Merge git://oss.sgi.com:8090/oss/git/xfs-2.6
[deliverable/linux.git] / arch / ia64 / kernel / perfmon.c
CommitLineData
1da177e4
LT
1/*
2 * This file implements the perfmon-2 subsystem which is used
3 * to program the IA-64 Performance Monitoring Unit (PMU).
4 *
5 * The initial version of perfmon.c was written by
6 * Ganesh Venkitachalam, IBM Corp.
7 *
8 * Then it was modified for perfmon-1.x by Stephane Eranian and
9 * David Mosberger, Hewlett Packard Co.
10 *
11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
12 * by Stephane Eranian, Hewlett Packard Co.
13 *
a1ecf7f6 14 * Copyright (C) 1999-2005 Hewlett Packard Co
1da177e4
LT
15 * Stephane Eranian <eranian@hpl.hp.com>
16 * David Mosberger-Tang <davidm@hpl.hp.com>
17 *
18 * More information about perfmon available at:
19 * http://www.hpl.hp.com/research/linux/perfmon
20 */
21
22#include <linux/config.h>
23#include <linux/module.h>
24#include <linux/kernel.h>
25#include <linux/sched.h>
26#include <linux/interrupt.h>
27#include <linux/smp_lock.h>
28#include <linux/proc_fs.h>
29#include <linux/seq_file.h>
30#include <linux/init.h>
31#include <linux/vmalloc.h>
32#include <linux/mm.h>
33#include <linux/sysctl.h>
34#include <linux/list.h>
35#include <linux/file.h>
36#include <linux/poll.h>
37#include <linux/vfs.h>
38#include <linux/pagemap.h>
39#include <linux/mount.h>
1da177e4 40#include <linux/bitops.h>
a9415644 41#include <linux/capability.h>
badf1662 42#include <linux/rcupdate.h>
1da177e4
LT
43
44#include <asm/errno.h>
45#include <asm/intrinsics.h>
46#include <asm/page.h>
47#include <asm/perfmon.h>
48#include <asm/processor.h>
49#include <asm/signal.h>
50#include <asm/system.h>
51#include <asm/uaccess.h>
52#include <asm/delay.h>
53
54#ifdef CONFIG_PERFMON
55/*
56 * perfmon context state
57 */
58#define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
59#define PFM_CTX_LOADED 2 /* context is loaded onto a task */
60#define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
61#define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
62
63#define PFM_INVALID_ACTIVATION (~0UL)
64
65/*
66 * depth of message queue
67 */
68#define PFM_MAX_MSGS 32
69#define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
70
71/*
72 * type of a PMU register (bitmask).
73 * bitmask structure:
74 * bit0 : register implemented
75 * bit1 : end marker
76 * bit2-3 : reserved
77 * bit4 : pmc has pmc.pm
78 * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
79 * bit6-7 : register type
80 * bit8-31: reserved
81 */
82#define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
83#define PFM_REG_IMPL 0x1 /* register implemented */
84#define PFM_REG_END 0x2 /* end marker */
85#define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
86#define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
87#define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
88#define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
89#define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
90
91#define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
92#define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
93
94#define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
95
96/* i assumed unsigned */
97#define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
98#define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
99
100/* XXX: these assume that register i is implemented */
101#define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
102#define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
103#define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
104#define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
105
106#define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
107#define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
108#define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
109#define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
110
111#define PFM_NUM_IBRS IA64_NUM_DBG_REGS
112#define PFM_NUM_DBRS IA64_NUM_DBG_REGS
113
114#define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
115#define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
116#define PFM_CTX_TASK(h) (h)->ctx_task
117
118#define PMU_PMC_OI 5 /* position of pmc.oi bit */
119
120/* XXX: does not support more than 64 PMDs */
121#define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
122#define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
123
124#define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
125
126#define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
127#define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
128#define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
129#define PFM_CODE_RR 0 /* requesting code range restriction */
130#define PFM_DATA_RR 1 /* requestion data range restriction */
131
132#define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
133#define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
134#define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
135
136#define RDEP(x) (1UL<<(x))
137
138/*
139 * context protection macros
140 * in SMP:
141 * - we need to protect against CPU concurrency (spin_lock)
142 * - we need to protect against PMU overflow interrupts (local_irq_disable)
143 * in UP:
144 * - we need to protect against PMU overflow interrupts (local_irq_disable)
145 *
146 * spin_lock_irqsave()/spin_lock_irqrestore():
147 * in SMP: local_irq_disable + spin_lock
148 * in UP : local_irq_disable
149 *
150 * spin_lock()/spin_lock():
151 * in UP : removed automatically
152 * in SMP: protect against context accesses from other CPU. interrupts
153 * are not masked. This is useful for the PMU interrupt handler
154 * because we know we will not get PMU concurrency in that code.
155 */
156#define PROTECT_CTX(c, f) \
157 do { \
158 DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, current->pid)); \
159 spin_lock_irqsave(&(c)->ctx_lock, f); \
160 DPRINT(("spinlocked ctx %p by [%d]\n", c, current->pid)); \
161 } while(0)
162
163#define UNPROTECT_CTX(c, f) \
164 do { \
165 DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, current->pid)); \
166 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
167 } while(0)
168
169#define PROTECT_CTX_NOPRINT(c, f) \
170 do { \
171 spin_lock_irqsave(&(c)->ctx_lock, f); \
172 } while(0)
173
174
175#define UNPROTECT_CTX_NOPRINT(c, f) \
176 do { \
177 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
178 } while(0)
179
180
181#define PROTECT_CTX_NOIRQ(c) \
182 do { \
183 spin_lock(&(c)->ctx_lock); \
184 } while(0)
185
186#define UNPROTECT_CTX_NOIRQ(c) \
187 do { \
188 spin_unlock(&(c)->ctx_lock); \
189 } while(0)
190
191
192#ifdef CONFIG_SMP
193
194#define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
195#define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
196#define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
197
198#else /* !CONFIG_SMP */
199#define SET_ACTIVATION(t) do {} while(0)
200#define GET_ACTIVATION(t) do {} while(0)
201#define INC_ACTIVATION(t) do {} while(0)
202#endif /* CONFIG_SMP */
203
204#define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
205#define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
206#define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
207
208#define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
209#define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
210
211#define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
212
213/*
214 * cmp0 must be the value of pmc0
215 */
216#define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
217
218#define PFMFS_MAGIC 0xa0b4d889
219
220/*
221 * debugging
222 */
223#define PFM_DEBUGGING 1
224#ifdef PFM_DEBUGGING
225#define DPRINT(a) \
226 do { \
227 if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
228 } while (0)
229
230#define DPRINT_ovfl(a) \
231 do { \
232 if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
233 } while (0)
234#endif
235
236/*
237 * 64-bit software counter structure
238 *
239 * the next_reset_type is applied to the next call to pfm_reset_regs()
240 */
241typedef struct {
242 unsigned long val; /* virtual 64bit counter value */
243 unsigned long lval; /* last reset value */
244 unsigned long long_reset; /* reset value on sampling overflow */
245 unsigned long short_reset; /* reset value on overflow */
246 unsigned long reset_pmds[4]; /* which other pmds to reset when this counter overflows */
247 unsigned long smpl_pmds[4]; /* which pmds are accessed when counter overflow */
248 unsigned long seed; /* seed for random-number generator */
249 unsigned long mask; /* mask for random-number generator */
250 unsigned int flags; /* notify/do not notify */
251 unsigned long eventid; /* overflow event identifier */
252} pfm_counter_t;
253
254/*
255 * context flags
256 */
257typedef struct {
258 unsigned int block:1; /* when 1, task will blocked on user notifications */
259 unsigned int system:1; /* do system wide monitoring */
260 unsigned int using_dbreg:1; /* using range restrictions (debug registers) */
261 unsigned int is_sampling:1; /* true if using a custom format */
262 unsigned int excl_idle:1; /* exclude idle task in system wide session */
263 unsigned int going_zombie:1; /* context is zombie (MASKED+blocking) */
264 unsigned int trap_reason:2; /* reason for going into pfm_handle_work() */
265 unsigned int no_msg:1; /* no message sent on overflow */
266 unsigned int can_restart:1; /* allowed to issue a PFM_RESTART */
267 unsigned int reserved:22;
268} pfm_context_flags_t;
269
270#define PFM_TRAP_REASON_NONE 0x0 /* default value */
271#define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
272#define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
273
274
275/*
276 * perfmon context: encapsulates all the state of a monitoring session
277 */
278
279typedef struct pfm_context {
280 spinlock_t ctx_lock; /* context protection */
281
282 pfm_context_flags_t ctx_flags; /* bitmask of flags (block reason incl.) */
283 unsigned int ctx_state; /* state: active/inactive (no bitfield) */
284
285 struct task_struct *ctx_task; /* task to which context is attached */
286
287 unsigned long ctx_ovfl_regs[4]; /* which registers overflowed (notification) */
288
289 struct semaphore ctx_restart_sem; /* use for blocking notification mode */
290
291 unsigned long ctx_used_pmds[4]; /* bitmask of PMD used */
292 unsigned long ctx_all_pmds[4]; /* bitmask of all accessible PMDs */
293 unsigned long ctx_reload_pmds[4]; /* bitmask of force reload PMD on ctxsw in */
294
295 unsigned long ctx_all_pmcs[4]; /* bitmask of all accessible PMCs */
296 unsigned long ctx_reload_pmcs[4]; /* bitmask of force reload PMC on ctxsw in */
297 unsigned long ctx_used_monitors[4]; /* bitmask of monitor PMC being used */
298
299 unsigned long ctx_pmcs[IA64_NUM_PMC_REGS]; /* saved copies of PMC values */
300
301 unsigned int ctx_used_ibrs[1]; /* bitmask of used IBR (speedup ctxsw in) */
302 unsigned int ctx_used_dbrs[1]; /* bitmask of used DBR (speedup ctxsw in) */
303 unsigned long ctx_dbrs[IA64_NUM_DBG_REGS]; /* DBR values (cache) when not loaded */
304 unsigned long ctx_ibrs[IA64_NUM_DBG_REGS]; /* IBR values (cache) when not loaded */
305
306 pfm_counter_t ctx_pmds[IA64_NUM_PMD_REGS]; /* software state for PMDS */
307
308 u64 ctx_saved_psr_up; /* only contains psr.up value */
309
310 unsigned long ctx_last_activation; /* context last activation number for last_cpu */
311 unsigned int ctx_last_cpu; /* CPU id of current or last CPU used (SMP only) */
312 unsigned int ctx_cpu; /* cpu to which perfmon is applied (system wide) */
313
314 int ctx_fd; /* file descriptor used my this context */
315 pfm_ovfl_arg_t ctx_ovfl_arg; /* argument to custom buffer format handler */
316
317 pfm_buffer_fmt_t *ctx_buf_fmt; /* buffer format callbacks */
318 void *ctx_smpl_hdr; /* points to sampling buffer header kernel vaddr */
319 unsigned long ctx_smpl_size; /* size of sampling buffer */
320 void *ctx_smpl_vaddr; /* user level virtual address of smpl buffer */
321
322 wait_queue_head_t ctx_msgq_wait;
323 pfm_msg_t ctx_msgq[PFM_MAX_MSGS];
324 int ctx_msgq_head;
325 int ctx_msgq_tail;
326 struct fasync_struct *ctx_async_queue;
327
328 wait_queue_head_t ctx_zombieq; /* termination cleanup wait queue */
329} pfm_context_t;
330
331/*
332 * magic number used to verify that structure is really
333 * a perfmon context
334 */
335#define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
336
337#define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
338
339#ifdef CONFIG_SMP
340#define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
341#define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
342#else
343#define SET_LAST_CPU(ctx, v) do {} while(0)
344#define GET_LAST_CPU(ctx) do {} while(0)
345#endif
346
347
348#define ctx_fl_block ctx_flags.block
349#define ctx_fl_system ctx_flags.system
350#define ctx_fl_using_dbreg ctx_flags.using_dbreg
351#define ctx_fl_is_sampling ctx_flags.is_sampling
352#define ctx_fl_excl_idle ctx_flags.excl_idle
353#define ctx_fl_going_zombie ctx_flags.going_zombie
354#define ctx_fl_trap_reason ctx_flags.trap_reason
355#define ctx_fl_no_msg ctx_flags.no_msg
356#define ctx_fl_can_restart ctx_flags.can_restart
357
358#define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
359#define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
360
361/*
362 * global information about all sessions
363 * mostly used to synchronize between system wide and per-process
364 */
365typedef struct {
366 spinlock_t pfs_lock; /* lock the structure */
367
368 unsigned int pfs_task_sessions; /* number of per task sessions */
369 unsigned int pfs_sys_sessions; /* number of per system wide sessions */
370 unsigned int pfs_sys_use_dbregs; /* incremented when a system wide session uses debug regs */
371 unsigned int pfs_ptrace_use_dbregs; /* incremented when a process uses debug regs */
372 struct task_struct *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
373} pfm_session_t;
374
375/*
376 * information about a PMC or PMD.
377 * dep_pmd[]: a bitmask of dependent PMD registers
378 * dep_pmc[]: a bitmask of dependent PMC registers
379 */
380typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
381typedef struct {
382 unsigned int type;
383 int pm_pos;
384 unsigned long default_value; /* power-on default value */
385 unsigned long reserved_mask; /* bitmask of reserved bits */
386 pfm_reg_check_t read_check;
387 pfm_reg_check_t write_check;
388 unsigned long dep_pmd[4];
389 unsigned long dep_pmc[4];
390} pfm_reg_desc_t;
391
392/* assume cnum is a valid monitor */
393#define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
394
395/*
396 * This structure is initialized at boot time and contains
397 * a description of the PMU main characteristics.
398 *
399 * If the probe function is defined, detection is based
400 * on its return value:
401 * - 0 means recognized PMU
402 * - anything else means not supported
403 * When the probe function is not defined, then the pmu_family field
404 * is used and it must match the host CPU family such that:
405 * - cpu->family & config->pmu_family != 0
406 */
407typedef struct {
408 unsigned long ovfl_val; /* overflow value for counters */
409
410 pfm_reg_desc_t *pmc_desc; /* detailed PMC register dependencies descriptions */
411 pfm_reg_desc_t *pmd_desc; /* detailed PMD register dependencies descriptions */
412
413 unsigned int num_pmcs; /* number of PMCS: computed at init time */
414 unsigned int num_pmds; /* number of PMDS: computed at init time */
415 unsigned long impl_pmcs[4]; /* bitmask of implemented PMCS */
416 unsigned long impl_pmds[4]; /* bitmask of implemented PMDS */
417
418 char *pmu_name; /* PMU family name */
419 unsigned int pmu_family; /* cpuid family pattern used to identify pmu */
420 unsigned int flags; /* pmu specific flags */
421 unsigned int num_ibrs; /* number of IBRS: computed at init time */
422 unsigned int num_dbrs; /* number of DBRS: computed at init time */
423 unsigned int num_counters; /* PMC/PMD counting pairs : computed at init time */
424 int (*probe)(void); /* customized probe routine */
425 unsigned int use_rr_dbregs:1; /* set if debug registers used for range restriction */
426} pmu_config_t;
427/*
428 * PMU specific flags
429 */
430#define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
431
432/*
433 * debug register related type definitions
434 */
435typedef struct {
436 unsigned long ibr_mask:56;
437 unsigned long ibr_plm:4;
438 unsigned long ibr_ig:3;
439 unsigned long ibr_x:1;
440} ibr_mask_reg_t;
441
442typedef struct {
443 unsigned long dbr_mask:56;
444 unsigned long dbr_plm:4;
445 unsigned long dbr_ig:2;
446 unsigned long dbr_w:1;
447 unsigned long dbr_r:1;
448} dbr_mask_reg_t;
449
450typedef union {
451 unsigned long val;
452 ibr_mask_reg_t ibr;
453 dbr_mask_reg_t dbr;
454} dbreg_t;
455
456
457/*
458 * perfmon command descriptions
459 */
460typedef struct {
461 int (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
462 char *cmd_name;
463 int cmd_flags;
464 unsigned int cmd_narg;
465 size_t cmd_argsize;
466 int (*cmd_getsize)(void *arg, size_t *sz);
467} pfm_cmd_desc_t;
468
469#define PFM_CMD_FD 0x01 /* command requires a file descriptor */
470#define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
471#define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
472#define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
473
474
475#define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
476#define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
477#define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
478#define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
479#define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
480
481#define PFM_CMD_ARG_MANY -1 /* cannot be zero */
482
1da177e4
LT
483typedef struct {
484 unsigned long pfm_spurious_ovfl_intr_count; /* keep track of spurious ovfl interrupts */
485 unsigned long pfm_replay_ovfl_intr_count; /* keep track of replayed ovfl interrupts */
486 unsigned long pfm_ovfl_intr_count; /* keep track of ovfl interrupts */
487 unsigned long pfm_ovfl_intr_cycles; /* cycles spent processing ovfl interrupts */
488 unsigned long pfm_ovfl_intr_cycles_min; /* min cycles spent processing ovfl interrupts */
489 unsigned long pfm_ovfl_intr_cycles_max; /* max cycles spent processing ovfl interrupts */
490 unsigned long pfm_smpl_handler_calls;
491 unsigned long pfm_smpl_handler_cycles;
492 char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
493} pfm_stats_t;
494
495/*
496 * perfmon internal variables
497 */
498static pfm_stats_t pfm_stats[NR_CPUS];
499static pfm_session_t pfm_sessions; /* global sessions information */
500
a9f6a0dd 501static DEFINE_SPINLOCK(pfm_alt_install_check);
a1ecf7f6
TL
502static pfm_intr_handler_desc_t *pfm_alt_intr_handler;
503
1da177e4
LT
504static struct proc_dir_entry *perfmon_dir;
505static pfm_uuid_t pfm_null_uuid = {0,};
506
507static spinlock_t pfm_buffer_fmt_lock;
508static LIST_HEAD(pfm_buffer_fmt_list);
509
510static pmu_config_t *pmu_conf;
511
512/* sysctl() controls */
4944930a
SE
513pfm_sysctl_t pfm_sysctl;
514EXPORT_SYMBOL(pfm_sysctl);
1da177e4
LT
515
516static ctl_table pfm_ctl_table[]={
517 {1, "debug", &pfm_sysctl.debug, sizeof(int), 0666, NULL, &proc_dointvec, NULL,},
518 {2, "debug_ovfl", &pfm_sysctl.debug_ovfl, sizeof(int), 0666, NULL, &proc_dointvec, NULL,},
519 {3, "fastctxsw", &pfm_sysctl.fastctxsw, sizeof(int), 0600, NULL, &proc_dointvec, NULL,},
520 {4, "expert_mode", &pfm_sysctl.expert_mode, sizeof(int), 0600, NULL, &proc_dointvec, NULL,},
521 { 0, },
522};
523static ctl_table pfm_sysctl_dir[] = {
524 {1, "perfmon", NULL, 0, 0755, pfm_ctl_table, },
525 {0,},
526};
527static ctl_table pfm_sysctl_root[] = {
528 {1, "kernel", NULL, 0, 0755, pfm_sysctl_dir, },
529 {0,},
530};
531static struct ctl_table_header *pfm_sysctl_header;
532
533static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
534static int pfm_flush(struct file *filp);
535
536#define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
537#define pfm_get_cpu_data(a,b) per_cpu(a, b)
538
539static inline void
540pfm_put_task(struct task_struct *task)
541{
542 if (task != current) put_task_struct(task);
543}
544
545static inline void
546pfm_set_task_notify(struct task_struct *task)
547{
548 struct thread_info *info;
549
550 info = (struct thread_info *) ((char *) task + IA64_TASK_SIZE);
551 set_bit(TIF_NOTIFY_RESUME, &info->flags);
552}
553
554static inline void
555pfm_clear_task_notify(void)
556{
557 clear_thread_flag(TIF_NOTIFY_RESUME);
558}
559
560static inline void
561pfm_reserve_page(unsigned long a)
562{
563 SetPageReserved(vmalloc_to_page((void *)a));
564}
565static inline void
566pfm_unreserve_page(unsigned long a)
567{
568 ClearPageReserved(vmalloc_to_page((void*)a));
569}
570
571static inline unsigned long
572pfm_protect_ctx_ctxsw(pfm_context_t *x)
573{
574 spin_lock(&(x)->ctx_lock);
575 return 0UL;
576}
577
24b8e0cc 578static inline void
1da177e4
LT
579pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
580{
581 spin_unlock(&(x)->ctx_lock);
582}
583
584static inline unsigned int
585pfm_do_munmap(struct mm_struct *mm, unsigned long addr, size_t len, int acct)
586{
587 return do_munmap(mm, addr, len);
588}
589
590static inline unsigned long
591pfm_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags, unsigned long exec)
592{
593 return get_unmapped_area(file, addr, len, pgoff, flags);
594}
595
596
597static struct super_block *
598pfmfs_get_sb(struct file_system_type *fs_type, int flags, const char *dev_name, void *data)
599{
600 return get_sb_pseudo(fs_type, "pfm:", NULL, PFMFS_MAGIC);
601}
602
603static struct file_system_type pfm_fs_type = {
604 .name = "pfmfs",
605 .get_sb = pfmfs_get_sb,
606 .kill_sb = kill_anon_super,
607};
608
609DEFINE_PER_CPU(unsigned long, pfm_syst_info);
610DEFINE_PER_CPU(struct task_struct *, pmu_owner);
611DEFINE_PER_CPU(pfm_context_t *, pmu_ctx);
612DEFINE_PER_CPU(unsigned long, pmu_activation_number);
fffcc150 613EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
1da177e4
LT
614
615
616/* forward declaration */
617static struct file_operations pfm_file_ops;
618
619/*
620 * forward declarations
621 */
622#ifndef CONFIG_SMP
623static void pfm_lazy_save_regs (struct task_struct *ta);
624#endif
625
626void dump_pmu_state(const char *);
627static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
628
629#include "perfmon_itanium.h"
630#include "perfmon_mckinley.h"
631#include "perfmon_generic.h"
632
633static pmu_config_t *pmu_confs[]={
634 &pmu_conf_mck,
635 &pmu_conf_ita,
636 &pmu_conf_gen, /* must be last */
637 NULL
638};
639
640
641static int pfm_end_notify_user(pfm_context_t *ctx);
642
643static inline void
644pfm_clear_psr_pp(void)
645{
646 ia64_rsm(IA64_PSR_PP);
647 ia64_srlz_i();
648}
649
650static inline void
651pfm_set_psr_pp(void)
652{
653 ia64_ssm(IA64_PSR_PP);
654 ia64_srlz_i();
655}
656
657static inline void
658pfm_clear_psr_up(void)
659{
660 ia64_rsm(IA64_PSR_UP);
661 ia64_srlz_i();
662}
663
664static inline void
665pfm_set_psr_up(void)
666{
667 ia64_ssm(IA64_PSR_UP);
668 ia64_srlz_i();
669}
670
671static inline unsigned long
672pfm_get_psr(void)
673{
674 unsigned long tmp;
675 tmp = ia64_getreg(_IA64_REG_PSR);
676 ia64_srlz_i();
677 return tmp;
678}
679
680static inline void
681pfm_set_psr_l(unsigned long val)
682{
683 ia64_setreg(_IA64_REG_PSR_L, val);
684 ia64_srlz_i();
685}
686
687static inline void
688pfm_freeze_pmu(void)
689{
690 ia64_set_pmc(0,1UL);
691 ia64_srlz_d();
692}
693
694static inline void
695pfm_unfreeze_pmu(void)
696{
697 ia64_set_pmc(0,0UL);
698 ia64_srlz_d();
699}
700
701static inline void
702pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
703{
704 int i;
705
706 for (i=0; i < nibrs; i++) {
707 ia64_set_ibr(i, ibrs[i]);
708 ia64_dv_serialize_instruction();
709 }
710 ia64_srlz_i();
711}
712
713static inline void
714pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
715{
716 int i;
717
718 for (i=0; i < ndbrs; i++) {
719 ia64_set_dbr(i, dbrs[i]);
720 ia64_dv_serialize_data();
721 }
722 ia64_srlz_d();
723}
724
725/*
726 * PMD[i] must be a counter. no check is made
727 */
728static inline unsigned long
729pfm_read_soft_counter(pfm_context_t *ctx, int i)
730{
731 return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
732}
733
734/*
735 * PMD[i] must be a counter. no check is made
736 */
737static inline void
738pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
739{
740 unsigned long ovfl_val = pmu_conf->ovfl_val;
741
742 ctx->ctx_pmds[i].val = val & ~ovfl_val;
743 /*
744 * writing to unimplemented part is ignore, so we do not need to
745 * mask off top part
746 */
747 ia64_set_pmd(i, val & ovfl_val);
748}
749
750static pfm_msg_t *
751pfm_get_new_msg(pfm_context_t *ctx)
752{
753 int idx, next;
754
755 next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
756
757 DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
758 if (next == ctx->ctx_msgq_head) return NULL;
759
760 idx = ctx->ctx_msgq_tail;
761 ctx->ctx_msgq_tail = next;
762
763 DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
764
765 return ctx->ctx_msgq+idx;
766}
767
768static pfm_msg_t *
769pfm_get_next_msg(pfm_context_t *ctx)
770{
771 pfm_msg_t *msg;
772
773 DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
774
775 if (PFM_CTXQ_EMPTY(ctx)) return NULL;
776
777 /*
778 * get oldest message
779 */
780 msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
781
782 /*
783 * and move forward
784 */
785 ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
786
787 DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
788
789 return msg;
790}
791
792static void
793pfm_reset_msgq(pfm_context_t *ctx)
794{
795 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
796 DPRINT(("ctx=%p msgq reset\n", ctx));
797}
798
799static void *
800pfm_rvmalloc(unsigned long size)
801{
802 void *mem;
803 unsigned long addr;
804
805 size = PAGE_ALIGN(size);
806 mem = vmalloc(size);
807 if (mem) {
808 //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
809 memset(mem, 0, size);
810 addr = (unsigned long)mem;
811 while (size > 0) {
812 pfm_reserve_page(addr);
813 addr+=PAGE_SIZE;
814 size-=PAGE_SIZE;
815 }
816 }
817 return mem;
818}
819
820static void
821pfm_rvfree(void *mem, unsigned long size)
822{
823 unsigned long addr;
824
825 if (mem) {
826 DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
827 addr = (unsigned long) mem;
828 while ((long) size > 0) {
829 pfm_unreserve_page(addr);
830 addr+=PAGE_SIZE;
831 size-=PAGE_SIZE;
832 }
833 vfree(mem);
834 }
835 return;
836}
837
838static pfm_context_t *
839pfm_context_alloc(void)
840{
841 pfm_context_t *ctx;
842
843 /*
844 * allocate context descriptor
845 * must be able to free with interrupts disabled
846 */
847 ctx = kmalloc(sizeof(pfm_context_t), GFP_KERNEL);
848 if (ctx) {
849 memset(ctx, 0, sizeof(pfm_context_t));
850 DPRINT(("alloc ctx @%p\n", ctx));
851 }
852 return ctx;
853}
854
855static void
856pfm_context_free(pfm_context_t *ctx)
857{
858 if (ctx) {
859 DPRINT(("free ctx @%p\n", ctx));
860 kfree(ctx);
861 }
862}
863
864static void
865pfm_mask_monitoring(struct task_struct *task)
866{
867 pfm_context_t *ctx = PFM_GET_CTX(task);
868 struct thread_struct *th = &task->thread;
869 unsigned long mask, val, ovfl_mask;
870 int i;
871
872 DPRINT_ovfl(("masking monitoring for [%d]\n", task->pid));
873
874 ovfl_mask = pmu_conf->ovfl_val;
875 /*
876 * monitoring can only be masked as a result of a valid
877 * counter overflow. In UP, it means that the PMU still
878 * has an owner. Note that the owner can be different
879 * from the current task. However the PMU state belongs
880 * to the owner.
