mm: fault feedback #2
[deliverable/linux.git] / arch / i386 / mm / fault.c
CommitLineData
1da177e4
LT
1/*
2 * linux/arch/i386/mm/fault.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 */
6
7#include <linux/signal.h>
8#include <linux/sched.h>
9#include <linux/kernel.h>
10#include <linux/errno.h>
11#include <linux/string.h>
12#include <linux/types.h>
13#include <linux/ptrace.h>
14#include <linux/mman.h>
15#include <linux/mm.h>
16#include <linux/smp.h>
1da177e4
LT
17#include <linux/interrupt.h>
18#include <linux/init.h>
19#include <linux/tty.h>
20#include <linux/vt_kern.h> /* For unblank_screen() */
21#include <linux/highmem.h>
28609f6e 22#include <linux/bootmem.h> /* for max_low_pfn */
1eeb66a1 23#include <linux/vmalloc.h>
1da177e4 24#include <linux/module.h>
3d97ae5b 25#include <linux/kprobes.h>
11a4180c 26#include <linux/uaccess.h>
1eeb66a1 27#include <linux/kdebug.h>
1da177e4
LT
28
29#include <asm/system.h>
1da177e4 30#include <asm/desc.h>
78be3706 31#include <asm/segment.h>
1da177e4
LT
32
33extern void die(const char *,struct pt_regs *,long);
34
474c2568
AK
35static ATOMIC_NOTIFIER_HEAD(notify_page_fault_chain);
36
b71b5b65
AK
37int register_page_fault_notifier(struct notifier_block *nb)
38{
39 vmalloc_sync_all();
40 return atomic_notifier_chain_register(&notify_page_fault_chain, nb);
41}
474c2568 42EXPORT_SYMBOL_GPL(register_page_fault_notifier);
b71b5b65
AK
43
44int unregister_page_fault_notifier(struct notifier_block *nb)
45{
46 return atomic_notifier_chain_unregister(&notify_page_fault_chain, nb);
47}
474c2568 48EXPORT_SYMBOL_GPL(unregister_page_fault_notifier);
b71b5b65 49
9b355897 50static inline int notify_page_fault(struct pt_regs *regs, long err)
b71b5b65
AK
51{
52 struct die_args args = {
53 .regs = regs,
9b355897 54 .str = "page fault",
b71b5b65 55 .err = err,
9b355897
JB
56 .trapnr = 14,
57 .signr = SIGSEGV
b71b5b65 58 };
9b355897
JB
59 return atomic_notifier_call_chain(&notify_page_fault_chain,
60 DIE_PAGE_FAULT, &args);
b71b5b65 61}
b71b5b65 62
1da177e4
LT
63/*
64 * Return EIP plus the CS segment base. The segment limit is also
65 * adjusted, clamped to the kernel/user address space (whichever is
66 * appropriate), and returned in *eip_limit.
67 *
68 * The segment is checked, because it might have been changed by another
69 * task between the original faulting instruction and here.
70 *
71 * If CS is no longer a valid code segment, or if EIP is beyond the
72 * limit, or if it is a kernel address when CS is not a kernel segment,
73 * then the returned value will be greater than *eip_limit.
74 *
75 * This is slow, but is very rarely executed.
