpu_relax();
1da177e4
LT
346 }
347}
348#undef NR_LOOPS
349
350extern void calibrate_delay(void);
351
352static atomic_t init_deasserted;
353
0bb3184d 354static void __devinit smp_callin(void)
1da177e4
LT
355{
356 int cpuid, phys_id;
357 unsigned long timeout;
358
359 /*
360 * If waken up by an INIT in an 82489DX configuration
361 * we may get here before an INIT-deassert IPI reaches
362 * our local APIC. We have to wait for the IPI or we'll
363 * lock up on an APIC access.
364 */
365 wait_for_init_deassert(&init_deasserted);
366
367 /*
368 * (This works even if the APIC is not enabled.)
369 */
370 phys_id = GET_APIC_ID(apic_read(APIC_ID));
371 cpuid = smp_processor_id();
372 if (cpu_isset(cpuid, cpu_callin_map)) {
373 printk("huh, phys CPU#%d, CPU#%d already present??\n",
374 phys_id, cpuid);
375 BUG();
376 }
377 Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
378
379 /*
380 * STARTUP IPIs are fragile beasts as they might sometimes
381 * trigger some glue motherboard logic. Complete APIC bus
382 * silence for 1 second, this overestimates the time the
383 * boot CPU is spending to send the up to 2 STARTUP IPIs
384 * by a factor of two. This should be enough.
385 */
386
387 /*
388 * Waiting 2s total for startup (udelay is not yet working)
389 */
390 timeout = jiffies + 2*HZ;
391 while (time_before(jiffies, timeout)) {
392 /*
393 * Has the boot CPU finished it's STARTUP sequence?
394 */
395 if (cpu_isset(cpuid, cpu_callout_map))
396 break;
397 rep_nop();
398 }
399
400 if (!time_before(jiffies, timeout)) {
401 printk("BUG: CPU%d started up but did not get a callout!\n",
402 cpuid);
403 BUG();
404 }
405
406 /*
407 * the boot CPU has finished the init stage and is spinning
408 * on callin_map until we finish. We are free to set up this
409 * CPU, first the APIC. (this is probably redundant on most
410 * boards)
411 */
412
413 Dprintk("CALLIN, before setup_local_APIC().\n");
414 smp_callin_clear_local_apic();
415 setup_local_APIC();
416 map_cpu_to_logical_apicid();
417
418 /*
419 * Get our bogomips.
420 */
421 calibrate_delay();
422 Dprintk("Stack at about %p\n",&cpuid);
423
424 /*
425 * Save our processor parameters
426 */
427 smp_store_cpu_info(cpuid);
428
429 disable_APIC_timer();
430
431 /*
432 * Allow the master to continue.
433 */
434 cpu_set(cpuid, cpu_callin_map);
435
436 /*
437 * Synchronize the TSC with the BP
438 */
e1367daf 439 if (cpu_has_tsc && cpu_khz && !tsc_sync_disabled)
1da177e4
LT
440 synchronize_tsc_ap();
441}
442
443static int cpucount;
444
1e9f28fa
SS
445/* maps the cpu to the sched domain representing multi-core */
446cpumask_t cpu_coregroup_map(int cpu)
447{
448 struct cpuinfo_x86 *c = cpu_data + cpu;
449 /*
450 * For perf, we return last level cache shared map.
451 * TBD: when power saving sched policy is added, we will return
452 * cpu_core_map when power saving policy is enabled
453 */
454 return c->llc_shared_map;
455}
456
94605eff
SS
457/* representing cpus for which sibling maps can be computed */
458static cpumask_t cpu_sibling_setup_map;
459
d720803a
LS
460static inline void
461set_cpu_sibling_map(int cpu)
462{
463 int i;
94605eff
SS
464 struct cpuinfo_x86 *c = cpu_data;
465
466 cpu_set(cpu, cpu_sibling_setup_map);
d720803a
LS
467
468 if (smp_num_siblings > 1) {
94605eff 469 for_each_cpu_mask(i, cpu_sibling_setup_map) {
4b89aff9
RS
470 if (c[cpu].phys_proc_id == c[i].phys_proc_id &&
471 c[cpu].cpu_core_id == c[i].cpu_core_id) {
d720803a
LS
472 cpu_set(i, cpu_sibling_map[cpu]);
473 cpu_set(cpu, cpu_sibling_map[i]);
94605eff
SS
474 cpu_set(i, cpu_core_map[cpu]);
475 cpu_set(cpu, cpu_core_map[i]);
1e9f28fa
SS
476 cpu_set(i, c[cpu].llc_shared_map);
477 cpu_set(cpu, c[i].llc_shared_map);
d720803a
LS
478 }
479 }
480 } else {
481 cpu_set(cpu, cpu_sibling_map[cpu]);
482 }
483
1e9f28fa
SS
484 cpu_set(cpu, c[cpu].llc_shared_map);
485
94605eff 486 if (current_cpu_data.x86_max_cores == 1) {
d720803a 487 cpu_core_map[cpu] = cpu_sibling_map[cpu];
94605eff
SS
488 c[cpu].booted_cores = 1;
489 return;
490 }
491
492 for_each_cpu_mask(i, cpu_sibling_setup_map) {
1e9f28fa
SS
493 if (cpu_llc_id[cpu] != BAD_APICID &&
494 cpu_llc_id[cpu] == cpu_llc_id[i]) {
495 cpu_set(i, c[cpu].llc_shared_map);
496 cpu_set(cpu, c[i].llc_shared_map);
497 }
4b89aff9 498 if (c[cpu].phys_proc_id == c[i].phys_proc_id) {
94605eff
SS
499 cpu_set(i, cpu_core_map[cpu]);
500 cpu_set(cpu, cpu_core_map[i]);
501 /*
502 * Does this new cpu bringup a new core?