881 * In SMP, a valid overflow only happens when task is
882 * current. Therefore if we come here, we know that
883 * the PMU state belongs to the current task, therefore
884 * we can access the live registers.
885 *
886 * So in both cases, the live register contains the owner's
887 * state. We can ONLY touch the PMU registers and NOT the PSR.
888 *
889 * As a consequence to this call, the thread->pmds[] array
890 * contains stale information which must be ignored
891 * when context is reloaded AND monitoring is active (see
892 * pfm_restart).
893 */
894 mask = ctx->ctx_used_pmds[0];
895 for (i = 0; mask; i++, mask>>=1) {
896 /* skip non used pmds */
897 if ((mask & 0x1) == 0) continue;
898 val = ia64_get_pmd(i);
899
900 if (PMD_IS_COUNTING(i)) {
901 /*
902 * we rebuild the full 64 bit value of the counter
903 */
904 ctx->ctx_pmds[i].val += (val & ovfl_mask);
905 } else {
906 ctx->ctx_pmds[i].val = val;
907 }
908 DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
909 i,
910 ctx->ctx_pmds[i].val,
911 val & ovfl_mask));
912 }
913 /*
914 * mask monitoring by setting the privilege level to 0
915 * we cannot use psr.pp/psr.up for this, it is controlled by
916 * the user
917 *
918 * if task is current, modify actual registers, otherwise modify
919 * thread save state, i.e., what will be restored in pfm_load_regs()
920 */
921 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
922 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
923 if ((mask & 0x1) == 0UL) continue;
924 ia64_set_pmc(i, th->pmcs[i] & ~0xfUL);
925 th->pmcs[i] &= ~0xfUL;
926 DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, th->pmcs[i]));
927 }
928 /*
929 * make all of this visible
930 */
931 ia64_srlz_d();
932}
933
934/*
935 * must always be done with task == current
936 *
937 * context must be in MASKED state when calling
938 */
939static void
940pfm_restore_monitoring(struct task_struct *task)
941{
942 pfm_context_t *ctx = PFM_GET_CTX(task);
943 struct thread_struct *th = &task->thread;
944 unsigned long mask, ovfl_mask;
945 unsigned long psr, val;
946 int i, is_system;
947
948 is_system = ctx->ctx_fl_system;
949 ovfl_mask = pmu_conf->ovfl_val;
950
951 if (task != current) {
952 printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task->pid, current->pid);
953 return;
954 }
955 if (ctx->ctx_state != PFM_CTX_MASKED) {
956 printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
957 task->pid, current->pid, ctx->ctx_state);
958 return;
959 }
960 psr = pfm_get_psr();
961 /*
962 * monitoring is masked via the PMC.
963 * As we restore their value, we do not want each counter to
964 * restart right away. We stop monitoring using the PSR,
965 * restore the PMC (and PMD) and then re-establish the psr
966 * as it was. Note that there can be no pending overflow at
967 * this point, because monitoring was MASKED.
968 *
969 * system-wide session are pinned and self-monitoring
970 */
971 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
972 /* disable dcr pp */
973 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
974 pfm_clear_psr_pp();
975 } else {
976 pfm_clear_psr_up();
977 }
978 /*
979 * first, we restore the PMD
980 */
981 mask = ctx->ctx_used_pmds[0];
982 for (i = 0; mask; i++, mask>>=1) {
983 /* skip non used pmds */
984 if ((mask & 0x1) == 0) continue;
985
986 if (PMD_IS_COUNTING(i)) {
987 /*
988 * we split the 64bit value according to
989 * counter width
990 */
991 val = ctx->ctx_pmds[i].val & ovfl_mask;
992 ctx->ctx_pmds[i].val &= ~ovfl_mask;
993 } else {
994 val = ctx->ctx_pmds[i].val;
995 }
996 ia64_set_pmd(i, val);
997
998 DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
999 i,
1000 ctx->ctx_pmds[i].val,
1001 val));
1002 }
1003 /*
1004 * restore the PMCs
1005 */
1006 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1007 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1008 if ((mask & 0x1) == 0UL) continue;
1009 th->pmcs[i] = ctx->ctx_pmcs[i];
1010 ia64_set_pmc(i, th->pmcs[i]);
1011 DPRINT(("[%d] pmc[%d]=0x%lx\n", task->pid, i, th->pmcs[i]));
1012 }
1013 ia64_srlz_d();
1014
1015 /*
1016 * must restore DBR/IBR because could be modified while masked
1017 * XXX: need to optimize
1018 */
1019 if (ctx->ctx_fl_using_dbreg) {
1020 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1021 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1022 }
1023
1024 /*
1025 * now restore PSR
1026 */
1027 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1028 /* enable dcr pp */
1029 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1030 ia64_srlz_i();
1031 }
1032 pfm_set_psr_l(psr);
1033}
1034
1035static inline void
1036pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1037{
1038 int i;
1039
1040 ia64_srlz_d();
1041
1042 for (i=0; mask; i++, mask>>=1) {
1043 if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1044 }
1045}
1046
1047/*
1048 * reload from thread state (used for ctxw only)
1049 */
1050static inline void
1051pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1052{
1053 int i;
1054 unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1055
1056 for (i=0; mask; i++, mask>>=1) {
1057 if ((mask & 0x1) == 0) continue;
1058 val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1059 ia64_set_pmd(i, val);
1060 }
1061 ia64_srlz_d();
1062}
1063
1064/*
1065 * propagate PMD from context to thread-state
1066 */
1067static inline void
1068pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1069{
1070 struct thread_struct *thread = &task->thread;
1071 unsigned long ovfl_val = pmu_conf->ovfl_val;
1072 unsigned long mask = ctx->ctx_all_pmds[0];
1073 unsigned long val;
1074 int i;
1075
1076 DPRINT(("mask=0x%lx\n", mask));
1077
1078 for (i=0; mask; i++, mask>>=1) {
1079
1080 val = ctx->ctx_pmds[i].val;
1081
1082 /*
1083 * We break up the 64 bit value into 2 pieces
1084 * the lower bits go to the machine state in the
1085 * thread (will be reloaded on ctxsw in).
1086 * The upper part stays in the soft-counter.
1087 */
1088 if (PMD_IS_COUNTING(i)) {
1089 ctx->ctx_pmds[i].val = val & ~ovfl_val;
1090 val &= ovfl_val;
1091 }
1092 thread->pmds[i] = val;
1093
1094 DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1095 i,
1096 thread->pmds[i],
1097 ctx->ctx_pmds[i].val));
1098 }
1099}
1100
1101/*
1102 * propagate PMC from context to thread-state
1103 */
1104static inline void
1105pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1106{
1107 struct thread_struct *thread = &task->thread;
1108 unsigned long mask = ctx->ctx_all_pmcs[0];
1109 int i;
1110
1111 DPRINT(("mask=0x%lx\n", mask));
1112
1113 for (i=0; mask; i++, mask>>=1) {
1114 /* masking 0 with ovfl_val yields 0 */
1115 thread->pmcs[i] = ctx->ctx_pmcs[i];
1116 DPRINT(("pmc[%d]=0x%lx\n", i, thread->pmcs[i]));
1117 }
1118}
1119
1120
1121
1122static inline void
1123pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1124{
1125 int i;
1126
1127 for (i=0; mask; i++, mask>>=1) {
1128 if ((mask & 0x1) == 0) continue;
1129 ia64_set_pmc(i, pmcs[i]);
1130 }
1131 ia64_srlz_d();
1132}
1133
1134static inline int
1135pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1136{
1137 return memcmp(a, b, sizeof(pfm_uuid_t));
1138}
1139
1140static inline int
1141pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1142{
1143 int ret = 0;
1144 if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1145 return ret;
1146}
1147
1148static inline int
1149pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1150{
1151 int ret = 0;
1152 if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1153 return ret;
1154}
1155
1156
1157static inline int
1158pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1159 int cpu, void *arg)
1160{
1161 int ret = 0;
1162 if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1163 return ret;
1164}
1165
1166static inline int
1167pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1168 int cpu, void *arg)
1169{
1170 int ret = 0;
1171 if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1172 return ret;
1173}
1174
1175static inline int
1176pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1177{
1178 int ret = 0;
1179 if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1180 return ret;
1181}
1182
1183static inline int
1184pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1185{
1186 int ret = 0;
1187 if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1188 return ret;
1189}
1190
1191static pfm_buffer_fmt_t *
1192__pfm_find_buffer_fmt(pfm_uuid_t uuid)
1193{
1194 struct list_head * pos;
1195 pfm_buffer_fmt_t * entry;
1196
1197 list_for_each(pos, &pfm_buffer_fmt_list) {
1198 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1199 if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1200 return entry;
1201 }
1202 return NULL;
1203}
1204
1205/*
1206 * find a buffer format based on its uuid
1207 */
1208static pfm_buffer_fmt_t *
1209pfm_find_buffer_fmt(pfm_uuid_t uuid)
1210{
1211 pfm_buffer_fmt_t * fmt;
1212 spin_lock(&pfm_buffer_fmt_lock);
1213 fmt = __pfm_find_buffer_fmt(uuid);
1214 spin_unlock(&pfm_buffer_fmt_lock);
1215 return fmt;
1216}
1217
1218int
1219pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1220{
1221 int ret = 0;
1222
1223 /* some sanity checks */
1224 if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1225
1226 /* we need at least a handler */
1227 if (fmt->fmt_handler == NULL) return -EINVAL;
1228
1229 /*
1230 * XXX: need check validity of fmt_arg_size
1231 */
1232
1233 spin_lock(&pfm_buffer_fmt_lock);
1234
1235 if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1236 printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1237 ret = -EBUSY;
1238 goto out;
1239 }
1240 list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1241 printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1242
1243out:
1244 spin_unlock(&pfm_buffer_fmt_lock);
1245 return ret;
1246}
1247EXPORT_SYMBOL(pfm_register_buffer_fmt);
1248
1249int
1250pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1251{
1252 pfm_buffer_fmt_t *fmt;
1253 int ret = 0;
1254
1255 spin_lock(&pfm_buffer_fmt_lock);
1256
1257 fmt = __pfm_find_buffer_fmt(uuid);
1258 if (!fmt) {
1259 printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1260 ret = -EINVAL;
1261 goto out;
1262 }
1263 list_del_init(&fmt->fmt_list);
1264 printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1265
1266out:
1267 spin_unlock(&pfm_buffer_fmt_lock);
1268 return ret;
1269
1270}
1271EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1272
8df5a500
SE
1273extern void update_pal_halt_status(int);
1274
1da177e4
LT
1275static int
1276pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1277{
1278 unsigned long flags;
1279 /*
1280 * validy checks on cpu_mask have been done upstream
1281 */
1282 LOCK_PFS(flags);
1283
1284 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1285 pfm_sessions.pfs_sys_sessions,
1286 pfm_sessions.pfs_task_sessions,
1287 pfm_sessions.pfs_sys_use_dbregs,
1288 is_syswide,
1289 cpu));
1290
1291 if (is_syswide) {
1292 /*
1293 * cannot mix system wide and per-task sessions
1294 */
1295 if (pfm_sessions.pfs_task_sessions > 0UL) {
1296 DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1297 pfm_sessions.pfs_task_sessions));
1298 goto abort;
1299 }
1300
1301 if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1302
1303 DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1304
1305 pfm_sessions.pfs_sys_session[cpu] = task;
1306
1307 pfm_sessions.pfs_sys_sessions++ ;
1308
1309 } else {
1310 if (pfm_sessions.pfs_sys_sessions) goto abort;
1311 pfm_sessions.pfs_task_sessions++;
1312 }
1313
1314 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1315 pfm_sessions.pfs_sys_sessions,
1316 pfm_sessions.pfs_task_sessions,
1317 pfm_sessions.pfs_sys_use_dbregs,
1318 is_syswide,
1319 cpu));
1320
8df5a500
SE
1321 /*
1322 * disable default_idle() to go to PAL_HALT
1323 */
1324 update_pal_halt_status(0);
1325
1da177e4
LT
1326 UNLOCK_PFS(flags);
1327
1328 return 0;
1329
1330error_conflict:
1331 DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1332 pfm_sessions.pfs_sys_session[cpu]->pid,
a1ecf7f6 1333 cpu));
1da177e4
LT
1334abort:
1335 UNLOCK_PFS(flags);
1336
1337 return -EBUSY;
1338
1339}
1340
1341static int
1342pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1343{
1344 unsigned long flags;
1345 /*
1346 * validy checks on cpu_mask have been done upstream
1347 */
1348 LOCK_PFS(flags);
1349
1350 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1351 pfm_sessions.pfs_sys_sessions,
1352 pfm_sessions.pfs_task_sessions,
1353 pfm_sessions.pfs_sys_use_dbregs,
1354 is_syswide,
1355 cpu));
1356
1357
1358 if (is_syswide) {
1359 pfm_sessions.pfs_sys_session[cpu] = NULL;
1360 /*
1361 * would not work with perfmon+more than one bit in cpu_mask
1362 */
1363 if (ctx && ctx->ctx_fl_using_dbreg) {
1364 if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1365 printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1366 } else {
1367 pfm_sessions.pfs_sys_use_dbregs--;
1368 }
1369 }
1370 pfm_sessions.pfs_sys_sessions--;
1371 } else {
1372 pfm_sessions.pfs_task_sessions--;
1373 }
1374 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1375 pfm_sessions.pfs_sys_sessions,
1376 pfm_sessions.pfs_task_sessions,
1377 pfm_sessions.pfs_sys_use_dbregs,
1378 is_syswide,
1379 cpu));
1380
8df5a500
SE
1381 /*
1382 * if possible, enable default_idle() to go into PAL_HALT
1383 */
1384 if (pfm_sessions.pfs_task_sessions == 0 && pfm_sessions.pfs_sys_sessions == 0)
1385 update_pal_halt_status(1);
1386
1da177e4
LT
1387 UNLOCK_PFS(flags);
1388
1389 return 0;
1390}
1391
1392/*
1393 * removes virtual mapping of the sampling buffer.
1394 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1395 * a PROTECT_CTX() section.
1396 */
1397static int
1398pfm_remove_smpl_mapping(struct task_struct *task, void *vaddr, unsigned long size)
1399{
1400 int r;
1401
1402 /* sanity checks */
1403 if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1404 printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task->pid, task->mm);
1405 return -EINVAL;
1406 }
1407
1408 DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1409
1410 /*
1411 * does the actual unmapping
1412 */
1413 down_write(&task->mm->mmap_sem);
1414
1415 DPRINT(("down_write done smpl_vaddr=%p size=%lu\n", vaddr, size));
1416
1417 r = pfm_do_munmap(task->mm, (unsigned long)vaddr, size, 0);
1418
1419 up_write(&task->mm->mmap_sem);
1420 if (r !=0) {
1421 printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task->pid, vaddr, size);
1422 }
1423
1424 DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1425
1426 return 0;
1427}
1428
1429/*
1430 * free actual physical storage used by sampling buffer
1431 */
1432#if 0
1433static int
1434pfm_free_smpl_buffer(pfm_context_t *ctx)
1435{
1436 pfm_buffer_fmt_t *fmt;
1437
1438 if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1439
1440 /*
1441 * we won't use the buffer format anymore
1442 */
1443 fmt = ctx->ctx_buf_fmt;
1444
1445 DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1446 ctx->ctx_smpl_hdr,
1447 ctx->ctx_smpl_size,
1448 ctx->ctx_smpl_vaddr));
1449
1450 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1451
1452 /*
1453 * free the buffer
1454 */
1455 pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1456
1457 ctx->ctx_smpl_hdr = NULL;
1458 ctx->ctx_smpl_size = 0UL;
1459
1460 return 0;
1461
1462invalid_free:
1463 printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", current->pid);
1464 return -EINVAL;
1465}
1466#endif
1467
1468static inline void
1469pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1470{
1471 if (fmt == NULL) return;
1472
1473 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1474
1475}
1476
1477/*
1478 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1479 * no real gain from having the whole whorehouse mounted. So we don't need
1480 * any operations on the root directory. However, we need a non-trivial
1481 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1482 */
1483static struct vfsmount *pfmfs_mnt;
1484
1485static int __init
1486init_pfm_fs(void)
1487{
1488 int err = register_filesystem(&pfm_fs_type);
1489 if (!err) {
1490 pfmfs_mnt = kern_mount(&pfm_fs_type);
1491 err = PTR_ERR(pfmfs_mnt);
1492 if (IS_ERR(pfmfs_mnt))
1493 unregister_filesystem(&pfm_fs_type);
1494 else
1495 err = 0;
1496 }
1497 return err;
1498}
1499
1500static void __exit
1501exit_pfm_fs(void)
1502{
1503 unregister_filesystem(&pfm_fs_type);
1504 mntput(pfmfs_mnt);
1505}
1506
1507static ssize_t
1508pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1509{
1510 pfm_context_t *ctx;
1511 pfm_msg_t *msg;
1512 ssize_t ret;
1513 unsigned long flags;
1514 DECLARE_WAITQUEUE(wait, current);
1515 if (PFM_IS_FILE(filp) == 0) {
1516 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid);
1517 return -EINVAL;
1518 }
1519
1520 ctx = (pfm_context_t *)filp->private_data;
1521 if (ctx == NULL) {
1522 printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", current->pid);
1523 return -EINVAL;
1524 }
1525
1526 /*
1527 * check even when there is no message
1528 */
1529 if (size < sizeof(pfm_msg_t)) {
1530 DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1531 return -EINVAL;
1532 }
1533
1534 PROTECT_CTX(ctx, flags);
1535
1536 /*
1537 * put ourselves on the wait queue
1538 */
1539 add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1540
1541
1542 for(;;) {
1543 /*
1544 * check wait queue
1545 */
1546
1547 set_current_state(TASK_INTERRUPTIBLE);
1548
1549 DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1550
1551 ret = 0;
1552 if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1553
1554 UNPROTECT_CTX(ctx, flags);
1555
1556 /*
1557 * check non-blocking read
1558 */
1559 ret = -EAGAIN;
1560 if(filp->f_flags & O_NONBLOCK) break;
1561
1562 /*
1563 * check pending signals
1564 */
1565 if(signal_pending(current)) {
1566 ret = -EINTR;
1567 break;
1568 }
1569 /*
1570 * no message, so wait
1571 */
1572 schedule();
1573
1574 PROTECT_CTX(ctx, flags);
1575 }
1576 DPRINT(("[%d] back to running ret=%ld\n", current->pid, ret));
1577 set_current_state(TASK_RUNNING);
1578 remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1579
1580 if (ret < 0) goto abort;
1581
1582 ret = -EINVAL;
1583 msg = pfm_get_next_msg(ctx);
1584 if (msg == NULL) {
1585 printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, current->pid);
1586 goto abort_locked;
1587 }
1588
4944930a 1589 DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1da177e4
LT
1590
1591 ret = -EFAULT;
1592 if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1593
1594abort_locked:
1595 UNPROTECT_CTX(ctx, flags);
1596abort:
1597 return ret;
1598}
1599
1600static ssize_t
1601pfm_write(struct file *file, const char __user *ubuf,
1602 size_t size, loff_t *ppos)
1603{
1604 DPRINT(("pfm_write called\n"));
1605 return -EINVAL;
1606}
1607
1608static unsigned int
1609pfm_poll(struct file *filp, poll_table * wait)
1610{
1611 pfm_context_t *ctx;
1612 unsigned long flags;
1613 unsigned int mask = 0;
1614
1615 if (PFM_IS_FILE(filp) == 0) {
1616 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid);
1617 return 0;
1618 }
1619
1620 ctx = (pfm_context_t *)filp->private_data;
1621 if (ctx == NULL) {
1622 printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", current->pid);
1623 return 0;
1624 }
1625
1626
1627 DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1628
1629 poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1630
1631 PROTECT_CTX(ctx, flags);
1632
1633 if (PFM_CTXQ_EMPTY(ctx) == 0)
1634 mask = POLLIN | POLLRDNORM;
1635
1636 UNPROTECT_CTX(ctx, flags);
1637
1638 DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1639
1640 return mask;
1641}
1642
1643static int
1644pfm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
1645{
1646 DPRINT(("pfm_ioctl called\n"));
1647 return -EINVAL;
1648}
1649
1650/*
1651 * interrupt cannot be masked when coming here
1652 */
1653static inline int
1654pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1655{
1656 int ret;
1657
1658 ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1659
1660 DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1661 current->pid,
1662 fd,
1663 on,
1664 ctx->ctx_async_queue, ret));
1665
1666 return ret;
1667}
1668
1669static int
1670pfm_fasync(int fd, struct file *filp, int on)
1671{
1672 pfm_context_t *ctx;
1673 int ret;
1674
1675 if (PFM_IS_FILE(filp) == 0) {
1676 printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", current->pid);
1677 return -EBADF;
1678 }
1679
1680 ctx = (pfm_context_t *)filp->private_data;
1681 if (ctx == NULL) {
1682 printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", current->pid);
1683 return -EBADF;
1684 }
1685 /*
1686 * we cannot mask interrupts during this call because this may
1687 * may go to sleep if memory is not readily avalaible.