76 */
77static inline unsigned long get_segment_eip(struct pt_regs *regs,
78 unsigned long *eip_limit)
79{
80 unsigned long eip = regs->eip;
81 unsigned seg = regs->xcs & 0xffff;
82 u32 seg_ar, seg_limit, base, *desc;
83
19964fec
CE
84 /* Unlikely, but must come before segment checks. */
85 if (unlikely(regs->eflags & VM_MASK)) {
86 base = seg << 4;
87 *eip_limit = base + 0xffff;
88 return base + (eip & 0xffff);
89 }
90
1da177e4 91 /* The standard kernel/user address space limit. */
78be3706 92 *eip_limit = user_mode(regs) ? USER_DS.seg : KERNEL_DS.seg;
1da177e4
LT
93
94 /* By far the most common cases. */
78be3706 95 if (likely(SEGMENT_IS_FLAT_CODE(seg)))
1da177e4
LT
96 return eip;
97
98 /* Check the segment exists, is within the current LDT/GDT size,
99 that kernel/user (ring 0..3) has the appropriate privilege,
100 that it's a code segment, and get the limit. */
101 __asm__ ("larl %3,%0; lsll %3,%1"
102 : "=&r" (seg_ar), "=r" (seg_limit) : "0" (0), "rm" (seg));
103 if ((~seg_ar & 0x9800) || eip > seg_limit) {
104 *eip_limit = 0;
105 return 1; /* So that returned eip > *eip_limit. */
106 }
107
108 /* Get the GDT/LDT descriptor base.
109 When you look for races in this code remember that
110 LDT and other horrors are only used in user space. */
111 if (seg & (1<<2)) {
112 /* Must lock the LDT while reading it. */
113 down(&current->mm->context.sem);
114 desc = current->mm->context.ldt;
115 desc = (void *)desc + (seg & ~7);
116 } else {
117 /* Must disable preemption while reading the GDT. */
251e6912 118 desc = (u32 *)get_cpu_gdt_table(get_cpu());
1da177e4
LT
119 desc = (void *)desc + (seg & ~7);
120 }
121
122 /* Decode the code segment base from the descriptor */
123 base = get_desc_base((unsigned long *)desc);
124
125 if (seg & (1<<2)) {
126 up(&current->mm->context.sem);
127 } else
128 put_cpu();
129
130 /* Adjust EIP and segment limit, and clamp at the kernel limit.
131 It's legitimate for segments to wrap at 0xffffffff. */
132 seg_limit += base;
133 if (seg_limit < *eip_limit && seg_limit >= base)
134 *eip_limit = seg_limit;
135 return eip + base;
136}
137
138/*
139 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
140 * Check that here and ignore it.
141 */
142static int __is_prefetch(struct pt_regs *regs, unsigned long addr)
143{
144 unsigned long limit;
11a4180c 145 unsigned char *instr = (unsigned char *)get_segment_eip (regs, &limit);
1da177e4
LT
146 int scan_more = 1;
147 int prefetch = 0;
148 int i;
149
150 for (i = 0; scan_more && i < 15; i++) {
151 unsigned char opcode;
152 unsigned char instr_hi;
153 unsigned char instr_lo;
154
11a4180c 155 if (instr > (unsigned char *)limit)
1da177e4 156 break;
11a4180c 157 if (probe_kernel_address(instr, opcode))
1da177e4
LT
158 break;
159
160 instr_hi = opcode & 0xf0;
161 instr_lo = opcode & 0x0f;
162 instr++;
163
164 switch (instr_hi) {
165 case 0x20:
166 case 0x30:
167 /* Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. */
168 scan_more = ((instr_lo & 7) == 0x6);
169 break;
170
171 case 0x60:
172 /* 0x64 thru 0x67 are valid prefixes in all modes. */
173 scan_more = (instr_lo & 0xC) == 0x4;
174 break;
175 case 0xF0:
176 /* 0xF0, 0xF2, and 0xF3 are valid prefixes */
177 scan_more = !instr_lo || (instr_lo>>1) == 1;
178 break;
179 case 0x00:
180 /* Prefetch instruction is 0x0F0D or 0x0F18 */
181 scan_more = 0;
11a4180c 182 if (instr > (unsigned char *)limit)
1da177e4 183 break;
11a4180c 184 if (probe_kernel_address(instr, opcode))
1da177e4
LT
185 break;
186 prefetch = (instr_lo == 0xF) &&
187 (opcode == 0x0D || opcode == 0x18);
