[IA64] sys_mmap doesn't follow posix.1 when parameter len=0
[deliverable/linux.git] / arch / ia64 / kernel / perfmon.c
CommitLineData
1da177e4
LT
1/*
2 * This file implements the perfmon-2 subsystem which is used
3 * to program the IA-64 Performance Monitoring Unit (PMU).
4 *
5 * The initial version of perfmon.c was written by
6 * Ganesh Venkitachalam, IBM Corp.
7 *
8 * Then it was modified for perfmon-1.x by Stephane Eranian and
9 * David Mosberger, Hewlett Packard Co.
10 *
11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
12 * by Stephane Eranian, Hewlett Packard Co.
13 *
a1ecf7f6 14 * Copyright (C) 1999-2005 Hewlett Packard Co
1da177e4
LT
15 * Stephane Eranian <eranian@hpl.hp.com>
16 * David Mosberger-Tang <davidm@hpl.hp.com>
17 *
18 * More information about perfmon available at:
19 * http://www.hpl.hp.com/research/linux/perfmon
20 */
21
22#include <linux/config.h>
23#include <linux/module.h>
24#include <linux/kernel.h>
25#include <linux/sched.h>
26#include <linux/interrupt.h>
27#include <linux/smp_lock.h>
28#include <linux/proc_fs.h>
29#include <linux/seq_file.h>
30#include <linux/init.h>
31#include <linux/vmalloc.h>
32#include <linux/mm.h>
33#include <linux/sysctl.h>
34#include <linux/list.h>
35#include <linux/file.h>
36#include <linux/poll.h>
37#include <linux/vfs.h>
38#include <linux/pagemap.h>
39#include <linux/mount.h>
40#include <linux/version.h>
41#include <linux/bitops.h>
42
43#include <asm/errno.h>
44#include <asm/intrinsics.h>
45#include <asm/page.h>
46#include <asm/perfmon.h>
47#include <asm/processor.h>
48#include <asm/signal.h>
49#include <asm/system.h>
50#include <asm/uaccess.h>
51#include <asm/delay.h>
52
53#ifdef CONFIG_PERFMON
54/*
55 * perfmon context state
56 */
57#define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
58#define PFM_CTX_LOADED 2 /* context is loaded onto a task */
59#define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
60#define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
61
62#define PFM_INVALID_ACTIVATION (~0UL)
63
64/*
65 * depth of message queue
66 */
67#define PFM_MAX_MSGS 32
68#define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
69
70/*
71 * type of a PMU register (bitmask).
72 * bitmask structure:
73 * bit0 : register implemented
74 * bit1 : end marker
75 * bit2-3 : reserved
76 * bit4 : pmc has pmc.pm
77 * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
78 * bit6-7 : register type
79 * bit8-31: reserved
80 */
81#define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
82#define PFM_REG_IMPL 0x1 /* register implemented */
83#define PFM_REG_END 0x2 /* end marker */
84#define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
85#define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
86#define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
87#define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
88#define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
89
90#define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
91#define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
92
93#define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
94
95/* i assumed unsigned */
96#define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
97#define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
98
99/* XXX: these assume that register i is implemented */
100#define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
101#define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
102#define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
103#define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
104
105#define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
106#define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
107#define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
108#define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
109
110#define PFM_NUM_IBRS IA64_NUM_DBG_REGS
111#define PFM_NUM_DBRS IA64_NUM_DBG_REGS
112
113#define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
114#define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
115#define PFM_CTX_TASK(h) (h)->ctx_task
116
117#define PMU_PMC_OI 5 /* position of pmc.oi bit */
118
119/* XXX: does not support more than 64 PMDs */
120#define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
121#define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
122
123#define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
124
125#define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
126#define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
127#define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
128#define PFM_CODE_RR 0 /* requesting code range restriction */
129#define PFM_DATA_RR 1 /* requestion data range restriction */
130
131#define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
132#define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
133#define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
134
135#define RDEP(x) (1UL<<(x))
136
137/*
138 * context protection macros
139 * in SMP:
140 * - we need to protect against CPU concurrency (spin_lock)
141 * - we need to protect against PMU overflow interrupts (local_irq_disable)
142 * in UP:
143 * - we need to protect against PMU overflow interrupts (local_irq_disable)
144 *
145 * spin_lock_irqsave()/spin_lock_irqrestore():
146 * in SMP: local_irq_disable + spin_lock
147 * in UP : local_irq_disable
148 *
149 * spin_lock()/spin_lock():
150 * in UP : removed automatically
151 * in SMP: protect against context accesses from other CPU. interrupts
152 * are not masked. This is useful for the PMU interrupt handler
153 * because we know we will not get PMU concurrency in that code.
154 */
155#define PROTECT_CTX(c, f) \
156 do { \
157 DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, current->pid)); \
158 spin_lock_irqsave(&(c)->ctx_lock, f); \
159 DPRINT(("spinlocked ctx %p by [%d]\n", c, current->pid)); \
160 } while(0)
161
162#define UNPROTECT_CTX(c, f) \
163 do { \
164 DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, current->pid)); \
165 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
166 } while(0)
167
168#define PROTECT_CTX_NOPRINT(c, f) \
169 do { \
170 spin_lock_irqsave(&(c)->ctx_lock, f); \
171 } while(0)
172
173
174#define UNPROTECT_CTX_NOPRINT(c, f) \
175 do { \
176 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
177 } while(0)
178
179
180#define PROTECT_CTX_NOIRQ(c) \
181 do { \
182 spin_lock(&(c)->ctx_lock); \
183 } while(0)
184
185#define UNPROTECT_CTX_NOIRQ(c) \
186 do { \
187 spin_unlock(&(c)->ctx_lock); \
188 } while(0)
189
190
191#ifdef CONFIG_SMP
192
193#define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
194#define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
195#define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
196
197#else /* !CONFIG_SMP */
198#define SET_ACTIVATION(t) do {} while(0)
199#define GET_ACTIVATION(t) do {} while(0)
200#define INC_ACTIVATION(t) do {} while(0)
201#endif /* CONFIG_SMP */
202
203#define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
204#define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
205#define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
206
207#define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
208#define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
209
210#define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
211
212/*
213 * cmp0 must be the value of pmc0
214 */
215#define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
216
217#define PFMFS_MAGIC 0xa0b4d889
218
219/*
220 * debugging
221 */
222#define PFM_DEBUGGING 1
223#ifdef PFM_DEBUGGING
224#define DPRINT(a) \
225 do { \
226 if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
227 } while (0)
228
229#define DPRINT_ovfl(a) \
230 do { \
231 if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
232 } while (0)
233#endif
234
235/*
236 * 64-bit software counter structure
237 *
238 * the next_reset_type is applied to the next call to pfm_reset_regs()
239 */
240typedef struct {
241 unsigned long val; /* virtual 64bit counter value */
242 unsigned long lval; /* last reset value */
243 unsigned long long_reset; /* reset value on sampling overflow */
244 unsigned long short_reset; /* reset value on overflow */
245 unsigned long reset_pmds[4]; /* which other pmds to reset when this counter overflows */
246 unsigned long smpl_pmds[4]; /* which pmds are accessed when counter overflow */
247 unsigned long seed; /* seed for random-number generator */
248 unsigned long mask; /* mask for random-number generator */
249 unsigned int flags; /* notify/do not notify */
250 unsigned long eventid; /* overflow event identifier */
251} pfm_counter_t;
252
253/*
254 * context flags
255 */
256typedef struct {
257 unsigned int block:1; /* when 1, task will blocked on user notifications */
258 unsigned int system:1; /* do system wide monitoring */
259 unsigned int using_dbreg:1; /* using range restrictions (debug registers) */
260 unsigned int is_sampling:1; /* true if using a custom format */
261 unsigned int excl_idle:1; /* exclude idle task in system wide session */
262 unsigned int going_zombie:1; /* context is zombie (MASKED+blocking) */
263 unsigned int trap_reason:2; /* reason for going into pfm_handle_work() */
264 unsigned int no_msg:1; /* no message sent on overflow */
265 unsigned int can_restart:1; /* allowed to issue a PFM_RESTART */
266 unsigned int reserved:22;
267} pfm_context_flags_t;
268
269#define PFM_TRAP_REASON_NONE 0x0 /* default value */
270#define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
271#define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
272
273
274/*
275 * perfmon context: encapsulates all the state of a monitoring session
276 */
277
278typedef struct pfm_context {
279 spinlock_t ctx_lock; /* context protection */
280
281 pfm_context_flags_t ctx_flags; /* bitmask of flags (block reason incl.) */
282 unsigned int ctx_state; /* state: active/inactive (no bitfield) */
283
284 struct task_struct *ctx_task; /* task to which context is attached */
285
286 unsigned long ctx_ovfl_regs[4]; /* which registers overflowed (notification) */
287
288 struct semaphore ctx_restart_sem; /* use for blocking notification mode */
289
290 unsigned long ctx_used_pmds[4]; /* bitmask of PMD used */
291 unsigned long ctx_all_pmds[4]; /* bitmask of all accessible PMDs */
292 unsigned long ctx_reload_pmds[4]; /* bitmask of force reload PMD on ctxsw in */
293
294 unsigned long ctx_all_pmcs[4]; /* bitmask of all accessible PMCs */
295 unsigned long ctx_reload_pmcs[4]; /* bitmask of force reload PMC on ctxsw in */
296 unsigned long ctx_used_monitors[4]; /* bitmask of monitor PMC being used */
297
298 unsigned long ctx_pmcs[IA64_NUM_PMC_REGS]; /* saved copies of PMC values */
299
300 unsigned int ctx_used_ibrs[1]; /* bitmask of used IBR (speedup ctxsw in) */
301 unsigned int ctx_used_dbrs[1]; /* bitmask of used DBR (speedup ctxsw in) */
302 unsigned long ctx_dbrs[IA64_NUM_DBG_REGS]; /* DBR values (cache) when not loaded */
303 unsigned long ctx_ibrs[IA64_NUM_DBG_REGS]; /* IBR values (cache) when not loaded */
304
305 pfm_counter_t ctx_pmds[IA64_NUM_PMD_REGS]; /* software state for PMDS */
306
307 u64 ctx_saved_psr_up; /* only contains psr.up value */
308
309 unsigned long ctx_last_activation; /* context last activation number for last_cpu */
310 unsigned int ctx_last_cpu; /* CPU id of current or last CPU used (SMP only) */
311 unsigned int ctx_cpu; /* cpu to which perfmon is applied (system wide) */
312
313 int ctx_fd; /* file descriptor used my this context */
314 pfm_ovfl_arg_t ctx_ovfl_arg; /* argument to custom buffer format handler */
315
316 pfm_buffer_fmt_t *ctx_buf_fmt; /* buffer format callbacks */
317 void *ctx_smpl_hdr; /* points to sampling buffer header kernel vaddr */
318 unsigned long ctx_smpl_size; /* size of sampling buffer */
319 void *ctx_smpl_vaddr; /* user level virtual address of smpl buffer */
320
321 wait_queue_head_t ctx_msgq_wait;
322 pfm_msg_t ctx_msgq[PFM_MAX_MSGS];
323 int ctx_msgq_head;
324 int ctx_msgq_tail;
325 struct fasync_struct *ctx_async_queue;
326
327 wait_queue_head_t ctx_zombieq; /* termination cleanup wait queue */
328} pfm_context_t;
329
330/*
331 * magic number used to verify that structure is really
332 * a perfmon context
333 */
334#define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
335
336#define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
337
338#ifdef CONFIG_SMP
339#define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
340#define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
341#else
342#define SET_LAST_CPU(ctx, v) do {} while(0)
343#define GET_LAST_CPU(ctx) do {} while(0)
344#endif
345
346
347#define ctx_fl_block ctx_flags.block
348#define ctx_fl_system ctx_flags.system
349#define ctx_fl_using_dbreg ctx_flags.using_dbreg
350#define ctx_fl_is_sampling ctx_flags.is_sampling
351#define ctx_fl_excl_idle ctx_flags.excl_idle
352#define ctx_fl_going_zombie ctx_flags.going_zombie
353#define ctx_fl_trap_reason ctx_flags.trap_reason
354#define ctx_fl_no_msg ctx_flags.no_msg
355#define ctx_fl_can_restart ctx_flags.can_restart
356
357#define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
358#define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
359
360/*
361 * global information about all sessions
362 * mostly used to synchronize between system wide and per-process
363 */
364typedef struct {
365 spinlock_t pfs_lock; /* lock the structure */
366
367 unsigned int pfs_task_sessions; /* number of per task sessions */
368 unsigned int pfs_sys_sessions; /* number of per system wide sessions */
369 unsigned int pfs_sys_use_dbregs; /* incremented when a system wide session uses debug regs */
370 unsigned int pfs_ptrace_use_dbregs; /* incremented when a process uses debug regs */
371 struct task_struct *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
372} pfm_session_t;
373
374/*
375 * information about a PMC or PMD.