503 */
504 if (cpus_weight(cpu_sibling_map[cpu]) == 1) {
505 /*
506 * for each core in package, increment
507 * the booted_cores for this new cpu
508 */
509 if (first_cpu(cpu_sibling_map[i]) == i)
510 c[cpu].booted_cores++;
511 /*
512 * increment the core count for all
513 * the other cpus in this package
514 */
515 if (i != cpu)
516 c[i].booted_cores++;
517 } else if (i != cpu && !c[cpu].booted_cores)
518 c[cpu].booted_cores = c[i].booted_cores;
519 }
d720803a
LS
520 }
521}
522
1da177e4
LT
523/*
524 * Activate a secondary processor.
525 */
0bb3184d 526static void __devinit start_secondary(void *unused)
1da177e4
LT
527{
528 /*
529 * Dont put anything before smp_callin(), SMP
530 * booting is too fragile that we want to limit the
531 * things done here to the most necessary things.
532 */
533 cpu_init();
5bfb5d69 534 preempt_disable();
1da177e4
LT
535 smp_callin();
536 while (!cpu_isset(smp_processor_id(), smp_commenced_mask))
537 rep_nop();
538 setup_secondary_APIC_clock();
539 if (nmi_watchdog == NMI_IO_APIC) {
540 disable_8259A_irq(0);
541 enable_NMI_through_LVT0(NULL);
542 enable_8259A_irq(0);
543 }
544 enable_APIC_timer();
545 /*
546 * low-memory mappings have been cleared, flush them from
547 * the local TLBs too.
548 */
549 local_flush_tlb();
6fe940d6 550
d720803a
LS
551 /* This must be done before setting cpu_online_map */
552 set_cpu_sibling_map(raw_smp_processor_id());
553 wmb();
554
6fe940d6
LS
555 /*
556 * We need to hold call_lock, so there is no inconsistency
557 * between the time smp_call_function() determines number of
558 * IPI receipients, and the time when the determination is made
559 * for which cpus receive the IPI. Holding this
560 * lock helps us to not include this cpu in a currently in progress
561 * smp_call_function().
562 */
563 lock_ipi_call_lock();
1da177e4 564 cpu_set(smp_processor_id(), cpu_online_map);
6fe940d6 565 unlock_ipi_call_lock();
e1367daf 566 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
1da177e4
LT
567
568 /* We can take interrupts now: we're officially "up". */
569 local_irq_enable();
570
571 wmb();
572 cpu_idle();
573}
574
575/*
576 * Everything has been set up for the secondary
577 * CPUs - they just need to reload everything
578 * from the task structure
579 * This function must not return.
580 */
0bb3184d 581void __devinit initialize_secondary(void)
1da177e4
LT
582{
583 /*
584 * We don't actually need to load the full TSS,
585 * basically just the stack pointer and the eip.
586 */
587
588 asm volatile(
589 "movl %0,%%esp\n\t"
590 "jmp *%1"
591 :
592 :"r" (current->thread.esp),"r" (current->thread.eip));
593}
594
595extern struct {
596 void * esp;
597 unsigned short ss;
598} stack_start;
599
600#ifdef CONFIG_NUMA
601
602/* which logical CPUs are on which nodes */
6c036527 603cpumask_t node_2_cpu_mask[MAX_NUMNODES] __read_mostly =
1da177e4
LT
604 { [0 ... MAX_NUMNODES-1] = CPU_MASK_NONE };
605/* which node each logical CPU is on */
6c036527 606int cpu_2_node[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = 0 };
1da177e4
LT
607EXPORT_SYMBOL(cpu_2_node);
608
609/* set up a mapping between cpu and node. */
610static inline void map_cpu_to_node(int cpu, int node)
611{
612 printk("Mapping cpu %d to node %d\n", cpu, node);
613 cpu_set(cpu, node_2_cpu_mask[node]);
614 cpu_2_node[cpu] = node;
615}
616
617/* undo a mapping between cpu and node. */
618static inline void unmap_cpu_to_node(int cpu)
619{
620 int node;
621
622 printk("Unmapping cpu %d from all nodes\n", cpu);
623 for (node = 0; node < MAX_NUMNODES; node ++)
624 cpu_clear(cpu, node_2_cpu_mask[node]);
625 cpu_2_node[cpu] = 0;
626}
627#else /* !CONFIG_NUMA */
628
629#define map_cpu_to_node(cpu, node) ({})
630#define unmap_cpu_to_node(cpu) ({})
631
632#endif /* CONFIG_NUMA */
633
6c036527 634u8 cpu_2_logical_apicid[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = BAD_APICID };
1da177e4
LT
635
636static void map_cpu_to_logical_apicid(void)
637{
638 int cpu = smp_processor_id();
639 int apicid = logical_smp_processor_id();
640
641 cpu_2_logical_apicid[cpu] = apicid;
642 map_cpu_to_node(cpu, apicid_to_node(apicid));
643}
644
645static void unmap_cpu_to_logical_apicid(int cpu)
646{
647 cpu_2_logical_apicid[cpu] = BAD_APICID;
648 unmap_cpu_to_node(cpu);
649}
650
651#if APIC_DEBUG
652static inline void __inquire_remote_apic(int apicid)
653{
654 int i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
655 char *names[] = { "ID", "VERSION", "SPIV" };
656 int timeout, status;
657
658 printk("Inquiring remote APIC #%d...\n", apicid);
659
38e548ee 660 for (i = 0; i < ARRAY_SIZE(regs); i++) {
1da177e4
LT
661 printk("... APIC #%d %s: ", apicid, names[i]);
662
663 /*
664 * Wait for idle.