188 break;
189 default:
190 scan_more = 0;
191 break;
192 }
193 }
194 return prefetch;
195}
196
197static inline int is_prefetch(struct pt_regs *regs, unsigned long addr,
198 unsigned long error_code)
199{
200 if (unlikely(boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
201 boot_cpu_data.x86 >= 6)) {
202 /* Catch an obscure case of prefetch inside an NX page. */
203 if (nx_enabled && (error_code & 16))
204 return 0;
205 return __is_prefetch(regs, addr);
206 }
207 return 0;
208}
209
869f96a0
IM
210static noinline void force_sig_info_fault(int si_signo, int si_code,
211 unsigned long address, struct task_struct *tsk)
212{
213 siginfo_t info;
214
215 info.si_signo = si_signo;
216 info.si_errno = 0;
217 info.si_code = si_code;
218 info.si_addr = (void __user *)address;
219 force_sig_info(si_signo, &info, tsk);
220}
221
1da177e4
LT
222fastcall void do_invalid_op(struct pt_regs *, unsigned long);
223
101f12af
JB
224static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
225{
226 unsigned index = pgd_index(address);
227 pgd_t *pgd_k;
228 pud_t *pud, *pud_k;
229 pmd_t *pmd, *pmd_k;
230
231 pgd += index;
232 pgd_k = init_mm.pgd + index;
233
234 if (!pgd_present(*pgd_k))
235 return NULL;
236
237 /*
238 * set_pgd(pgd, *pgd_k); here would be useless on PAE
239 * and redundant with the set_pmd() on non-PAE. As would
240 * set_pud.
241 */
242
243 pud = pud_offset(pgd, address);
244 pud_k = pud_offset(pgd_k, address);
245 if (!pud_present(*pud_k))
246 return NULL;
247
248 pmd = pmd_offset(pud, address);
249 pmd_k = pmd_offset(pud_k, address);
250 if (!pmd_present(*pmd_k))
251 return NULL;
252 if (!pmd_present(*pmd))
253 set_pmd(pmd, *pmd_k);
254 else
255 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
256 return pmd_k;
257}
258
259/*
260 * Handle a fault on the vmalloc or module mapping area
261 *
262 * This assumes no large pages in there.
263 */
264static inline int vmalloc_fault(unsigned long address)
265{
266 unsigned long pgd_paddr;
267 pmd_t *pmd_k;
268 pte_t *pte_k;
269 /*
270 * Synchronize this task's top level page-table
271 * with the 'reference' page table.
272 *
273 * Do _not_ use "current" here. We might be inside
274 * an interrupt in the middle of a task switch..
275 */
276 pgd_paddr = read_cr3();
277 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
278 if (!pmd_k)
279 return -1;
280 pte_k = pte_offset_kernel(pmd_k, address);
281 if (!pte_present(*pte_k))
282 return -1;
283 return 0;
284}
285
1da177e4
LT
286/*
287 * This routine handles page faults. It determines the address,
288 * and the problem, and then passes it off to one of the appropriate
289 * routines.
290 *
291 * error_code:
292 * bit 0 == 0 means no page found, 1 means protection fault
293 * bit 1 == 0 means read, 1 means write
294 * bit 2 == 0 means kernel, 1 means user-mode
101f12af
JB
295 * bit 3 == 1 means use of reserved bit detected
296 * bit 4 == 1 means fault was an instruction fetch
1da177e4 297 */
3d97ae5b
PP
298fastcall void __kprobes do_page_fault(struct pt_regs *regs,
299 unsigned long error_code)
1da177e4
LT
300{
301 struct task_struct *tsk;
302 struct mm_struct *mm;
303 struct vm_area_struct * vma;
304 unsigned long address;
869f96a0 305 int write, si_code;
83c54070 306 int fault;
1da177e4
LT
307
308 /* get the address */
4bb0d3ec 309 address = read_cr2();
1da177e4 310
1da177e4
LT
311 tsk = current;
312
869f96a0 313 si_code = SEGV_MAPERR;
1da177e4
LT
314
315 /*
316 * We fault-in kernel-space virtual memory on-demand. The
317 * 'reference' page table is init_mm.pgd.