376 * dep_pmd[]: a bitmask of dependent PMD registers
377 * dep_pmc[]: a bitmask of dependent PMC registers
378 */
379typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
380typedef struct {
381 unsigned int type;
382 int pm_pos;
383 unsigned long default_value; /* power-on default value */
384 unsigned long reserved_mask; /* bitmask of reserved bits */
385 pfm_reg_check_t read_check;
386 pfm_reg_check_t write_check;
387 unsigned long dep_pmd[4];
388 unsigned long dep_pmc[4];
389} pfm_reg_desc_t;
390
391/* assume cnum is a valid monitor */
392#define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
393
394/*
395 * This structure is initialized at boot time and contains
396 * a description of the PMU main characteristics.
397 *
398 * If the probe function is defined, detection is based
399 * on its return value:
400 * - 0 means recognized PMU
401 * - anything else means not supported
402 * When the probe function is not defined, then the pmu_family field
403 * is used and it must match the host CPU family such that:
404 * - cpu->family & config->pmu_family != 0
405 */
406typedef struct {
407 unsigned long ovfl_val; /* overflow value for counters */
408
409 pfm_reg_desc_t *pmc_desc; /* detailed PMC register dependencies descriptions */
410 pfm_reg_desc_t *pmd_desc; /* detailed PMD register dependencies descriptions */
411
412 unsigned int num_pmcs; /* number of PMCS: computed at init time */
413 unsigned int num_pmds; /* number of PMDS: computed at init time */
414 unsigned long impl_pmcs[4]; /* bitmask of implemented PMCS */
415 unsigned long impl_pmds[4]; /* bitmask of implemented PMDS */
416
417 char *pmu_name; /* PMU family name */
418 unsigned int pmu_family; /* cpuid family pattern used to identify pmu */
419 unsigned int flags; /* pmu specific flags */
420 unsigned int num_ibrs; /* number of IBRS: computed at init time */
421 unsigned int num_dbrs; /* number of DBRS: computed at init time */
422 unsigned int num_counters; /* PMC/PMD counting pairs : computed at init time */
423 int (*probe)(void); /* customized probe routine */
424 unsigned int use_rr_dbregs:1; /* set if debug registers used for range restriction */
425} pmu_config_t;
426/*
427 * PMU specific flags
428 */
429#define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
430
431/*
432 * debug register related type definitions
433 */
434typedef struct {
435 unsigned long ibr_mask:56;
436 unsigned long ibr_plm:4;
437 unsigned long ibr_ig:3;
438 unsigned long ibr_x:1;
439} ibr_mask_reg_t;
440
441typedef struct {
442 unsigned long dbr_mask:56;
443 unsigned long dbr_plm:4;
444 unsigned long dbr_ig:2;
445 unsigned long dbr_w:1;
446 unsigned long dbr_r:1;
447} dbr_mask_reg_t;
448
449typedef union {
450 unsigned long val;
451 ibr_mask_reg_t ibr;
452 dbr_mask_reg_t dbr;
453} dbreg_t;
454
455
456/*
457 * perfmon command descriptions
458 */
459typedef struct {
460 int (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
461 char *cmd_name;
462 int cmd_flags;
463 unsigned int cmd_narg;
464 size_t cmd_argsize;
465 int (*cmd_getsize)(void *arg, size_t *sz);
466} pfm_cmd_desc_t;
467
468#define PFM_CMD_FD 0x01 /* command requires a file descriptor */
469#define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
470#define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
471#define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
472
473
474#define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
475#define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
476#define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
477#define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
478#define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
479
480#define PFM_CMD_ARG_MANY -1 /* cannot be zero */
481
1da177e4
LT
482typedef struct {
483 unsigned long pfm_spurious_ovfl_intr_count; /* keep track of spurious ovfl interrupts */
484 unsigned long pfm_replay_ovfl_intr_count; /* keep track of replayed ovfl interrupts */
485 unsigned long pfm_ovfl_intr_count; /* keep track of ovfl interrupts */
486 unsigned long pfm_ovfl_intr_cycles; /* cycles spent processing ovfl interrupts */
487 unsigned long pfm_ovfl_intr_cycles_min; /* min cycles spent processing ovfl interrupts */
488 unsigned long pfm_ovfl_intr_cycles_max; /* max cycles spent processing ovfl interrupts */
489 unsigned long pfm_smpl_handler_calls;
490 unsigned long pfm_smpl_handler_cycles;
491 char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
492} pfm_stats_t;
493
494/*
495 * perfmon internal variables
496 */
497static pfm_stats_t pfm_stats[NR_CPUS];
498static pfm_session_t pfm_sessions; /* global sessions information */
499
fe12e25e 500static spinlock_t pfm_alt_install_check = SPIN_LOCK_UNLOCKED;
a1ecf7f6
TL
501static pfm_intr_handler_desc_t *pfm_alt_intr_handler;
502
1da177e4
LT
503static struct proc_dir_entry *perfmon_dir;
504static pfm_uuid_t pfm_null_uuid = {0,};
505
506static spinlock_t pfm_buffer_fmt_lock;
507static LIST_HEAD(pfm_buffer_fmt_list);
508
509static pmu_config_t *pmu_conf;
510
511/* sysctl() controls */
4944930a
SE
512pfm_sysctl_t pfm_sysctl;
513EXPORT_SYMBOL(pfm_sysctl);
1da177e4
LT
514
515static ctl_table pfm_ctl_table[]={
516 {1, "debug", &pfm_sysctl.debug, sizeof(int), 0666, NULL, &proc_dointvec, NULL,},
517 {2, "debug_ovfl", &pfm_sysctl.debug_ovfl, sizeof(int), 0666, NULL, &proc_dointvec, NULL,},
518 {3, "fastctxsw", &pfm_sysctl.fastctxsw, sizeof(int), 0600, NULL, &proc_dointvec, NULL,},
519 {4, "expert_mode", &pfm_sysctl.expert_mode, sizeof(int), 0600, NULL, &proc_dointvec, NULL,},
520 { 0, },
521};
522static ctl_table pfm_sysctl_dir[] = {
523 {1, "perfmon", NULL, 0, 0755, pfm_ctl_table, },
524 {0,},
525};
526static ctl_table pfm_sysctl_root[] = {
527 {1, "kernel", NULL, 0, 0755, pfm_sysctl_dir, },
528 {0,},
529};
530static struct ctl_table_header *pfm_sysctl_header;
531
532static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
533static int pfm_flush(struct file *filp);
534
535#define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
536#define pfm_get_cpu_data(a,b) per_cpu(a, b)
537
538static inline void
539pfm_put_task(struct task_struct *task)
540{
541 if (task != current) put_task_struct(task);
542}
543
544static inline void
545pfm_set_task_notify(struct task_struct *task)
546{
547 struct thread_info *info;
548
549 info = (struct thread_info *) ((char *) task + IA64_TASK_SIZE);
550 set_bit(TIF_NOTIFY_RESUME, &info->flags);
551}
552
553static inline void
554pfm_clear_task_notify(void)
555{
556 clear_thread_flag(TIF_NOTIFY_RESUME);
557}
558
559static inline void
560pfm_reserve_page(unsigned long a)
561{
562 SetPageReserved(vmalloc_to_page((void *)a));
563}
564static inline void
565pfm_unreserve_page(unsigned long a)
566{
567 ClearPageReserved(vmalloc_to_page((void*)a));
568}
569
570static inline unsigned long
571pfm_protect_ctx_ctxsw(pfm_context_t *x)
572{
573 spin_lock(&(x)->ctx_lock);
574 return 0UL;
575}
576
577static inline unsigned long
578pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
579{
580 spin_unlock(&(x)->ctx_lock);
581}
582
583static inline unsigned int
584pfm_do_munmap(struct mm_struct *mm, unsigned long addr, size_t len, int acct)
585{
586 return do_munmap(mm, addr, len);
587}
588
589static inline unsigned long
590pfm_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags, unsigned long exec)
591{
592 return get_unmapped_area(file, addr, len, pgoff, flags);
593}
594
595
596static struct super_block *
597pfmfs_get_sb(struct file_system_type *fs_type, int flags, const char *dev_name, void *data)
598{
599 return get_sb_pseudo(fs_type, "pfm:", NULL, PFMFS_MAGIC);
600}
601
602static struct file_system_type pfm_fs_type = {
603 .name = "pfmfs",
604 .get_sb = pfmfs_get_sb,
605 .kill_sb = kill_anon_super,
606};
607
608DEFINE_PER_CPU(unsigned long, pfm_syst_info);
609DEFINE_PER_CPU(struct task_struct *, pmu_owner);
610DEFINE_PER_CPU(pfm_context_t *, pmu_ctx);
611DEFINE_PER_CPU(unsigned long, pmu_activation_number);
a1ecf7f6 612EXPORT_SYMBOL_GPL(per_cpu__pfm_syst_info);
1da177e4
LT
613
614
615/* forward declaration */
616static struct file_operations pfm_file_ops;
617
618/*
619 * forward declarations
620 */
621#ifndef CONFIG_SMP
622static void pfm_lazy_save_regs (struct task_struct *ta);
623#endif
624
625void dump_pmu_state(const char *);
626static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
627
628#include "perfmon_itanium.h"
629#include "perfmon_mckinley.h"
630#include "perfmon_generic.h"
631
632static pmu_config_t *pmu_confs[]={
633 &pmu_conf_mck,
634 &pmu_conf_ita,
635 &pmu_conf_gen, /* must be last */
636 NULL
637};
638
639
640static int pfm_end_notify_user(pfm_context_t *ctx);
641
642static inline void
643pfm_clear_psr_pp(void)
644{
645 ia64_rsm(IA64_PSR_PP);
646 ia64_srlz_i();
647}
648
649static inline void
650pfm_set_psr_pp(void)
651{
652 ia64_ssm(IA64_PSR_PP);
653 ia64_srlz_i();
654}
655
656static inline void
657pfm_clear_psr_up(void)
658{
659 ia64_rsm(IA64_PSR_UP);
660 ia64_srlz_i();
661}
662
663static inline void
664pfm_set_psr_up(void)
665{
666 ia64_ssm(IA64_PSR_UP);
667 ia64_srlz_i();
668}
669
670static inline unsigned long
671pfm_get_psr(void)
672{
673 unsigned long tmp;
674 tmp = ia64_getreg(_IA64_REG_PSR);
675 ia64_srlz_i();
676 return tmp;
677}
678
679static inline void
680pfm_set_psr_l(unsigned long val)
681{
682 ia64_setreg(_IA64_REG_PSR_L, val);
683 ia64_srlz_i();
684}
685
686static inline void
687pfm_freeze_pmu(void)
688{
689 ia64_set_pmc(0,1UL);
690 ia64_srlz_d();
691}
692
693static inline void
694pfm_unfreeze_pmu(void)
695{
696 ia64_set_pmc(0,0UL);
697 ia64_srlz_d();
698}
699
700static inline void
701pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
702{
703 int i;
704
705 for (i=0; i < nibrs; i++) {
706 ia64_set_ibr(i, ibrs[i]);
707 ia64_dv_serialize_instruction();
708 }
709 ia64_srlz_i();
710}
711
712static inline void
713pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
714{
715 int i;
716
717 for (i=0; i < ndbrs; i++) {
718 ia64_set_dbr(i, dbrs[i]);
719 ia64_dv_serialize_data();
720 }
721 ia64_srlz_d();
722}
723
724/*
725 * PMD[i] must be a counter. no check is made
726 */
727static inline unsigned long
728pfm_read_soft_counter(pfm_context_t *ctx, int i)
729{
730 return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
731}
732
733/*
734 * PMD[i] must be a counter. no check is made
735 */
736static inline void
737pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
738{
739 unsigned long ovfl_val = pmu_conf->ovfl_val;
740
741 ctx->ctx_pmds[i].val = val & ~ovfl_val;
742 /*
743 * writing to unimplemented part is ignore, so we do not need to
744 * mask off top part
745 */
746 ia64_set_pmd(i, val & ovfl_val);
747}
748
749static pfm_msg_t *
750pfm_get_new_msg(pfm_context_t *ctx)
751{
752 int idx, next;
753
754 next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
755
756 DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
757 if (next == ctx->ctx_msgq_head) return NULL;
758
759 idx = ctx->ctx_msgq_tail;
760 ctx->ctx_msgq_tail = next;
761
762 DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
763
764 return ctx->ctx_msgq+idx;
765}
766
767static pfm_msg_t *
768pfm_get_next_msg(pfm_context_t *ctx)
769{
770 pfm_msg_t *msg;
771
772 DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
773
774 if (PFM_CTXQ_EMPTY(ctx)) return NULL;
775
776 /*
777 * get oldest message
778 */
779 msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
780
781 /*
782 * and move forward
783 */
784 ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
785
786 DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
787
788 return msg;
789}
790
791static void
792pfm_reset_msgq(pfm_context_t *ctx)
793{
794 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
795 DPRINT(("ctx=%p msgq reset\n", ctx));
796}
797
798static void *
799pfm_rvmalloc(unsigned long size)
800{
801 void *mem;
802 unsigned long addr;
803
804 size = PAGE_ALIGN(size);
805 mem = vmalloc(size);
806 if (mem) {
807 //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
808 memset(mem, 0, size);
809 addr = (unsigned long)mem;
810 while (size > 0) {
811 pfm_reserve_page(addr);
812 addr+=PAGE_SIZE;
813 size-=PAGE_SIZE;
814 }
815 }
816 return mem;
817}
818
819static void
820pfm_rvfree(void *mem, unsigned long size)
821{
822 unsigned long addr;
823
824 if (mem) {
825 DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
826 addr = (unsigned long) mem;
827 while ((long) size > 0) {
828 pfm_unreserve_page(addr);
829 addr+=PAGE_SIZE;
830 size-=PAGE_SIZE;
831 }
832 vfree(mem);
833 }
834 return;
835}
836
837static pfm_context_t *
838pfm_context_alloc(void)
839{
840 pfm_context_t *ctx;
841
842 /*
843 * allocate context descriptor
844 * must be able to free with interrupts disabled
845 */
846 ctx = kmalloc(sizeof(pfm_context_t), GFP_KERNEL);
847 if (ctx) {
848 memset(ctx, 0, sizeof(pfm_context_t));
849 DPRINT(("alloc ctx @%p\n", ctx));
850 }
851 return ctx;
852}
853
854static void
855pfm_context_free(pfm_context_t *ctx)
856{
857 if (ctx) {
858 DPRINT(("free ctx @%p\n", ctx));
859 kfree(ctx);
860 }
861}
862
863static void
864pfm_mask_monitoring(struct task_struct *task)
865{
866 pfm_context_t *ctx = PFM_GET_CTX(task);
867 struct thread_struct *th = &task->thread;
868 unsigned long mask, val, ovfl_mask;
869 int i;
870
871 DPRINT_ovfl(("masking monitoring for [%d]\n", task->pid));
872
873 ovfl_mask = pmu_conf->ovfl_val;
874 /*
875 * monitoring can only be masked as a result of a valid
876 * counter overflow. In UP, it means that the PMU still
877 * has an owner. Note that the owner can be different
878 * from the current task. However the PMU state belongs
879 * to the owner.