665 */
666 apic_wait_icr_idle();
667
668 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
669 apic_write_around(APIC_ICR, APIC_DM_REMRD | regs[i]);
670
671 timeout = 0;
672 do {
673 udelay(100);
674 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
675 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
676
677 switch (status) {
678 case APIC_ICR_RR_VALID:
679 status = apic_read(APIC_RRR);
680 printk("%08x\n", status);
681 break;
682 default:
683 printk("failed\n");
684 }
685 }
686}
687#endif
688
689#ifdef WAKE_SECONDARY_VIA_NMI
690/*
691 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
692 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
693 * won't ... remember to clear down the APIC, etc later.
694 */
0bb3184d 695static int __devinit
1da177e4
LT
696wakeup_secondary_cpu(int logical_apicid, unsigned long start_eip)
697{
698 unsigned long send_status = 0, accept_status = 0;
699 int timeout, maxlvt;
700
701 /* Target chip */
702 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(logical_apicid));
703
704 /* Boot on the stack */
705 /* Kick the second */
706 apic_write_around(APIC_ICR, APIC_DM_NMI | APIC_DEST_LOGICAL);
707
708 Dprintk("Waiting for send to finish...\n");
709 timeout = 0;
710 do {
711 Dprintk("+");
712 udelay(100);
713 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
714 } while (send_status && (timeout++ < 1000));
715
716 /*
717 * Give the other CPU some time to accept the IPI.
718 */
719 udelay(200);
720 /*
721 * Due to the Pentium erratum 3AP.
722 */
723 maxlvt = get_maxlvt();
724 if (maxlvt > 3) {
725 apic_read_around(APIC_SPIV);
726 apic_write(APIC_ESR, 0);
727 }
728 accept_status = (apic_read(APIC_ESR) & 0xEF);
729 Dprintk("NMI sent.\n");
730
731 if (send_status)
732 printk("APIC never delivered???\n");
733 if (accept_status)
734 printk("APIC delivery error (%lx).\n", accept_status);
735
736 return (send_status | accept_status);
737}
738#endif /* WAKE_SECONDARY_VIA_NMI */
739
740#ifdef WAKE_SECONDARY_VIA_INIT
0bb3184d 741static int __devinit
1da177e4
LT
742wakeup_secondary_cpu(int phys_apicid, unsigned long start_eip)
743{
744 unsigned long send_status = 0, accept_status = 0;
745 int maxlvt, timeout, num_starts, j;
746
747 /*
748 * Be paranoid about clearing APIC errors.
749 */
750 if (APIC_INTEGRATED(apic_version[phys_apicid])) {
751 apic_read_around(APIC_SPIV);
752 apic_write(APIC_ESR, 0);
753 apic_read(APIC_ESR);
754 }
755
756 Dprintk("Asserting INIT.\n");
757
758 /*
759 * Turn INIT on target chip
760 */
761 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
762
763 /*
764 * Send IPI
765 */
766 apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT
767 | APIC_DM_INIT);
768
769 Dprintk("Waiting for send to finish...\n");
770 timeout = 0;
771 do {
772 Dprintk("+");
773 udelay(100);
774 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
775 } while (send_status && (timeout++ < 1000));
776
777 mdelay(10);
778
779 Dprintk("Deasserting INIT.\n");
780
781 /* Target chip */
782 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
783
784 /* Send IPI */
785 apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);
786
787 Dprintk("Waiting for send to finish...\n");
788 timeout = 0;
789 do {
790 Dprintk("+");
791 udelay(100);
792 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
793 } while (send_status && (timeout++ < 1000));
794
795 atomic_set(&init_deasserted, 1);
796
797 /*
798 * Should we send STARTUP IPIs ?
799 *
800 * Determine this based on the APIC version.
801 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
802 */
803 if (APIC_INTEGRATED(apic_version[phys_apicid]))
804 num_starts = 2;
805 else
806 num_starts = 0;
807
808 /*
809 * Run STARTUP IPI loop.