318 *
319 * NOTE! We MUST NOT take any locks for this case. We may
320 * be in an interrupt or a critical region, and should
321 * only copy the information from the master page table,
322 * nothing more.
323 *
324 * This verifies that the fault happens in kernel space
325 * (error_code & 4) == 0, and that the fault was not a
101f12af 326 * protection error (error_code & 9) == 0.
1da177e4 327 */
101f12af
JB
328 if (unlikely(address >= TASK_SIZE)) {
329 if (!(error_code & 0x0000000d) && vmalloc_fault(address) >= 0)
330 return;
9b355897 331 if (notify_page_fault(regs, error_code) == NOTIFY_STOP)
101f12af
JB
332 return;
333 /*
1da177e4
LT
334 * Don't take the mm semaphore here. If we fixup a prefetch
335 * fault we could otherwise deadlock.
336 */
337 goto bad_area_nosemaphore;
101f12af
JB
338 }
339
9b355897 340 if (notify_page_fault(regs, error_code) == NOTIFY_STOP)
101f12af
JB
341 return;
342
343 /* It's safe to allow irq's after cr2 has been saved and the vmalloc
344 fault has been handled. */
345 if (regs->eflags & (X86_EFLAGS_IF|VM_MASK))
346 local_irq_enable();
1da177e4
LT
347
348 mm = tsk->mm;
349
350 /*
351 * If we're in an interrupt, have no user context or are running in an
352 * atomic region then we must not take the fault..
353 */
354 if (in_atomic() || !mm)
355 goto bad_area_nosemaphore;
356
357 /* When running in the kernel we expect faults to occur only to
358 * addresses in user space. All other faults represent errors in the
359 * kernel and should generate an OOPS. Unfortunatly, in the case of an
80f7228b 360 * erroneous fault occurring in a code path which already holds mmap_sem
1da177e4
LT
361 * we will deadlock attempting to validate the fault against the
362 * address space. Luckily the kernel only validly references user
363 * space from well defined areas of code, which are listed in the
364 * exceptions table.
365 *
366 * As the vast majority of faults will be valid we will only perform
367 * the source reference check when there is a possibilty of a deadlock.
368 * Attempt to lock the address space, if we cannot we then validate the
369 * source. If this is invalid we can skip the address space check,
370 * thus avoiding the deadlock.
371 */
372 if (!down_read_trylock(&mm->mmap_sem)) {
373 if ((error_code & 4) == 0 &&
374 !search_exception_tables(regs->eip))
375 goto bad_area_nosemaphore;
376 down_read(&mm->mmap_sem);
377 }
378
379 vma = find_vma(mm, address);
380 if (!vma)
381 goto bad_area;
382 if (vma->vm_start <= address)
383 goto good_area;
384 if (!(vma->vm_flags & VM_GROWSDOWN))
385 goto bad_area;
386 if (error_code & 4) {
387 /*
21528454
CE
388 * Accessing the stack below %esp is always a bug.
389 * The large cushion allows instructions like enter
390 * and pusha to work. ("enter $65535,$31" pushes
391 * 32 pointers and then decrements %esp by 65535.)
1da177e4 392 */
21528454 393 if (address + 65536 + 32 * sizeof(unsigned long) < regs->esp)
1da177e4
LT
394 goto bad_area;
395 }
396 if (expand_stack(vma, address))
397 goto bad_area;
398/*
399 * Ok, we have a good vm_area for this memory access, so
400 * we can handle it..
401 */
402good_area:
869f96a0 403 si_code = SEGV_ACCERR;
1da177e4
LT
404 write = 0;
405 switch (error_code & 3) {
406 default: /* 3: write, present */
78be3706 407 /* fall through */
1da177e4
LT
408 case 2: /* write, not present */
409 if (!(vma->vm_flags & VM_WRITE))
410 goto bad_area;
411 write++;
412 break;
413 case 1: /* read, present */
414 goto bad_area;
415 case 0: /* read, not present */
df67b3da 416 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1da177e4
LT
417 goto bad_area;
418 }
419
420 survive:
421 /*
422 * If for any reason at all we couldn't handle the fault,
423 * make sure we exit gracefully rather than endlessly redo
424 * the fault.