880 * In SMP, a valid overflow only happens when task is
881 * current. Therefore if we come here, we know that
882 * the PMU state belongs to the current task, therefore
883 * we can access the live registers.
884 *
885 * So in both cases, the live register contains the owner's
886 * state. We can ONLY touch the PMU registers and NOT the PSR.
887 *
888 * As a consequence to this call, the thread->pmds[] array
889 * contains stale information which must be ignored
890 * when context is reloaded AND monitoring is active (see
891 * pfm_restart).
892 */
893 mask = ctx->ctx_used_pmds[0];
894 for (i = 0; mask; i++, mask>>=1) {
895 /* skip non used pmds */
896 if ((mask & 0x1) == 0) continue;
897 val = ia64_get_pmd(i);
898
899 if (PMD_IS_COUNTING(i)) {
900 /*
901 * we rebuild the full 64 bit value of the counter
902 */
903 ctx->ctx_pmds[i].val += (val & ovfl_mask);
904 } else {
905 ctx->ctx_pmds[i].val = val;
906 }
907 DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
908 i,
909 ctx->ctx_pmds[i].val,
910 val & ovfl_mask));
911 }
912 /*
913 * mask monitoring by setting the privilege level to 0
914 * we cannot use psr.pp/psr.up for this, it is controlled by
915 * the user
916 *
917 * if task is current, modify actual registers, otherwise modify
918 * thread save state, i.e., what will be restored in pfm_load_regs()
919 */
920 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
921 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
922 if ((mask & 0x1) == 0UL) continue;
923 ia64_set_pmc(i, th->pmcs[i] & ~0xfUL);
924 th->pmcs[i] &= ~0xfUL;
925 DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, th->pmcs[i]));
926 }
927 /*
928 * make all of this visible
929 */
930 ia64_srlz_d();
931}
932
933/*
934 * must always be done with task == current
935 *
936 * context must be in MASKED state when calling
937 */
938static void
939pfm_restore_monitoring(struct task_struct *task)
940{
941 pfm_context_t *ctx = PFM_GET_CTX(task);
942 struct thread_struct *th = &task->thread;
943 unsigned long mask, ovfl_mask;
944 unsigned long psr, val;
945 int i, is_system;
946
947 is_system = ctx->ctx_fl_system;
948 ovfl_mask = pmu_conf->ovfl_val;
949
950 if (task != current) {
951 printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task->pid, current->pid);
952 return;
953 }
954 if (ctx->ctx_state != PFM_CTX_MASKED) {
955 printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
956 task->pid, current->pid, ctx->ctx_state);
957 return;
958 }
959 psr = pfm_get_psr();
960 /*
961 * monitoring is masked via the PMC.
962 * As we restore their value, we do not want each counter to
963 * restart right away. We stop monitoring using the PSR,
964 * restore the PMC (and PMD) and then re-establish the psr
965 * as it was. Note that there can be no pending overflow at
966 * this point, because monitoring was MASKED.
967 *
968 * system-wide session are pinned and self-monitoring
969 */
970 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
971 /* disable dcr pp */
972 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
973 pfm_clear_psr_pp();
974 } else {
975 pfm_clear_psr_up();
976 }
977 /*
978 * first, we restore the PMD
979 */
980 mask = ctx->ctx_used_pmds[0];
981 for (i = 0; mask; i++, mask>>=1) {
982 /* skip non used pmds */
983 if ((mask & 0x1) == 0) continue;
984
985 if (PMD_IS_COUNTING(i)) {
986 /*
987 * we split the 64bit value according to
988 * counter width
989 */
990 val = ctx->ctx_pmds[i].val & ovfl_mask;
991 ctx->ctx_pmds[i].val &= ~ovfl_mask;
992 } else {
993 val = ctx->ctx_pmds[i].val;
994 }
995 ia64_set_pmd(i, val);
996
997 DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
998 i,
999 ctx->ctx_pmds[i].val,
1000 val));
1001 }
1002 /*
1003 * restore the PMCs
1004 */
1005 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1006 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1007 if ((mask & 0x1) == 0UL) continue;
1008 th->pmcs[i] = ctx->ctx_pmcs[i];
1009 ia64_set_pmc(i, th->pmcs[i]);
1010 DPRINT(("[%d] pmc[%d]=0x%lx\n", task->pid, i, th->pmcs[i]));
1011 }
1012 ia64_srlz_d();
1013
1014 /*
1015 * must restore DBR/IBR because could be modified while masked
1016 * XXX: need to optimize
1017 */
1018 if (ctx->ctx_fl_using_dbreg) {
1019 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1020 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1021 }
1022
1023 /*
1024 * now restore PSR
1025 */
1026 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1027 /* enable dcr pp */
1028 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1029 ia64_srlz_i();
1030 }
1031 pfm_set_psr_l(psr);
1032}
1033
1034static inline void
1035pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1036{
1037 int i;
1038
1039 ia64_srlz_d();
1040
1041 for (i=0; mask; i++, mask>>=1) {
1042 if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1043 }
1044}
1045
1046/*
1047 * reload from thread state (used for ctxw only)
1048 */
1049static inline void
1050pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1051{
1052 int i;
1053 unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1054
1055 for (i=0; mask; i++, mask>>=1) {
1056 if ((mask & 0x1) == 0) continue;
1057 val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1058 ia64_set_pmd(i, val);
1059 }
1060 ia64_srlz_d();
1061}
1062
1063/*
1064 * propagate PMD from context to thread-state
1065 */
1066static inline void
1067pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1068{
1069 struct thread_struct *thread = &task->thread;
1070 unsigned long ovfl_val = pmu_conf->ovfl_val;
1071 unsigned long mask = ctx->ctx_all_pmds[0];
1072 unsigned long val;
1073 int i;
1074
1075 DPRINT(("mask=0x%lx\n", mask));
1076
1077 for (i=0; mask; i++, mask>>=1) {
1078
1079 val = ctx->ctx_pmds[i].val;
1080
1081 /*
1082 * We break up the 64 bit value into 2 pieces
1083 * the lower bits go to the machine state in the
1084 * thread (will be reloaded on ctxsw in).
1085 * The upper part stays in the soft-counter.
1086 */
1087 if (PMD_IS_COUNTING(i)) {
1088 ctx->ctx_pmds[i].val = val & ~ovfl_val;
1089 val &= ovfl_val;
1090 }
1091 thread->pmds[i] = val;
1092
1093 DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1094 i,
1095 thread->pmds[i],
1096 ctx->ctx_pmds[i].val));
1097 }
1098}
1099
1100/*
1101 * propagate PMC from context to thread-state
1102 */
1103static inline void
1104pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1105{
1106 struct thread_struct *thread = &task->thread;
1107 unsigned long mask = ctx->ctx_all_pmcs[0];
1108 int i;
1109
1110 DPRINT(("mask=0x%lx\n", mask));
1111
1112 for (i=0; mask; i++, mask>>=1) {
1113 /* masking 0 with ovfl_val yields 0 */
1114 thread->pmcs[i] = ctx->ctx_pmcs[i];
1115 DPRINT(("pmc[%d]=0x%lx\n", i, thread->pmcs[i]));
1116 }
1117}
1118
1119
1120
1121static inline void
1122pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1123{
1124 int i;
1125
1126 for (i=0; mask; i++, mask>>=1) {
1127 if ((mask & 0x1) == 0) continue;
1128 ia64_set_pmc(i, pmcs[i]);
1129 }
1130 ia64_srlz_d();
1131}
1132
1133static inline int
1134pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1135{
1136 return memcmp(a, b, sizeof(pfm_uuid_t));
1137}
1138
1139static inline int
1140pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1141{
1142 int ret = 0;
1143 if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1144 return ret;
1145}
1146
1147static inline int
1148pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1149{
1150 int ret = 0;
1151 if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1152 return ret;
1153}
1154
1155
1156static inline int
1157pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1158 int cpu, void *arg)
1159{
1160 int ret = 0;
1161 if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1162 return ret;
1163}
1164
1165static inline int
1166pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1167 int cpu, void *arg)
1168{
1169 int ret = 0;
1170 if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1171 return ret;
1172}
1173
1174static inline int
1175pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1176{
1177 int ret = 0;
1178 if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1179 return ret;
1180}
1181
1182static inline int
1183pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1184{
1185 int ret = 0;
1186 if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1187 return ret;
1188}
1189
1190static pfm_buffer_fmt_t *
1191__pfm_find_buffer_fmt(pfm_uuid_t uuid)
1192{
1193 struct list_head * pos;
1194 pfm_buffer_fmt_t * entry;
1195
1196 list_for_each(pos, &pfm_buffer_fmt_list) {
1197 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1198 if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1199 return entry;
1200 }
1201 return NULL;
1202}
1203
1204/*
1205 * find a buffer format based on its uuid
1206 */
1207static pfm_buffer_fmt_t *
1208pfm_find_buffer_fmt(pfm_uuid_t uuid)
1209{
1210 pfm_buffer_fmt_t * fmt;
1211 spin_lock(&pfm_buffer_fmt_lock);
1212 fmt = __pfm_find_buffer_fmt(uuid);
1213 spin_unlock(&pfm_buffer_fmt_lock);
1214 return fmt;
1215}
1216
1217int
1218pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1219{
1220 int ret = 0;
1221
1222 /* some sanity checks */
1223 if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1224
1225 /* we need at least a handler */
1226 if (fmt->fmt_handler == NULL) return -EINVAL;
1227
1228 /*
1229 * XXX: need check validity of fmt_arg_size
1230 */
1231
1232 spin_lock(&pfm_buffer_fmt_lock);
1233
1234 if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1235 printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1236 ret = -EBUSY;
1237 goto out;
1238 }
1239 list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1240 printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1241
1242out:
1243 spin_unlock(&pfm_buffer_fmt_lock);
1244 return ret;
1245}
1246EXPORT_SYMBOL(pfm_register_buffer_fmt);
1247
1248int
1249pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1250{
1251 pfm_buffer_fmt_t *fmt;
1252 int ret = 0;
1253
1254 spin_lock(&pfm_buffer_fmt_lock);
1255
1256 fmt = __pfm_find_buffer_fmt(uuid);
1257 if (!fmt) {
1258 printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1259 ret = -EINVAL;
1260 goto out;
1261 }
1262 list_del_init(&fmt->fmt_list);
1263 printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1264
1265out:
1266 spin_unlock(&pfm_buffer_fmt_lock);
1267 return ret;
1268
1269}
1270EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1271
8df5a500
SE
1272extern void update_pal_halt_status(int);
1273
1da177e4
LT
1274static int
1275pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1276{
1277 unsigned long flags;
1278 /*
1279 * validy checks on cpu_mask have been done upstream
1280 */
1281 LOCK_PFS(flags);
1282
1283 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1284 pfm_sessions.pfs_sys_sessions,
1285 pfm_sessions.pfs_task_sessions,
1286 pfm_sessions.pfs_sys_use_dbregs,
1287 is_syswide,
1288 cpu));
1289
1290 if (is_syswide) {
1291 /*
1292 * cannot mix system wide and per-task sessions
1293 */
1294 if (pfm_sessions.pfs_task_sessions > 0UL) {
1295 DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1296 pfm_sessions.pfs_task_sessions));
1297 goto abort;
1298 }
1299
1300 if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1301
1302 DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1303
1304 pfm_sessions.pfs_sys_session[cpu] = task;
1305
1306 pfm_sessions.pfs_sys_sessions++ ;
1307
1308 } else {
1309 if (pfm_sessions.pfs_sys_sessions) goto abort;
1310 pfm_sessions.pfs_task_sessions++;
1311 }
1312