810 */
811 Dprintk("#startup loops: %d.\n", num_starts);
812
813 maxlvt = get_maxlvt();
814
815 for (j = 1; j <= num_starts; j++) {
816 Dprintk("Sending STARTUP #%d.\n",j);
817 apic_read_around(APIC_SPIV);
818 apic_write(APIC_ESR, 0);
819 apic_read(APIC_ESR);
820 Dprintk("After apic_write.\n");
821
822 /*
823 * STARTUP IPI
824 */
825
826 /* Target chip */
827 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
828
829 /* Boot on the stack */
830 /* Kick the second */
831 apic_write_around(APIC_ICR, APIC_DM_STARTUP
832 | (start_eip >> 12));
833
834 /*
835 * Give the other CPU some time to accept the IPI.
836 */
837 udelay(300);
838
839 Dprintk("Startup point 1.\n");
840
841 Dprintk("Waiting for send to finish...\n");
842 timeout = 0;
843 do {
844 Dprintk("+");
845 udelay(100);
846 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
847 } while (send_status && (timeout++ < 1000));
848
849 /*
850 * Give the other CPU some time to accept the IPI.
851 */
852 udelay(200);
853 /*
854 * Due to the Pentium erratum 3AP.
855 */
856 if (maxlvt > 3) {
857 apic_read_around(APIC_SPIV);
858 apic_write(APIC_ESR, 0);
859 }
860 accept_status = (apic_read(APIC_ESR) & 0xEF);
861 if (send_status || accept_status)
862 break;
863 }
864 Dprintk("After Startup.\n");
865
866 if (send_status)
867 printk("APIC never delivered???\n");
868 if (accept_status)
869 printk("APIC delivery error (%lx).\n", accept_status);
870
871 return (send_status | accept_status);
872}
873#endif /* WAKE_SECONDARY_VIA_INIT */
874
875extern cpumask_t cpu_initialized;
e1367daf
LS
876static inline int alloc_cpu_id(void)
877{
878 cpumask_t tmp_map;
879 int cpu;
880 cpus_complement(tmp_map, cpu_present_map);
881 cpu = first_cpu(tmp_map);
882 if (cpu >= NR_CPUS)
883 return -ENODEV;
884 return cpu;
885}
886
887#ifdef CONFIG_HOTPLUG_CPU
888static struct task_struct * __devinitdata cpu_idle_tasks[NR_CPUS];
889static inline struct task_struct * alloc_idle_task(int cpu)
890{
891 struct task_struct *idle;
892
893 if ((idle = cpu_idle_tasks[cpu]) != NULL) {
894 /* initialize thread_struct. we really want to avoid destroy
895 * idle tread
896 */
07b047fc 897 idle->thread.esp = (unsigned long)task_pt_regs(idle);
e1367daf
LS
898 init_idle(idle, cpu);
899 return idle;
900 }
901 idle = fork_idle(cpu);
902
903 if (!IS_ERR(idle))
904 cpu_idle_tasks[cpu] = idle;
905 return idle;
906}
907#else
908#define alloc_idle_task(cpu) fork_idle(cpu)
909#endif
1da177e4 910
e1367daf 911static int __devinit do_boot_cpu(int apicid, int cpu)
1da177e4
LT
912/*
913 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
914 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
915 * Returns zero if CPU booted OK, else error code from wakeup_secondary_cpu.
916 */
917{
918 struct task_struct *idle;
919 unsigned long boot_error;
e1367daf 920 int timeout;
1da177e4
LT
921 unsigned long start_eip;
922 unsigned short nmi_high = 0, nmi_low = 0;
923
e1367daf 924 ++cpucount;
9a0b5817 925 alternatives_smp_switch(1);
e1367daf 926
1da177e4
LT
927 /*
928 * We can't use kernel_thread since we must avoid to
929 * reschedule the child.
930 */
e1367daf 931 idle = alloc_idle_task(cpu);
1da177e4
LT
932 if (IS_ERR(idle))
933 panic("failed fork for CPU %d", cpu);
934 idle->thread.eip = (unsigned long) start_secondary;
935 /* start_eip had better be page-aligned! */
936 start_eip = setup_trampoline();
937
938 /* So we see what's up */
939 printk("Booting processor %d/%d eip %lx\n", cpu, apicid, start_eip);
940 /* Stack for startup_32 can be just as for start_secondary onwards */
941 stack_start.esp = (void *) idle->thread.esp;
942
943 irq_ctx_init(cpu);
944
945 /*
946 * This grunge runs the startup process for
947 * the targeted processor.
948 */
949
950 atomic_set(&init_deasserted, 0);
951
952 Dprintk("Setting warm reset code and vector.\n");
953
954 store_NMI_vector(&nmi_high, &nmi_low);
955
956 smpboot_setup_warm_reset_vector(start_eip);
957
958 /*
959 * Starting actual IPI sequence...
960 */
961 boot_error = wakeup_secondary_cpu(apicid, start_eip);
962
963 if (!boot_error) {
964 /*
965 * allow APs to start initializing.