425 */
83c54070
NP
426 fault = handle_mm_fault(mm, vma, address, write);
427 if (unlikely(fault & VM_FAULT_ERROR)) {
428 if (fault & VM_FAULT_OOM)
1da177e4 429 goto out_of_memory;
83c54070
NP
430 else if (fault & VM_FAULT_SIGBUS)
431 goto do_sigbus;
432 BUG();
1da177e4 433 }
83c54070
NP
434 if (fault & VM_FAULT_MAJOR)
435 tsk->maj_flt++;
436 else
437 tsk->min_flt++;
1da177e4
LT
438
439 /*
440 * Did it hit the DOS screen memory VA from vm86 mode?
441 */
442 if (regs->eflags & VM_MASK) {
443 unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT;
444 if (bit < 32)
445 tsk->thread.screen_bitmap |= 1 << bit;
446 }
447 up_read(&mm->mmap_sem);
448 return;
449
450/*
451 * Something tried to access memory that isn't in our memory map..
452 * Fix it, but check if it's kernel or user first..
453 */
454bad_area:
455 up_read(&mm->mmap_sem);
456
457bad_area_nosemaphore:
458 /* User mode accesses just cause a SIGSEGV */
459 if (error_code & 4) {
e5e3c84b
SR
460 /*
461 * It's possible to have interrupts off here.
462 */
463 local_irq_enable();
464
1da177e4
LT
465 /*
466 * Valid to do another page fault here because this one came
467 * from user space.
468 */
469 if (is_prefetch(regs, address, error_code))
470 return;
471
472 tsk->thread.cr2 = address;
473 /* Kernel addresses are always protection faults */
474 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
475 tsk->thread.trap_no = 14;
869f96a0 476 force_sig_info_fault(SIGSEGV, si_code, address, tsk);
1da177e4
LT
477 return;
478 }
479
480#ifdef CONFIG_X86_F00F_BUG
481 /*
482 * Pentium F0 0F C7 C8 bug workaround.
483 */
484 if (boot_cpu_data.f00f_bug) {
485 unsigned long nr;
486
487 nr = (address - idt_descr.address) >> 3;
488
489 if (nr == 6) {
490 do_invalid_op(regs, 0);
491 return;
492 }
493 }
494#endif
495
496no_context:
497 /* Are we prepared to handle this kernel fault? */
498 if (fixup_exception(regs))
499 return;
500
501 /*
502 * Valid to do another page fault here, because if this fault
503 * had been triggered by is_prefetch fixup_exception would have
504 * handled it.
505 */
506 if (is_prefetch(regs, address, error_code))
507 return;
508
509/*
510 * Oops. The kernel tried to access some bad page. We'll have to
511 * terminate things with extreme prejudice.
512 */
513
514 bust_spinlocks(1);
515
dd287796 516 if (oops_may_print()) {
28609f6e
JB
517 __typeof__(pte_val(__pte(0))) page;
518
519#ifdef CONFIG_X86_PAE
dd287796
AM
520 if (error_code & 16) {
521 pte_t *pte = lookup_address(address);
522
523 if (pte && pte_present(*pte) && !pte_exec_kernel(*pte))
524 printk(KERN_CRIT "kernel tried to execute "
525 "NX-protected page - exploit attempt? "
526 "(uid: %d)\n", current->uid);
527 }
28609f6e 528#endif
dd287796
AM
529 if (address < PAGE_SIZE)
530 printk(KERN_ALERT "BUG: unable to handle kernel NULL "
531 "pointer dereference");
532 else
533 printk(KERN_ALERT "BUG: unable to handle kernel paging"
534 " request");
535 printk(" at virtual address %08lx\n",address);
536 printk(KERN_ALERT " printing eip:\n");
537 printk("%08lx\n", regs->eip);
28609f6e
JB
538
539 page = read_cr3();
540 page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT];
541#ifdef CONFIG_X86_PAE
542 printk(KERN_ALERT "*pdpt = %016Lx\n", page);
543 if ((page >> PAGE_SHIFT) < max_low_pfn
544 && page & _PAGE_PRESENT) {
545 page &= PAGE_MASK;
546 page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT)
547 & (PTRS_PER_PMD - 1)];
548 printk(KERN_ALERT "*pde = %016Lx\n", page);
549 page &= ~_PAGE_NX;
550 }
551#else
dd287796 552 printk(KERN_ALERT "*pde = %08lx\n", page);
1da177e4 553#endif
28609f6e
JB
554
555 /*
556 * We must not directly access the pte in the highpte
557 * case if the page table is located in highmem.