1313 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1314 pfm_sessions.pfs_sys_sessions,
1315 pfm_sessions.pfs_task_sessions,
1316 pfm_sessions.pfs_sys_use_dbregs,
1317 is_syswide,
1318 cpu));
1319
8df5a500
SE
1320 /*
1321 * disable default_idle() to go to PAL_HALT
1322 */
1323 update_pal_halt_status(0);
1324
1da177e4
LT
1325 UNLOCK_PFS(flags);
1326
1327 return 0;
1328
1329error_conflict:
1330 DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1331 pfm_sessions.pfs_sys_session[cpu]->pid,
a1ecf7f6 1332 cpu));
1da177e4
LT
1333abort:
1334 UNLOCK_PFS(flags);
1335
1336 return -EBUSY;
1337
1338}
1339
1340static int
1341pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1342{
1343 unsigned long flags;
1344 /*
1345 * validy checks on cpu_mask have been done upstream
1346 */
1347 LOCK_PFS(flags);
1348
1349 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1350 pfm_sessions.pfs_sys_sessions,
1351 pfm_sessions.pfs_task_sessions,
1352 pfm_sessions.pfs_sys_use_dbregs,
1353 is_syswide,
1354 cpu));
1355
1356
1357 if (is_syswide) {
1358 pfm_sessions.pfs_sys_session[cpu] = NULL;
1359 /*
1360 * would not work with perfmon+more than one bit in cpu_mask
1361 */
1362 if (ctx && ctx->ctx_fl_using_dbreg) {
1363 if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1364 printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1365 } else {
1366 pfm_sessions.pfs_sys_use_dbregs--;
1367 }
1368 }
1369 pfm_sessions.pfs_sys_sessions--;
1370 } else {
1371 pfm_sessions.pfs_task_sessions--;
1372 }
1373 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1374 pfm_sessions.pfs_sys_sessions,
1375 pfm_sessions.pfs_task_sessions,
1376 pfm_sessions.pfs_sys_use_dbregs,
1377 is_syswide,
1378 cpu));
1379
8df5a500
SE
1380 /*
1381 * if possible, enable default_idle() to go into PAL_HALT
1382 */
1383 if (pfm_sessions.pfs_task_sessions == 0 && pfm_sessions.pfs_sys_sessions == 0)
1384 update_pal_halt_status(1);
1385
1da177e4
LT
1386 UNLOCK_PFS(flags);
1387
1388 return 0;
1389}
1390
1391/*
1392 * removes virtual mapping of the sampling buffer.
1393 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1394 * a PROTECT_CTX() section.
1395 */
1396static int
1397pfm_remove_smpl_mapping(struct task_struct *task, void *vaddr, unsigned long size)
1398{
1399 int r;
1400
1401 /* sanity checks */
1402 if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1403 printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task->pid, task->mm);
1404 return -EINVAL;
1405 }
1406
1407 DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1408
1409 /*
1410 * does the actual unmapping
1411 */
1412 down_write(&task->mm->mmap_sem);
1413
1414 DPRINT(("down_write done smpl_vaddr=%p size=%lu\n", vaddr, size));
1415
1416 r = pfm_do_munmap(task->mm, (unsigned long)vaddr, size, 0);
1417
1418 up_write(&task->mm->mmap_sem);
1419 if (r !=0) {
1420 printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task->pid, vaddr, size);
1421 }
1422
1423 DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1424
1425 return 0;
1426}
1427
1428/*
1429 * free actual physical storage used by sampling buffer
1430 */
1431#if 0
1432static int
1433pfm_free_smpl_buffer(pfm_context_t *ctx)
1434{
1435 pfm_buffer_fmt_t *fmt;
1436
1437 if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1438
1439 /*
1440 * we won't use the buffer format anymore
1441 */
1442 fmt = ctx->ctx_buf_fmt;
1443
1444 DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1445 ctx->ctx_smpl_hdr,
1446 ctx->ctx_smpl_size,
1447 ctx->ctx_smpl_vaddr));
1448
1449 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1450
1451 /*
1452 * free the buffer
1453 */
1454 pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1455
1456 ctx->ctx_smpl_hdr = NULL;
1457 ctx->ctx_smpl_size = 0UL;
1458
1459 return 0;
1460
1461invalid_free:
1462 printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", current->pid);
1463 return -EINVAL;
1464}
1465#endif
1466
1467static inline void
1468pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1469{
1470 if (fmt == NULL) return;
1471
1472 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1473
1474}
1475
1476/*
1477 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1478 * no real gain from having the whole whorehouse mounted. So we don't need
1479 * any operations on the root directory. However, we need a non-trivial
1480 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1481 */
1482static struct vfsmount *pfmfs_mnt;
1483
1484static int __init
1485init_pfm_fs(void)
1486{
1487 int err = register_filesystem(&pfm_fs_type);
1488 if (!err) {
1489 pfmfs_mnt = kern_mount(&pfm_fs_type);
1490 err = PTR_ERR(pfmfs_mnt);
1491 if (IS_ERR(pfmfs_mnt))
1492 unregister_filesystem(&pfm_fs_type);
1493 else
1494 err = 0;
1495 }
1496 return err;
1497}
1498
1499static void __exit
1500exit_pfm_fs(void)
1501{
1502 unregister_filesystem(&pfm_fs_type);
1503 mntput(pfmfs_mnt);
1504}
1505
1506static ssize_t
1507pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1508{
1509 pfm_context_t *ctx;
1510 pfm_msg_t *msg;
1511 ssize_t ret;
1512 unsigned long flags;
1513 DECLARE_WAITQUEUE(wait, current);
1514 if (PFM_IS_FILE(filp) == 0) {
1515 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid);
1516 return -EINVAL;
1517 }
1518
1519 ctx = (pfm_context_t *)filp->private_data;
1520 if (ctx == NULL) {
1521 printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", current->pid);
1522 return -EINVAL;
1523 }
1524
1525 /*
1526 * check even when there is no message
1527 */
1528 if (size < sizeof(pfm_msg_t)) {
1529 DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1530 return -EINVAL;
1531 }
1532
1533 PROTECT_CTX(ctx, flags);
1534
1535 /*
1536 * put ourselves on the wait queue
1537 */
1538 add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1539
1540
1541 for(;;) {
1542 /*
1543 * check wait queue
1544 */
1545
1546 set_current_state(TASK_INTERRUPTIBLE);
1547
1548 DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1549
1550 ret = 0;
1551 if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1552
1553 UNPROTECT_CTX(ctx, flags);
1554
1555 /*
1556 * check non-blocking read
1557 */
1558 ret = -EAGAIN;
1559 if(filp->f_flags & O_NONBLOCK) break;
1560
1561 /*
1562 * check pending signals
1563 */
1564 if(signal_pending(current)) {
1565 ret = -EINTR;
1566 break;
1567 }
1568 /*
1569 * no message, so wait
1570 */
1571 schedule();
1572
1573 PROTECT_CTX(ctx, flags);
1574 }
1575 DPRINT(("[%d] back to running ret=%ld\n", current->pid, ret));
1576 set_current_state(TASK_RUNNING);
1577 remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1578
1579 if (ret < 0) goto abort;
1580
1581 ret = -EINVAL;
1582 msg = pfm_get_next_msg(ctx);
1583 if (msg == NULL) {
1584 printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, current->pid);
1585 goto abort_locked;
1586 }
1587
4944930a 1588 DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1da177e4
LT
1589
1590 ret = -EFAULT;
1591 if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1592
1593abort_locked:
1594 UNPROTECT_CTX(ctx, flags);
1595abort:
1596 return ret;
1597}
1598
1599static ssize_t
1600pfm_write(struct file *file, const char __user *ubuf,
1601 size_t size, loff_t *ppos)
1602{
1603 DPRINT(("pfm_write called\n"));
1604 return -EINVAL;
1605}
1606
1607static unsigned int
1608pfm_poll(struct file *filp, poll_table * wait)
1609{
1610 pfm_context_t *ctx;
1611 unsigned long flags;
1612 unsigned int mask = 0;
1613
1614 if (PFM_IS_FILE(filp) == 0) {
1615 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid);
1616 return 0;
1617 }
1618
1619 ctx = (pfm_context_t *)filp->private_data;
1620 if (ctx == NULL) {
1621 printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", current->pid);
1622 return 0;
1623 }
1624
1625
1626 DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1627
1628 poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1629
1630 PROTECT_CTX(ctx, flags);
1631
1632 if (PFM_CTXQ_EMPTY(ctx) == 0)
1633 mask = POLLIN | POLLRDNORM;
1634
1635 UNPROTECT_CTX(ctx, flags);
1636
1637 DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1638
1639 return mask;
1640}
1641
1642static int
1643pfm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
1644{
1645 DPRINT(("pfm_ioctl called\n"));
1646 return -EINVAL;
1647}
1648
1649/*
1650 * interrupt cannot be masked when coming here
1651 */
1652static inline int
1653pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1654{
1655 int ret;
1656
1657 ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1658
1659 DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1660 current->pid,
1661 fd,
1662 on,
1663 ctx->ctx_async_queue, ret));
1664
1665 return ret;
1666}
1667
1668static int
1669pfm_fasync(int fd, struct file *filp, int on)
1670{
1671 pfm_context_t *ctx;
1672 int ret;
1673
1674 if (PFM_IS_FILE(filp) == 0) {
1675 printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", current->pid);
1676 return -EBADF;
1677 }
1678
1679 ctx = (pfm_context_t *)filp->private_data;
1680 if (ctx == NULL) {
1681 printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", current->pid);
1682 return -EBADF;
1683 }
1684 /*
1685 * we cannot mask interrupts during this call because this may
1686 * may go to sleep if memory is not readily avalaible.
1687 *
1688 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1689 * done in caller. Serialization of this function is ensured by caller.
1690 */
1691 ret = pfm_do_fasync(fd, filp, ctx, on);
1692
1693
1694 DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1695 fd,
1696 on,
1697 ctx->ctx_async_queue, ret));
1698
1699 return ret;
1700}
1701
1702#ifdef CONFIG_SMP
1703/*
1704 * this function is exclusively called from pfm_close().
1705 * The context is not protected at that time, nor are interrupts
1706 * on the remote CPU. That's necessary to avoid deadlocks.
1707 */
1708static void
1709pfm_syswide_force_stop(void *info)
1710{
1711 pfm_context_t *ctx = (pfm_context_t *)info;
1712 struct pt_regs *regs = ia64_task_regs(current);
1713 struct task_struct *owner;
1714 unsigned long flags;
1715 int ret;
1716
1717 if (ctx->ctx_cpu != smp_processor_id()) {
1718 printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
1719 ctx->ctx_cpu,
1720 smp_processor_id());
1721 return;
1722 }
1723 owner = GET_PMU_OWNER();
1724 if (owner != ctx->ctx_task) {
1725 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1726 smp_processor_id(),
1727 owner->pid, ctx->ctx_task->pid);
1728 return;
1729 }
1730 if (GET_PMU_CTX() != ctx) {
1731 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1732 smp_processor_id(),
1733 GET_PMU_CTX(), ctx);
1734 return;
1735 }
1736
1737 DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), ctx->ctx_task->pid));
1738 /*
1739 * the context is already protected in pfm_close(), we simply
1740 * need to mask interrupts to avoid a PMU interrupt race on
1741 * this CPU
1742 */
1743 local_irq_save(flags);
1744
1745 ret = pfm_context_unload(ctx, NULL, 0, regs);
1746 if (ret) {
1747 DPRINT(("context_unload returned %d\n", ret));
1748 }
1749
1750 /*
1751 * unmask interrupts, PMU interrupts are now spurious here
1752 */
1753 local_irq_restore(flags);
1754}
1755
1756static void
1757pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1758{
1759 int ret;
1760
1761 DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1762 ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 0, 1);
1763 DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1764}
1765#endif /* CONFIG_SMP */
1766
1767/*
1768 * called for each close(). Partially free resources.