1688 *
1689 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1690 * done in caller. Serialization of this function is ensured by caller.
1691 */
1692 ret = pfm_do_fasync(fd, filp, ctx, on);
1693
1694
1695 DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1696 fd,
1697 on,
1698 ctx->ctx_async_queue, ret));
1699
1700 return ret;
1701}
1702
1703#ifdef CONFIG_SMP
1704/*
1705 * this function is exclusively called from pfm_close().
1706 * The context is not protected at that time, nor are interrupts
1707 * on the remote CPU. That's necessary to avoid deadlocks.
1708 */
1709static void
1710pfm_syswide_force_stop(void *info)
1711{
1712 pfm_context_t *ctx = (pfm_context_t *)info;
6450578f 1713 struct pt_regs *regs = task_pt_regs(current);
1da177e4
LT
1714 struct task_struct *owner;
1715 unsigned long flags;
1716 int ret;
1717
1718 if (ctx->ctx_cpu != smp_processor_id()) {
1719 printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
1720 ctx->ctx_cpu,
1721 smp_processor_id());
1722 return;
1723 }
1724 owner = GET_PMU_OWNER();
1725 if (owner != ctx->ctx_task) {
1726 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1727 smp_processor_id(),
1728 owner->pid, ctx->ctx_task->pid);
1729 return;
1730 }
1731 if (GET_PMU_CTX() != ctx) {
1732 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1733 smp_processor_id(),
1734 GET_PMU_CTX(), ctx);
1735 return;
1736 }
1737
1738 DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), ctx->ctx_task->pid));
1739 /*
1740 * the context is already protected in pfm_close(), we simply
1741 * need to mask interrupts to avoid a PMU interrupt race on
1742 * this CPU
1743 */
1744 local_irq_save(flags);
1745
1746 ret = pfm_context_unload(ctx, NULL, 0, regs);
1747 if (ret) {
1748 DPRINT(("context_unload returned %d\n", ret));
1749 }
1750
1751 /*
1752 * unmask interrupts, PMU interrupts are now spurious here
1753 */
1754 local_irq_restore(flags);
1755}
1756
1757static void
1758pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1759{
1760 int ret;
1761
1762 DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1763 ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 0, 1);
1764 DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1765}
1766#endif /* CONFIG_SMP */
1767
1768/*
1769 * called for each close(). Partially free resources.
1770 * When caller is self-monitoring, the context is unloaded.
1771 */
1772static int
1773pfm_flush(struct file *filp)
1774{
1775 pfm_context_t *ctx;
1776 struct task_struct *task;
1777 struct pt_regs *regs;
1778 unsigned long flags;
1779 unsigned long smpl_buf_size = 0UL;
1780 void *smpl_buf_vaddr = NULL;
1781 int state, is_system;
1782
1783 if (PFM_IS_FILE(filp) == 0) {
1784 DPRINT(("bad magic for\n"));
1785 return -EBADF;
1786 }
1787
1788 ctx = (pfm_context_t *)filp->private_data;
1789 if (ctx == NULL) {
1790 printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", current->pid);
1791 return -EBADF;
1792 }
1793
1794 /*
1795 * remove our file from the async queue, if we use this mode.
1796 * This can be done without the context being protected. We come
1797 * here when the context has become unreacheable by other tasks.
1798 *
1799 * We may still have active monitoring at this point and we may
1800 * end up in pfm_overflow_handler(). However, fasync_helper()
1801 * operates with interrupts disabled and it cleans up the
1802 * queue. If the PMU handler is called prior to entering
1803 * fasync_helper() then it will send a signal. If it is
1804 * invoked after, it will find an empty queue and no
1805 * signal will be sent. In both case, we are safe
1806 */
1807 if (filp->f_flags & FASYNC) {
1808 DPRINT(("cleaning up async_queue=%p\n", ctx->ctx_async_queue));
1809 pfm_do_fasync (-1, filp, ctx, 0);
1810 }
1811
1812 PROTECT_CTX(ctx, flags);
1813
1814 state = ctx->ctx_state;
1815 is_system = ctx->ctx_fl_system;
1816
1817 task = PFM_CTX_TASK(ctx);
6450578f 1818 regs = task_pt_regs(task);
1da177e4
LT
1819
1820 DPRINT(("ctx_state=%d is_current=%d\n",
1821 state,
1822 task == current ? 1 : 0));
1823
1824 /*
1825 * if state == UNLOADED, then task is NULL
1826 */
1827
1828 /*
1829 * we must stop and unload because we are losing access to the context.
1830 */
1831 if (task == current) {
1832#ifdef CONFIG_SMP
1833 /*
1834 * the task IS the owner but it migrated to another CPU: that's bad
1835 * but we must handle this cleanly. Unfortunately, the kernel does
1836 * not provide a mechanism to block migration (while the context is loaded).
1837 *
1838 * We need to release the resource on the ORIGINAL cpu.
1839 */
1840 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1841
1842 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1843 /*
1844 * keep context protected but unmask interrupt for IPI
1845 */
1846 local_irq_restore(flags);
1847
1848 pfm_syswide_cleanup_other_cpu(ctx);
1849
1850 /*
1851 * restore interrupt masking
1852 */
1853 local_irq_save(flags);
1854
1855 /*
1856 * context is unloaded at this point
1857 */
1858 } else
1859#endif /* CONFIG_SMP */
1860 {
1861
1862 DPRINT(("forcing unload\n"));
1863 /*
1864 * stop and unload, returning with state UNLOADED
1865 * and session unreserved.
1866 */
1867 pfm_context_unload(ctx, NULL, 0, regs);
1868
1869 DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1870 }
1871 }
1872
1873 /*
1874 * remove virtual mapping, if any, for the calling task.
1875 * cannot reset ctx field until last user is calling close().
1876 *
1877 * ctx_smpl_vaddr must never be cleared because it is needed
1878 * by every task with access to the context
1879 *
1880 * When called from do_exit(), the mm context is gone already, therefore
1881 * mm is NULL, i.e., the VMA is already gone and we do not have to
1882 * do anything here
1883 */
1884 if (ctx->ctx_smpl_vaddr && current->mm) {
1885 smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1886 smpl_buf_size = ctx->ctx_smpl_size;
1887 }
1888
1889 UNPROTECT_CTX(ctx, flags);
1890
1891 /*
1892 * if there was a mapping, then we systematically remove it
1893 * at this point. Cannot be done inside critical section
1894 * because some VM function reenables interrupts.
1895 *
1896 */
1897 if (smpl_buf_vaddr) pfm_remove_smpl_mapping(current, smpl_buf_vaddr, smpl_buf_size);
1898
1899 return 0;
1900}
1901/*
1902 * called either on explicit close() or from exit_files().
1903 * Only the LAST user of the file gets to this point, i.e., it is
1904 * called only ONCE.
1905 *
1906 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1907 * (fput()),i.e, last task to access the file. Nobody else can access the
1908 * file at this point.
1909 *
1910 * When called from exit_files(), the VMA has been freed because exit_mm()
1911 * is executed before exit_files().
1912 *
1913 * When called from exit_files(), the current task is not yet ZOMBIE but we
1914 * flush the PMU state to the context.
1915 */
1916static int
1917pfm_close(struct inode *inode, struct file *filp)
1918{
1919 pfm_context_t *ctx;
1920 struct task_struct *task;
1921 struct pt_regs *regs;
1922 DECLARE_WAITQUEUE(wait, current);
1923 unsigned long flags;
1924 unsigned long smpl_buf_size = 0UL;
1925 void *smpl_buf_addr = NULL;
1926 int free_possible = 1;
1927 int state, is_system;
1928
1929 DPRINT(("pfm_close called private=%p\n", filp->private_data));
1930
1931 if (PFM_IS_FILE(filp) == 0) {
1932 DPRINT(("bad magic\n"));
1933 return -EBADF;
1934 }
1935
1936 ctx = (pfm_context_t *)filp->private_data;
1937 if (ctx == NULL) {
1938 printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", current->pid);
1939 return -EBADF;
1940 }
1941
1942 PROTECT_CTX(ctx, flags);
1943
1944 state = ctx->ctx_state;
1945 is_system = ctx->ctx_fl_system;
1946
1947 task = PFM_CTX_TASK(ctx);
6450578f 1948 regs = task_pt_regs(task);
1da177e4
LT
1949
1950 DPRINT(("ctx_state=%d is_current=%d\n",
1951 state,
1952 task == current ? 1 : 0));
1953
1954 /*
1955 * if task == current, then pfm_flush() unloaded the context
1956 */
1957 if (state == PFM_CTX_UNLOADED) goto doit;
1958
1959 /*
1960 * context is loaded/masked and task != current, we need to
1961 * either force an unload or go zombie
1962 */
1963
1964 /*
1965 * The task is currently blocked or will block after an overflow.
1966 * we must force it to wakeup to get out of the
1967 * MASKED state and transition to the unloaded state by itself.
1968 *
1969 * This situation is only possible for per-task mode
1970 */
1971 if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
1972
1973 /*
1974 * set a "partial" zombie state to be checked
1975 * upon return from down() in pfm_handle_work().
1976 *
1977 * We cannot use the ZOMBIE state, because it is checked
1978 * by pfm_load_regs() which is called upon wakeup from down().
1979 * In such case, it would free the context and then we would
1980 * return to pfm_handle_work() which would access the
1981 * stale context. Instead, we set a flag invisible to pfm_load_regs()
1982 * but visible to pfm_handle_work().
1983 *
1984 * For some window of time, we have a zombie context with
1985 * ctx_state = MASKED and not ZOMBIE
1986 */
1987 ctx->ctx_fl_going_zombie = 1;
1988
1989 /*
1990 * force task to wake up from MASKED state
1991 */
1992 up(&ctx->ctx_restart_sem);
1993
1994 DPRINT(("waking up ctx_state=%d\n", state));
1995
1996 /*
1997 * put ourself to sleep waiting for the other
1998 * task to report completion
1999 *
2000 * the context is protected by mutex, therefore there
2001 * is no risk of being notified of completion before
2002 * begin actually on the waitq.
2003 */
2004 set_current_state(TASK_INTERRUPTIBLE);
2005 add_wait_queue(&ctx->ctx_zombieq, &wait);
2006
2007 UNPROTECT_CTX(ctx, flags);
2008
2009 /*
2010 * XXX: check for signals :
2011 * - ok for explicit close
2012 * - not ok when coming from exit_files()
2013 */
2014 schedule();
2015
2016
2017 PROTECT_CTX(ctx, flags);
2018
2019
2020 remove_wait_queue(&ctx->ctx_zombieq, &wait);
2021 set_current_state(TASK_RUNNING);
2022
2023 /*
2024 * context is unloaded at this point
2025 */
2026 DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2027 }
2028 else if (task != current) {
2029#ifdef CONFIG_SMP
2030 /*
2031 * switch context to zombie state
2032 */
2033 ctx->ctx_state = PFM_CTX_ZOMBIE;
2034
2035 DPRINT(("zombie ctx for [%d]\n", task->pid));
2036 /*
2037 * cannot free the context on the spot. deferred until
2038 * the task notices the ZOMBIE state
2039 */
2040 free_possible = 0;
2041#else
2042 pfm_context_unload(ctx, NULL, 0, regs);
2043#endif
2044 }
2045
2046doit:
2047 /* reload state, may have changed during opening of critical section */
2048 state = ctx->ctx_state;
2049
2050 /*
2051 * the context is still attached to a task (possibly current)
2052 * we cannot destroy it right now
2053 */
2054
2055 /*
2056 * we must free the sampling buffer right here because
2057 * we cannot rely on it being cleaned up later by the
2058 * monitored task. It is not possible to free vmalloc'ed
2059 * memory in pfm_load_regs(). Instead, we remove the buffer
2060 * now. should there be subsequent PMU overflow originally
2061 * meant for sampling, the will be converted to spurious
2062 * and that's fine because the monitoring tools is gone anyway.
2063 */
2064 if (ctx->ctx_smpl_hdr) {
2065 smpl_buf_addr = ctx->ctx_smpl_hdr;
2066 smpl_buf_size = ctx->ctx_smpl_size;
2067 /* no more sampling */
2068 ctx->ctx_smpl_hdr = NULL;
2069 ctx->ctx_fl_is_sampling = 0;
2070 }
2071
2072 DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2073 state,
2074 free_possible,
2075 smpl_buf_addr,
2076 smpl_buf_size));
2077
2078 if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2079
2080 /*
2081 * UNLOADED that the session has already been unreserved.
2082 */
2083 if (state == PFM_CTX_ZOMBIE) {
2084 pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2085 }
2086
2087 /*
2088 * disconnect file descriptor from context must be done
2089 * before we unlock.
2090 */
2091 filp->private_data = NULL;
2092
2093 /*
2094 * if we free on the spot, the context is now completely unreacheable
2095 * from the callers side. The monitored task side is also cut, so we
2096 * can freely cut.
2097 *
2098 * If we have a deferred free, only the caller side is disconnected.
2099 */
2100 UNPROTECT_CTX(ctx, flags);
2101
2102 /*
2103 * All memory free operations (especially for vmalloc'ed memory)
2104 * MUST be done with interrupts ENABLED.
2105 */
2106 if (smpl_buf_addr) pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2107
2108 /*
2109 * return the memory used by the context
2110 */
2111 if (free_possible) pfm_context_free(ctx);
2112
2113 return 0;
2114}
2115
2116static int
2117pfm_no_open(struct inode *irrelevant, struct file *dontcare)
2118{
2119 DPRINT(("pfm_no_open called\n"));
2120 return -ENXIO;
2121}
2122
2123
2124
2125static struct file_operations pfm_file_ops = {
2126 .llseek = no_llseek,
2127 .read = pfm_read,
2128 .write = pfm_write,
2129 .poll = pfm_poll,
2130 .ioctl = pfm_ioctl,
2131 .open = pfm_no_open, /* special open code to disallow open via /proc */
2132 .fasync = pfm_fasync,
2133 .release = pfm_close,
2134 .flush = pfm_flush
2135};
2136
2137static int
2138pfmfs_delete_dentry(struct dentry *dentry)
2139{
2140 return 1;
2141}
2142
2143static struct dentry_operations pfmfs_dentry_operations = {
2144 .d_delete = pfmfs_delete_dentry,
2145};
2146
2147
2148static int
2149pfm_alloc_fd(struct file **cfile)
2150{
2151 int fd, ret = 0;
2152 struct file *file = NULL;
2153 struct inode * inode;
2154 char name[32];
2155 struct qstr this;
2156
2157 fd = get_unused_fd();
2158 if (fd < 0) return -ENFILE;
2159
2160 ret = -ENFILE;
2161
2162 file = get_empty_filp();
2163 if (!file) goto out;
2164
2165 /*
2166 * allocate a new inode
2167 */
2168 inode = new_inode(pfmfs_mnt->mnt_sb);
2169 if (!inode) goto out;
2170
2171 DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2172
2173 inode->i_mode = S_IFCHR|S_IRUGO;
2174 inode->i_uid = current->fsuid;
2175 inode->i_gid = current->fsgid;
2176
2177 sprintf(name, "[%lu]", inode->i_ino);
2178 this.name = name;
2179 this.len = strlen(name);
2180 this.hash = inode->i_ino;
2181
2182 ret = -ENOMEM;
2183
2184 /*
2185 * allocate a new dcache entry
2186 */
2187 file->f_dentry = d_alloc(pfmfs_mnt->mnt_sb->s_root, &this);
2188 if (!file->f_dentry) goto out;
2189
2190 file->f_dentry->d_op = &pfmfs_dentry_operations;
2191
2192 d_add(file->f_dentry, inode);
2193 file->f_vfsmnt = mntget(pfmfs_mnt);
2194 file->f_mapping = inode->i_mapping;
2195
2196 file->f_op = &pfm_file_ops;
2197 file->f_mode = FMODE_READ;
2198 file->f_flags = O_RDONLY;
2199 file->f_pos = 0;
2200
2201 /*
2202 * may have to delay until context is attached?
2203 */
2204 fd_install(fd, file);
2205
2206 /*
2207 * the file structure we will use
2208 */
2209 *cfile = file;
2210
2211 return fd;
2212out:
2213 if (file) put_filp(file);
2214 put_unused_fd(fd);
2215 return ret;
2216}
2217
2218static void
2219pfm_free_fd(int fd, struct file *file)
2220{
2221 struct files_struct *files = current->files;
4fb3a538 2222 struct fdtable *fdt;
1da177e4
LT
2223
2224 /*
2225 * there ie no fd_uninstall(), so we do it here
2226 */
2227 spin_lock(&files->file_lock);
4fb3a538 2228 fdt = files_fdtable(files);
badf1662 2229 rcu_assign_pointer(fdt->fd[fd], NULL);
1da177e4
LT
2230 spin_unlock(&files->file_lock);
2231
badf1662
DS
2232 if (file)
2233 put_filp(file);
1da177e4
LT
2234 put_unused_fd(fd);
2235}
2236
2237static int
2238pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2239{
2240 DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2241
2242 while (size > 0) {
2243 unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2244
2245
2246 if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2247 return -ENOMEM;
2248
2249 addr += PAGE_SIZE;
2250 buf += PAGE_SIZE;
2251 size -= PAGE_SIZE;
2252 }
2253 return 0;
2254}
2255
2256/*
2257 * allocate a sampling buffer and remaps it into the user address space of the task
2258 */
2259static int
2260pfm_smpl_buffer_alloc(struct task_struct *task, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2261{
2262 struct mm_struct *mm = task->mm;
2263 struct vm_area_struct *vma = NULL;
2264 unsigned long size;
2265 void *smpl_buf;
2266
2267
2268 /*
2269 * the fixed header + requested size and align to page boundary
2270 */
2271 size = PAGE_ALIGN(rsize);
2272
2273 DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2274
2275 /*
2276 * check requested size to avoid Denial-of-service attacks
2277 * XXX: may have to refine this test
2278 * Check against address space limit.
2279 *
2280 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2281 * return -ENOMEM;
2282 */
2283 if (size > task->signal->rlim[RLIMIT_MEMLOCK].rlim_cur)
2284 return -ENOMEM;
2285
2286 /*
2287 * We do the easy to undo allocations first.
2288 *
2289 * pfm_rvmalloc(), clears the buffer, so there is no leak
2290 */
2291 smpl_buf = pfm_rvmalloc(size);
2292 if (smpl_buf == NULL) {
2293 DPRINT(("Can't allocate sampling buffer\n"));
2294 return -ENOMEM;
2295 }
2296
2297 DPRINT(("smpl_buf @%p\n", smpl_buf));
2298
2299 /* allocate vma */
2300 vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
2301 if (!vma) {
2302 DPRINT(("Cannot allocate vma\n"));
2303 goto error_kmem;
2304 }
2305 memset(vma, 0, sizeof(*vma));
2306
2307 /*
2308 * partially initialize the vma for the sampling buffer
2309 */
2310 vma->vm_mm = mm;
2311 vma->vm_flags = VM_READ| VM_MAYREAD |VM_RESERVED;
2312 vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */
2313
2314 /*
2315 * Now we have everything we need and we can initialize
2316 * and connect all the data structures
2317 */
2318
2319 ctx->ctx_smpl_hdr = smpl_buf;
2320 ctx->ctx_smpl_size = size; /* aligned size */
2321
2322 /*
2323 * Let's do the difficult operations next.
2324 *
2325 * now we atomically find some area in the address space and
2326 * remap the buffer in it.
2327 */
2328 down_write(&task->mm->mmap_sem);
2329
2330 /* find some free area in address space, must have mmap sem held */
2331 vma->vm_start = pfm_get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS, 0);
2332 if (vma->vm_start == 0UL) {
2333 DPRINT(("Cannot find unmapped area for size %ld\n", size));
2334 up_write(&task->mm->mmap_sem);
2335 goto error;
2336 }
2337 vma->vm_end = vma->vm_start + size;
2338 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2339
2340 DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2341
2342 /* can only be applied to current task, need to have the mm semaphore held when called */
2343 if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2344 DPRINT(("Can't remap buffer\n"));
2345 up_write(&task->mm->mmap_sem);
2346 goto error;
2347 }
2348
2349 /*
2350 * now insert the vma in the vm list for the process, must be
2351 * done with mmap lock held
2352 */
2353 insert_vm_struct(mm, vma);
2354
2355 mm->total_vm += size >> PAGE_SHIFT;
ab50b8ed
HD
2356 vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
2357 vma_pages(vma));
1da177e4
LT
2358 up_write(&task->mm->mmap_sem);
2359
2360 /*
2361 * keep track of user level virtual address
2362 */
2363 ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2364 *(unsigned long *)user_vaddr = vma->vm_start;
2365
2366 return 0;
2367
2368error:
2369 kmem_cache_free(vm_area_cachep, vma);
2370error_kmem:
2371 pfm_rvfree(smpl_buf, size);
2372
2373 return -ENOMEM;
2374}
2375
2376/*
2377 * XXX: do something better here
2378 */
2379static int
2380pfm_bad_permissions(struct task_struct *task)
2381{
2382 /* inspired by ptrace_attach() */
2383 DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2384 current->uid,
2385 current->gid,
2386 task->euid,
2387 task->suid,
2388 task->uid,
2389 task->egid,
2390 task->sgid));
2391
2392 return ((current->uid != task->euid)
2393 || (current->uid != task->suid)
2394 || (current->uid != task->uid)
2395 || (current->gid != task->egid)
2396 || (current->gid != task->sgid)
2397 || (current->gid != task->gid)) && !capable(CAP_SYS_PTRACE);
2398}
2399
2400static int
2401pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2402{
2403 int ctx_flags;
2404
2405 /* valid signal */
2406
2407 ctx_flags = pfx->ctx_flags;
2408
2409 if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2410
2411 /*
2412 * cannot block in this mode
2413 */
2414 if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2415 DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2416 return -EINVAL;
2417 }
2418 } else {
2419 }
2420 /* probably more to add here */
2421
2422 return 0;
2423}
2424
2425static int
2426pfm_setup_buffer_fmt(struct task_struct *task, pfm_context_t *ctx, unsigned int ctx_flags,
2427 unsigned int cpu, pfarg_context_t *arg)
2428{
2429 pfm_buffer_fmt_t *fmt = NULL;
2430 unsigned long size = 0UL;
2431 void *uaddr = NULL;
2432 void *fmt_arg = NULL;
2433 int ret = 0;
2434#define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
2435
2436 /* invoke and lock buffer format, if found */
2437 fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2438 if (fmt == NULL) {
2439 DPRINT(("[%d] cannot find buffer format\n", task->pid));
2440 return -EINVAL;
2441 }
2442
2443 /*
2444 * buffer argument MUST be contiguous to pfarg_context_t
2445 */
2446 if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2447
2448 ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2449
2450 DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task->pid, ctx_flags, cpu, fmt_arg, ret));
2451
2452 if (ret) goto error;
2453
2454 /* link buffer format and context */
2455 ctx->ctx_buf_fmt = fmt;
2456
2457 /*
2458 * check if buffer format wants to use perfmon buffer allocation/mapping service
2459 */
2460 ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2461 if (ret) goto error;
2462
2463 if (size) {
2464 /*
2465 * buffer is always remapped into the caller's address space
2466 */
2467 ret = pfm_smpl_buffer_alloc(current, ctx, size, &uaddr);
2468 if (ret) goto error;
2469
2470 /* keep track of user address of buffer */
2471 arg->ctx_smpl_vaddr = uaddr;
2472 }
2473 ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2474
2475error:
2476 return ret;
2477}
2478
2479static void
2480pfm_reset_pmu_state(pfm_context_t *ctx)
2481{
2482 int i;
2483
2484 /*
2485 * install reset values for PMC.
2486 */
2487 for (i=1; PMC_IS_LAST(i) == 0; i++) {
2488 if (PMC_IS_IMPL(i) == 0) continue;
2489 ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2490 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2491 }
2492 /*
2493 * PMD registers are set to 0UL when the context in memset()
2494 */
2495
2496 /*
2497 * On context switched restore, we must restore ALL pmc and ALL pmd even
2498 * when they are not actively used by the task. In UP, the incoming process
2499 * may otherwise pick up left over PMC, PMD state from the previous process.
2500 * As opposed to PMD, stale PMC can cause harm to the incoming
2501 * process because they may change what is being measured.
2502 * Therefore, we must systematically reinstall the entire
2503 * PMC state. In SMP, the same thing is possible on the
2504 * same CPU but also on between 2 CPUs.