966 */
967 Dprintk("Before Callout %d.\n", cpu);
968 cpu_set(cpu, cpu_callout_map);
969 Dprintk("After Callout %d.\n", cpu);
970
971 /*
972 * Wait 5s total for a response
973 */
974 for (timeout = 0; timeout < 50000; timeout++) {
975 if (cpu_isset(cpu, cpu_callin_map))
976 break; /* It has booted */
977 udelay(100);
978 }
979
980 if (cpu_isset(cpu, cpu_callin_map)) {
981 /* number CPUs logically, starting from 1 (BSP is 0) */
982 Dprintk("OK.\n");
983 printk("CPU%d: ", cpu);
984 print_cpu_info(&cpu_data[cpu]);
985 Dprintk("CPU has booted.\n");
986 } else {
987 boot_error= 1;
988 if (*((volatile unsigned char *)trampoline_base)
989 == 0xA5)
990 /* trampoline started but...? */
991 printk("Stuck ??\n");
992 else
993 /* trampoline code not run */
994 printk("Not responding.\n");
995 inquire_remote_apic(apicid);
996 }
997 }
e1367daf 998
1da177e4
LT
999 if (boot_error) {
1000 /* Try to put things back the way they were before ... */
1001 unmap_cpu_to_logical_apicid(cpu);
1002 cpu_clear(cpu, cpu_callout_map); /* was set here (do_boot_cpu()) */
1003 cpu_clear(cpu, cpu_initialized); /* was set by cpu_init() */
1004 cpucount--;
e1367daf
LS
1005 } else {
1006 x86_cpu_to_apicid[cpu] = apicid;
1007 cpu_set(cpu, cpu_present_map);
1da177e4
LT
1008 }
1009
1010 /* mark "stuck" area as not stuck */
1011 *((volatile unsigned long *)trampoline_base) = 0;
1012
1013 return boot_error;
1014}
1015
e1367daf
LS
1016#ifdef CONFIG_HOTPLUG_CPU
1017void cpu_exit_clear(void)
1018{
1019 int cpu = raw_smp_processor_id();
1020
1021 idle_task_exit();
1022
1023 cpucount --;
1024 cpu_uninit();
1025 irq_ctx_exit(cpu);
1026
1027 cpu_clear(cpu, cpu_callout_map);
1028 cpu_clear(cpu, cpu_callin_map);
e1367daf
LS
1029
1030 cpu_clear(cpu, smp_commenced_mask);
1031 unmap_cpu_to_logical_apicid(cpu);
1032}
1033
1034struct warm_boot_cpu_info {
1035 struct completion *complete;
1036 int apicid;
1037 int cpu;
1038};
1039
34f361ad 1040static void __cpuinit do_warm_boot_cpu(void *p)
e1367daf
LS
1041{
1042 struct warm_boot_cpu_info *info = p;
1043 do_boot_cpu(info->apicid, info->cpu);
1044 complete(info->complete);
1045}
1046
34f361ad 1047static int __cpuinit __smp_prepare_cpu(int cpu)
e1367daf
LS
1048{
1049 DECLARE_COMPLETION(done);
1050 struct warm_boot_cpu_info info;
1051 struct work_struct task;
1052 int apicid, ret;
bd9e0b74 1053 struct Xgt_desc_struct *cpu_gdt_descr = &per_cpu(cpu_gdt_descr, cpu);
e1367daf 1054
e1367daf
LS
1055 apicid = x86_cpu_to_apicid[cpu];
1056 if (apicid == BAD_APICID) {
1057 ret = -ENODEV;
1058 goto exit;
1059 }
1060
bd9e0b74
SL
1061 /*
1062 * the CPU isn't initialized at boot time, allocate gdt table here.
1063 * cpu_init will initialize it
1064 */
1065 if (!cpu_gdt_descr->address) {
1066 cpu_gdt_descr->address = get_zeroed_page(GFP_KERNEL);
1067 if (!cpu_gdt_descr->address)
1068 printk(KERN_CRIT "CPU%d failed to allocate GDT\n", cpu);
1069 ret = -ENOMEM;
1070 goto exit;
1071 }
1072
e1367daf
LS
1073 info.complete = &done;
1074 info.apicid = apicid;
1075 info.cpu = cpu;
1076 INIT_WORK(&task, do_warm_boot_cpu, &info);
1077
1078 tsc_sync_disabled = 1;
1079
1080 /* init low mem mapping */
d7271b14
ZA
1081 clone_pgd_range(swapper_pg_dir, swapper_pg_dir + USER_PGD_PTRS,
1082 KERNEL_PGD_PTRS);
e1367daf
LS
1083 flush_tlb_all();
1084 schedule_work(&task);
1085 wait_for_completion(&done);
1086
1087 tsc_sync_disabled = 0;
1088 zap_low_mappings();
1089 ret = 0;
1090exit:
e1367daf
LS
1091 return ret;
1092}
1093#endif
1094
1da177e4
LT
1095static void smp_tune_scheduling (void)
1096{
1097 unsigned long cachesize; /* kB */
1098 unsigned long bandwidth = 350; /* MB/s */
1099 /*
1100 * Rough estimation for SMP scheduling, this is the number of
1101 * cycles it takes for a fully memory-limited process to flush
1102 * the SMP-local cache.