1769 * When caller is self-monitoring, the context is unloaded.
1770 */
1771static int
1772pfm_flush(struct file *filp)
1773{
1774 pfm_context_t *ctx;
1775 struct task_struct *task;
1776 struct pt_regs *regs;
1777 unsigned long flags;
1778 unsigned long smpl_buf_size = 0UL;
1779 void *smpl_buf_vaddr = NULL;
1780 int state, is_system;
1781
1782 if (PFM_IS_FILE(filp) == 0) {
1783 DPRINT(("bad magic for\n"));
1784 return -EBADF;
1785 }
1786
1787 ctx = (pfm_context_t *)filp->private_data;
1788 if (ctx == NULL) {
1789 printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", current->pid);
1790 return -EBADF;
1791 }
1792
1793 /*
1794 * remove our file from the async queue, if we use this mode.
1795 * This can be done without the context being protected. We come
1796 * here when the context has become unreacheable by other tasks.
1797 *
1798 * We may still have active monitoring at this point and we may
1799 * end up in pfm_overflow_handler(). However, fasync_helper()
1800 * operates with interrupts disabled and it cleans up the
1801 * queue. If the PMU handler is called prior to entering
1802 * fasync_helper() then it will send a signal. If it is
1803 * invoked after, it will find an empty queue and no
1804 * signal will be sent. In both case, we are safe
1805 */
1806 if (filp->f_flags & FASYNC) {
1807 DPRINT(("cleaning up async_queue=%p\n", ctx->ctx_async_queue));
1808 pfm_do_fasync (-1, filp, ctx, 0);
1809 }
1810
1811 PROTECT_CTX(ctx, flags);
1812
1813 state = ctx->ctx_state;
1814 is_system = ctx->ctx_fl_system;
1815
1816 task = PFM_CTX_TASK(ctx);
1817 regs = ia64_task_regs(task);
1818
1819 DPRINT(("ctx_state=%d is_current=%d\n",
1820 state,
1821 task == current ? 1 : 0));
1822
1823 /*
1824 * if state == UNLOADED, then task is NULL
1825 */
1826
1827 /*
1828 * we must stop and unload because we are losing access to the context.
1829 */
1830 if (task == current) {
1831#ifdef CONFIG_SMP
1832 /*
1833 * the task IS the owner but it migrated to another CPU: that's bad
1834 * but we must handle this cleanly. Unfortunately, the kernel does
1835 * not provide a mechanism to block migration (while the context is loaded).
1836 *
1837 * We need to release the resource on the ORIGINAL cpu.
1838 */
1839 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1840
1841 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1842 /*
1843 * keep context protected but unmask interrupt for IPI
1844 */
1845 local_irq_restore(flags);
1846
1847 pfm_syswide_cleanup_other_cpu(ctx);
1848
1849 /*
1850 * restore interrupt masking
1851 */
1852 local_irq_save(flags);
1853
1854 /*
1855 * context is unloaded at this point
1856 */
1857 } else
1858#endif /* CONFIG_SMP */
1859 {
1860
1861 DPRINT(("forcing unload\n"));
1862 /*
1863 * stop and unload, returning with state UNLOADED
1864 * and session unreserved.
1865 */
1866 pfm_context_unload(ctx, NULL, 0, regs);
1867
1868 DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1869 }
1870 }
1871
1872 /*
1873 * remove virtual mapping, if any, for the calling task.
1874 * cannot reset ctx field until last user is calling close().
1875 *
1876 * ctx_smpl_vaddr must never be cleared because it is needed
1877 * by every task with access to the context
1878 *
1879 * When called from do_exit(), the mm context is gone already, therefore
1880 * mm is NULL, i.e., the VMA is already gone and we do not have to
1881 * do anything here
1882 */
1883 if (ctx->ctx_smpl_vaddr && current->mm) {
1884 smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1885 smpl_buf_size = ctx->ctx_smpl_size;
1886 }
1887
1888 UNPROTECT_CTX(ctx, flags);
1889
1890 /*
1891 * if there was a mapping, then we systematically remove it
1892 * at this point. Cannot be done inside critical section
1893 * because some VM function reenables interrupts.
1894 *
1895 */
1896 if (smpl_buf_vaddr) pfm_remove_smpl_mapping(current, smpl_buf_vaddr, smpl_buf_size);
1897
1898 return 0;
1899}
1900/*
1901 * called either on explicit close() or from exit_files().
1902 * Only the LAST user of the file gets to this point, i.e., it is
1903 * called only ONCE.
1904 *
1905 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1906 * (fput()),i.e, last task to access the file. Nobody else can access the
1907 * file at this point.
1908 *
1909 * When called from exit_files(), the VMA has been freed because exit_mm()
1910 * is executed before exit_files().
1911 *
1912 * When called from exit_files(), the current task is not yet ZOMBIE but we
1913 * flush the PMU state to the context.
1914 */
1915static int
1916pfm_close(struct inode *inode, struct file *filp)
1917{
1918 pfm_context_t *ctx;
1919 struct task_struct *task;
1920 struct pt_regs *regs;
1921 DECLARE_WAITQUEUE(wait, current);
1922 unsigned long flags;
1923 unsigned long smpl_buf_size = 0UL;
1924 void *smpl_buf_addr = NULL;
1925 int free_possible = 1;
1926 int state, is_system;
1927
1928 DPRINT(("pfm_close called private=%p\n", filp->private_data));
1929
1930 if (PFM_IS_FILE(filp) == 0) {
1931 DPRINT(("bad magic\n"));
1932 return -EBADF;
1933 }
1934
1935 ctx = (pfm_context_t *)filp->private_data;
1936 if (ctx == NULL) {
1937 printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", current->pid);
1938 return -EBADF;
1939 }
1940
1941 PROTECT_CTX(ctx, flags);
1942
1943 state = ctx->ctx_state;
1944 is_system = ctx->ctx_fl_system;
1945
1946 task = PFM_CTX_TASK(ctx);
1947 regs = ia64_task_regs(task);
1948
1949 DPRINT(("ctx_state=%d is_current=%d\n",
1950 state,
1951 task == current ? 1 : 0));
1952
1953 /*
1954 * if task == current, then pfm_flush() unloaded the context
1955 */
1956 if (state == PFM_CTX_UNLOADED) goto doit;
1957
1958 /*
1959 * context is loaded/masked and task != current, we need to
1960 * either force an unload or go zombie
1961 */
1962
1963 /*
1964 * The task is currently blocked or will block after an overflow.
1965 * we must force it to wakeup to get out of the
1966 * MASKED state and transition to the unloaded state by itself.
1967 *
1968 * This situation is only possible for per-task mode
1969 */
1970 if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
1971
1972 /*
1973 * set a "partial" zombie state to be checked
1974 * upon return from down() in pfm_handle_work().
1975 *
1976 * We cannot use the ZOMBIE state, because it is checked
1977 * by pfm_load_regs() which is called upon wakeup from down().
1978 * In such case, it would free the context and then we would
1979 * return to pfm_handle_work() which would access the
1980 * stale context. Instead, we set a flag invisible to pfm_load_regs()
1981 * but visible to pfm_handle_work().
1982 *
1983 * For some window of time, we have a zombie context with
1984 * ctx_state = MASKED and not ZOMBIE
1985 */
1986 ctx->ctx_fl_going_zombie = 1;
1987
1988 /*
1989 * force task to wake up from MASKED state
1990 */
1991 up(&ctx->ctx_restart_sem);
1992
1993 DPRINT(("waking up ctx_state=%d\n", state));
1994
1995 /*
1996 * put ourself to sleep waiting for the other
1997 * task to report completion
1998 *
1999 * the context is protected by mutex, therefore there
2000 * is no risk of being notified of completion before
2001 * begin actually on the waitq.
2002 */
2003 set_current_state(TASK_INTERRUPTIBLE);
2004 add_wait_queue(&ctx->ctx_zombieq, &wait);
2005
2006 UNPROTECT_CTX(ctx, flags);
2007
2008 /*
2009 * XXX: check for signals :
2010 * - ok for explicit close
2011 * - not ok when coming from exit_files()
2012 */
2013 schedule();
2014
2015
2016 PROTECT_CTX(ctx, flags);
2017
2018
2019 remove_wait_queue(&ctx->ctx_zombieq, &wait);
2020 set_current_state(TASK_RUNNING);
2021
2022 /*
2023 * context is unloaded at this point
2024 */
2025 DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2026 }
2027 else if (task != current) {
2028#ifdef CONFIG_SMP
2029 /*
2030 * switch context to zombie state
2031 */
2032 ctx->ctx_state = PFM_CTX_ZOMBIE;
2033
2034 DPRINT(("zombie ctx for [%d]\n", task->pid));
2035 /*
2036 * cannot free the context on the spot. deferred until
2037 * the task notices the ZOMBIE state
2038 */
2039 free_possible = 0;
2040#else
2041 pfm_context_unload(ctx, NULL, 0, regs);
2042#endif
2043 }
2044
2045doit:
2046 /* reload state, may have changed during opening of critical section */
2047 state = ctx->ctx_state;
2048
2049 /*
2050 * the context is still attached to a task (possibly current)
2051 * we cannot destroy it right now
2052 */
2053
2054 /*
2055 * we must free the sampling buffer right here because
2056 * we cannot rely on it being cleaned up later by the
2057 * monitored task. It is not possible to free vmalloc'ed
2058 * memory in pfm_load_regs(). Instead, we remove the buffer
2059 * now. should there be subsequent PMU overflow originally
2060 * meant for sampling, the will be converted to spurious
2061 * and that's fine because the monitoring tools is gone anyway.
2062 */
2063 if (ctx->ctx_smpl_hdr) {
2064 smpl_buf_addr = ctx->ctx_smpl_hdr;
2065 smpl_buf_size = ctx->ctx_smpl_size;
2066 /* no more sampling */
2067 ctx->ctx_smpl_hdr = NULL;
2068 ctx->ctx_fl_is_sampling = 0;
2069 }
2070
2071 DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2072 state,
2073 free_possible,
2074 smpl_buf_addr,
2075 smpl_buf_size));
2076
2077 if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2078
2079 /*
2080 * UNLOADED that the session has already been unreserved.
2081 */
2082 if (state == PFM_CTX_ZOMBIE) {
2083 pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2084 }
2085
2086 /*
2087 * disconnect file descriptor from context must be done
2088 * before we unlock.
2089 */
2090 filp->private_data = NULL;
2091
2092 /*
2093 * if we free on the spot, the context is now completely unreacheable
2094 * from the callers side. The monitored task side is also cut, so we
2095 * can freely cut.
2096 *
2097 * If we have a deferred free, only the caller side is disconnected.
2098 */
2099 UNPROTECT_CTX(ctx, flags);
2100
2101 /*
2102 * All memory free operations (especially for vmalloc'ed memory)
2103 * MUST be done with interrupts ENABLED.