2505 *
2506 * The problem with PMD is information leaking especially
2507 * to user level when psr.sp=0
2508 *
2509 * There is unfortunately no easy way to avoid this problem
2510 * on either UP or SMP. This definitively slows down the
2511 * pfm_load_regs() function.
2512 */
2513
2514 /*
2515 * bitmask of all PMCs accessible to this context
2516 *
2517 * PMC0 is treated differently.
2518 */
2519 ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2520
2521 /*
2522 * bitmask of all PMDs that are accesible to this context
2523 */
2524 ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2525
2526 DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2527
2528 /*
2529 * useful in case of re-enable after disable
2530 */
2531 ctx->ctx_used_ibrs[0] = 0UL;
2532 ctx->ctx_used_dbrs[0] = 0UL;
2533}
2534
2535static int
2536pfm_ctx_getsize(void *arg, size_t *sz)
2537{
2538 pfarg_context_t *req = (pfarg_context_t *)arg;
2539 pfm_buffer_fmt_t *fmt;
2540
2541 *sz = 0;
2542
2543 if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2544
2545 fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2546 if (fmt == NULL) {
2547 DPRINT(("cannot find buffer format\n"));
2548 return -EINVAL;
2549 }
2550 /* get just enough to copy in user parameters */
2551 *sz = fmt->fmt_arg_size;
2552 DPRINT(("arg_size=%lu\n", *sz));
2553
2554 return 0;
2555}
2556
2557
2558
2559/*
2560 * cannot attach if :
2561 * - kernel task
2562 * - task not owned by caller
2563 * - task incompatible with context mode
2564 */
2565static int
2566pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2567{
2568 /*
2569 * no kernel task or task not owner by caller
2570 */
2571 if (task->mm == NULL) {
2572 DPRINT(("task [%d] has not memory context (kernel thread)\n", task->pid));
2573 return -EPERM;
2574 }
2575 if (pfm_bad_permissions(task)) {
2576 DPRINT(("no permission to attach to [%d]\n", task->pid));
2577 return -EPERM;
2578 }
2579 /*
2580 * cannot block in self-monitoring mode
2581 */
2582 if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2583 DPRINT(("cannot load a blocking context on self for [%d]\n", task->pid));
2584 return -EINVAL;
2585 }
2586
2587 if (task->exit_state == EXIT_ZOMBIE) {
2588 DPRINT(("cannot attach to zombie task [%d]\n", task->pid));
2589 return -EBUSY;
2590 }
2591
2592 /*
2593 * always ok for self
2594 */
2595 if (task == current) return 0;
2596
2597 if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) {
2598 DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task->pid, task->state));
2599 return -EBUSY;
2600 }
2601 /*
2602 * make sure the task is off any CPU
2603 */
2604 wait_task_inactive(task);
2605
2606 /* more to come... */
2607
2608 return 0;
2609}
2610
2611static int
2612pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2613{
2614 struct task_struct *p = current;
2615 int ret;
2616
2617 /* XXX: need to add more checks here */
2618 if (pid < 2) return -EPERM;
2619
2620 if (pid != current->pid) {
2621
2622 read_lock(&tasklist_lock);
2623
2624 p = find_task_by_pid(pid);
2625
2626 /* make sure task cannot go away while we operate on it */
2627 if (p) get_task_struct(p);
2628
2629 read_unlock(&tasklist_lock);
2630
2631 if (p == NULL) return -ESRCH;
2632 }
2633
2634 ret = pfm_task_incompatible(ctx, p);
2635 if (ret == 0) {
2636 *task = p;
2637 } else if (p != current) {
2638 pfm_put_task(p);
2639 }
2640 return ret;
2641}
2642
2643
2644
2645static int
2646pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2647{
2648 pfarg_context_t *req = (pfarg_context_t *)arg;
2649 struct file *filp;
2650 int ctx_flags;
2651 int ret;
2652
2653 /* let's check the arguments first */
2654 ret = pfarg_is_sane(current, req);
2655 if (ret < 0) return ret;
2656
2657 ctx_flags = req->ctx_flags;
2658
2659 ret = -ENOMEM;
2660
2661 ctx = pfm_context_alloc();
2662 if (!ctx) goto error;
2663
2664 ret = pfm_alloc_fd(&filp);
2665 if (ret < 0) goto error_file;
2666
2667 req->ctx_fd = ctx->ctx_fd = ret;
2668
2669 /*
2670 * attach context to file
2671 */
2672 filp->private_data = ctx;
2673
2674 /*
2675 * does the user want to sample?
2676 */
2677 if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2678 ret = pfm_setup_buffer_fmt(current, ctx, ctx_flags, 0, req);
2679 if (ret) goto buffer_error;
2680 }
2681
2682 /*
2683 * init context protection lock
2684 */
2685 spin_lock_init(&ctx->ctx_lock);
2686
2687 /*
2688 * context is unloaded
2689 */
2690 ctx->ctx_state = PFM_CTX_UNLOADED;
2691
2692 /*
2693 * initialization of context's flags
2694 */
2695 ctx->ctx_fl_block = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
2696 ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
2697 ctx->ctx_fl_is_sampling = ctx->ctx_buf_fmt ? 1 : 0; /* assume record() is defined */
2698 ctx->ctx_fl_no_msg = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
2699 /*
2700 * will move to set properties
2701 * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
2702 */
2703
2704 /*
2705 * init restart semaphore to locked
2706 */
2707 sema_init(&ctx->ctx_restart_sem, 0);
2708
2709 /*
2710 * activation is used in SMP only
2711 */
2712 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
2713 SET_LAST_CPU(ctx, -1);
2714
2715 /*
2716 * initialize notification message queue
2717 */
2718 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
2719 init_waitqueue_head(&ctx->ctx_msgq_wait);
2720 init_waitqueue_head(&ctx->ctx_zombieq);
2721
2722 DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d \n",
2723 ctx,
2724 ctx_flags,
2725 ctx->ctx_fl_system,
2726 ctx->ctx_fl_block,
2727 ctx->ctx_fl_excl_idle,
2728 ctx->ctx_fl_no_msg,
2729 ctx->ctx_fd));
2730
2731 /*
2732 * initialize soft PMU state
2733 */
2734 pfm_reset_pmu_state(ctx);
2735
2736 return 0;
2737
2738buffer_error:
2739 pfm_free_fd(ctx->ctx_fd, filp);
2740
2741 if (ctx->ctx_buf_fmt) {
2742 pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2743 }
2744error_file:
2745 pfm_context_free(ctx);
2746
2747error:
2748 return ret;
2749}
2750
2751static inline unsigned long
2752pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2753{
2754 unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2755 unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2756 extern unsigned long carta_random32 (unsigned long seed);
2757
2758 if (reg->flags & PFM_REGFL_RANDOM) {
2759 new_seed = carta_random32(old_seed);
2760 val -= (old_seed & mask); /* counter values are negative numbers! */
2761 if ((mask >> 32) != 0)
2762 /* construct a full 64-bit random value: */
2763 new_seed |= carta_random32(old_seed >> 32) << 32;
2764 reg->seed = new_seed;
2765 }
2766 reg->lval = val;
2767 return val;
2768}
2769
2770static void
2771pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2772{
2773 unsigned long mask = ovfl_regs[0];
2774 unsigned long reset_others = 0UL;
2775 unsigned long val;
2776 int i;
2777
2778 /*
2779 * now restore reset value on sampling overflowed counters
2780 */
2781 mask >>= PMU_FIRST_COUNTER;
2782 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2783
2784 if ((mask & 0x1UL) == 0UL) continue;
2785
2786 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2787 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2788
2789 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2790 }
2791
2792 /*
2793 * Now take care of resetting the other registers
2794 */
2795 for(i = 0; reset_others; i++, reset_others >>= 1) {
2796
2797 if ((reset_others & 0x1) == 0) continue;
2798
2799 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2800
2801 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2802 is_long_reset ? "long" : "short", i, val));
2803 }
2804}
2805
2806static void
2807pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2808{
2809 unsigned long mask = ovfl_regs[0];
2810 unsigned long reset_others = 0UL;
2811 unsigned long val;
2812 int i;
2813
2814 DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2815
2816 if (ctx->ctx_state == PFM_CTX_MASKED) {
2817 pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2818 return;
2819 }
2820
2821 /*
2822 * now restore reset value on sampling overflowed counters
2823 */
2824 mask >>= PMU_FIRST_COUNTER;
2825 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2826
2827 if ((mask & 0x1UL) == 0UL) continue;
2828
2829 val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2830 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2831
2832 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2833
2834 pfm_write_soft_counter(ctx, i, val);
2835 }
2836
2837 /*
2838 * Now take care of resetting the other registers
2839 */
2840 for(i = 0; reset_others; i++, reset_others >>= 1) {
2841
2842 if ((reset_others & 0x1) == 0) continue;
2843
2844 val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2845
2846 if (PMD_IS_COUNTING(i)) {
2847 pfm_write_soft_counter(ctx, i, val);
2848 } else {
2849 ia64_set_pmd(i, val);
2850 }
2851 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2852 is_long_reset ? "long" : "short", i, val));
2853 }
2854 ia64_srlz_d();
2855}
2856
2857static int
2858pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2859{
2860 struct thread_struct *thread = NULL;
2861 struct task_struct *task;
2862 pfarg_reg_t *req = (pfarg_reg_t *)arg;
2863 unsigned long value, pmc_pm;
2864 unsigned long smpl_pmds, reset_pmds, impl_pmds;
2865 unsigned int cnum, reg_flags, flags, pmc_type;
2866 int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2867 int is_monitor, is_counting, state;
2868 int ret = -EINVAL;
2869 pfm_reg_check_t wr_func;
2870#define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2871
2872 state = ctx->ctx_state;
2873 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2874 is_system = ctx->ctx_fl_system;
2875 task = ctx->ctx_task;
2876 impl_pmds = pmu_conf->impl_pmds[0];
2877
2878 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2879
2880 if (is_loaded) {
2881 thread = &task->thread;
2882 /*
2883 * In system wide and when the context is loaded, access can only happen
2884 * when the caller is running on the CPU being monitored by the session.
2885 * It does not have to be the owner (ctx_task) of the context per se.
2886 */
2887 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2888 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2889 return -EBUSY;
2890 }
2891 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2892 }
2893 expert_mode = pfm_sysctl.expert_mode;
2894
2895 for (i = 0; i < count; i++, req++) {
2896
2897 cnum = req->reg_num;
2898 reg_flags = req->reg_flags;
2899 value = req->reg_value;
2900 smpl_pmds = req->reg_smpl_pmds[0];
2901 reset_pmds = req->reg_reset_pmds[0];
2902 flags = 0;
2903
2904
2905 if (cnum >= PMU_MAX_PMCS) {
2906 DPRINT(("pmc%u is invalid\n", cnum));
2907 goto error;
2908 }
2909
2910 pmc_type = pmu_conf->pmc_desc[cnum].type;
2911 pmc_pm = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2912 is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2913 is_monitor = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2914
2915 /*
2916 * we reject all non implemented PMC as well
2917 * as attempts to modify PMC[0-3] which are used
2918 * as status registers by the PMU
2919 */
2920 if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2921 DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2922 goto error;
2923 }
2924 wr_func = pmu_conf->pmc_desc[cnum].write_check;
2925 /*
2926 * If the PMC is a monitor, then if the value is not the default:
2927 * - system-wide session: PMCx.pm=1 (privileged monitor)
2928 * - per-task : PMCx.pm=0 (user monitor)
2929 */
2930 if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2931 DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2932 cnum,
2933 pmc_pm,
2934 is_system));
2935 goto error;
2936 }
2937
2938 if (is_counting) {
2939 /*
2940 * enforce generation of overflow interrupt. Necessary on all
2941 * CPUs.
2942 */
2943 value |= 1 << PMU_PMC_OI;
2944
2945 if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2946 flags |= PFM_REGFL_OVFL_NOTIFY;
2947 }
2948
2949 if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2950
2951 /* verify validity of smpl_pmds */
2952 if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2953 DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2954 goto error;
2955 }
2956
2957 /* verify validity of reset_pmds */
2958 if ((reset_pmds & impl_pmds) != reset_pmds) {
2959 DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2960 goto error;
2961 }
2962 } else {
2963 if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2964 DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2965 goto error;
2966 }
2967 /* eventid on non-counting monitors are ignored */
2968 }
2969
2970 /*
2971 * execute write checker, if any
2972 */
2973 if (likely(expert_mode == 0 && wr_func)) {
2974 ret = (*wr_func)(task, ctx, cnum, &value, regs);
2975 if (ret) goto error;
2976 ret = -EINVAL;
2977 }
2978
2979 /*
2980 * no error on this register
2981 */
2982 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2983
2984 /*
2985 * Now we commit the changes to the software state
2986 */
2987
2988 /*
2989 * update overflow information
2990 */
2991 if (is_counting) {
2992 /*
2993 * full flag update each time a register is programmed
2994 */
2995 ctx->ctx_pmds[cnum].flags = flags;
2996
2997 ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
2998 ctx->ctx_pmds[cnum].smpl_pmds[0] = smpl_pmds;
2999 ctx->ctx_pmds[cnum].eventid = req->reg_smpl_eventid;
3000
3001 /*
3002 * Mark all PMDS to be accessed as used.
3003 *
3004 * We do not keep track of PMC because we have to
3005 * systematically restore ALL of them.
3006 *
3007 * We do not update the used_monitors mask, because
3008 * if we have not programmed them, then will be in
3009 * a quiescent state, therefore we will not need to
3010 * mask/restore then when context is MASKED.
3011 */
3012 CTX_USED_PMD(ctx, reset_pmds);
3013 CTX_USED_PMD(ctx, smpl_pmds);
3014 /*
3015 * make sure we do not try to reset on
3016 * restart because we have established new values
3017 */
3018 if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3019 }
3020 /*
3021 * Needed in case the user does not initialize the equivalent
3022 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
3023 * possible leak here.
3024 */
3025 CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
3026
3027 /*
3028 * keep track of the monitor PMC that we are using.
3029 * we save the value of the pmc in ctx_pmcs[] and if
3030 * the monitoring is not stopped for the context we also
3031 * place it in the saved state area so that it will be
3032 * picked up later by the context switch code.
3033 *
3034 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3035 *
3036 * The value in thread->pmcs[] may be modified on overflow, i.e., when
3037 * monitoring needs to be stopped.
3038 */
3039 if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3040
3041 /*
3042 * update context state
3043 */
3044 ctx->ctx_pmcs[cnum] = value;
3045
3046 if (is_loaded) {
3047 /*
3048 * write thread state
3049 */
3050 if (is_system == 0) thread->pmcs[cnum] = value;
3051
3052 /*
3053 * write hardware register if we can
3054 */
3055 if (can_access_pmu) {
3056 ia64_set_pmc(cnum, value);
3057 }
3058#ifdef CONFIG_SMP
3059 else {
3060 /*
3061 * per-task SMP only here
3062 *
3063 * we are guaranteed that the task is not running on the other CPU,
3064 * we indicate that this PMD will need to be reloaded if the task
3065 * is rescheduled on the CPU it ran last on.
3066 */
3067 ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3068 }
3069#endif
3070 }
3071
3072 DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3073 cnum,
3074 value,
3075 is_loaded,
3076 can_access_pmu,
3077 flags,
3078 ctx->ctx_all_pmcs[0],
3079 ctx->ctx_used_pmds[0],
3080 ctx->ctx_pmds[cnum].eventid,
3081 smpl_pmds,
3082 reset_pmds,
3083 ctx->ctx_reload_pmcs[0],
3084 ctx->ctx_used_monitors[0],
3085 ctx->ctx_ovfl_regs[0]));
3086 }
3087
3088 /*
3089 * make sure the changes are visible
3090 */
3091 if (can_access_pmu) ia64_srlz_d();
3092
3093 return 0;
3094error:
3095 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3096 return ret;
3097}
3098
3099static int
3100pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3101{
3102 struct thread_struct *thread = NULL;
3103 struct task_struct *task;
3104 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3105 unsigned long value, hw_value, ovfl_mask;
3106 unsigned int cnum;
3107 int i, can_access_pmu = 0, state;
3108 int is_counting, is_loaded, is_system, expert_mode;
3109 int ret = -EINVAL;
3110 pfm_reg_check_t wr_func;
3111
3112
3113 state = ctx->ctx_state;
3114 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3115 is_system = ctx->ctx_fl_system;
3116 ovfl_mask = pmu_conf->ovfl_val;
3117 task = ctx->ctx_task;
3118
3119 if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3120
3121 /*
3122 * on both UP and SMP, we can only write to the PMC when the task is
3123 * the owner of the local PMU.
3124 */
3125 if (likely(is_loaded)) {
3126 thread = &task->thread;
3127 /*
3128 * In system wide and when the context is loaded, access can only happen
3129 * when the caller is running on the CPU being monitored by the session.
3130 * It does not have to be the owner (ctx_task) of the context per se.
3131 */
3132 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3133 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3134 return -EBUSY;
3135 }
3136 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3137 }
3138 expert_mode = pfm_sysctl.expert_mode;
3139
3140 for (i = 0; i < count; i++, req++) {
3141
3142 cnum = req->reg_num;
3143 value = req->reg_value;
3144
3145 if (!PMD_IS_IMPL(cnum)) {
3146 DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3147 goto abort_mission;
3148 }
3149 is_counting = PMD_IS_COUNTING(cnum);
3150 wr_func = pmu_conf->pmd_desc[cnum].write_check;
3151
3152 /*
3153 * execute write checker, if any
3154 */
3155 if (unlikely(expert_mode == 0 && wr_func)) {
3156 unsigned long v = value;
3157
3158 ret = (*wr_func)(task, ctx, cnum, &v, regs);
3159 if (ret) goto abort_mission;
3160
3161 value = v;
3162 ret = -EINVAL;
3163 }
3164
3165 /*
3166 * no error on this register
3167 */
3168 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3169
3170 /*
3171 * now commit changes to software state
3172 */
3173 hw_value = value;
3174
3175 /*
3176 * update virtualized (64bits) counter
3177 */
3178 if (is_counting) {
3179 /*
3180 * write context state
3181 */
3182 ctx->ctx_pmds[cnum].lval = value;
3183
3184 /*
3185 * when context is load we use the split value
3186 */
3187 if (is_loaded) {
3188 hw_value = value & ovfl_mask;
3189 value = value & ~ovfl_mask;
3190 }
3191 }
3192 /*
3193 * update reset values (not just for counters)
3194 */
3195 ctx->ctx_pmds[cnum].long_reset = req->reg_long_reset;
3196 ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3197
3198 /*
3199 * update randomization parameters (not just for counters)
3200 */
3201 ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3202 ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3203
3204 /*
3205 * update context value
3206 */
3207 ctx->ctx_pmds[cnum].val = value;
3208
3209 /*
3210 * Keep track of what we use
3211 *
3212 * We do not keep track of PMC because we have to
3213 * systematically restore ALL of them.
3214 */
3215 CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3216
3217 /*
3218 * mark this PMD register used as well
3219 */
3220 CTX_USED_PMD(ctx, RDEP(cnum));
3221
3222 /*
3223 * make sure we do not try to reset on
3224 * restart because we have established new values
3225 */
3226 if (is_counting && state == PFM_CTX_MASKED) {
3227 ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3228 }
3229
3230 if (is_loaded) {
3231 /*
3232 * write thread state
3233 */
3234 if (is_system == 0) thread->pmds[cnum] = hw_value;
3235
3236 /*
3237 * write hardware register if we can
3238 */
3239 if (can_access_pmu) {
3240 ia64_set_pmd(cnum, hw_value);
3241 } else {
3242#ifdef CONFIG_SMP
3243 /*
3244 * we are guaranteed that the task is not running on the other CPU,
3245 * we indicate that this PMD will need to be reloaded if the task
3246 * is rescheduled on the CPU it ran last on.
3247 */
3248 ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3249#endif
3250 }
3251 }
3252
3253 DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
3254 "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3255 cnum,
3256 value,
3257 is_loaded,
3258 can_access_pmu,
3259 hw_value,
3260 ctx->ctx_pmds[cnum].val,
3261 ctx->ctx_pmds[cnum].short_reset,
3262 ctx->ctx_pmds[cnum].long_reset,
3263 PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3264 ctx->ctx_pmds[cnum].seed,
3265 ctx->ctx_pmds[cnum].mask,
3266 ctx->ctx_used_pmds[0],
3267 ctx->ctx_pmds[cnum].reset_pmds[0],
3268 ctx->ctx_reload_pmds[0],
3269 ctx->ctx_all_pmds[0],
3270 ctx->ctx_ovfl_regs[0]));
3271 }
3272
3273 /*
3274 * make changes visible
3275 */
3276 if (can_access_pmu) ia64_srlz_d();
3277
3278 return 0;
3279
3280abort_mission:
3281 /*
3282 * for now, we have only one possibility for error
3283 */
3284 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3285 return ret;
3286}
3287
3288/*
3289 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3290 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3291 * interrupt is delivered during the call, it will be kept pending until we leave, making
3292 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3293 * guaranteed to return consistent data to the user, it may simply be old. It is not
3294 * trivial to treat the overflow while inside the call because you may end up in
3295 * some module sampling buffer code causing deadlocks.
3296 */
3297static int
3298pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3299{
3300 struct thread_struct *thread = NULL;
3301 struct task_struct *task;
3302 unsigned long val = 0UL, lval, ovfl_mask, sval;
3303 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3304 unsigned int cnum, reg_flags = 0;
3305 int i, can_access_pmu = 0, state;
3306 int is_loaded, is_system, is_counting, expert_mode;
3307 int ret = -EINVAL;
3308 pfm_reg_check_t rd_func;
3309
3310 /*
3311 * access is possible when loaded only for
3312 * self-monitoring tasks or in UP mode
3313 */
3314
3315 state = ctx->ctx_state;
3316 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3317 is_system = ctx->ctx_fl_system;
3318 ovfl_mask = pmu_conf->ovfl_val;
3319 task = ctx->ctx_task;
3320
3321 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3322
3323 if (likely(is_loaded)) {
3324 thread = &task->thread;
3325 /*
3326 * In system wide and when the context is loaded, access can only happen
3327 * when the caller is running on the CPU being monitored by the session.
3328 * It does not have to be the owner (ctx_task) of the context per se.
3329 */
3330 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3331 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3332 return -EBUSY;
3333 }
3334 /*
3335 * this can be true when not self-monitoring only in UP
3336 */
3337 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3338
3339 if (can_access_pmu) ia64_srlz_d();
3340 }
3341 expert_mode = pfm_sysctl.expert_mode;
3342
3343 DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3344 is_loaded,
3345 can_access_pmu,
3346 state));
3347
3348 /*
3349 * on both UP and SMP, we can only read the PMD from the hardware register when
3350 * the task is the owner of the local PMU.
3351 */
3352
3353 for (i = 0; i < count; i++, req++) {
3354
3355 cnum = req->reg_num;
3356 reg_flags = req->reg_flags;
3357
3358 if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3359 /*
3360 * we can only read the register that we use. That includes
3361 * the one we explicitely initialize AND the one we want included
3362 * in the sampling buffer (smpl_regs).
3363 *
3364 * Having this restriction allows optimization in the ctxsw routine
3365 * without compromising security (leaks)
3366 */
3367 if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3368
3369 sval = ctx->ctx_pmds[cnum].val;
3370 lval = ctx->ctx_pmds[cnum].lval;
3371 is_counting = PMD_IS_COUNTING(cnum);
3372
3373 /*
3374 * If the task is not the current one, then we check if the
3375 * PMU state is still in the local live register due to lazy ctxsw.
3376 * If true, then we read directly from the registers.
3377 */
3378 if (can_access_pmu){
3379 val = ia64_get_pmd(cnum);
3380 } else {
3381 /*
3382 * context has been saved
3383 * if context is zombie, then task does not exist anymore.
3384 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3385 */
3386 val = is_loaded ? thread->pmds[cnum] : 0UL;
3387 }
3388 rd_func = pmu_conf->pmd_desc[cnum].read_check;
3389
3390 if (is_counting) {
3391 /*
3392 * XXX: need to check for overflow when loaded
3393 */
3394 val &= ovfl_mask;
3395 val += sval;
3396 }
3397
3398 /*
3399 * execute read checker, if any
3400 */
3401 if (unlikely(expert_mode == 0 && rd_func)) {
3402 unsigned long v = val;
3403 ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3404 if (ret) goto error;
3405 val = v;
3406 ret = -EINVAL;
3407 }
3408
3409 PFM_REG_RETFLAG_SET(reg_flags, 0);
3410
3411 DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3412
3413 /*
3414 * update register return value, abort all if problem during copy.