1103 *
1104 * (For a P5 this pretty much means we will choose another idle
1105 * CPU almost always at wakeup time (this is due to the small
1106 * L1 cache), on PIIs it's around 50-100 usecs, depending on
1107 * the cache size)
1108 */
1109
1110 if (!cpu_khz) {
1111 /*
1112 * this basically disables processor-affinity
1113 * scheduling on SMP without a TSC.
1114 */
1115 return;
1116 } else {
1117 cachesize = boot_cpu_data.x86_cache_size;
1118 if (cachesize == -1) {
1119 cachesize = 16; /* Pentiums, 2x8kB cache */
1120 bandwidth = 100;
1121 }
198e2f18 1122 max_cache_size = cachesize * 1024;
1da177e4
LT
1123 }
1124}
1125
1126/*
1127 * Cycle through the processors sending APIC IPIs to boot each.
1128 */
1129
1130static int boot_cpu_logical_apicid;
1131/* Where the IO area was mapped on multiquad, always 0 otherwise */
1132void *xquad_portio;
129f6946
AD
1133#ifdef CONFIG_X86_NUMAQ
1134EXPORT_SYMBOL(xquad_portio);
1135#endif
1da177e4 1136
1da177e4
LT
1137static void __init smp_boot_cpus(unsigned int max_cpus)
1138{
1139 int apicid, cpu, bit, kicked;
1140 unsigned long bogosum = 0;
1141
1142 /*
1143 * Setup boot CPU information
1144 */
1145 smp_store_cpu_info(0); /* Final full version of the data */
1146 printk("CPU%d: ", 0);
1147 print_cpu_info(&cpu_data[0]);
1148
1e4c85f9 1149 boot_cpu_physical_apicid = GET_APIC_ID(apic_read(APIC_ID));
1da177e4
LT
1150 boot_cpu_logical_apicid = logical_smp_processor_id();
1151 x86_cpu_to_apicid[0] = boot_cpu_physical_apicid;
1152
1153 current_thread_info()->cpu = 0;
1154 smp_tune_scheduling();
1da177e4 1155
94605eff 1156 set_cpu_sibling_map(0);
3dd9d514 1157
1da177e4
LT
1158 /*
1159 * If we couldn't find an SMP configuration at boot time,
1160 * get out of here now!
1161 */
1162 if (!smp_found_config && !acpi_lapic) {
1163 printk(KERN_NOTICE "SMP motherboard not detected.\n");
1e4c85f9
LT
1164 smpboot_clear_io_apic_irqs();
1165 phys_cpu_present_map = physid_mask_of_physid(0);
1166 if (APIC_init_uniprocessor())
1167 printk(KERN_NOTICE "Local APIC not detected."
1168 " Using dummy APIC emulation.\n");
1169 map_cpu_to_logical_apicid();
1170 cpu_set(0, cpu_sibling_map[0]);
1171 cpu_set(0, cpu_core_map[0]);
1172 return;
1173 }
1174
1175 /*
1176 * Should not be necessary because the MP table should list the boot
1177 * CPU too, but we do it for the sake of robustness anyway.
1178 * Makes no sense to do this check in clustered apic mode, so skip it
1179 */
1180 if (!check_phys_apicid_present(boot_cpu_physical_apicid)) {
1181 printk("weird, boot CPU (#%d) not listed by the BIOS.\n",
1182 boot_cpu_physical_apicid);
1183 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1184 }
1185
1186 /*
1187 * If we couldn't find a local APIC, then get out of here now!
1188 */
1189 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) && !cpu_has_apic) {
1190 printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n",
1191 boot_cpu_physical_apicid);
1192 printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n");
1193 smpboot_clear_io_apic_irqs();
1194 phys_cpu_present_map = physid_mask_of_physid(0);
1195 cpu_set(0, cpu_sibling_map[0]);
1196 cpu_set(0, cpu_core_map[0]);
1da177e4
LT
1197 return;
1198 }
1199
1e4c85f9
LT
1200 verify_local_APIC();
1201
1da177e4
LT
1202 /*
1203 * If SMP should be disabled, then really disable it!
1204 */
1e4c85f9
LT
1205 if (!max_cpus) {
1206 smp_found_config = 0;
1207 printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n");
1208 smpboot_clear_io_apic_irqs();
1209 phys_cpu_present_map = physid_mask_of_physid(0);
1210 cpu_set(0, cpu_sibling_map[0]);
1211 cpu_set(0, cpu_core_map[0]);
1da177e4
LT
1212 return;
1213 }
1214
1e4c85f9
LT
1215 connect_bsp_APIC();
1216 setup_local_APIC();
1217 map_cpu_to_logical_apicid();
1218
1219
1da177e4
LT
1220 setup_portio_remap();
1221
1222 /*
1223 * Scan the CPU present map and fire up the other CPUs via do_boot_cpu
1224 *
1225 * In clustered apic mode, phys_cpu_present_map is a constructed thus:
1226 * bits 0-3 are quad0, 4-7 are quad1, etc. A perverse twist on the
1227 * clustered apic ID.