2104 */
2105 if (smpl_buf_addr) pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2106
2107 /*
2108 * return the memory used by the context
2109 */
2110 if (free_possible) pfm_context_free(ctx);
2111
2112 return 0;
2113}
2114
2115static int
2116pfm_no_open(struct inode *irrelevant, struct file *dontcare)
2117{
2118 DPRINT(("pfm_no_open called\n"));
2119 return -ENXIO;
2120}
2121
2122
2123
2124static struct file_operations pfm_file_ops = {
2125 .llseek = no_llseek,
2126 .read = pfm_read,
2127 .write = pfm_write,
2128 .poll = pfm_poll,
2129 .ioctl = pfm_ioctl,
2130 .open = pfm_no_open, /* special open code to disallow open via /proc */
2131 .fasync = pfm_fasync,
2132 .release = pfm_close,
2133 .flush = pfm_flush
2134};
2135
2136static int
2137pfmfs_delete_dentry(struct dentry *dentry)
2138{
2139 return 1;
2140}
2141
2142static struct dentry_operations pfmfs_dentry_operations = {
2143 .d_delete = pfmfs_delete_dentry,
2144};
2145
2146
2147static int
2148pfm_alloc_fd(struct file **cfile)
2149{
2150 int fd, ret = 0;
2151 struct file *file = NULL;
2152 struct inode * inode;
2153 char name[32];
2154 struct qstr this;
2155
2156 fd = get_unused_fd();
2157 if (fd < 0) return -ENFILE;
2158
2159 ret = -ENFILE;
2160
2161 file = get_empty_filp();
2162 if (!file) goto out;
2163
2164 /*
2165 * allocate a new inode
2166 */
2167 inode = new_inode(pfmfs_mnt->mnt_sb);
2168 if (!inode) goto out;
2169
2170 DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2171
2172 inode->i_mode = S_IFCHR|S_IRUGO;
2173 inode->i_uid = current->fsuid;
2174 inode->i_gid = current->fsgid;
2175
2176 sprintf(name, "[%lu]", inode->i_ino);
2177 this.name = name;
2178 this.len = strlen(name);
2179 this.hash = inode->i_ino;
2180
2181 ret = -ENOMEM;
2182
2183 /*
2184 * allocate a new dcache entry
2185 */
2186 file->f_dentry = d_alloc(pfmfs_mnt->mnt_sb->s_root, &this);
2187 if (!file->f_dentry) goto out;
2188
2189 file->f_dentry->d_op = &pfmfs_dentry_operations;
2190
2191 d_add(file->f_dentry, inode);
2192 file->f_vfsmnt = mntget(pfmfs_mnt);
2193 file->f_mapping = inode->i_mapping;
2194
2195 file->f_op = &pfm_file_ops;
2196 file->f_mode = FMODE_READ;
2197 file->f_flags = O_RDONLY;
2198 file->f_pos = 0;
2199
2200 /*
2201 * may have to delay until context is attached?
2202 */
2203 fd_install(fd, file);
2204
2205 /*
2206 * the file structure we will use
2207 */
2208 *cfile = file;
2209
2210 return fd;
2211out:
2212 if (file) put_filp(file);
2213 put_unused_fd(fd);
2214 return ret;
2215}
2216
2217static void
2218pfm_free_fd(int fd, struct file *file)
2219{
2220 struct files_struct *files = current->files;
2221
2222 /*
2223 * there ie no fd_uninstall(), so we do it here
2224 */
2225 spin_lock(&files->file_lock);
2226 files->fd[fd] = NULL;
2227 spin_unlock(&files->file_lock);
2228
2229 if (file) put_filp(file);
2230 put_unused_fd(fd);
2231}
2232
2233static int
2234pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2235{
2236 DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2237
2238 while (size > 0) {
2239 unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2240
2241
2242 if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2243 return -ENOMEM;
2244
2245 addr += PAGE_SIZE;
2246 buf += PAGE_SIZE;
2247 size -= PAGE_SIZE;
2248 }
2249 return 0;
2250}
2251
2252/*
2253 * allocate a sampling buffer and remaps it into the user address space of the task
2254 */
2255static int
2256pfm_smpl_buffer_alloc(struct task_struct *task, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2257{
2258 struct mm_struct *mm = task->mm;
2259 struct vm_area_struct *vma = NULL;
2260 unsigned long size;
2261 void *smpl_buf;
2262
2263
2264 /*
2265 * the fixed header + requested size and align to page boundary
2266 */
2267 size = PAGE_ALIGN(rsize);
2268
2269 DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2270
2271 /*
2272 * check requested size to avoid Denial-of-service attacks
2273 * XXX: may have to refine this test
2274 * Check against address space limit.
2275 *
2276 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2277 * return -ENOMEM;
2278 */
2279 if (size > task->signal->rlim[RLIMIT_MEMLOCK].rlim_cur)
2280 return -ENOMEM;
2281
2282 /*
2283 * We do the easy to undo allocations first.
2284 *
2285 * pfm_rvmalloc(), clears the buffer, so there is no leak
2286 */
2287 smpl_buf = pfm_rvmalloc(size);
2288 if (smpl_buf == NULL) {
2289 DPRINT(("Can't allocate sampling buffer\n"));
2290 return -ENOMEM;
2291 }
2292
2293 DPRINT(("smpl_buf @%p\n", smpl_buf));
2294
2295 /* allocate vma */
2296 vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
2297 if (!vma) {
2298 DPRINT(("Cannot allocate vma\n"));
2299 goto error_kmem;
2300 }
2301 memset(vma, 0, sizeof(*vma));
2302
2303 /*
2304 * partially initialize the vma for the sampling buffer
2305 */
2306 vma->vm_mm = mm;
2307 vma->vm_flags = VM_READ| VM_MAYREAD |VM_RESERVED;
2308 vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */
2309
2310 /*
2311 * Now we have everything we need and we can initialize
2312 * and connect all the data structures
2313 */
2314
2315 ctx->ctx_smpl_hdr = smpl_buf;
2316 ctx->ctx_smpl_size = size; /* aligned size */
2317
2318 /*
2319 * Let's do the difficult operations next.
2320 *
2321 * now we atomically find some area in the address space and
2322 * remap the buffer in it.
2323 */
2324 down_write(&task->mm->mmap_sem);
2325
2326 /* find some free area in address space, must have mmap sem held */
2327 vma->vm_start = pfm_get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS, 0);
2328 if (vma->vm_start == 0UL) {
2329 DPRINT(("Cannot find unmapped area for size %ld\n", size));
2330 up_write(&task->mm->mmap_sem);
2331 goto error;
2332 }
2333 vma->vm_end = vma->vm_start + size;
2334 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2335
2336 DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2337
2338 /* can only be applied to current task, need to have the mm semaphore held when called */
2339 if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2340 DPRINT(("Can't remap buffer\n"));
2341 up_write(&task->mm->mmap_sem);
2342 goto error;
2343 }
2344
2345 /*
2346 * now insert the vma in the vm list for the process, must be
2347 * done with mmap lock held
2348 */
2349 insert_vm_struct(mm, vma);
2350
2351 mm->total_vm += size >> PAGE_SHIFT;
2352 vm_stat_account(vma);
2353 up_write(&task->mm->mmap_sem);
2354
2355 /*
2356 * keep track of user level virtual address
2357 */
2358 ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2359 *(unsigned long *)user_vaddr = vma->vm_start;
2360
2361 return 0;
2362
2363error:
2364 kmem_cache_free(vm_area_cachep, vma);
2365error_kmem:
2366 pfm_rvfree(smpl_buf, size);
2367
2368 return -ENOMEM;
2369}
2370
2371/*
2372 * XXX: do something better here
2373 */
2374static int
2375pfm_bad_permissions(struct task_struct *task)
2376{
2377 /* inspired by ptrace_attach() */
2378 DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2379 current->uid,
2380 current->gid,
2381 task->euid,
2382 task->suid,
2383 task->uid,
2384 task->egid,
2385 task->sgid));
2386
2387 return ((current->uid != task->euid)
2388 || (current->uid != task->suid)
2389 || (current->uid != task->uid)
2390 || (current->gid != task->egid)
2391 || (current->gid != task->sgid)
2392 || (current->gid != task->gid)) && !capable(CAP_SYS_PTRACE);
2393}
2394
2395static int
2396pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2397{
2398 int ctx_flags;
2399
2400 /* valid signal */
2401
2402 ctx_flags = pfx->ctx_flags;
2403
2404 if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2405
2406 /*
2407 * cannot block in this mode
2408 */
2409 if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2410 DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2411 return -EINVAL;
2412 }
2413 } else {
2414 }
2415 /* probably more to add here */
2416
2417 return 0;
2418}
2419
2420static int
2421pfm_setup_buffer_fmt(struct task_struct *task, pfm_context_t *ctx, unsigned int ctx_flags,
2422 unsigned int cpu, pfarg_context_t *arg)
2423{
2424 pfm_buffer_fmt_t *fmt = NULL;
2425 unsigned long size = 0UL;
2426 void *uaddr = NULL;
2427 void *fmt_arg = NULL;
2428 int ret = 0;
2429#define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
2430
2431 /* invoke and lock buffer format, if found */
2432 fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2433 if (fmt == NULL) {
2434 DPRINT(("[%d] cannot find buffer format\n", task->pid));
2435 return -EINVAL;
2436 }
2437
2438 /*
2439 * buffer argument MUST be contiguous to pfarg_context_t
2440 */
2441 if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2442
2443 ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2444
2445 DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task->pid, ctx_flags, cpu, fmt_arg, ret));
2446
2447 if (ret) goto error;
2448
2449 /* link buffer format and context */
2450 ctx->ctx_buf_fmt = fmt;
2451
2452 /*
2453 * check if buffer format wants to use perfmon buffer allocation/mapping service
2454 */
2455 ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2456 if (ret) goto error;
2457
2458 if (size) {
2459 /*
2460 * buffer is always remapped into the caller's address space
2461 */
2462 ret = pfm_smpl_buffer_alloc(current, ctx, size, &uaddr);
2463 if (ret) goto error;
2464
2465 /* keep track of user address of buffer */
2466 arg->ctx_smpl_vaddr = uaddr;
2467 }
2468 ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2469
2470error:
2471 return ret;
2472}
2473
2474static void
2475pfm_reset_pmu_state(pfm_context_t *ctx)
2476{
2477 int i;
2478
2479 /*
2480 * install reset values for PMC.
2481 */
2482 for (i=1; PMC_IS_LAST(i) == 0; i++) {
2483 if (PMC_IS_IMPL(i) == 0) continue;
2484 ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2485 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2486 }
2487 /*
2488 * PMD registers are set to 0UL when the context in memset()
2489 */
2490
2491 /*
2492 * On context switched restore, we must restore ALL pmc and ALL pmd even
2493 * when they are not actively used by the task. In UP, the incoming process
2494 * may otherwise pick up left over PMC, PMD state from the previous process.
2495 * As opposed to PMD, stale PMC can cause harm to the incoming
2496 * process because they may change what is being measured.
2497 * Therefore, we must systematically reinstall the entire
2498 * PMC state. In SMP, the same thing is possible on the
2499 * same CPU but also on between 2 CPUs.
2500 *
2501 * The problem with PMD is information leaking especially
2502 * to user level when psr.sp=0
2503 *
2504 * There is unfortunately no easy way to avoid this problem
2505 * on either UP or SMP. This definitively slows down the
2506 * pfm_load_regs() function.
2507 */
2508
2509 /*
2510 * bitmask of all PMCs accessible to this context
2511 *
2512 * PMC0 is treated differently.
2513 */
2514 ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2515
2516 /*
2517 * bitmask of all PMDs that are accesible to this context
2518 */
2519 ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2520
2521 DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2522
2523 /*
2524 * useful in case of re-enable after disable
2525 */
2526 ctx->ctx_used_ibrs[0] = 0UL;
2527 ctx->ctx_used_dbrs[0] = 0UL;
2528}
2529
2530static int
2531pfm_ctx_getsize(void *arg, size_t *sz)
2532{
2533 pfarg_context_t *req = (pfarg_context_t *)arg;
2534 pfm_buffer_fmt_t *fmt;
2535
2536 *sz = 0;
2537
2538 if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2539
2540 fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2541 if (fmt == NULL) {
2542 DPRINT(("cannot find buffer format\n"));
2543 return -EINVAL;
2544 }
2545 /* get just enough to copy in user parameters */
2546 *sz = fmt->fmt_arg_size;
2547 DPRINT(("arg_size=%lu\n", *sz));
2548
2549 return 0;
2550}
2551
2552
2553
2554/*
2555 * cannot attach if :
2556 * - kernel task
2557 * - task not owned by caller
2558 * - task incompatible with context mode
2559 */
2560static int
2561pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2562{
2563 /*
2564 * no kernel task or task not owner by caller
2565 */
2566 if (task->mm == NULL) {
2567 DPRINT(("task [%d] has not memory context (kernel thread)\n", task->pid));
2568 return -EPERM;
2569 }
2570 if (pfm_bad_permissions(task)) {
2571 DPRINT(("no permission to attach to [%d]\n", task->pid));
2572 return -EPERM;
2573 }
2574 /*
2575 * cannot block in self-monitoring mode
2576 */
2577 if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2578 DPRINT(("cannot load a blocking context on self for [%d]\n", task->pid));
2579 return -EINVAL;
2580 }
2581
2582 if (task->exit_state == EXIT_ZOMBIE) {
2583 DPRINT(("cannot attach to zombie task [%d]\n", task->pid));
2584 return -EBUSY;
2585 }
2586
2587 /*
2588 * always ok for self
2589 */
2590 if (task == current) return 0;
2591
2592 if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) {
2593 DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task->pid, task->state));
2594 return -EBUSY;
2595 }
2596 /*
2597 * make sure the task is off any CPU
2598 */
2599 wait_task_inactive(task);
2600
2601 /* more to come... */
2602
2603 return 0;
2604}
2605
2606static int
2607pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2608{
2609 struct task_struct *p = current;
2610 int ret;
2611
2612 /* XXX: need to add more checks here */
2613 if (pid < 2) return -EPERM;
2614
2615 if (pid != current->pid) {
2616
2617 read_lock(&tasklist_lock);
2618
2619 p = find_task_by_pid(pid);
2620
2621 /* make sure task cannot go away while we operate on it */
2622 if (p) get_task_struct(p);
2623
2624 read_unlock(&tasklist_lock);
2625
2626 if (p == NULL) return -ESRCH;
2627 }
2628
2629 ret = pfm_task_incompatible(ctx, p);
2630 if (ret == 0) {
2631 *task = p;
2632 } else if (p != current) {
2633 pfm_put_task(p);
2634 }
2635 return ret;
2636}
2637
2638
2639
2640static int
2641pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2642{
2643 pfarg_context_t *req = (pfarg_context_t *)arg;
2644 struct file *filp;
2645 int ctx_flags;
2646 int ret;
2647
2648 /* let's check the arguments first */
2649 ret = pfarg_is_sane(current, req);
2650 if (ret < 0) return ret;
2651
2652 ctx_flags = req->ctx_flags;
2653
2654 ret = -ENOMEM;
2655
2656 ctx = pfm_context_alloc();
2657 if (!ctx) goto error;
2658
2659 ret = pfm_alloc_fd(&filp);
2660 if (ret < 0) goto error_file;
2661
2662 req->ctx_fd = ctx->ctx_fd = ret;
2663
2664 /*
2665 * attach context to file
2666 */
2667 filp->private_data = ctx;
2668
2669 /*
2670 * does the user want to sample?