3415 * we only modify the reg_flags field. no check mode is fine because
3416 * access has been verified upfront in sys_perfmonctl().
3417 */
3418 req->reg_value = val;
3419 req->reg_flags = reg_flags;
3420 req->reg_last_reset_val = lval;
3421 }
3422
3423 return 0;
3424
3425error:
3426 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3427 return ret;
3428}
3429
3430int
3431pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3432{
3433 pfm_context_t *ctx;
3434
3435 if (req == NULL) return -EINVAL;
3436
3437 ctx = GET_PMU_CTX();
3438
3439 if (ctx == NULL) return -EINVAL;
3440
3441 /*
3442 * for now limit to current task, which is enough when calling
3443 * from overflow handler
3444 */
3445 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3446
3447 return pfm_write_pmcs(ctx, req, nreq, regs);
3448}
3449EXPORT_SYMBOL(pfm_mod_write_pmcs);
3450
3451int
3452pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3453{
3454 pfm_context_t *ctx;
3455
3456 if (req == NULL) return -EINVAL;
3457
3458 ctx = GET_PMU_CTX();
3459
3460 if (ctx == NULL) return -EINVAL;
3461
3462 /*
3463 * for now limit to current task, which is enough when calling
3464 * from overflow handler
3465 */
3466 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3467
3468 return pfm_read_pmds(ctx, req, nreq, regs);
3469}
3470EXPORT_SYMBOL(pfm_mod_read_pmds);
3471
3472/*
3473 * Only call this function when a process it trying to
3474 * write the debug registers (reading is always allowed)
3475 */
3476int
3477pfm_use_debug_registers(struct task_struct *task)
3478{
3479 pfm_context_t *ctx = task->thread.pfm_context;
3480 unsigned long flags;
3481 int ret = 0;
3482
3483 if (pmu_conf->use_rr_dbregs == 0) return 0;
3484
3485 DPRINT(("called for [%d]\n", task->pid));
3486
3487 /*
3488 * do it only once
3489 */
3490 if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3491
3492 /*
3493 * Even on SMP, we do not need to use an atomic here because
3494 * the only way in is via ptrace() and this is possible only when the
3495 * process is stopped. Even in the case where the ctxsw out is not totally
3496 * completed by the time we come here, there is no way the 'stopped' process
3497 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3498 * So this is always safe.
3499 */
3500 if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3501
3502 LOCK_PFS(flags);
3503
3504 /*
3505 * We cannot allow setting breakpoints when system wide monitoring
3506 * sessions are using the debug registers.
3507 */
3508 if (pfm_sessions.pfs_sys_use_dbregs> 0)
3509 ret = -1;
3510 else
3511 pfm_sessions.pfs_ptrace_use_dbregs++;
3512
3513 DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
3514 pfm_sessions.pfs_ptrace_use_dbregs,
3515 pfm_sessions.pfs_sys_use_dbregs,
3516 task->pid, ret));
3517
3518 UNLOCK_PFS(flags);
3519
3520 return ret;
3521}
3522
3523/*
3524 * This function is called for every task that exits with the
3525 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3526 * able to use the debug registers for debugging purposes via
3527 * ptrace(). Therefore we know it was not using them for
3528 * perfmormance monitoring, so we only decrement the number
3529 * of "ptraced" debug register users to keep the count up to date
3530 */
3531int
3532pfm_release_debug_registers(struct task_struct *task)
3533{
3534 unsigned long flags;
3535 int ret;
3536
3537 if (pmu_conf->use_rr_dbregs == 0) return 0;
3538
3539 LOCK_PFS(flags);
3540 if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3541 printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task->pid);
3542 ret = -1;
3543 } else {
3544 pfm_sessions.pfs_ptrace_use_dbregs--;
3545 ret = 0;
3546 }
3547 UNLOCK_PFS(flags);
3548
3549 return ret;
3550}
3551
3552static int
3553pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3554{
3555 struct task_struct *task;
3556 pfm_buffer_fmt_t *fmt;
3557 pfm_ovfl_ctrl_t rst_ctrl;
3558 int state, is_system;
3559 int ret = 0;
3560
3561 state = ctx->ctx_state;
3562 fmt = ctx->ctx_buf_fmt;
3563 is_system = ctx->ctx_fl_system;
3564 task = PFM_CTX_TASK(ctx);
3565
3566 switch(state) {
3567 case PFM_CTX_MASKED:
3568 break;
3569 case PFM_CTX_LOADED:
3570 if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3571 /* fall through */
3572 case PFM_CTX_UNLOADED:
3573 case PFM_CTX_ZOMBIE:
3574 DPRINT(("invalid state=%d\n", state));
3575 return -EBUSY;
3576 default:
3577 DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3578 return -EINVAL;
3579 }
3580
3581 /*
3582 * In system wide and when the context is loaded, access can only happen
3583 * when the caller is running on the CPU being monitored by the session.
3584 * It does not have to be the owner (ctx_task) of the context per se.
3585 */
3586 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3587 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3588 return -EBUSY;
3589 }
3590
3591 /* sanity check */
3592 if (unlikely(task == NULL)) {
3593 printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", current->pid);
3594 return -EINVAL;
3595 }
3596
3597 if (task == current || is_system) {
3598
3599 fmt = ctx->ctx_buf_fmt;
3600
3601 DPRINT(("restarting self %d ovfl=0x%lx\n",
3602 task->pid,
3603 ctx->ctx_ovfl_regs[0]));
3604
3605 if (CTX_HAS_SMPL(ctx)) {
3606
3607 prefetch(ctx->ctx_smpl_hdr);
3608
3609 rst_ctrl.bits.mask_monitoring = 0;
3610 rst_ctrl.bits.reset_ovfl_pmds = 0;
3611
3612 if (state == PFM_CTX_LOADED)
3613 ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3614 else
3615 ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3616 } else {
3617 rst_ctrl.bits.mask_monitoring = 0;
3618 rst_ctrl.bits.reset_ovfl_pmds = 1;
3619 }
3620
3621 if (ret == 0) {
3622 if (rst_ctrl.bits.reset_ovfl_pmds)
3623 pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3624
3625 if (rst_ctrl.bits.mask_monitoring == 0) {
3626 DPRINT(("resuming monitoring for [%d]\n", task->pid));
3627
3628 if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3629 } else {
3630 DPRINT(("keeping monitoring stopped for [%d]\n", task->pid));
3631
3632 // cannot use pfm_stop_monitoring(task, regs);
3633 }
3634 }
3635 /*
3636 * clear overflowed PMD mask to remove any stale information
3637 */
3638 ctx->ctx_ovfl_regs[0] = 0UL;
3639
3640 /*
3641 * back to LOADED state
3642 */
3643 ctx->ctx_state = PFM_CTX_LOADED;
3644
3645 /*
3646 * XXX: not really useful for self monitoring
3647 */
3648 ctx->ctx_fl_can_restart = 0;
3649
3650 return 0;
3651 }
3652
3653 /*
3654 * restart another task
3655 */
3656
3657 /*
3658 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3659 * one is seen by the task.
3660 */
3661 if (state == PFM_CTX_MASKED) {
3662 if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3663 /*
3664 * will prevent subsequent restart before this one is
3665 * seen by other task
3666 */
3667 ctx->ctx_fl_can_restart = 0;
3668 }
3669
3670 /*
3671 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3672 * the task is blocked or on its way to block. That's the normal
3673 * restart path. If the monitoring is not masked, then the task
3674 * can be actively monitoring and we cannot directly intervene.
3675 * Therefore we use the trap mechanism to catch the task and
3676 * force it to reset the buffer/reset PMDs.
3677 *
3678 * if non-blocking, then we ensure that the task will go into
3679 * pfm_handle_work() before returning to user mode.
3680 *
3681 * We cannot explicitely reset another task, it MUST always
3682 * be done by the task itself. This works for system wide because
3683 * the tool that is controlling the session is logically doing
3684 * "self-monitoring".
3685 */
3686 if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3687 DPRINT(("unblocking [%d] \n", task->pid));
3688 up(&ctx->ctx_restart_sem);
3689 } else {
3690 DPRINT(("[%d] armed exit trap\n", task->pid));
3691
3692 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3693
3694 PFM_SET_WORK_PENDING(task, 1);
3695
3696 pfm_set_task_notify(task);
3697
3698 /*
3699 * XXX: send reschedule if task runs on another CPU
3700 */
3701 }
3702 return 0;
3703}
3704
3705static int
3706pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3707{
3708 unsigned int m = *(unsigned int *)arg;
3709
3710 pfm_sysctl.debug = m == 0 ? 0 : 1;
3711
1da177e4
LT
3712 printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3713
3714 if (m == 0) {
3715 memset(pfm_stats, 0, sizeof(pfm_stats));
3716 for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3717 }
3718 return 0;
3719}
3720
3721/*
3722 * arg can be NULL and count can be zero for this function
3723 */
3724static int
3725pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3726{
3727 struct thread_struct *thread = NULL;
3728 struct task_struct *task;
3729 pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3730 unsigned long flags;
3731 dbreg_t dbreg;
3732 unsigned int rnum;
3733 int first_time;
3734 int ret = 0, state;
3735 int i, can_access_pmu = 0;
3736 int is_system, is_loaded;
3737
3738 if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3739
3740 state = ctx->ctx_state;
3741 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3742 is_system = ctx->ctx_fl_system;
3743 task = ctx->ctx_task;
3744
3745 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3746
3747 /*
3748 * on both UP and SMP, we can only write to the PMC when the task is
3749 * the owner of the local PMU.
3750 */
3751 if (is_loaded) {
3752 thread = &task->thread;
3753 /*
3754 * In system wide and when the context is loaded, access can only happen
3755 * when the caller is running on the CPU being monitored by the session.
3756 * It does not have to be the owner (ctx_task) of the context per se.
3757 */
3758 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3759 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3760 return -EBUSY;
3761 }
3762 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3763 }
3764
3765 /*
3766 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3767 * ensuring that no real breakpoint can be installed via this call.
3768 *
3769 * IMPORTANT: regs can be NULL in this function
3770 */
3771
3772 first_time = ctx->ctx_fl_using_dbreg == 0;
3773
3774 /*
3775 * don't bother if we are loaded and task is being debugged
3776 */
3777 if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3778 DPRINT(("debug registers already in use for [%d]\n", task->pid));
3779 return -EBUSY;
3780 }
3781
3782 /*
3783 * check for debug registers in system wide mode
3784 *
3785 * If though a check is done in pfm_context_load(),
3786 * we must repeat it here, in case the registers are
3787 * written after the context is loaded
3788 */
3789 if (is_loaded) {
3790 LOCK_PFS(flags);
3791
3792 if (first_time && is_system) {
3793 if (pfm_sessions.pfs_ptrace_use_dbregs)
3794 ret = -EBUSY;
3795 else
3796 pfm_sessions.pfs_sys_use_dbregs++;
3797 }
3798 UNLOCK_PFS(flags);
3799 }
3800
3801 if (ret != 0) return ret;
3802
3803 /*
3804 * mark ourself as user of the debug registers for
3805 * perfmon purposes.
3806 */
3807 ctx->ctx_fl_using_dbreg = 1;
3808
3809 /*
3810 * clear hardware registers to make sure we don't
3811 * pick up stale state.
3812 *
3813 * for a system wide session, we do not use
3814 * thread.dbr, thread.ibr because this process
3815 * never leaves the current CPU and the state
3816 * is shared by all processes running on it
3817 */
3818 if (first_time && can_access_pmu) {
3819 DPRINT(("[%d] clearing ibrs, dbrs\n", task->pid));
3820 for (i=0; i < pmu_conf->num_ibrs; i++) {
3821 ia64_set_ibr(i, 0UL);
3822 ia64_dv_serialize_instruction();
3823 }
3824 ia64_srlz_i();
3825 for (i=0; i < pmu_conf->num_dbrs; i++) {
3826 ia64_set_dbr(i, 0UL);
3827 ia64_dv_serialize_data();
3828 }
3829 ia64_srlz_d();
3830 }
3831
3832 /*
3833 * Now install the values into the registers
3834 */
3835 for (i = 0; i < count; i++, req++) {
3836
3837 rnum = req->dbreg_num;
3838 dbreg.val = req->dbreg_value;
3839
3840 ret = -EINVAL;
3841
3842 if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3843 DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3844 rnum, dbreg.val, mode, i, count));
3845
3846 goto abort_mission;
3847 }
3848
3849 /*
3850 * make sure we do not install enabled breakpoint
3851 */
3852 if (rnum & 0x1) {
3853 if (mode == PFM_CODE_RR)
3854 dbreg.ibr.ibr_x = 0;
3855 else
3856 dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3857 }
3858
3859 PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3860
3861 /*
3862 * Debug registers, just like PMC, can only be modified
3863 * by a kernel call. Moreover, perfmon() access to those
3864 * registers are centralized in this routine. The hardware
3865 * does not modify the value of these registers, therefore,
3866 * if we save them as they are written, we can avoid having
3867 * to save them on context switch out. This is made possible
3868 * by the fact that when perfmon uses debug registers, ptrace()
3869 * won't be able to modify them concurrently.
3870 */
3871 if (mode == PFM_CODE_RR) {
3872 CTX_USED_IBR(ctx, rnum);
3873
3874 if (can_access_pmu) {
3875 ia64_set_ibr(rnum, dbreg.val);
3876 ia64_dv_serialize_instruction();
3877 }
3878
3879 ctx->ctx_ibrs[rnum] = dbreg.val;
3880
3881 DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3882 rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3883 } else {
3884 CTX_USED_DBR(ctx, rnum);
3885
3886 if (can_access_pmu) {
3887 ia64_set_dbr(rnum, dbreg.val);
3888 ia64_dv_serialize_data();
3889 }
3890 ctx->ctx_dbrs[rnum] = dbreg.val;
3891
3892 DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3893 rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3894 }
3895 }
3896
3897 return 0;
3898
3899abort_mission:
3900 /*
3901 * in case it was our first attempt, we undo the global modifications
3902 */
3903 if (first_time) {
3904 LOCK_PFS(flags);
3905 if (ctx->ctx_fl_system) {
3906 pfm_sessions.pfs_sys_use_dbregs--;
3907 }
3908 UNLOCK_PFS(flags);
3909 ctx->ctx_fl_using_dbreg = 0;
3910 }
3911 /*
3912 * install error return flag
3913 */
3914 PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3915
3916 return ret;
3917}
3918
3919static int
3920pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3921{
3922 return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3923}
3924
3925static int
3926pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3927{
3928 return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3929}
3930
3931int
3932pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3933{
3934 pfm_context_t *ctx;
3935
3936 if (req == NULL) return -EINVAL;
3937
3938 ctx = GET_PMU_CTX();
3939
3940 if (ctx == NULL) return -EINVAL;
3941
3942 /*
3943 * for now limit to current task, which is enough when calling
3944 * from overflow handler
3945 */
3946 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3947
3948 return pfm_write_ibrs(ctx, req, nreq, regs);
3949}
3950EXPORT_SYMBOL(pfm_mod_write_ibrs);
3951
3952int
3953pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3954{
3955 pfm_context_t *ctx;
3956
3957 if (req == NULL) return -EINVAL;
3958
3959 ctx = GET_PMU_CTX();
3960
3961 if (ctx == NULL) return -EINVAL;
3962
3963 /*
3964 * for now limit to current task, which is enough when calling
3965 * from overflow handler
3966 */
3967 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3968
3969 return pfm_write_dbrs(ctx, req, nreq, regs);
3970}
3971EXPORT_SYMBOL(pfm_mod_write_dbrs);
3972
3973
3974static int
3975pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3976{
3977 pfarg_features_t *req = (pfarg_features_t *)arg;
3978
3979 req->ft_version = PFM_VERSION;
3980 return 0;
3981}
3982
3983static int
3984pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3985{
3986 struct pt_regs *tregs;
3987 struct task_struct *task = PFM_CTX_TASK(ctx);
3988 int state, is_system;
3989
3990 state = ctx->ctx_state;
3991 is_system = ctx->ctx_fl_system;
3992
3993 /*
3994 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3995 */
3996 if (state == PFM_CTX_UNLOADED) return -EINVAL;
3997
3998 /*
3999 * In system wide and when the context is loaded, access can only happen
4000 * when the caller is running on the CPU being monitored by the session.
4001 * It does not have to be the owner (ctx_task) of the context per se.
4002 */
4003 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4004 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4005 return -EBUSY;
4006 }
4007 DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
4008 PFM_CTX_TASK(ctx)->pid,
4009 state,
4010 is_system));
4011 /*
4012 * in system mode, we need to update the PMU directly
4013 * and the user level state of the caller, which may not
4014 * necessarily be the creator of the context.
4015 */
4016 if (is_system) {
4017 /*
4018 * Update local PMU first
4019 *
4020 * disable dcr pp
4021 */
4022 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
4023 ia64_srlz_i();
4024
4025 /*
4026 * update local cpuinfo
4027 */
4028 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4029
4030 /*
4031 * stop monitoring, does srlz.i
4032 */
4033 pfm_clear_psr_pp();
4034
4035 /*
4036 * stop monitoring in the caller
4037 */
4038 ia64_psr(regs)->pp = 0;
4039
4040 return 0;
4041 }
4042 /*
4043 * per-task mode
4044 */
4045
4046 if (task == current) {
4047 /* stop monitoring at kernel level */
4048 pfm_clear_psr_up();
4049
4050 /*
4051 * stop monitoring at the user level
4052 */
4053 ia64_psr(regs)->up = 0;
4054 } else {
6450578f 4055 tregs = task_pt_regs(task);
1da177e4
LT
4056
4057 /*
4058 * stop monitoring at the user level
4059 */
4060 ia64_psr(tregs)->up = 0;
4061
4062 /*
4063 * monitoring disabled in kernel at next reschedule
4064 */
4065 ctx->ctx_saved_psr_up = 0;
4066 DPRINT(("task=[%d]\n", task->pid));
4067 }
4068 return 0;
4069}
4070
4071
4072static int
4073pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4074{
4075 struct pt_regs *tregs;
4076 int state, is_system;
4077
4078 state = ctx->ctx_state;
4079 is_system = ctx->ctx_fl_system;
4080
4081 if (state != PFM_CTX_LOADED) return -EINVAL;
4082
4083 /*
4084 * In system wide and when the context is loaded, access can only happen
4085 * when the caller is running on the CPU being monitored by the session.
4086 * It does not have to be the owner (ctx_task) of the context per se.
4087 */
4088 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4089 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4090 return -EBUSY;
4091 }
4092
4093 /*
4094 * in system mode, we need to update the PMU directly
4095 * and the user level state of the caller, which may not
4096 * necessarily be the creator of the context.
4097 */
4098 if (is_system) {
4099
4100 /*
4101 * set user level psr.pp for the caller
4102 */
4103 ia64_psr(regs)->pp = 1;
4104
4105 /*
4106 * now update the local PMU and cpuinfo
4107 */
4108 PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4109
4110 /*
4111 * start monitoring at kernel level
4112 */
4113 pfm_set_psr_pp();
4114
4115 /* enable dcr pp */
4116 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4117 ia64_srlz_i();
4118
4119 return 0;
4120 }
4121
4122 /*
4123 * per-process mode
4124 */
4125
4126 if (ctx->ctx_task == current) {
4127
4128 /* start monitoring at kernel level */
4129 pfm_set_psr_up();
4130
4131 /*
4132 * activate monitoring at user level
4133 */
4134 ia64_psr(regs)->up = 1;
4135
4136 } else {
6450578f 4137 tregs = task_pt_regs(ctx->ctx_task);
1da177e4
LT
4138
4139 /*
4140 * start monitoring at the kernel level the next
4141 * time the task is scheduled
4142 */
4143 ctx->ctx_saved_psr_up = IA64_PSR_UP;
4144
4145 /*
4146 * activate monitoring at user level
4147 */
4148 ia64_psr(tregs)->up = 1;
4149 }
4150 return 0;
4151}
4152
4153static int
4154pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4155{
4156 pfarg_reg_t *req = (pfarg_reg_t *)arg;
4157 unsigned int cnum;
4158 int i;
4159 int ret = -EINVAL;
4160
4161 for (i = 0; i < count; i++, req++) {
4162
4163 cnum = req->reg_num;
4164
4165 if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4166
4167 req->reg_value = PMC_DFL_VAL(cnum);
4168
4169 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4170
4171 DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4172 }
4173 return 0;
4174
4175abort_mission:
4176 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4177 return ret;
4178}
4179
4180static int
4181pfm_check_task_exist(pfm_context_t *ctx)
4182{
4183 struct task_struct *g, *t;
4184 int ret = -ESRCH;
4185
4186 read_lock(&tasklist_lock);
4187
4188 do_each_thread (g, t) {
4189 if (t->thread.pfm_context == ctx) {
4190 ret = 0;
4191 break;
4192 }
4193 } while_each_thread (g, t);
4194
4195 read_unlock(&tasklist_lock);
4196
4197 DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4198
4199 return ret;
4200}
4201
4202static int
4203pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4204{
4205 struct task_struct *task;
4206 struct thread_struct *thread;
4207 struct pfm_context_t *old;
4208 unsigned long flags;
4209#ifndef CONFIG_SMP
4210 struct task_struct *owner_task = NULL;
4211#endif
4212 pfarg_load_t *req = (pfarg_load_t *)arg;
4213 unsigned long *pmcs_source, *pmds_source;
4214 int the_cpu;
4215 int ret = 0;
4216 int state, is_system, set_dbregs = 0;
4217
4218 state = ctx->ctx_state;
4219 is_system = ctx->ctx_fl_system;
4220 /*
4221 * can only load from unloaded or terminated state
4222 */
4223 if (state != PFM_CTX_UNLOADED) {
4224 DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4225 req->load_pid,
4226 ctx->ctx_state));
a5a70b75 4227 return -EBUSY;
1da177e4
LT
4228 }
4229
4230 DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4231
4232 if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4233 DPRINT(("cannot use blocking mode on self\n"));
4234 return -EINVAL;
4235 }
4236
4237 ret = pfm_get_task(ctx, req->load_pid, &task);
4238 if (ret) {
4239 DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4240 return ret;
4241 }
4242
4243 ret = -EINVAL;
4244
4245 /*
4246 * system wide is self monitoring only
4247 */
4248 if (is_system && task != current) {
4249 DPRINT(("system wide is self monitoring only load_pid=%d\n",
4250 req->load_pid));
4251 goto error;
4252 }
4253
4254 thread = &task->thread;
4255
4256 ret = 0;
4257 /*
4258 * cannot load a context which is using range restrictions,
4259 * into a task that is being debugged.
4260 */
4261 if (ctx->ctx_fl_using_dbreg) {
4262 if (thread->flags & IA64_THREAD_DBG_VALID) {
4263 ret = -EBUSY;
4264 DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4265 goto error;
4266 }
4267 LOCK_PFS(flags);
4268
4269 if (is_system) {
4270 if (pfm_sessions.pfs_ptrace_use_dbregs) {
4271 DPRINT(("cannot load [%d] dbregs in use\n", task->pid));
4272 ret = -EBUSY;
4273 } else {
4274 pfm_sessions.pfs_sys_use_dbregs++;
4275 DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task->pid, pfm_sessions.pfs_sys_use_dbregs));
4276 set_dbregs = 1;
4277 }
4278 }
4279
4280 UNLOCK_PFS(flags);
4281
4282 if (ret) goto error;
4283 }
4284
4285 /*
4286 * SMP system-wide monitoring implies self-monitoring.
4287 *
4288 * The programming model expects the task to
4289 * be pinned on a CPU throughout the session.
4290 * Here we take note of the current CPU at the
4291 * time the context is loaded. No call from
4292 * another CPU will be allowed.
4293 *
4294 * The pinning via shed_setaffinity()
4295 * must be done by the calling task prior
4296 * to this call.
4297 *
4298 * systemwide: keep track of CPU this session is supposed to run on
4299 */
4300 the_cpu = ctx->ctx_cpu = smp_processor_id();
4301
4302 ret = -EBUSY;
4303 /*
4304 * now reserve the session
4305 */
4306 ret = pfm_reserve_session(current, is_system, the_cpu);
4307 if (ret) goto error;
4308
4309 /*
4310 * task is necessarily stopped at this point.
4311 *
4312 * If the previous context was zombie, then it got removed in
4313 * pfm_save_regs(). Therefore we should not see it here.