558 * And let's rather not kmap-atomic the pte, just in case
559 * it's allocated already.
560 */
561 if ((page >> PAGE_SHIFT) < max_low_pfn
562 && (page & _PAGE_PRESENT)) {
563 page &= PAGE_MASK;
564 page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT)
565 & (PTRS_PER_PTE - 1)];
566 printk(KERN_ALERT "*pte = %0*Lx\n", sizeof(page)*2, (u64)page);
567 }
568 }
569
4f339ecb
AN
570 tsk->thread.cr2 = address;
571 tsk->thread.trap_no = 14;
572 tsk->thread.error_code = error_code;
1da177e4
LT
573 die("Oops", regs, error_code);
574 bust_spinlocks(0);
575 do_exit(SIGKILL);
576
577/*
578 * We ran out of memory, or some other thing happened to us that made
579 * us unable to handle the page fault gracefully.
580 */
581out_of_memory:
582 up_read(&mm->mmap_sem);
f400e198 583 if (is_init(tsk)) {
1da177e4
LT
584 yield();
585 down_read(&mm->mmap_sem);
586 goto survive;
587 }
588 printk("VM: killing process %s\n", tsk->comm);
589 if (error_code & 4)
590 do_exit(SIGKILL);
591 goto no_context;
592
593do_sigbus:
594 up_read(&mm->mmap_sem);
595
596 /* Kernel mode? Handle exceptions or die */
597 if (!(error_code & 4))
598 goto no_context;
599
600 /* User space => ok to do another page fault */
601 if (is_prefetch(regs, address, error_code))
602 return;
603
604 tsk->thread.cr2 = address;
605 tsk->thread.error_code = error_code;
606 tsk->thread.trap_no = 14;
869f96a0 607 force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
101f12af 608}
1da177e4 609
101f12af
JB
610void vmalloc_sync_all(void)
611{
612 /*
613 * Note that races in the updates of insync and start aren't
614 * problematic: insync can only get set bits added, and updates to
615 * start are only improving performance (without affecting correctness
616 * if undone).
617 */
618 static DECLARE_BITMAP(insync, PTRS_PER_PGD);
619 static unsigned long start = TASK_SIZE;
620 unsigned long address;
1da177e4 621
5311ab62
JF
622 if (SHARED_KERNEL_PMD)
623 return;
624
101f12af
JB
625 BUILD_BUG_ON(TASK_SIZE & ~PGDIR_MASK);
626 for (address = start; address >= TASK_SIZE; address += PGDIR_SIZE) {
627 if (!test_bit(pgd_index(address), insync)) {
628 unsigned long flags;
629 struct page *page;
630
631 spin_lock_irqsave(&pgd_lock, flags);
632 for (page = pgd_list; page; page =
633 (struct page *)page->index)
634 if (!vmalloc_sync_one(page_address(page),
635 address)) {
636 BUG_ON(page != pgd_list);
637 break;
638 }
639 spin_unlock_irqrestore(&pgd_lock, flags);
640 if (!page)
641 set_bit(pgd_index(address), insync);
642 }
643 if (address == start && test_bit(pgd_index(address), insync))
644 start = address + PGDIR_SIZE;
1da177e4
LT
645 }
646}
This page took 0.292755 seconds and 5 git commands to generate.