1228 */
1229 Dprintk("CPU present map: %lx\n", physids_coerce(phys_cpu_present_map));
1230
1231 kicked = 1;
1232 for (bit = 0; kicked < NR_CPUS && bit < MAX_APICS; bit++) {
1233 apicid = cpu_present_to_apicid(bit);
1234 /*
1235 * Don't even attempt to start the boot CPU!
1236 */
1237 if ((apicid == boot_cpu_apicid) || (apicid == BAD_APICID))
1238 continue;
1239
1240 if (!check_apicid_present(bit))
1241 continue;
1242 if (max_cpus <= cpucount+1)
1243 continue;
1244
e1367daf 1245 if (((cpu = alloc_cpu_id()) <= 0) || do_boot_cpu(apicid, cpu))
1da177e4
LT
1246 printk("CPU #%d not responding - cannot use it.\n",
1247 apicid);
1248 else
1249 ++kicked;
1250 }
1251
1252 /*
1253 * Cleanup possible dangling ends...
1254 */
1255 smpboot_restore_warm_reset_vector();
1256
1257 /*
1258 * Allow the user to impress friends.
1259 */
1260 Dprintk("Before bogomips.\n");
1261 for (cpu = 0; cpu < NR_CPUS; cpu++)
1262 if (cpu_isset(cpu, cpu_callout_map))
1263 bogosum += cpu_data[cpu].loops_per_jiffy;
1264 printk(KERN_INFO
1265 "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
1266 cpucount+1,
1267 bogosum/(500000/HZ),
1268 (bogosum/(5000/HZ))%100);
1269
1270 Dprintk("Before bogocount - setting activated=1.\n");
1271
1272 if (smp_b_stepping)
1273 printk(KERN_WARNING "WARNING: SMP operation may be unreliable with B stepping processors.\n");
1274
1275 /*
1276 * Don't taint if we are running SMP kernel on a single non-MP
1277 * approved Athlon
1278 */
1279 if (tainted & TAINT_UNSAFE_SMP) {
1280 if (cpucount)
1281 printk (KERN_INFO "WARNING: This combination of AMD processors is not suitable for SMP.\n");
1282 else
1283 tainted &= ~TAINT_UNSAFE_SMP;
1284 }
1285
1286 Dprintk("Boot done.\n");
1287
1288 /*
1289 * construct cpu_sibling_map[], so that we can tell sibling CPUs
1290 * efficiently.
1291 */
3dd9d514 1292 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1da177e4 1293 cpus_clear(cpu_sibling_map[cpu]);
3dd9d514
AK
1294 cpus_clear(cpu_core_map[cpu]);
1295 }
1da177e4 1296
d720803a
LS
1297 cpu_set(0, cpu_sibling_map[0]);
1298 cpu_set(0, cpu_core_map[0]);
1da177e4 1299
1e4c85f9
LT
1300 smpboot_setup_io_apic();
1301
1302 setup_boot_APIC_clock();
1303
1da177e4
LT
1304 /*
1305 * Synchronize the TSC with the AP
1306 */
1307 if (cpu_has_tsc && cpucount && cpu_khz)
1308 synchronize_tsc_bp();
1309}
1310
1311/* These are wrappers to interface to the new boot process. Someone
1312 who understands all this stuff should rewrite it properly. --RR 15/Jul/02 */
1313void __init smp_prepare_cpus(unsigned int max_cpus)
1314{
f3705136
ZM
1315 smp_commenced_mask = cpumask_of_cpu(0);
1316 cpu_callin_map = cpumask_of_cpu(0);
1317 mb();
1da177e4
LT
1318 smp_boot_cpus(max_cpus);
1319}
1320
1321void __devinit smp_prepare_boot_cpu(void)
1322{
1323 cpu_set(smp_processor_id(), cpu_online_map);
1324 cpu_set(smp_processor_id(), cpu_callout_map);
e1367daf 1325 cpu_set(smp_processor_id(), cpu_present_map);
4ad8d383 1326 cpu_set(smp_processor_id(), cpu_possible_map);
e1367daf 1327 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
1da177e4
LT
1328}
1329
f3705136 1330#ifdef CONFIG_HOTPLUG_CPU
e1367daf
LS
1331static void
1332remove_siblinginfo(int cpu)
1da177e4 1333{
e1367daf 1334 int sibling;
94605eff 1335 struct cpuinfo_x86 *c = cpu_data;
e1367daf 1336
94605eff
SS
1337 for_each_cpu_mask(sibling, cpu_core_map[cpu]) {
1338 cpu_clear(cpu, cpu_core_map[sibling]);
1339 /*
1340 * last thread sibling in this cpu core going down
1341 */
1342 if (cpus_weight(cpu_sibling_map[cpu]) == 1)
1343 c[sibling].booted_cores--;
1344 }
1345
e1367daf
LS
1346 for_each_cpu_mask(sibling, cpu_sibling_map[cpu])
1347 cpu_clear(cpu, cpu_sibling_map[sibling]);
e1367daf
LS
1348 cpus_clear(cpu_sibling_map[cpu]);
1349 cpus_clear(cpu_core_map[cpu]);
4b89aff9
RS
1350 c[cpu].phys_proc_id = 0;
1351 c[cpu].cpu_core_id = 0;
94605eff 1352 cpu_clear(cpu, cpu_sibling_setup_map);
f3705136
ZM
1353}
1354
1355int __cpu_disable(void)
1356{
1357 cpumask_t map = cpu_online_map;
1358 int cpu = smp_processor_id();
1359
1360 /*
1361 * Perhaps use cpufreq to drop frequency, but that could go
1362 * into generic code.