4314 * If we see a context, then this is an active context
4315 *
4316 * XXX: needs to be atomic
4317 */
4318 DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4319 thread->pfm_context, ctx));
4320
6bf11e8c 4321 ret = -EBUSY;
1da177e4
LT
4322 old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4323 if (old != NULL) {
4324 DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4325 goto error_unres;
4326 }
4327
4328 pfm_reset_msgq(ctx);
4329
4330 ctx->ctx_state = PFM_CTX_LOADED;
4331
4332 /*
4333 * link context to task
4334 */
4335 ctx->ctx_task = task;
4336
4337 if (is_system) {
4338 /*
4339 * we load as stopped
4340 */
4341 PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4342 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4343
4344 if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4345 } else {
4346 thread->flags |= IA64_THREAD_PM_VALID;
4347 }
4348
4349 /*
4350 * propagate into thread-state
4351 */
4352 pfm_copy_pmds(task, ctx);
4353 pfm_copy_pmcs(task, ctx);
4354
4355 pmcs_source = thread->pmcs;
4356 pmds_source = thread->pmds;
4357
4358 /*
4359 * always the case for system-wide
4360 */
4361 if (task == current) {
4362
4363 if (is_system == 0) {
4364
4365 /* allow user level control */
4366 ia64_psr(regs)->sp = 0;
4367 DPRINT(("clearing psr.sp for [%d]\n", task->pid));
4368
4369 SET_LAST_CPU(ctx, smp_processor_id());
4370 INC_ACTIVATION();
4371 SET_ACTIVATION(ctx);
4372#ifndef CONFIG_SMP
4373 /*
4374 * push the other task out, if any
4375 */
4376 owner_task = GET_PMU_OWNER();
4377 if (owner_task) pfm_lazy_save_regs(owner_task);
4378#endif
4379 }
4380 /*
4381 * load all PMD from ctx to PMU (as opposed to thread state)
4382 * restore all PMC from ctx to PMU
4383 */
4384 pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4385 pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4386
4387 ctx->ctx_reload_pmcs[0] = 0UL;
4388 ctx->ctx_reload_pmds[0] = 0UL;
4389
4390 /*
4391 * guaranteed safe by earlier check against DBG_VALID
4392 */
4393 if (ctx->ctx_fl_using_dbreg) {
4394 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4395 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4396 }
4397 /*
4398 * set new ownership
4399 */
4400 SET_PMU_OWNER(task, ctx);
4401
4402 DPRINT(("context loaded on PMU for [%d]\n", task->pid));
4403 } else {
4404 /*
4405 * when not current, task MUST be stopped, so this is safe
4406 */
6450578f 4407 regs = task_pt_regs(task);
1da177e4
LT
4408
4409 /* force a full reload */
4410 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4411 SET_LAST_CPU(ctx, -1);
4412
4413 /* initial saved psr (stopped) */
4414 ctx->ctx_saved_psr_up = 0UL;
4415 ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4416 }
4417
4418 ret = 0;
4419
4420error_unres:
4421 if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4422error:
4423 /*
4424 * we must undo the dbregs setting (for system-wide)
4425 */
4426 if (ret && set_dbregs) {
4427 LOCK_PFS(flags);
4428 pfm_sessions.pfs_sys_use_dbregs--;
4429 UNLOCK_PFS(flags);
4430 }
4431 /*
4432 * release task, there is now a link with the context
4433 */
4434 if (is_system == 0 && task != current) {
4435 pfm_put_task(task);
4436
4437 if (ret == 0) {
4438 ret = pfm_check_task_exist(ctx);
4439 if (ret) {
4440 ctx->ctx_state = PFM_CTX_UNLOADED;
4441 ctx->ctx_task = NULL;
4442 }
4443 }
4444 }
4445 return ret;
4446}
4447
4448/*
4449 * in this function, we do not need to increase the use count
4450 * for the task via get_task_struct(), because we hold the
4451 * context lock. If the task were to disappear while having
4452 * a context attached, it would go through pfm_exit_thread()
4453 * which also grabs the context lock and would therefore be blocked
4454 * until we are here.
4455 */
4456static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4457
4458static int
4459pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4460{
4461 struct task_struct *task = PFM_CTX_TASK(ctx);
4462 struct pt_regs *tregs;
4463 int prev_state, is_system;
4464 int ret;
4465
4466 DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task->pid : -1));
4467
4468 prev_state = ctx->ctx_state;
4469 is_system = ctx->ctx_fl_system;
4470
4471 /*
4472 * unload only when necessary
4473 */
4474 if (prev_state == PFM_CTX_UNLOADED) {
4475 DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4476 return 0;
4477 }
4478
4479 /*
4480 * clear psr and dcr bits
4481 */
4482 ret = pfm_stop(ctx, NULL, 0, regs);
4483 if (ret) return ret;
4484
4485 ctx->ctx_state = PFM_CTX_UNLOADED;
4486
4487 /*
4488 * in system mode, we need to update the PMU directly
4489 * and the user level state of the caller, which may not
4490 * necessarily be the creator of the context.
4491 */
4492 if (is_system) {
4493
4494 /*
4495 * Update cpuinfo
4496 *
4497 * local PMU is taken care of in pfm_stop()
4498 */
4499 PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4500 PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4501
4502 /*
4503 * save PMDs in context
4504 * release ownership
4505 */
4506 pfm_flush_pmds(current, ctx);
4507
4508 /*
4509 * at this point we are done with the PMU
4510 * so we can unreserve the resource.
4511 */
4512 if (prev_state != PFM_CTX_ZOMBIE)
4513 pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4514
4515 /*
4516 * disconnect context from task
4517 */
4518 task->thread.pfm_context = NULL;
4519 /*
4520 * disconnect task from context
4521 */
4522 ctx->ctx_task = NULL;
4523
4524 /*
4525 * There is nothing more to cleanup here.
4526 */
4527 return 0;
4528 }
4529
4530 /*
4531 * per-task mode
4532 */
6450578f 4533 tregs = task == current ? regs : task_pt_regs(task);
1da177e4
LT
4534
4535 if (task == current) {
4536 /*
4537 * cancel user level control
4538 */
4539 ia64_psr(regs)->sp = 1;
4540
4541 DPRINT(("setting psr.sp for [%d]\n", task->pid));
4542 }
4543 /*
4544 * save PMDs to context
4545 * release ownership
4546 */
4547 pfm_flush_pmds(task, ctx);
4548
4549 /*
4550 * at this point we are done with the PMU
4551 * so we can unreserve the resource.
4552 *
4553 * when state was ZOMBIE, we have already unreserved.
4554 */
4555 if (prev_state != PFM_CTX_ZOMBIE)
4556 pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4557
4558 /*
4559 * reset activation counter and psr
4560 */
4561 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4562 SET_LAST_CPU(ctx, -1);
4563
4564 /*
4565 * PMU state will not be restored
4566 */
4567 task->thread.flags &= ~IA64_THREAD_PM_VALID;
4568
4569 /*
4570 * break links between context and task
4571 */
4572 task->thread.pfm_context = NULL;
4573 ctx->ctx_task = NULL;
4574
4575 PFM_SET_WORK_PENDING(task, 0);
4576
4577 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
4578 ctx->ctx_fl_can_restart = 0;
4579 ctx->ctx_fl_going_zombie = 0;
4580
4581 DPRINT(("disconnected [%d] from context\n", task->pid));
4582
4583 return 0;
4584}
4585
4586
4587/*
4588 * called only from exit_thread(): task == current
4589 * we come here only if current has a context attached (loaded or masked)
4590 */
4591void
4592pfm_exit_thread(struct task_struct *task)
4593{
4594 pfm_context_t *ctx;
4595 unsigned long flags;
6450578f 4596 struct pt_regs *regs = task_pt_regs(task);
1da177e4
LT
4597 int ret, state;
4598 int free_ok = 0;
4599
4600 ctx = PFM_GET_CTX(task);
4601
4602 PROTECT_CTX(ctx, flags);
4603
4604 DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task->pid));
4605
4606 state = ctx->ctx_state;
4607 switch(state) {
4608 case PFM_CTX_UNLOADED:
4609 /*
4610 * only comes to thios function if pfm_context is not NULL, i.e., cannot
4611 * be in unloaded state
4612 */
4613 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task->pid);
4614 break;
4615 case PFM_CTX_LOADED:
4616 case PFM_CTX_MASKED:
4617 ret = pfm_context_unload(ctx, NULL, 0, regs);
4618 if (ret) {
4619 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task->pid, state, ret);
4620 }
4621 DPRINT(("ctx unloaded for current state was %d\n", state));
4622
4623 pfm_end_notify_user(ctx);
4624 break;
4625 case PFM_CTX_ZOMBIE:
4626 ret = pfm_context_unload(ctx, NULL, 0, regs);
4627 if (ret) {
4628 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task->pid, state, ret);
4629 }
4630 free_ok = 1;
4631 break;
4632 default:
4633 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task->pid, state);
4634 break;
4635 }
4636 UNPROTECT_CTX(ctx, flags);
4637
4638 { u64 psr = pfm_get_psr();
4639 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4640 BUG_ON(GET_PMU_OWNER());
4641 BUG_ON(ia64_psr(regs)->up);
4642 BUG_ON(ia64_psr(regs)->pp);
4643 }
4644
4645 /*
4646 * All memory free operations (especially for vmalloc'ed memory)
4647 * MUST be done with interrupts ENABLED.
4648 */
4649 if (free_ok) pfm_context_free(ctx);
4650}
4651
4652/*
4653 * functions MUST be listed in the increasing order of their index (see permfon.h)
4654 */
4655#define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4656#define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4657#define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4658#define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
4659#define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
4660
4661static pfm_cmd_desc_t pfm_cmd_tab[]={
4662/* 0 */PFM_CMD_NONE,
4663/* 1 */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4664/* 2 */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4665/* 3 */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4666/* 4 */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4667/* 5 */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4668/* 6 */PFM_CMD_NONE,
4669/* 7 */PFM_CMD_NONE,
4670/* 8 */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4671/* 9 */PFM_CMD_NONE,
4672/* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4673/* 11 */PFM_CMD_NONE,
4674/* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4675/* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4676/* 14 */PFM_CMD_NONE,
4677/* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4678/* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4679/* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4680/* 18 */PFM_CMD_NONE,
4681/* 19 */PFM_CMD_NONE,
4682/* 20 */PFM_CMD_NONE,
4683/* 21 */PFM_CMD_NONE,
4684/* 22 */PFM_CMD_NONE,
4685/* 23 */PFM_CMD_NONE,
4686/* 24 */PFM_CMD_NONE,
4687/* 25 */PFM_CMD_NONE,
4688/* 26 */PFM_CMD_NONE,
4689/* 27 */PFM_CMD_NONE,
4690/* 28 */PFM_CMD_NONE,
4691/* 29 */PFM_CMD_NONE,
4692/* 30 */PFM_CMD_NONE,
4693/* 31 */PFM_CMD_NONE,
4694/* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4695/* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4696};
4697#define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4698
4699static int
4700pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4701{
4702 struct task_struct *task;
4703 int state, old_state;
4704
4705recheck:
4706 state = ctx->ctx_state;
4707 task = ctx->ctx_task;
4708
4709 if (task == NULL) {
4710 DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4711 return 0;
4712 }
4713
4714 DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4715 ctx->ctx_fd,
4716 state,
4717 task->pid,
4718 task->state, PFM_CMD_STOPPED(cmd)));
4719
4720 /*
4721 * self-monitoring always ok.
4722 *
4723 * for system-wide the caller can either be the creator of the
4724 * context (to one to which the context is attached to) OR
4725 * a task running on the same CPU as the session.
4726 */
4727 if (task == current || ctx->ctx_fl_system) return 0;
4728
4729 /*
a5a70b75 4730 * we are monitoring another thread
1da177e4 4731 */
a5a70b75 4732 switch(state) {
4733 case PFM_CTX_UNLOADED:
4734 /*
4735 * if context is UNLOADED we are safe to go
4736 */
4737 return 0;
4738 case PFM_CTX_ZOMBIE:
4739 /*
4740 * no command can operate on a zombie context
4741 */
4742 DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4743 return -EINVAL;
4744 case PFM_CTX_MASKED:
4745 /*
4746 * PMU state has been saved to software even though
4747 * the thread may still be running.
4748 */
4749 if (cmd != PFM_UNLOAD_CONTEXT) return 0;
1da177e4
LT
4750 }
4751
4752 /*
4753 * context is LOADED or MASKED. Some commands may need to have
4754 * the task stopped.
4755 *
4756 * We could lift this restriction for UP but it would mean that
4757 * the user has no guarantee the task would not run between
4758 * two successive calls to perfmonctl(). That's probably OK.
4759 * If this user wants to ensure the task does not run, then
4760 * the task must be stopped.
4761 */
4762 if (PFM_CMD_STOPPED(cmd)) {
4763 if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) {
4764 DPRINT(("[%d] task not in stopped state\n", task->pid));
4765 return -EBUSY;
4766 }
4767 /*
4768 * task is now stopped, wait for ctxsw out
4769 *
4770 * This is an interesting point in the code.
4771 * We need to unprotect the context because
4772 * the pfm_save_regs() routines needs to grab
4773 * the same lock. There are danger in doing
4774 * this because it leaves a window open for
4775 * another task to get access to the context
4776 * and possibly change its state. The one thing
4777 * that is not possible is for the context to disappear
4778 * because we are protected by the VFS layer, i.e.,
4779 * get_fd()/put_fd().
4780 */
4781 old_state = state;
4782
4783 UNPROTECT_CTX(ctx, flags);
4784
4785 wait_task_inactive(task);
4786
4787 PROTECT_CTX(ctx, flags);
4788
4789 /*
4790 * we must recheck to verify if state has changed
4791 */
4792 if (ctx->ctx_state != old_state) {
4793 DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4794 goto recheck;
4795 }
4796 }
4797 return 0;
4798}
4799
4800/*
4801 * system-call entry point (must return long)
4802 */
4803asmlinkage long
4804sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4805{
4806 struct file *file = NULL;
4807 pfm_context_t *ctx = NULL;
4808 unsigned long flags = 0UL;
4809 void *args_k = NULL;
4810 long ret; /* will expand int return types */
4811 size_t base_sz, sz, xtra_sz = 0;
4812 int narg, completed_args = 0, call_made = 0, cmd_flags;
4813 int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4814 int (*getsize)(void *arg, size_t *sz);
4815#define PFM_MAX_ARGSIZE 4096
4816
4817 /*
4818 * reject any call if perfmon was disabled at initialization
4819 */
4820 if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4821
4822 if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4823 DPRINT(("invalid cmd=%d\n", cmd));
4824 return -EINVAL;
4825 }
4826
4827 func = pfm_cmd_tab[cmd].cmd_func;
4828 narg = pfm_cmd_tab[cmd].cmd_narg;
4829 base_sz = pfm_cmd_tab[cmd].cmd_argsize;
4830 getsize = pfm_cmd_tab[cmd].cmd_getsize;
4831 cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4832
4833 if (unlikely(func == NULL)) {
4834 DPRINT(("invalid cmd=%d\n", cmd));
4835 return -EINVAL;
4836 }
4837
4838 DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4839 PFM_CMD_NAME(cmd),
4840 cmd,
4841 narg,
4842 base_sz,
4843 count));
4844
4845 /*
4846 * check if number of arguments matches what the command expects
4847 */
4848 if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4849 return -EINVAL;
4850
4851restart_args:
4852 sz = xtra_sz + base_sz*count;
4853 /*
4854 * limit abuse to min page size
4855 */
4856 if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4857 printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", current->pid, sz);
4858 return -E2BIG;
4859 }
4860
4861 /*
4862 * allocate default-sized argument buffer
4863 */
4864 if (likely(count && args_k == NULL)) {
4865 args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4866 if (args_k == NULL) return -ENOMEM;
4867 }
4868
4869 ret = -EFAULT;
4870
4871 /*
4872 * copy arguments
4873 *
4874 * assume sz = 0 for command without parameters
4875 */
4876 if (sz && copy_from_user(args_k, arg, sz)) {
4877 DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4878 goto error_args;
4879 }
4880
4881 /*
4882 * check if command supports extra parameters
4883 */
4884 if (completed_args == 0 && getsize) {
4885 /*
4886 * get extra parameters size (based on main argument)
4887 */
4888 ret = (*getsize)(args_k, &xtra_sz);
4889 if (ret) goto error_args;
4890
4891 completed_args = 1;
4892
4893 DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4894
4895 /* retry if necessary */
4896 if (likely(xtra_sz)) goto restart_args;
4897 }
4898
4899 if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4900
4901 ret = -EBADF;
4902
4903 file = fget(fd);
4904 if (unlikely(file == NULL)) {
4905 DPRINT(("invalid fd %d\n", fd));
4906 goto error_args;
4907 }
4908 if (unlikely(PFM_IS_FILE(file) == 0)) {
4909 DPRINT(("fd %d not related to perfmon\n", fd));
4910 goto error_args;
4911 }
4912
4913 ctx = (pfm_context_t *)file->private_data;
4914 if (unlikely(ctx == NULL)) {
4915 DPRINT(("no context for fd %d\n", fd));
4916 goto error_args;
4917 }
4918 prefetch(&ctx->ctx_state);
4919
4920 PROTECT_CTX(ctx, flags);
4921
4922 /*
4923 * check task is stopped
4924 */
4925 ret = pfm_check_task_state(ctx, cmd, flags);
4926 if (unlikely(ret)) goto abort_locked;
4927
4928skip_fd:
6450578f 4929 ret = (*func)(ctx, args_k, count, task_pt_regs(current));
1da177e4
LT
4930
4931 call_made = 1;
4932
4933abort_locked:
4934 if (likely(ctx)) {
4935 DPRINT(("context unlocked\n"));
4936 UNPROTECT_CTX(ctx, flags);
4937 fput(file);
4938 }
4939
4940 /* copy argument back to user, if needed */
4941 if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4942
4943error_args:
b2325fe1 4944 kfree(args_k);
1da177e4
LT
4945
4946 DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4947
4948 return ret;
4949}
4950
4951static void
4952pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4953{
4954 pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4955 pfm_ovfl_ctrl_t rst_ctrl;
4956 int state;
4957 int ret = 0;
4958
4959 state = ctx->ctx_state;
4960 /*
4961 * Unlock sampling buffer and reset index atomically
4962 * XXX: not really needed when blocking
4963 */
4964 if (CTX_HAS_SMPL(ctx)) {
4965
4966 rst_ctrl.bits.mask_monitoring = 0;
4967 rst_ctrl.bits.reset_ovfl_pmds = 0;
4968
4969 if (state == PFM_CTX_LOADED)
4970 ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4971 else
4972 ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4973 } else {
4974 rst_ctrl.bits.mask_monitoring = 0;
4975 rst_ctrl.bits.reset_ovfl_pmds = 1;
4976 }
4977
4978 if (ret == 0) {
4979 if (rst_ctrl.bits.reset_ovfl_pmds) {
4980 pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4981 }
4982 if (rst_ctrl.bits.mask_monitoring == 0) {
4983 DPRINT(("resuming monitoring\n"));
4984 if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4985 } else {
4986 DPRINT(("stopping monitoring\n"));
4987 //pfm_stop_monitoring(current, regs);
4988 }
4989 ctx->ctx_state = PFM_CTX_LOADED;
4990 }
4991}
4992
4993/*
4994 * context MUST BE LOCKED when calling
4995 * can only be called for current
4996 */
4997static void
4998pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
4999{
5000 int ret;
5001
5002 DPRINT(("entering for [%d]\n", current->pid));
5003
5004 ret = pfm_context_unload(ctx, NULL, 0, regs);
5005 if (ret) {
5006 printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", current->pid, ret);
5007 }
5008
5009 /*
5010 * and wakeup controlling task, indicating we are now disconnected
5011 */
5012 wake_up_interruptible(&ctx->ctx_zombieq);
5013
5014 /*
5015 * given that context is still locked, the controlling
5016 * task will only get access when we return from
5017 * pfm_handle_work().
5018 */
5019}
5020
5021static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
4944930a
SE
5022 /*
5023 * pfm_handle_work() can be called with interrupts enabled
5024 * (TIF_NEED_RESCHED) or disabled. The down_interruptible
5025 * call may sleep, therefore we must re-enable interrupts
5026 * to avoid deadlocks. It is safe to do so because this function
5027 * is called ONLY when returning to user level (PUStk=1), in which case
5028 * there is no risk of kernel stack overflow due to deep
5029 * interrupt nesting.
5030 */
1da177e4
LT
5031void
5032pfm_handle_work(void)
5033{
5034 pfm_context_t *ctx;
5035 struct pt_regs *regs;
4944930a 5036 unsigned long flags, dummy_flags;
1da177e4
LT
5037 unsigned long ovfl_regs;
5038 unsigned int reason;
5039 int ret;
5040
5041 ctx = PFM_GET_CTX(current);
5042 if (ctx == NULL) {
5043 printk(KERN_ERR "perfmon: [%d] has no PFM context\n", current->pid);
5044 return;
5045 }
5046
5047 PROTECT_CTX(ctx, flags);
5048
5049 PFM_SET_WORK_PENDING(current, 0);
5050
5051 pfm_clear_task_notify();
5052
6450578f 5053 regs = task_pt_regs(current);
1da177e4
LT
5054
5055 /*
5056 * extract reason for being here and clear
5057 */
5058 reason = ctx->ctx_fl_trap_reason;
5059 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5060 ovfl_regs = ctx->ctx_ovfl_regs[0];
5061
5062 DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5063
5064 /*
5065 * must be done before we check for simple-reset mode
5066 */
5067 if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE) goto do_zombie;
5068
5069
5070 //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5071 if (reason == PFM_TRAP_REASON_RESET) goto skip_blocking;
5072
4944930a
SE
5073 /*
5074 * restore interrupt mask to what it was on entry.
5075 * Could be enabled/diasbled.
5076 */
1da177e4
LT
5077 UNPROTECT_CTX(ctx, flags);
5078
4944930a
SE
5079 /*
5080 * force interrupt enable because of down_interruptible()
5081 */
1da177e4
LT
5082 local_irq_enable();
5083
5084 DPRINT(("before block sleeping\n"));
5085
5086 /*
5087 * may go through without blocking on SMP systems
5088 * if restart has been received already by the time we call down()
5089 */
5090 ret = down_interruptible(&ctx->ctx_restart_sem);
5091
5092 DPRINT(("after block sleeping ret=%d\n", ret));
5093
5094 /*
4944930a
SE
5095 * lock context and mask interrupts again
5096 * We save flags into a dummy because we may have
5097 * altered interrupts mask compared to entry in this
5098 * function.
1da177e4 5099 */
4944930a 5100 PROTECT_CTX(ctx, dummy_flags);
1da177e4
LT
5101
5102 /*
5103 * we need to read the ovfl_regs only after wake-up
5104 * because we may have had pfm_write_pmds() in between
5105 * and that can changed PMD values and therefore
5106 * ovfl_regs is reset for these new PMD values.
5107 */
5108 ovfl_regs = ctx->ctx_ovfl_regs[0];
5109
5110 if (ctx->ctx_fl_going_zombie) {
5111do_zombie:
5112 DPRINT(("context is zombie, bailing out\n"));
5113 pfm_context_force_terminate(ctx, regs);
5114 goto nothing_to_do;
5115 }
5116 /*
5117 * in case of interruption of down() we don't restart anything
5118 */
5119 if (ret < 0) goto nothing_to_do;
5120
5121skip_blocking:
5122 pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5123 ctx->ctx_ovfl_regs[0] = 0UL;
5124
5125nothing_to_do:
4944930a
SE
5126 /*
5127 * restore flags as they were upon entry
5128 */
1da177e4
LT
5129 UNPROTECT_CTX(ctx, flags);
5130}
5131
5132static int
5133pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5134{
5135 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5136 DPRINT(("ignoring overflow notification, owner is zombie\n"));
5137 return 0;
5138 }
5139
5140 DPRINT(("waking up somebody\n"));
5141
5142 if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5143
5144 /*
5145 * safe, we are not in intr handler, nor in ctxsw when
5146 * we come here
5147 */
5148 kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5149
5150 return 0;
5151}
5152
5153static int
5154pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5155{
5156 pfm_msg_t *msg = NULL;
5157
5158 if (ctx->ctx_fl_no_msg == 0) {
5159 msg = pfm_get_new_msg(ctx);
5160 if (msg == NULL) {
5161 printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5162 return -1;
5163 }
5164
5165 msg->pfm_ovfl_msg.msg_type = PFM_MSG_OVFL;
5166 msg->pfm_ovfl_msg.msg_ctx_fd = ctx->ctx_fd;
5167 msg->pfm_ovfl_msg.msg_active_set = 0;
5168 msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5169 msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5170 msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5171 msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5172 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5173 }
5174
5175 DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5176 msg,
5177 ctx->ctx_fl_no_msg,
5178 ctx->ctx_fd,
5179 ovfl_pmds));
5180
5181 return pfm_notify_user(ctx, msg);
5182}
5183
5184static int
5185pfm_end_notify_user(pfm_context_t *ctx)
5186{
5187 pfm_msg_t *msg;
5188
5189 msg = pfm_get_new_msg(ctx);
5190 if (msg == NULL) {
5191 printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5192 return -1;
5193 }
5194 /* no leak */
5195 memset(msg, 0, sizeof(*msg));
5196
5197 msg->pfm_end_msg.msg_type = PFM_MSG_END;
5198 msg->pfm_end_msg.msg_ctx_fd = ctx->ctx_fd;
5199 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5200
5201 DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5202 msg,
5203 ctx->ctx_fl_no_msg,
5204 ctx->ctx_fd));
5205
5206 return pfm_notify_user(ctx, msg);
5207}
5208
5209/*
5210 * main overflow processing routine.