2671 */
2672 if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2673 ret = pfm_setup_buffer_fmt(current, ctx, ctx_flags, 0, req);
2674 if (ret) goto buffer_error;
2675 }
2676
2677 /*
2678 * init context protection lock
2679 */
2680 spin_lock_init(&ctx->ctx_lock);
2681
2682 /*
2683 * context is unloaded
2684 */
2685 ctx->ctx_state = PFM_CTX_UNLOADED;
2686
2687 /*
2688 * initialization of context's flags
2689 */
2690 ctx->ctx_fl_block = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
2691 ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
2692 ctx->ctx_fl_is_sampling = ctx->ctx_buf_fmt ? 1 : 0; /* assume record() is defined */
2693 ctx->ctx_fl_no_msg = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
2694 /*
2695 * will move to set properties
2696 * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
2697 */
2698
2699 /*
2700 * init restart semaphore to locked
2701 */
2702 sema_init(&ctx->ctx_restart_sem, 0);
2703
2704 /*
2705 * activation is used in SMP only
2706 */
2707 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
2708 SET_LAST_CPU(ctx, -1);
2709
2710 /*
2711 * initialize notification message queue
2712 */
2713 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
2714 init_waitqueue_head(&ctx->ctx_msgq_wait);
2715 init_waitqueue_head(&ctx->ctx_zombieq);
2716
2717 DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d \n",
2718 ctx,
2719 ctx_flags,
2720 ctx->ctx_fl_system,
2721 ctx->ctx_fl_block,
2722 ctx->ctx_fl_excl_idle,
2723 ctx->ctx_fl_no_msg,
2724 ctx->ctx_fd));
2725
2726 /*
2727 * initialize soft PMU state
2728 */
2729 pfm_reset_pmu_state(ctx);
2730
2731 return 0;
2732
2733buffer_error:
2734 pfm_free_fd(ctx->ctx_fd, filp);
2735
2736 if (ctx->ctx_buf_fmt) {
2737 pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2738 }
2739error_file:
2740 pfm_context_free(ctx);
2741
2742error:
2743 return ret;
2744}
2745
2746static inline unsigned long
2747pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2748{
2749 unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2750 unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2751 extern unsigned long carta_random32 (unsigned long seed);
2752
2753 if (reg->flags & PFM_REGFL_RANDOM) {
2754 new_seed = carta_random32(old_seed);
2755 val -= (old_seed & mask); /* counter values are negative numbers! */
2756 if ((mask >> 32) != 0)
2757 /* construct a full 64-bit random value: */
2758 new_seed |= carta_random32(old_seed >> 32) << 32;
2759 reg->seed = new_seed;
2760 }
2761 reg->lval = val;
2762 return val;
2763}
2764
2765static void
2766pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2767{
2768 unsigned long mask = ovfl_regs[0];
2769 unsigned long reset_others = 0UL;
2770 unsigned long val;
2771 int i;
2772
2773 /*
2774 * now restore reset value on sampling overflowed counters
2775 */
2776 mask >>= PMU_FIRST_COUNTER;
2777 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2778
2779 if ((mask & 0x1UL) == 0UL) continue;
2780
2781 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2782 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2783
2784 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2785 }
2786
2787 /*
2788 * Now take care of resetting the other registers
2789 */
2790 for(i = 0; reset_others; i++, reset_others >>= 1) {
2791
2792 if ((reset_others & 0x1) == 0) continue;
2793
2794 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2795
2796 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2797 is_long_reset ? "long" : "short", i, val));
2798 }
2799}
2800
2801static void
2802pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2803{
2804 unsigned long mask = ovfl_regs[0];
2805 unsigned long reset_others = 0UL;
2806 unsigned long val;
2807 int i;
2808
2809 DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2810
2811 if (ctx->ctx_state == PFM_CTX_MASKED) {
2812 pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2813 return;
2814 }
2815
2816 /*
2817 * now restore reset value on sampling overflowed counters
2818 */
2819 mask >>= PMU_FIRST_COUNTER;
2820 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2821
2822 if ((mask & 0x1UL) == 0UL) continue;
2823
2824 val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2825 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2826
2827 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2828
2829 pfm_write_soft_counter(ctx, i, val);
2830 }
2831
2832 /*
2833 * Now take care of resetting the other registers
2834 */
2835 for(i = 0; reset_others; i++, reset_others >>= 1) {
2836
2837 if ((reset_others & 0x1) == 0) continue;
2838
2839 val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2840
2841 if (PMD_IS_COUNTING(i)) {
2842 pfm_write_soft_counter(ctx, i, val);
2843 } else {
2844 ia64_set_pmd(i, val);
2845 }
2846 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2847 is_long_reset ? "long" : "short", i, val));
2848 }
2849 ia64_srlz_d();
2850}
2851
2852static int
2853pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2854{
2855 struct thread_struct *thread = NULL;
2856 struct task_struct *task;
2857 pfarg_reg_t *req = (pfarg_reg_t *)arg;
2858 unsigned long value, pmc_pm;
2859 unsigned long smpl_pmds, reset_pmds, impl_pmds;
2860 unsigned int cnum, reg_flags, flags, pmc_type;
2861 int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2862 int is_monitor, is_counting, state;
2863 int ret = -EINVAL;
2864 pfm_reg_check_t wr_func;
2865#define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2866
2867 state = ctx->ctx_state;
2868 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2869 is_system = ctx->ctx_fl_system;
2870 task = ctx->ctx_task;
2871 impl_pmds = pmu_conf->impl_pmds[0];
2872
2873 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2874
2875 if (is_loaded) {
2876 thread = &task->thread;
2877 /*
2878 * In system wide and when the context is loaded, access can only happen
2879 * when the caller is running on the CPU being monitored by the session.
2880 * It does not have to be the owner (ctx_task) of the context per se.
2881 */
2882 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2883 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2884 return -EBUSY;
2885 }
2886 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2887 }
2888 expert_mode = pfm_sysctl.expert_mode;
2889
2890 for (i = 0; i < count; i++, req++) {
2891
2892 cnum = req->reg_num;
2893 reg_flags = req->reg_flags;
2894 value = req->reg_value;
2895 smpl_pmds = req->reg_smpl_pmds[0];
2896 reset_pmds = req->reg_reset_pmds[0];
2897 flags = 0;
2898
2899
2900 if (cnum >= PMU_MAX_PMCS) {
2901 DPRINT(("pmc%u is invalid\n", cnum));
2902 goto error;
2903 }
2904
2905 pmc_type = pmu_conf->pmc_desc[cnum].type;
2906 pmc_pm = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2907 is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2908 is_monitor = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2909
2910 /*
2911 * we reject all non implemented PMC as well
2912 * as attempts to modify PMC[0-3] which are used
2913 * as status registers by the PMU
2914 */
2915 if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2916 DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2917 goto error;
2918 }
2919 wr_func = pmu_conf->pmc_desc[cnum].write_check;
2920 /*
2921 * If the PMC is a monitor, then if the value is not the default:
2922 * - system-wide session: PMCx.pm=1 (privileged monitor)
2923 * - per-task : PMCx.pm=0 (user monitor)
2924 */
2925 if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2926 DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2927 cnum,
2928 pmc_pm,
2929 is_system));
2930 goto error;
2931 }
2932
2933 if (is_counting) {
2934 /*
2935 * enforce generation of overflow interrupt. Necessary on all
2936 * CPUs.
2937 */
2938 value |= 1 << PMU_PMC_OI;
2939
2940 if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2941 flags |= PFM_REGFL_OVFL_NOTIFY;
2942 }
2943
2944 if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2945
2946 /* verify validity of smpl_pmds */
2947 if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2948 DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2949 goto error;
2950 }
2951
2952 /* verify validity of reset_pmds */
2953 if ((reset_pmds & impl_pmds) != reset_pmds) {
2954 DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2955 goto error;
2956 }
2957 } else {
2958 if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2959 DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2960 goto error;
2961 }
2962 /* eventid on non-counting monitors are ignored */
2963 }
2964
2965 /*
2966 * execute write checker, if any
2967 */
2968 if (likely(expert_mode == 0 && wr_func)) {
2969 ret = (*wr_func)(task, ctx, cnum, &value, regs);
2970 if (ret) goto error;
2971 ret = -EINVAL;
2972 }
2973
2974 /*
2975 * no error on this register
2976 */
2977 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2978
2979 /*
2980 * Now we commit the changes to the software state
2981 */
2982
2983 /*
2984 * update overflow information
2985 */
2986 if (is_counting) {
2987 /*
2988 * full flag update each time a register is programmed
2989 */
2990 ctx->ctx_pmds[cnum].flags = flags;
2991
2992 ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
2993 ctx->ctx_pmds[cnum].smpl_pmds[0] = smpl_pmds;
2994 ctx->ctx_pmds[cnum].eventid = req->reg_smpl_eventid;
2995
2996 /*
2997 * Mark all PMDS to be accessed as used.
2998 *
2999 * We do not keep track of PMC because we have to
3000 * systematically restore ALL of them.
3001 *
3002 * We do not update the used_monitors mask, because
3003 * if we have not programmed them, then will be in
3004 * a quiescent state, therefore we will not need to
3005 * mask/restore then when context is MASKED.
3006 */
3007 CTX_USED_PMD(ctx, reset_pmds);
3008 CTX_USED_PMD(ctx, smpl_pmds);
3009 /*
3010 * make sure we do not try to reset on
3011 * restart because we have established new values
3012 */
3013 if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3014 }
3015 /*
3016 * Needed in case the user does not initialize the equivalent
3017 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
3018 * possible leak here.
3019 */
3020 CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
3021
3022 /*
3023 * keep track of the monitor PMC that we are using.
3024 * we save the value of the pmc in ctx_pmcs[] and if
3025 * the monitoring is not stopped for the context we also
3026 * place it in the saved state area so that it will be
3027 * picked up later by the context switch code.
3028 *
3029 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3030 *
3031 * The value in thread->pmcs[] may be modified on overflow, i.e., when
3032 * monitoring needs to be stopped.
3033 */
3034 if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3035
3036 /*
3037 * update context state
3038 */
3039 ctx->ctx_pmcs[cnum] = value;
3040
3041 if (is_loaded) {
3042 /*
3043 * write thread state
3044 */
3045 if (is_system == 0) thread->pmcs[cnum] = value;
3046
3047 /*
3048 * write hardware register if we can
3049 */
3050 if (can_access_pmu) {
3051 ia64_set_pmc(cnum, value);
3052 }
3053#ifdef CONFIG_SMP
3054 else {
3055 /*
3056 * per-task SMP only here
3057 *
3058 * we are guaranteed that the task is not running on the other CPU,
3059 * we indicate that this PMD will need to be reloaded if the task
3060 * is rescheduled on the CPU it ran last on.