1363 *
1364 * We won't take down the boot processor on i386 due to some
1365 * interrupts only being able to be serviced by the BSP.
1366 * Especially so if we're not using an IOAPIC -zwane
1367 */
1368 if (cpu == 0)
1369 return -EBUSY;
1370
5e9ef02e 1371 clear_local_APIC();
f3705136
ZM
1372 /* Allow any queued timer interrupts to get serviced */
1373 local_irq_enable();
1374 mdelay(1);
1375 local_irq_disable();
1376
e1367daf
LS
1377 remove_siblinginfo(cpu);
1378
f3705136
ZM
1379 cpu_clear(cpu, map);
1380 fixup_irqs(map);
1381 /* It's now safe to remove this processor from the online map */
1382 cpu_clear(cpu, cpu_online_map);
1383 return 0;
1384}
1385
1386void __cpu_die(unsigned int cpu)
1387{
1388 /* We don't do anything here: idle task is faking death itself. */
1389 unsigned int i;
1390
1391 for (i = 0; i < 10; i++) {
1392 /* They ack this in play_dead by setting CPU_DEAD */
e1367daf
LS
1393 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1394 printk ("CPU %d is now offline\n", cpu);
9a0b5817
GH
1395 if (1 == num_online_cpus())
1396 alternatives_smp_switch(0);
f3705136 1397 return;
e1367daf 1398 }
aeb8397b 1399 msleep(100);
1da177e4 1400 }
f3705136
ZM
1401 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1402}
1403#else /* ... !CONFIG_HOTPLUG_CPU */
1404int __cpu_disable(void)
1405{
1406 return -ENOSYS;
1407}
1da177e4 1408
f3705136
ZM
1409void __cpu_die(unsigned int cpu)
1410{
1411 /* We said "no" in __cpu_disable */
1412 BUG();
1413}
1414#endif /* CONFIG_HOTPLUG_CPU */
1415
1416int __devinit __cpu_up(unsigned int cpu)
1417{
34f361ad
AR
1418#ifdef CONFIG_HOTPLUG_CPU
1419 int ret=0;
1420
1421 /*
1422 * We do warm boot only on cpus that had booted earlier
1423 * Otherwise cold boot is all handled from smp_boot_cpus().
1424 * cpu_callin_map is set during AP kickstart process. Its reset
1425 * when a cpu is taken offline from cpu_exit_clear().
1426 */
1427 if (!cpu_isset(cpu, cpu_callin_map))
1428 ret = __smp_prepare_cpu(cpu);
1429
1430 if (ret)
1431 return -EIO;
1432#endif
1433
1da177e4
LT
1434 /* In case one didn't come up */
1435 if (!cpu_isset(cpu, cpu_callin_map)) {
f3705136 1436 printk(KERN_DEBUG "skipping cpu%d, didn't come online\n", cpu);
1da177e4
LT
1437 local_irq_enable();
1438 return -EIO;
1439 }
1440
1441 local_irq_enable();
e1367daf 1442 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1da177e4
LT
1443 /* Unleash the CPU! */
1444 cpu_set(cpu, smp_commenced_mask);
1445 while (!cpu_isset(cpu, cpu_online_map))
18698917 1446 cpu_relax();
1da177e4
LT
1447 return 0;
1448}
1449
1450void __init smp_cpus_done(unsigned int max_cpus)
1451{
1452#ifdef CONFIG_X86_IO_APIC
1453 setup_ioapic_dest();
1454#endif
1455 zap_low_mappings();
e1367daf 1456#ifndef CONFIG_HOTPLUG_CPU
1da177e4
LT
1457 /*
1458 * Disable executability of the SMP trampoline:
1459 */
1460 set_kernel_exec((unsigned long)trampoline_base, trampoline_exec);
e1367daf 1461#endif
1da177e4
LT
1462}
1463
1464void __init smp_intr_init(void)
1465{
1466 /*
1467 * IRQ0 must be given a fixed assignment and initialized,
1468 * because it's used before the IO-APIC is set up.
1469 */
1470 set_intr_gate(FIRST_DEVICE_VECTOR, interrupt[0]);
1471
1472 /*
1473 * The reschedule interrupt is a CPU-to-CPU reschedule-helper
1474 * IPI, driven by wakeup.
1475 */
1476 set_intr_gate(RESCHEDULE_VECTOR, reschedule_interrupt);
1477
1478 /* IPI for invalidation */
1479 set_intr_gate(INVALIDATE_TLB_VECTOR, invalidate_interrupt);
1480
1481 /* IPI for generic function call */
1482 set_intr_gate(CALL_FUNCTION_VECTOR, call_function_interrupt);
1483}
This page took 0.305122 seconds and 5 git commands to generate.