5211 * it can be called from the interrupt path or explicitely during the context switch code
5212 */
5213static void
5214pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx, u64 pmc0, struct pt_regs *regs)
5215{
5216 pfm_ovfl_arg_t *ovfl_arg;
5217 unsigned long mask;
5218 unsigned long old_val, ovfl_val, new_val;
5219 unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5220 unsigned long tstamp;
5221 pfm_ovfl_ctrl_t ovfl_ctrl;
5222 unsigned int i, has_smpl;
5223 int must_notify = 0;
5224
5225 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5226
5227 /*
5228 * sanity test. Should never happen
5229 */
5230 if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5231
5232 tstamp = ia64_get_itc();
5233 mask = pmc0 >> PMU_FIRST_COUNTER;
5234 ovfl_val = pmu_conf->ovfl_val;
5235 has_smpl = CTX_HAS_SMPL(ctx);
5236
5237 DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5238 "used_pmds=0x%lx\n",
5239 pmc0,
5240 task ? task->pid: -1,
5241 (regs ? regs->cr_iip : 0),
5242 CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5243 ctx->ctx_used_pmds[0]));
5244
5245
5246 /*
5247 * first we update the virtual counters
5248 * assume there was a prior ia64_srlz_d() issued
5249 */
5250 for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5251
5252 /* skip pmd which did not overflow */
5253 if ((mask & 0x1) == 0) continue;
5254
5255 /*
5256 * Note that the pmd is not necessarily 0 at this point as qualified events
5257 * may have happened before the PMU was frozen. The residual count is not
5258 * taken into consideration here but will be with any read of the pmd via
5259 * pfm_read_pmds().
5260 */
5261 old_val = new_val = ctx->ctx_pmds[i].val;
5262 new_val += 1 + ovfl_val;
5263 ctx->ctx_pmds[i].val = new_val;
5264
5265 /*
5266 * check for overflow condition
5267 */
5268 if (likely(old_val > new_val)) {
5269 ovfl_pmds |= 1UL << i;
5270 if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5271 }
5272
5273 DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5274 i,
5275 new_val,
5276 old_val,
5277 ia64_get_pmd(i) & ovfl_val,
5278 ovfl_pmds,
5279 ovfl_notify));
5280 }
5281
5282 /*
5283 * there was no 64-bit overflow, nothing else to do
5284 */
5285 if (ovfl_pmds == 0UL) return;
5286
5287 /*
5288 * reset all control bits
5289 */
5290 ovfl_ctrl.val = 0;
5291 reset_pmds = 0UL;
5292
5293 /*
5294 * if a sampling format module exists, then we "cache" the overflow by
5295 * calling the module's handler() routine.
5296 */
5297 if (has_smpl) {
5298 unsigned long start_cycles, end_cycles;
5299 unsigned long pmd_mask;
5300 int j, k, ret = 0;
5301 int this_cpu = smp_processor_id();
5302
5303 pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5304 ovfl_arg = &ctx->ctx_ovfl_arg;
5305
5306 prefetch(ctx->ctx_smpl_hdr);
5307
5308 for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5309
5310 mask = 1UL << i;
5311
5312 if ((pmd_mask & 0x1) == 0) continue;
5313
5314 ovfl_arg->ovfl_pmd = (unsigned char )i;
5315 ovfl_arg->ovfl_notify = ovfl_notify & mask ? 1 : 0;
5316 ovfl_arg->active_set = 0;
5317 ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5318 ovfl_arg->smpl_pmds[0] = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5319
5320 ovfl_arg->pmd_value = ctx->ctx_pmds[i].val;
5321 ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5322 ovfl_arg->pmd_eventid = ctx->ctx_pmds[i].eventid;
5323
5324 /*
5325 * copy values of pmds of interest. Sampling format may copy them
5326 * into sampling buffer.
5327 */
5328 if (smpl_pmds) {
5329 for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5330 if ((smpl_pmds & 0x1) == 0) continue;
5331 ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ? pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5332 DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5333 }
5334 }
5335
5336 pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5337
5338 start_cycles = ia64_get_itc();
5339
5340 /*
5341 * call custom buffer format record (handler) routine
5342 */
5343 ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5344
5345 end_cycles = ia64_get_itc();
5346
5347 /*
5348 * For those controls, we take the union because they have
5349 * an all or nothing behavior.
5350 */
5351 ovfl_ctrl.bits.notify_user |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5352 ovfl_ctrl.bits.block_task |= ovfl_arg->ovfl_ctrl.bits.block_task;
5353 ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5354 /*
5355 * build the bitmask of pmds to reset now
5356 */
5357 if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5358
5359 pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5360 }
5361 /*
5362 * when the module cannot handle the rest of the overflows, we abort right here
5363 */
5364 if (ret && pmd_mask) {
5365 DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5366 pmd_mask<<PMU_FIRST_COUNTER));
5367 }
5368 /*
5369 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5370 */
5371 ovfl_pmds &= ~reset_pmds;
5372 } else {
5373 /*
5374 * when no sampling module is used, then the default
5375 * is to notify on overflow if requested by user
5376 */
5377 ovfl_ctrl.bits.notify_user = ovfl_notify ? 1 : 0;
5378 ovfl_ctrl.bits.block_task = ovfl_notify ? 1 : 0;
5379 ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5380 ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5381 /*
5382 * if needed, we reset all overflowed pmds
5383 */
5384 if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5385 }
5386
5387 DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5388
5389 /*
5390 * reset the requested PMD registers using the short reset values
5391 */
5392 if (reset_pmds) {
5393 unsigned long bm = reset_pmds;
5394 pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5395 }
5396
5397 if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5398 /*
5399 * keep track of what to reset when unblocking
5400 */
5401 ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5402
5403 /*
5404 * check for blocking context
5405 */
5406 if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5407
5408 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5409
5410 /*
5411 * set the perfmon specific checking pending work for the task
5412 */
5413 PFM_SET_WORK_PENDING(task, 1);
5414
5415 /*
5416 * when coming from ctxsw, current still points to the
5417 * previous task, therefore we must work with task and not current.
5418 */
5419 pfm_set_task_notify(task);
5420 }
5421 /*
5422 * defer until state is changed (shorten spin window). the context is locked
5423 * anyway, so the signal receiver would come spin for nothing.
5424 */
5425 must_notify = 1;
5426 }
5427
5428 DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5429 GET_PMU_OWNER() ? GET_PMU_OWNER()->pid : -1,
5430 PFM_GET_WORK_PENDING(task),
5431 ctx->ctx_fl_trap_reason,
5432 ovfl_pmds,
5433 ovfl_notify,
5434 ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5435 /*
5436 * in case monitoring must be stopped, we toggle the psr bits
5437 */
5438 if (ovfl_ctrl.bits.mask_monitoring) {
5439 pfm_mask_monitoring(task);
5440 ctx->ctx_state = PFM_CTX_MASKED;
5441 ctx->ctx_fl_can_restart = 1;
5442 }
5443
5444 /*
5445 * send notification now
5446 */
5447 if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5448
5449 return;
5450
5451sanity_check:
5452 printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5453 smp_processor_id(),
5454 task ? task->pid : -1,
5455 pmc0);
5456 return;
5457
5458stop_monitoring:
5459 /*
5460 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5461 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5462 * come here as zombie only if the task is the current task. In which case, we
5463 * can access the PMU hardware directly.
5464 *
5465 * Note that zombies do have PM_VALID set. So here we do the minimal.
5466 *
5467 * In case the context was zombified it could not be reclaimed at the time
5468 * the monitoring program exited. At this point, the PMU reservation has been
5469 * returned, the sampiing buffer has been freed. We must convert this call
5470 * into a spurious interrupt. However, we must also avoid infinite overflows
5471 * by stopping monitoring for this task. We can only come here for a per-task
5472 * context. All we need to do is to stop monitoring using the psr bits which
5473 * are always task private. By re-enabling secure montioring, we ensure that
5474 * the monitored task will not be able to re-activate monitoring.
5475 * The task will eventually be context switched out, at which point the context
5476 * will be reclaimed (that includes releasing ownership of the PMU).
5477 *
5478 * So there might be a window of time where the number of per-task session is zero
5479 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5480 * context. This is safe because if a per-task session comes in, it will push this one
5481 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5482 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5483 * also push our zombie context out.
5484 *
5485 * Overall pretty hairy stuff....
5486 */
5487 DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task->pid: -1));
5488 pfm_clear_psr_up();
5489 ia64_psr(regs)->up = 0;
5490 ia64_psr(regs)->sp = 1;
5491 return;
5492}
5493
5494static int
5495pfm_do_interrupt_handler(int irq, void *arg, struct pt_regs *regs)
5496{
5497 struct task_struct *task;
5498 pfm_context_t *ctx;
5499 unsigned long flags;
5500 u64 pmc0;
5501 int this_cpu = smp_processor_id();
5502 int retval = 0;
5503
5504 pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5505
5506 /*
5507 * srlz.d done before arriving here
5508 */
5509 pmc0 = ia64_get_pmc(0);
5510
5511 task = GET_PMU_OWNER();
5512 ctx = GET_PMU_CTX();
5513
5514 /*
5515 * if we have some pending bits set
5516 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5517 */
5518 if (PMC0_HAS_OVFL(pmc0) && task) {
5519 /*
5520 * we assume that pmc0.fr is always set here
5521 */
5522
5523 /* sanity check */
5524 if (!ctx) goto report_spurious1;
5525
5526 if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
5527 goto report_spurious2;
5528
5529 PROTECT_CTX_NOPRINT(ctx, flags);
5530
5531 pfm_overflow_handler(task, ctx, pmc0, regs);
5532
5533 UNPROTECT_CTX_NOPRINT(ctx, flags);
5534
5535 } else {
5536 pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5537 retval = -1;
5538 }
5539 /*
5540 * keep it unfrozen at all times
5541 */
5542 pfm_unfreeze_pmu();
5543
5544 return retval;
5545
5546report_spurious1:
5547 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5548 this_cpu, task->pid);
5549 pfm_unfreeze_pmu();
5550 return -1;
5551report_spurious2:
5552 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5553 this_cpu,
5554 task->pid);
5555 pfm_unfreeze_pmu();
5556 return -1;
5557}
5558
5559static irqreturn_t
5560pfm_interrupt_handler(int irq, void *arg, struct pt_regs *regs)
5561{
5562 unsigned long start_cycles, total_cycles;
5563 unsigned long min, max;
5564 int this_cpu;
5565 int ret;
5566
5567 this_cpu = get_cpu();
a1ecf7f6
TL
5568 if (likely(!pfm_alt_intr_handler)) {
5569 min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5570 max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
1da177e4 5571
a1ecf7f6 5572 start_cycles = ia64_get_itc();
1da177e4 5573
a1ecf7f6 5574 ret = pfm_do_interrupt_handler(irq, arg, regs);
1da177e4 5575
a1ecf7f6 5576 total_cycles = ia64_get_itc();
1da177e4 5577
a1ecf7f6
TL
5578 /*
5579 * don't measure spurious interrupts
5580 */
5581 if (likely(ret == 0)) {
5582 total_cycles -= start_cycles;
1da177e4 5583
a1ecf7f6
TL
5584 if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5585 if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
1da177e4 5586
a1ecf7f6
TL
5587 pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5588 }
5589 }
5590 else {
5591 (*pfm_alt_intr_handler->handler)(irq, arg, regs);
1da177e4 5592 }
a1ecf7f6 5593
1da177e4
LT
5594 put_cpu_no_resched();
5595 return IRQ_HANDLED;
5596}
5597
5598/*
5599 * /proc/perfmon interface, for debug only
5600 */
5601
5602#define PFM_PROC_SHOW_HEADER ((void *)NR_CPUS+1)
5603
5604static void *
5605pfm_proc_start(struct seq_file *m, loff_t *pos)
5606{
5607 if (*pos == 0) {
5608 return PFM_PROC_SHOW_HEADER;
5609 }
5610
5611 while (*pos <= NR_CPUS) {
5612 if (cpu_online(*pos - 1)) {
5613 return (void *)*pos;
5614 }
5615 ++*pos;
5616 }
5617 return NULL;
5618}
5619
5620static void *
5621pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5622{
5623 ++*pos;
5624 return pfm_proc_start(m, pos);
5625}
5626
5627static void
5628pfm_proc_stop(struct seq_file *m, void *v)
5629{
5630}
5631
5632static void
5633pfm_proc_show_header(struct seq_file *m)
5634{
5635 struct list_head * pos;
5636 pfm_buffer_fmt_t * entry;
5637 unsigned long flags;
5638
5639 seq_printf(m,
5640 "perfmon version : %u.%u\n"
5641 "model : %s\n"
5642 "fastctxsw : %s\n"
5643 "expert mode : %s\n"
5644 "ovfl_mask : 0x%lx\n"
5645 "PMU flags : 0x%x\n",
5646 PFM_VERSION_MAJ, PFM_VERSION_MIN,
5647 pmu_conf->pmu_name,
5648 pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5649 pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5650 pmu_conf->ovfl_val,
5651 pmu_conf->flags);
5652
5653 LOCK_PFS(flags);
5654
5655 seq_printf(m,
5656 "proc_sessions : %u\n"
5657 "sys_sessions : %u\n"
5658 "sys_use_dbregs : %u\n"
5659 "ptrace_use_dbregs : %u\n",
5660 pfm_sessions.pfs_task_sessions,
5661 pfm_sessions.pfs_sys_sessions,
5662 pfm_sessions.pfs_sys_use_dbregs,
5663 pfm_sessions.pfs_ptrace_use_dbregs);
5664
5665 UNLOCK_PFS(flags);
5666
5667 spin_lock(&pfm_buffer_fmt_lock);
5668
5669 list_for_each(pos, &pfm_buffer_fmt_list) {
5670 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5671 seq_printf(m, "format : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
5672 entry->fmt_uuid[0],
5673 entry->fmt_uuid[1],
5674 entry->fmt_uuid[2],
5675 entry->fmt_uuid[3],
5676 entry->fmt_uuid[4],
5677 entry->fmt_uuid[5],
5678 entry->fmt_uuid[6],
5679 entry->fmt_uuid[7],
5680 entry->fmt_uuid[8],
5681 entry->fmt_uuid[9],
5682 entry->fmt_uuid[10],
5683 entry->fmt_uuid[11],
5684 entry->fmt_uuid[12],
5685 entry->fmt_uuid[13],
5686 entry->fmt_uuid[14],
5687 entry->fmt_uuid[15],
5688 entry->fmt_name);
5689 }
5690 spin_unlock(&pfm_buffer_fmt_lock);
5691
5692}
5693
5694static int
5695pfm_proc_show(struct seq_file *m, void *v)
5696{
5697 unsigned long psr;
5698 unsigned int i;
5699 int cpu;
5700
5701 if (v == PFM_PROC_SHOW_HEADER) {
5702 pfm_proc_show_header(m);
5703 return 0;
5704 }
5705
5706 /* show info for CPU (v - 1) */
5707
5708 cpu = (long)v - 1;
5709 seq_printf(m,
5710 "CPU%-2d overflow intrs : %lu\n"
5711 "CPU%-2d overflow cycles : %lu\n"
5712 "CPU%-2d overflow min : %lu\n"
5713 "CPU%-2d overflow max : %lu\n"
5714 "CPU%-2d smpl handler calls : %lu\n"
5715 "CPU%-2d smpl handler cycles : %lu\n"
5716 "CPU%-2d spurious intrs : %lu\n"
5717 "CPU%-2d replay intrs : %lu\n"
5718 "CPU%-2d syst_wide : %d\n"
5719 "CPU%-2d dcr_pp : %d\n"
5720 "CPU%-2d exclude idle : %d\n"
5721 "CPU%-2d owner : %d\n"
5722 "CPU%-2d context : %p\n"
5723 "CPU%-2d activations : %lu\n",
5724 cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5725 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5726 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5727 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5728 cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5729 cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5730 cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5731 cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5732 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5733 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5734 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5735 cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5736 cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5737 cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5738
5739 if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5740
5741 psr = pfm_get_psr();
5742
5743 ia64_srlz_d();
5744
5745 seq_printf(m,
5746 "CPU%-2d psr : 0x%lx\n"
5747 "CPU%-2d pmc0 : 0x%lx\n",
5748 cpu, psr,
5749 cpu, ia64_get_pmc(0));
5750
5751 for (i=0; PMC_IS_LAST(i) == 0; i++) {
5752 if (PMC_IS_COUNTING(i) == 0) continue;
5753 seq_printf(m,
5754 "CPU%-2d pmc%u : 0x%lx\n"
5755 "CPU%-2d pmd%u : 0x%lx\n",
5756 cpu, i, ia64_get_pmc(i),
5757 cpu, i, ia64_get_pmd(i));
5758 }
5759 }
5760 return 0;
5761}
5762
5763struct seq_operations pfm_seq_ops = {
5764 .start = pfm_proc_start,
5765 .next = pfm_proc_next,
5766 .stop = pfm_proc_stop,
5767 .show = pfm_proc_show
5768};
5769
5770static int
5771pfm_proc_open(struct inode *inode, struct file *file)
5772{
5773 return seq_open(file, &pfm_seq_ops);
5774}
5775
5776
5777/*
5778 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5779 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5780 * is active or inactive based on mode. We must rely on the value in
5781 * local_cpu_data->pfm_syst_info
5782 */
5783void
5784pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5785{
5786 struct pt_regs *regs;
5787 unsigned long dcr;
5788 unsigned long dcr_pp;
5789
5790 dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5791
5792 /*
5793 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5794 * on every CPU, so we can rely on the pid to identify the idle task.
5795 */
5796 if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
6450578f 5797 regs = task_pt_regs(task);
1da177e4
LT
5798 ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5799 return;
5800 }
5801 /*
5802 * if monitoring has started
5803 */
5804 if (dcr_pp) {
5805 dcr = ia64_getreg(_IA64_REG_CR_DCR);
5806 /*
5807 * context switching in?
5808 */
5809 if (is_ctxswin) {
5810 /* mask monitoring for the idle task */
5811 ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5812 pfm_clear_psr_pp();
5813 ia64_srlz_i();
5814 return;
5815 }
5816 /*
5817 * context switching out
5818 * restore monitoring for next task
5819 *
5820 * Due to inlining this odd if-then-else construction generates
5821 * better code.
5822 */
5823 ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5824 pfm_set_psr_pp();
5825 ia64_srlz_i();
5826 }
5827}
5828
5829#ifdef CONFIG_SMP
5830
5831static void
5832pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5833{
5834 struct task_struct *task = ctx->ctx_task;
5835
5836 ia64_psr(regs)->up = 0;
5837 ia64_psr(regs)->sp = 1;
5838
5839 if (GET_PMU_OWNER() == task) {
5840 DPRINT(("cleared ownership for [%d]\n", ctx->ctx_task->pid));
5841 SET_PMU_OWNER(NULL, NULL);
5842 }
5843
5844 /*
5845 * disconnect the task from the context and vice-versa
5846 */
5847 PFM_SET_WORK_PENDING(task, 0);
5848
5849 task->thread.pfm_context = NULL;
5850 task->thread.flags &= ~IA64_THREAD_PM_VALID;
5851
5852 DPRINT(("force cleanup for [%d]\n", task->pid));
5853}
5854
5855
5856/*
5857 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5858 */
5859void
5860pfm_save_regs(struct task_struct *task)
5861{
5862 pfm_context_t *ctx;
5863 struct thread_struct *t;
5864 unsigned long flags;
5865 u64 psr;
5866
5867
5868 ctx = PFM_GET_CTX(task);
5869 if (ctx == NULL) return;
5870 t = &task->thread;
5871
5872 /*
5873 * we always come here with interrupts ALREADY disabled by
5874 * the scheduler. So we simply need to protect against concurrent
5875 * access, not CPU concurrency.
5876 */
5877 flags = pfm_protect_ctx_ctxsw(ctx);
5878
5879 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
6450578f 5880 struct pt_regs *regs = task_pt_regs(task);
1da177e4
LT
5881
5882 pfm_clear_psr_up();
5883
5884 pfm_force_cleanup(ctx, regs);
5885
5886 BUG_ON(ctx->ctx_smpl_hdr);
5887
5888 pfm_unprotect_ctx_ctxsw(ctx, flags);
5889
5890 pfm_context_free(ctx);
5891 return;
5892 }
5893
5894 /*
5895 * save current PSR: needed because we modify it
5896 */
5897 ia64_srlz_d();
5898 psr = pfm_get_psr();
5899
5900 BUG_ON(psr & (IA64_PSR_I));
5901
5902 /*
5903 * stop monitoring:
5904 * This is the last instruction which may generate an overflow
5905 *
5906 * We do not need to set psr.sp because, it is irrelevant in kernel.
5907 * It will be restored from ipsr when going back to user level
5908 */
5909 pfm_clear_psr_up();
5910
5911 /*
5912 * keep a copy of psr.up (for reload)
5913 */
5914 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5915
5916 /*
5917 * release ownership of this PMU.
5918 * PM interrupts are masked, so nothing
5919 * can happen.
5920 */
5921 SET_PMU_OWNER(NULL, NULL);
5922
5923 /*
5924 * we systematically save the PMD as we have no
5925 * guarantee we will be schedule at that same
5926 * CPU again.
5927 */
5928 pfm_save_pmds(t->pmds, ctx->ctx_used_pmds[0]);
5929
5930 /*
5931 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5932 * we will need it on the restore path to check
5933 * for pending overflow.
5934 */
5935 t->pmcs[0] = ia64_get_pmc(0);
5936
5937 /*
5938 * unfreeze PMU if had pending overflows
5939 */
5940 if (t->pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5941
5942 /*
5943 * finally, allow context access.
5944 * interrupts will still be masked after this call.
5945 */
5946 pfm_unprotect_ctx_ctxsw(ctx, flags);
5947}
5948
5949#else /* !CONFIG_SMP */
5950void
5951pfm_save_regs(struct task_struct *task)
5952{
5953 pfm_context_t *ctx;
5954 u64 psr;
5955
5956 ctx = PFM_GET_CTX(task);
5957 if (ctx == NULL) return;
5958
5959 /*
5960 * save current PSR: needed because we modify it
5961 */
5962 psr = pfm_get_psr();
5963
5964 BUG_ON(psr & (IA64_PSR_I));
5965
5966 /*
5967 * stop monitoring:
5968 * This is the last instruction which may generate an overflow
5969 *
5970 * We do not need to set psr.sp because, it is irrelevant in kernel.
5971 * It will be restored from ipsr when going back to user level
5972 */
5973 pfm_clear_psr_up();
5974
5975 /*
5976 * keep a copy of psr.up (for reload)
5977 */
5978 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5979}
5980
5981static void
5982pfm_lazy_save_regs (struct task_struct *task)
5983{
5984 pfm_context_t *ctx;
5985 struct thread_struct *t;
5986 unsigned long flags;
5987
5988 { u64 psr = pfm_get_psr();
5989 BUG_ON(psr & IA64_PSR_UP);
5990 }
5991
5992 ctx = PFM_GET_CTX(task);
5993 t = &task->thread;
5994
5995 /*
5996 * we need to mask PMU overflow here to
5997 * make sure that we maintain pmc0 until
5998 * we save it. overflow interrupts are
5999 * treated as spurious if there is no
6000 * owner.
6001 *
6002 * XXX: I don't think this is necessary
6003 */
6004 PROTECT_CTX(ctx,flags);
6005
6006 /*
6007 * release ownership of this PMU.
6008 * must be done before we save the registers.
6009 *
6010 * after this call any PMU interrupt is treated
6011 * as spurious.
6012 */
6013 SET_PMU_OWNER(NULL, NULL);
6014
6015 /*
6016 * save all the pmds we use
6017 */
6018 pfm_save_pmds(t->pmds, ctx->ctx_used_pmds[0]);
6019
6020 /*
6021 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
6022 * it is needed to check for pended overflow
6023 * on the restore path
6024 */
6025 t->pmcs[0] = ia64_get_pmc(0);
6026
6027 /*
6028 * unfreeze PMU if had pending overflows
6029 */
6030 if (t->pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
6031
6032 /*
6033 * now get can unmask PMU interrupts, they will
6034 * be treated as purely spurious and we will not
6035 * lose any information
6036 */
6037 UNPROTECT_CTX(ctx,flags);
6038}
6039#endif /* CONFIG_SMP */
6040
6041#ifdef CONFIG_SMP
6042/*
6043 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
6044 */
6045void
6046pfm_load_regs (struct task_struct *task)
6047{
6048 pfm_context_t *ctx;
6049 struct thread_struct *t;
6050 unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
6051 unsigned long flags;
6052 u64 psr, psr_up;
6053 int need_irq_resend;
6054
6055 ctx = PFM_GET_CTX(task);
6056 if (unlikely(ctx == NULL)) return;
6057
6058 BUG_ON(GET_PMU_OWNER());
6059
6060 t = &task->thread;
6061 /*
6062 * possible on unload
6063 */
6064 if (unlikely((t->flags & IA64_THREAD_PM_VALID) == 0)) return;
6065
6066 /*
6067 * we always come here with interrupts ALREADY disabled by
6068 * the scheduler. So we simply need to protect against concurrent
6069 * access, not CPU concurrency.
6070 */
6071 flags = pfm_protect_ctx_ctxsw(ctx);
6072 psr = pfm_get_psr();
6073
6074 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6075
6076 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6077 BUG_ON(psr & IA64_PSR_I);
6078
6079 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6450578f 6080 struct pt_regs *regs = task_pt_regs(task);
1da177e4
LT
6081
6082 BUG_ON(ctx->ctx_smpl_hdr);
6083
6084 pfm_force_cleanup(ctx, regs);
6085
6086 pfm_unprotect_ctx_ctxsw(ctx, flags);
6087
6088 /*
6089 * this one (kmalloc'ed) is fine with interrupts disabled
6090 */
6091 pfm_context_free(ctx);
6092
6093 return;
6094 }
6095
6096 /*
6097 * we restore ALL the debug registers to avoid picking up
6098 * stale state.
6099 */
6100 if (ctx->ctx_fl_using_dbreg) {
6101 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6102 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6103 }
6104 /*
6105 * retrieve saved psr.up
6106 */
6107 psr_up = ctx->ctx_saved_psr_up;
6108
6109 /*
6110 * if we were the last user of the PMU on that CPU,
6111 * then nothing to do except restore psr
6112 */
6113 if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6114
6115 /*
6116 * retrieve partial reload masks (due to user modifications)
6117 */
6118 pmc_mask = ctx->ctx_reload_pmcs[0];
6119 pmd_mask = ctx->ctx_reload_pmds[0];
6120
6121 } else {
6122 /*
6123 * To avoid leaking information to the user level when psr.sp=0,
6124 * we must reload ALL implemented pmds (even the ones we don't use).
6125 * In the kernel we only allow PFM_READ_PMDS on registers which
6126 * we initialized or requested (sampling) so there is no risk there.
6127 */
6128 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6129
6130 /*
6131 * ALL accessible PMCs are systematically reloaded, unused registers
6132 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6133 * up stale configuration.
6134 *
6135 * PMC0 is never in the mask. It is always restored separately.
6136 */
6137 pmc_mask = ctx->ctx_all_pmcs[0];
6138 }
6139 /*
6140 * when context is MASKED, we will restore PMC with plm=0
6141 * and PMD with stale information, but that's ok, nothing
6142 * will be captured.
6143 *
6144 * XXX: optimize here
6145 */
6146 if (pmd_mask) pfm_restore_pmds(t->pmds, pmd_mask);
6147 if (pmc_mask) pfm_restore_pmcs(t->pmcs, pmc_mask);
6148
6149 /*
6150 * check for pending overflow at the time the state
6151 * was saved.
6152 */
6153 if (unlikely(PMC0_HAS_OVFL(t->pmcs[0]))) {
6154 /*
6155 * reload pmc0 with the overflow information
6156 * On McKinley PMU, this will trigger a PMU interrupt
6157 */
6158 ia64_set_pmc(0, t->pmcs[0]);
6159 ia64_srlz_d();
6160 t->pmcs[0] = 0UL;
6161
6162 /*
6163 * will replay the PMU interrupt
6164 */
6165 if (need_irq_resend) hw_resend_irq(NULL, IA64_PERFMON_VECTOR);
6166
6167 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6168 }
6169
6170 /*
6171 * we just did a reload, so we reset the partial reload fields
6172 */
6173 ctx->ctx_reload_pmcs[0] = 0UL;
6174 ctx->ctx_reload_pmds[0] = 0UL;
6175
6176 SET_LAST_CPU(ctx, smp_processor_id());
6177
6178 /*
6179 * dump activation value for this PMU
6180 */
6181 INC_ACTIVATION();
6182 /*
6183 * record current activation for this context
6184 */
6185 SET_ACTIVATION(ctx);
6186
6187 /*
6188 * establish new ownership.
6189 */
6190 SET_PMU_OWNER(task, ctx);
6191
6192 /*
6193 * restore the psr.up bit. measurement
6194 * is active again.
6195 * no PMU interrupt can happen at this point
6196 * because we still have interrupts disabled.
6197 */
6198 if (likely(psr_up)) pfm_set_psr_up();
6199
6200 /*
6201 * allow concurrent access to context
6202 */
6203 pfm_unprotect_ctx_ctxsw(ctx, flags);
6204}
6205#else /* !CONFIG_SMP */
6206/*
6207 * reload PMU state for UP kernels
6208 * in 2.5 we come here with interrupts disabled
6209 */
6210void
6211pfm_load_regs (struct task_struct *task)
6212{
6213 struct thread_struct *t;
6214 pfm_context_t *ctx;
6215 struct task_struct *owner;
6216 unsigned long pmd_mask, pmc_mask;
6217 u64 psr, psr_up;
6218 int need_irq_resend;
6219
6220 owner = GET_PMU_OWNER();
6221 ctx = PFM_GET_CTX(task);
6222 t = &task->thread;
6223 psr = pfm_get_psr();
6224
6225 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6226 BUG_ON(psr & IA64_PSR_I);
6227
6228 /*
6229 * we restore ALL the debug registers to avoid picking up
6230 * stale state.
6231 *
6232 * This must be done even when the task is still the owner
6233 * as the registers may have been modified via ptrace()
6234 * (not perfmon) by the previous task.
6235 */
6236 if (ctx->ctx_fl_using_dbreg) {
6237 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6238 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6239 }
6240
6241 /*
6242 * retrieved saved psr.up
6243 */
6244 psr_up = ctx->ctx_saved_psr_up;
6245 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6246
6247 /*
6248 * short path, our state is still there, just
6249 * need to restore psr and we go
6250 *
6251 * we do not touch either PMC nor PMD. the psr is not touched
6252 * by the overflow_handler. So we are safe w.r.t. to interrupt
6253 * concurrency even without interrupt masking.
6254 */
6255 if (likely(owner == task)) {
6256 if (likely(psr_up)) pfm_set_psr_up();
6257 return;
6258 }
6259
6260 /*
6261 * someone else is still using the PMU, first push it out and
6262 * then we'll be able to install our stuff !
6263 *
6264 * Upon return, there will be no owner for the current PMU
6265 */
6266 if (owner) pfm_lazy_save_regs(owner);
6267
6268 /*
6269 * To avoid leaking information to the user level when psr.sp=0,
6270 * we must reload ALL implemented pmds (even the ones we don't use).
6271 * In the kernel we only allow PFM_READ_PMDS on registers which
6272 * we initialized or requested (sampling) so there is no risk there.
6273 */
6274 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6275
6276 /*
6277 * ALL accessible PMCs are systematically reloaded, unused registers
6278 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6279 * up stale configuration.
6280 *
6281 * PMC0 is never in the mask. It is always restored separately
6282 */
6283 pmc_mask = ctx->ctx_all_pmcs[0];
6284
6285 pfm_restore_pmds(t->pmds, pmd_mask);
6286 pfm_restore_pmcs(t->pmcs, pmc_mask);
6287
6288 /*
6289 * check for pending overflow at the time the state
6290 * was saved.
6291 */
6292 if (unlikely(PMC0_HAS_OVFL(t->pmcs[0]))) {
6293 /*
6294 * reload pmc0 with the overflow information
6295 * On McKinley PMU, this will trigger a PMU interrupt
6296 */
6297 ia64_set_pmc(0, t->pmcs[0]);
6298 ia64_srlz_d();
6299
6300 t->pmcs[0] = 0UL;
6301
6302 /*
6303 * will replay the PMU interrupt
6304 */
6305 if (need_irq_resend) hw_resend_irq(NULL, IA64_PERFMON_VECTOR);
6306
6307 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6308 }
6309
6310 /*
6311 * establish new ownership.
6312 */
6313 SET_PMU_OWNER(task, ctx);
6314
6315 /*
6316 * restore the psr.up bit. measurement
6317 * is active again.
6318 * no PMU interrupt can happen at this point
6319 * because we still have interrupts disabled.
6320 */
6321 if (likely(psr_up)) pfm_set_psr_up();
6322}
6323#endif /* CONFIG_SMP */
6324
6325/*
6326 * this function assumes monitoring is stopped
6327 */
6328static void
6329pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6330{
6331 u64 pmc0;
6332 unsigned long mask2, val, pmd_val, ovfl_val;
6333 int i, can_access_pmu = 0;
6334 int is_self;
6335
6336 /*
6337 * is the caller the task being monitored (or which initiated the
6338 * session for system wide measurements)
6339 */
6340 is_self = ctx->ctx_task == task ? 1 : 0;
6341
6342 /*
6343 * can access PMU is task is the owner of the PMU state on the current CPU
6344 * or if we are running on the CPU bound to the context in system-wide mode
6345 * (that is not necessarily the task the context is attached to in this mode).
6346 * In system-wide we always have can_access_pmu true because a task running on an
6347 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6348 */
6349 can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6350 if (can_access_pmu) {
6351 /*
6352 * Mark the PMU as not owned
6353 * This will cause the interrupt handler to do nothing in case an overflow
6354 * interrupt was in-flight
6355 * This also guarantees that pmc0 will contain the final state
6356 * It virtually gives us full control on overflow processing from that point
6357 * on.
6358 */
6359 SET_PMU_OWNER(NULL, NULL);
6360 DPRINT(("releasing ownership\n"));
6361
6362 /*
6363 * read current overflow status:
6364 *
6365 * we are guaranteed to read the final stable state
6366 */
6367 ia64_srlz_d();
6368 pmc0 = ia64_get_pmc(0); /* slow */
6369
6370 /*
6371 * reset freeze bit, overflow status information destroyed
6372 */
6373 pfm_unfreeze_pmu();
6374 } else {
6375 pmc0 = task->thread.pmcs[0];
6376 /*
6377 * clear whatever overflow status bits there were
6378 */
6379 task->thread.pmcs[0] = 0;
6380 }
6381 ovfl_val = pmu_conf->ovfl_val;
6382 /*
6383 * we save all the used pmds
6384 * we take care of overflows for counting PMDs
6385 *
6386 * XXX: sampling situation is not taken into account here
6387 */
6388 mask2 = ctx->ctx_used_pmds[0];
6389
6390 DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6391
6392 for (i = 0; mask2; i++, mask2>>=1) {
6393
6394 /* skip non used pmds */
6395 if ((mask2 & 0x1) == 0) continue;
6396
6397 /*
6398 * can access PMU always true in system wide mode
6399 */
6400 val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : task->thread.pmds[i];
6401
6402 if (PMD_IS_COUNTING(i)) {
6403 DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6404 task->pid,
6405 i,
6406 ctx->ctx_pmds[i].val,
6407 val & ovfl_val));
6408
6409 /*
6410 * we rebuild the full 64 bit value of the counter
6411 */
6412 val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6413
6414 /*
6415 * now everything is in ctx_pmds[] and we need
6416 * to clear the saved context from save_regs() such that
6417 * pfm_read_pmds() gets the correct value
6418 */
6419 pmd_val = 0UL;
6420
6421 /*
6422 * take care of overflow inline
6423 */
6424 if (pmc0 & (1UL << i)) {
6425 val += 1 + ovfl_val;
6426 DPRINT(("[%d] pmd[%d] overflowed\n", task->pid, i));
6427 }
6428 }
6429
6430 DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task->pid, i, val, pmd_val));
6431
6432 if (is_self) task->thread.pmds[i] = pmd_val;
6433
6434 ctx->ctx_pmds[i].val = val;
6435 }
6436}
6437
6438static struct irqaction perfmon_irqaction = {
6439 .handler = pfm_interrupt_handler,
6440 .flags = SA_INTERRUPT,
6441 .name = "perfmon"
6442};
6443
a1ecf7f6
TL
6444static void
6445pfm_alt_save_pmu_state(void *data)
6446{
6447 struct pt_regs *regs;
6448
6450578f 6449 regs = task_pt_regs(current);
a1ecf7f6
TL
6450
6451 DPRINT(("called\n"));
6452
6453 /*
6454 * should not be necessary but
6455 * let's take not risk
6456 */
6457 pfm_clear_psr_up();
6458 pfm_clear_psr_pp();
6459 ia64_psr(regs)->pp = 0;
6460
6461 /*
6462 * This call is required
6463 * May cause a spurious interrupt on some processors
6464 */
6465 pfm_freeze_pmu();
6466
6467 ia64_srlz_d();
6468}
6469
6470void
6471pfm_alt_restore_pmu_state(void *data)
6472{
6473 struct pt_regs *regs;
6474
6450578f 6475 regs = task_pt_regs(current);
a1ecf7f6
TL
6476
6477 DPRINT(("called\n"));
6478
6479 /*
6480 * put PMU back in state expected
6481 * by perfmon
6482 */
6483 pfm_clear_psr_up();
6484 pfm_clear_psr_pp();
6485 ia64_psr(regs)->pp = 0;
6486
6487 /*
6488 * perfmon runs with PMU unfrozen at all times
6489 */
6490 pfm_unfreeze_pmu();
6491
6492 ia64_srlz_d();
6493}
6494
6495int
6496pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6497{
6498 int ret, i;
6499 int reserve_cpu;
6500
6501 /* some sanity checks */
6502 if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6503
6504 /* do the easy test first */
6505 if (pfm_alt_intr_handler) return -EBUSY;
6506
6507 /* one at a time in the install or remove, just fail the others */
6508 if (!spin_trylock(&pfm_alt_install_check)) {
6509 return -EBUSY;
6510 }
6511
6512 /* reserve our session */
6513 for_each_online_cpu(reserve_cpu) {
6514 ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6515 if (ret) goto cleanup_reserve;
6516 }
6517
6518 /* save the current system wide pmu states */
6519 ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 0, 1);
6520 if (ret) {
6521 DPRINT(("on_each_cpu() failed: %d\n", ret));
6522 goto cleanup_reserve;
6523 }
6524
6525 /* officially change to the alternate interrupt handler */
6526 pfm_alt_intr_handler = hdl;
6527
6528 spin_unlock(&pfm_alt_install_check);
6529
6530 return 0;
6531
6532cleanup_reserve:
6533 for_each_online_cpu(i) {
6534 /* don't unreserve more than we reserved */
6535 if (i >= reserve_cpu) break;
6536
6537 pfm_unreserve_session(NULL, 1, i);
6538 }
6539
6540 spin_unlock(&pfm_alt_install_check);
6541
6542 return ret;
6543}
6544EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6545
6546int
6547pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6548{
6549 int i;
6550 int ret;
6551
6552 if (hdl == NULL) return -EINVAL;
6553
6554 /* cannot remove someone else's handler! */
6555 if (pfm_alt_intr_handler != hdl) return -EINVAL;
6556
6557 /* one at a time in the install or remove, just fail the others */
6558 if (!spin_trylock(&pfm_alt_install_check)) {
6559 return -EBUSY;
6560 }
6561
6562 pfm_alt_intr_handler = NULL;
6563
6564 ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 0, 1);
6565 if (ret) {
6566 DPRINT(("on_each_cpu() failed: %d\n", ret));
6567 }
6568
6569 for_each_online_cpu(i) {
6570 pfm_unreserve_session(NULL, 1, i);
6571 }
6572
6573 spin_unlock(&pfm_alt_install_check);
6574
6575 return 0;
6576}
6577EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6578
1da177e4
LT
6579/*
6580 * perfmon initialization routine, called from the initcall() table
6581 */
6582static int init_pfm_fs(void);
6583
6584static int __init
6585pfm_probe_pmu(void)
6586{
6587 pmu_config_t **p;
6588 int family;
6589
6590 family = local_cpu_data->family;
6591 p = pmu_confs;
6592
6593 while(*p) {
6594 if ((*p)->probe) {
6595 if ((*p)->probe() == 0) goto found;
6596 } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6597 goto found;
6598 }
6599 p++;
6600 }
6601 return -1;
6602found:
6603 pmu_conf = *p;
6604 return 0;
6605}
6606
6607static struct file_operations pfm_proc_fops = {
6608 .open = pfm_proc_open,
6609 .read = seq_read,
6610 .llseek = seq_lseek,
6611 .release = seq_release,
6612};
6613
6614int __init
6615pfm_init(void)
6616{
6617 unsigned int n, n_counters, i;
6618
6619 printk("perfmon: version %u.%u IRQ %u\n",
6620 PFM_VERSION_MAJ,
6621 PFM_VERSION_MIN,
6622 IA64_PERFMON_VECTOR);
6623
6624 if (pfm_probe_pmu()) {
6625 printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
6626 local_cpu_data->family);
6627 return -ENODEV;
6628 }
6629
6630 /*
6631 * compute the number of implemented PMD/PMC from the
6632 * description tables
6633 */
6634 n = 0;
6635 for (i=0; PMC_IS_LAST(i) == 0; i++) {
6636 if (PMC_IS_IMPL(i) == 0) continue;
6637 pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6638 n++;
6639 }
6640 pmu_conf->num_pmcs = n;
6641
6642 n = 0; n_counters = 0;
6643 for (i=0; PMD_IS_LAST(i) == 0; i++) {
6644 if (PMD_IS_IMPL(i) == 0) continue;
6645 pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6646 n++;
6647 if (PMD_IS_COUNTING(i)) n_counters++;
6648 }
6649 pmu_conf->num_pmds = n;
6650 pmu_conf->num_counters = n_counters;
6651
6652 /*
6653 * sanity checks on the number of debug registers
6654 */
6655 if (pmu_conf->use_rr_dbregs) {
6656 if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6657 printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6658 pmu_conf = NULL;
6659 return -1;
6660 }
6661 if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6662 printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6663 pmu_conf = NULL;
6664 return -1;
6665 }
6666 }
6667
6668 printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6669 pmu_conf->pmu_name,
6670 pmu_conf->num_pmcs,
6671 pmu_conf->num_pmds,
6672 pmu_conf->num_counters,
6673 ffz(pmu_conf->ovfl_val));
6674
6675 /* sanity check */
6676 if (pmu_conf->num_pmds >= IA64_NUM_PMD_REGS || pmu_conf->num_pmcs >= IA64_NUM_PMC_REGS) {
6677 printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6678 pmu_conf = NULL;
6679 return -1;
6680 }
6681
6682 /*
6683 * create /proc/perfmon (mostly for debugging purposes)
6684 */
6685 perfmon_dir = create_proc_entry("perfmon", S_IRUGO, NULL);
6686 if (perfmon_dir == NULL) {
6687 printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6688 pmu_conf = NULL;
6689 return -1;
6690 }
6691 /*
6692 * install customized file operations for /proc/perfmon entry
6693 */
6694 perfmon_dir->proc_fops = &pfm_proc_fops;
6695
6696 /*
6697 * create /proc/sys/kernel/perfmon (for debugging purposes)
6698 */
6699 pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root, 0);
6700
6701 /*
6702 * initialize all our spinlocks
6703 */
6704 spin_lock_init(&pfm_sessions.pfs_lock);
6705 spin_lock_init(&pfm_buffer_fmt_lock);
6706
6707 init_pfm_fs();
6708
6709 for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6710
6711 return 0;
6712}
6713
6714__initcall(pfm_init);
6715
6716/*
6717 * this function is called before pfm_init()
6718 */
6719void
6720pfm_init_percpu (void)
6721{
6722 /*
6723 * make sure no measurement is active
6724 * (may inherit programmed PMCs from EFI).
6725 */
6726 pfm_clear_psr_pp();
6727 pfm_clear_psr_up();
6728
6729 /*
6730 * we run with the PMU not frozen at all times
6731 */
6732 pfm_unfreeze_pmu();
6733
6734 if (smp_processor_id() == 0)
6735 register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6736
6737 ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6738 ia64_srlz_d();
6739}
6740
6741/*
6742 * used for debug purposes only
6743 */
6744void
6745dump_pmu_state(const char *from)
6746{
6747 struct task_struct *task;
6748 struct thread_struct *t;
6749 struct pt_regs *regs;
6750 pfm_context_t *ctx;
6751 unsigned long psr, dcr, info, flags;
6752 int i, this_cpu;
6753
6754 local_irq_save(flags);
6755
6756 this_cpu = smp_processor_id();
6450578f 6757 regs = task_pt_regs(current);
1da177e4
LT
6758 info = PFM_CPUINFO_GET();
6759 dcr = ia64_getreg(_IA64_REG_CR_DCR);
6760
6761 if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6762 local_irq_restore(flags);
6763 return;
6764 }
6765
6766 printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6767 this_cpu,
6768 from,
6769 current->pid,
6770 regs->cr_iip,
6771 current->comm);
6772
6773 task = GET_PMU_OWNER();
6774 ctx = GET_PMU_CTX();
6775
6776 printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task->pid : -1, ctx);
6777
6778 psr = pfm_get_psr();
6779
6780 printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6781 this_cpu,
6782 ia64_get_pmc(0),
6783 psr & IA64_PSR_PP ? 1 : 0,
6784 psr & IA64_PSR_UP ? 1 : 0,
6785 dcr & IA64_DCR_PP ? 1 : 0,
6786 info,
6787 ia64_psr(regs)->up,
6788 ia64_psr(regs)->pp);
6789
6790 ia64_psr(regs)->up = 0;
6791 ia64_psr(regs)->pp = 0;
6792
6793 t = &current->thread;
6794
6795 for (i=1; PMC_IS_LAST(i) == 0; i++) {
6796 if (PMC_IS_IMPL(i) == 0) continue;
6797 printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, t->pmcs[i]);
6798 }
6799
6800 for (i=1; PMD_IS_LAST(i) == 0; i++) {
6801 if (PMD_IS_IMPL(i) == 0) continue;
6802 printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, t->pmds[i]);
6803 }
6804
6805 if (ctx) {
6806 printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6807 this_cpu,
6808 ctx->ctx_state,
6809 ctx->ctx_smpl_vaddr,
6810 ctx->ctx_smpl_hdr,
6811 ctx->ctx_msgq_head,
6812 ctx->ctx_msgq_tail,
6813 ctx->ctx_saved_psr_up);
6814 }
6815 local_irq_restore(flags);
6816}
6817
6818/*
6819 * called from process.c:copy_thread(). task is new child.
6820 */
6821void
6822pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6823{
6824 struct thread_struct *thread;
6825
6826 DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task->pid));
6827
6828 thread = &task->thread;
6829
6830 /*
6831 * cut links inherited from parent (current)
6832 */
6833 thread->pfm_context = NULL;
6834
6835 PFM_SET_WORK_PENDING(task, 0);
6836
6837 /*
6838 * the psr bits are already set properly in copy_threads()
6839 */
6840}
6841#else /* !CONFIG_PERFMON */
6842asmlinkage long
6843sys_perfmonctl (int fd, int cmd, void *arg, int count)
6844{
6845 return -ENOSYS;
6846}
6847#endif /* CONFIG_PERFMON */
This page took 0.357254 seconds and 5 git commands to generate.