3061 */
3062 ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3063 }
3064#endif
3065 }
3066
3067 DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3068 cnum,
3069 value,
3070 is_loaded,
3071 can_access_pmu,
3072 flags,
3073 ctx->ctx_all_pmcs[0],
3074 ctx->ctx_used_pmds[0],
3075 ctx->ctx_pmds[cnum].eventid,
3076 smpl_pmds,
3077 reset_pmds,
3078 ctx->ctx_reload_pmcs[0],
3079 ctx->ctx_used_monitors[0],
3080 ctx->ctx_ovfl_regs[0]));
3081 }
3082
3083 /*
3084 * make sure the changes are visible
3085 */
3086 if (can_access_pmu) ia64_srlz_d();
3087
3088 return 0;
3089error:
3090 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3091 return ret;
3092}
3093
3094static int
3095pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3096{
3097 struct thread_struct *thread = NULL;
3098 struct task_struct *task;
3099 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3100 unsigned long value, hw_value, ovfl_mask;
3101 unsigned int cnum;
3102 int i, can_access_pmu = 0, state;
3103 int is_counting, is_loaded, is_system, expert_mode;
3104 int ret = -EINVAL;
3105 pfm_reg_check_t wr_func;
3106
3107
3108 state = ctx->ctx_state;
3109 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3110 is_system = ctx->ctx_fl_system;
3111 ovfl_mask = pmu_conf->ovfl_val;
3112 task = ctx->ctx_task;
3113
3114 if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3115
3116 /*
3117 * on both UP and SMP, we can only write to the PMC when the task is
3118 * the owner of the local PMU.
3119 */
3120 if (likely(is_loaded)) {
3121 thread = &task->thread;
3122 /*
3123 * In system wide and when the context is loaded, access can only happen
3124 * when the caller is running on the CPU being monitored by the session.
3125 * It does not have to be the owner (ctx_task) of the context per se.
3126 */
3127 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3128 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3129 return -EBUSY;
3130 }
3131 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3132 }
3133 expert_mode = pfm_sysctl.expert_mode;
3134
3135 for (i = 0; i < count; i++, req++) {
3136
3137 cnum = req->reg_num;
3138 value = req->reg_value;
3139
3140 if (!PMD_IS_IMPL(cnum)) {
3141 DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3142 goto abort_mission;
3143 }
3144 is_counting = PMD_IS_COUNTING(cnum);
3145 wr_func = pmu_conf->pmd_desc[cnum].write_check;
3146
3147 /*
3148 * execute write checker, if any
3149 */
3150 if (unlikely(expert_mode == 0 && wr_func)) {
3151 unsigned long v = value;
3152
3153 ret = (*wr_func)(task, ctx, cnum, &v, regs);
3154 if (ret) goto abort_mission;
3155
3156 value = v;
3157 ret = -EINVAL;
3158 }
3159
3160 /*
3161 * no error on this register
3162 */
3163 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3164
3165 /*
3166 * now commit changes to software state
3167 */
3168 hw_value = value;
3169
3170 /*
3171 * update virtualized (64bits) counter
3172 */
3173 if (is_counting) {
3174 /*
3175 * write context state
3176 */
3177 ctx->ctx_pmds[cnum].lval = value;
3178
3179 /*
3180 * when context is load we use the split value
3181 */
3182 if (is_loaded) {
3183 hw_value = value & ovfl_mask;
3184 value = value & ~ovfl_mask;
3185 }
3186 }
3187 /*
3188 * update reset values (not just for counters)
3189 */
3190 ctx->ctx_pmds[cnum].long_reset = req->reg_long_reset;
3191 ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3192
3193 /*
3194 * update randomization parameters (not just for counters)
3195 */
3196 ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3197 ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3198
3199 /*
3200 * update context value
3201 */
3202 ctx->ctx_pmds[cnum].val = value;
3203
3204 /*
3205 * Keep track of what we use
3206 *
3207 * We do not keep track of PMC because we have to
3208 * systematically restore ALL of them.
3209 */
3210 CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3211
3212 /*
3213 * mark this PMD register used as well
3214 */
3215 CTX_USED_PMD(ctx, RDEP(cnum));
3216
3217 /*
3218 * make sure we do not try to reset on
3219 * restart because we have established new values
3220 */
3221 if (is_counting && state == PFM_CTX_MASKED) {
3222 ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3223 }
3224
3225 if (is_loaded) {
3226 /*
3227 * write thread state
3228 */
3229 if (is_system == 0) thread->pmds[cnum] = hw_value;
3230
3231 /*
3232 * write hardware register if we can
3233 */
3234 if (can_access_pmu) {
3235 ia64_set_pmd(cnum, hw_value);
3236 } else {
3237#ifdef CONFIG_SMP
3238 /*
3239 * we are guaranteed that the task is not running on the other CPU,
3240 * we indicate that this PMD will need to be reloaded if the task
3241 * is rescheduled on the CPU it ran last on.
3242 */
3243 ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3244#endif
3245 }
3246 }
3247
3248 DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
3249 "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3250 cnum,
3251 value,
3252 is_loaded,
3253 can_access_pmu,
3254 hw_value,
3255 ctx->ctx_pmds[cnum].val,
3256 ctx->ctx_pmds[cnum].short_reset,
3257 ctx->ctx_pmds[cnum].long_reset,
3258 PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3259 ctx->ctx_pmds[cnum].seed,
3260 ctx->ctx_pmds[cnum].mask,
3261 ctx->ctx_used_pmds[0],
3262 ctx->ctx_pmds[cnum].reset_pmds[0],
3263 ctx->ctx_reload_pmds[0],
3264 ctx->ctx_all_pmds[0],
3265 ctx->ctx_ovfl_regs[0]));
3266 }
3267
3268 /*
3269 * make changes visible
3270 */
3271 if (can_access_pmu) ia64_srlz_d();
3272
3273 return 0;
3274
3275abort_mission:
3276 /*
3277 * for now, we have only one possibility for error
3278 */
3279 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3280 return ret;
3281}
3282
3283/*
3284 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3285 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3286 * interrupt is delivered during the call, it will be kept pending until we leave, making
3287 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3288 * guaranteed to return consistent data to the user, it may simply be old. It is not
3289 * trivial to treat the overflow while inside the call because you may end up in
3290 * some module sampling buffer code causing deadlocks.
3291 */
3292static int
3293pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3294{
3295 struct thread_struct *thread = NULL;
3296 struct task_struct *task;
3297 unsigned long val = 0UL, lval, ovfl_mask, sval;
3298 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3299 unsigned int cnum, reg_flags = 0;
3300 int i, can_access_pmu = 0, state;
3301 int is_loaded, is_system, is_counting, expert_mode;
3302 int ret = -EINVAL;
3303 pfm_reg_check_t rd_func;
3304
3305 /*
3306 * access is possible when loaded only for
3307 * self-monitoring tasks or in UP mode
3308 */
3309
3310 state = ctx->ctx_state;
3311 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3312 is_system = ctx->ctx_fl_system;
3313 ovfl_mask = pmu_conf->ovfl_val;
3314 task = ctx->ctx_task;
3315
3316 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3317
3318 if (likely(is_loaded)) {
3319 thread = &task->thread;
3320 /*
3321 * In system wide and when the context is loaded, access can only happen
3322 * when the caller is running on the CPU being monitored by the session.
3323 * It does not have to be the owner (ctx_task) of the context per se.
3324 */
3325 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3326 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3327 return -EBUSY;
3328 }
3329 /*
3330 * this can be true when not self-monitoring only in UP
3331 */
3332 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3333
3334 if (can_access_pmu) ia64_srlz_d();
3335 }
3336 expert_mode = pfm_sysctl.expert_mode;
3337
3338 DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3339 is_loaded,
3340 can_access_pmu,
3341 state));
3342
3343 /*
3344 * on both UP and SMP, we can only read the PMD from the hardware register when
3345 * the task is the owner of the local PMU.
3346 */
3347
3348 for (i = 0; i < count; i++, req++) {
3349
3350 cnum = req->reg_num;
3351 reg_flags = req->reg_flags;
3352
3353 if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3354 /*
3355 * we can only read the register that we use. That includes
3356 * the one we explicitely initialize AND the one we want included
3357 * in the sampling buffer (smpl_regs).
3358 *
3359 * Having this restriction allows optimization in the ctxsw routine
3360 * without compromising security (leaks)
3361 */
3362 if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3363
3364 sval = ctx->ctx_pmds[cnum].val;
3365 lval = ctx->ctx_pmds[cnum].lval;
3366 is_counting = PMD_IS_COUNTING(cnum);
3367
3368 /*
3369 * If the task is not the current one, then we check if the
3370 * PMU state is still in the local live register due to lazy ctxsw.
3371 * If true, then we read directly from the registers.
3372 */
3373 if (can_access_pmu){
3374 val = ia64_get_pmd(cnum);
3375 } else {
3376 /*
3377 * context has been saved
3378 * if context is zombie, then task does not exist anymore.
3379 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3380 */
3381 val = is_loaded ? thread->pmds[cnum] : 0UL;
3382 }
3383 rd_func = pmu_conf->pmd_desc[cnum].read_check;
3384
3385 if (is_counting) {
3386 /*
3387 * XXX: need to check for overflow when loaded
3388 */
3389 val &= ovfl_mask;
3390 val += sval;
3391 }
3392
3393 /*
3394 * execute read checker, if any
3395 */
3396 if (unlikely(expert_mode == 0 && rd_func)) {
3397 unsigned long v = val;
3398 ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3399 if (ret) goto error;
3400 val = v;
3401 ret = -EINVAL;
3402 }
3403
3404 PFM_REG_RETFLAG_SET(reg_flags, 0);
3405
3406 DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3407
3408 /*
3409 * update register return value, abort all if problem during copy.
3410 * we only modify the reg_flags field. no check mode is fine because
3411 * access has been verified upfront in sys_perfmonctl().
3412 */
3413 req->reg_value = val;
3414 req->reg_flags = reg_flags;
3415 req->reg_last_reset_val = lval;
3416 }
3417
3418 return 0;
3419
3420error:
3421 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3422 return ret;
3423}
3424
3425int
3426pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3427{
3428 pfm_context_t *ctx;
3429
3430 if (req == NULL) return -EINVAL;
3431
3432 ctx = GET_PMU_CTX();
3433
3434 if (ctx == NULL) return -EINVAL;
3435
3436 /*
3437 * for now limit to current task, which is enough when calling
3438 * from overflow handler
3439 */
3440 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3441
3442 return pfm_write_pmcs(ctx, req, nreq, regs);
3443}
3444EXPORT_SYMBOL(pfm_mod_write_pmcs);
3445
3446int
3447pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3448{
3449 pfm_context_t *ctx;
3450
3451 if (req == NULL) return -EINVAL;
3452
3453 ctx = GET_PMU_CTX();
3454
3455 if (ctx == NULL) return -EINVAL;
3456
3457 /*
3458 * for now limit to current task, which is enough when calling
3459 * from overflow handler
3460 */
3461 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3462
3463 return pfm_read_pmds(ctx, req, nreq, regs);
3464}
3465EXPORT_SYMBOL(pfm_mod_read_pmds);
3466
3467/*
3468 * Only call this function when a process it trying to
3469 * write the debug registers (reading is always allowed)
3470 */
3471int
3472pfm_use_debug_registers(struct task_struct *task)
3473{
3474 pfm_context_t *ctx = task->thread.pfm_context;
3475 unsigned long flags;
3476 int ret = 0;
3477
3478 if (pmu_conf->use_rr_dbregs == 0) return 0;
3479
3480 DPRINT(("called for [%d]\n", task->pid));
3481
3482 /*
3483 * do it only once
3484 */
3485 if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3486
3487 /*
3488 * Even on SMP, we do not need to use an atomic here because
3489 * the only way in is via ptrace() and this is possible only when the
3490 * process is stopped. Even in the case where the ctxsw out is not totally
3491 * completed by the time we come here, there is no way the 'stopped' process
3492 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3493 * So this is always safe.
3494 */
3495 if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3496
3497 LOCK_PFS(flags);
3498
3499 /*
3500 * We cannot allow setting breakpoints when system wide monitoring
3501 * sessions are using the debug registers.
3502 */
3503 if (pfm_sessions.pfs_sys_use_dbregs> 0)
3504 ret = -1;
3505 else
3506 pfm_sessions.pfs_ptrace_use_dbregs++;
3507
3508 DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
3509 pfm_sessions.pfs_ptrace_use_dbregs,
3510 pfm_sessions.pfs_sys_use_dbregs,
3511 task->pid, ret));
3512
3513 UNLOCK_PFS(flags);
3514
3515 return ret;
3516}
3517
3518/*
3519 * This function is called for every task that exits with the
3520 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3521 * able to use the debug registers for debugging purposes via
3522 * ptrace(). Therefore we know it was not using them for
3523 * perfmormance monitoring, so we only decrement the number
3524 * of "ptraced" debug register users to keep the count up to date
3525 */
3526int
3527pfm_release_debug_registers(struct task_struct *task)
3528{
3529 unsigned long flags;
3530 int ret;
3531
3532 if (pmu_conf->use_rr_dbregs == 0) return 0;
3533
3534 LOCK_PFS(flags);
3535 if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3536 printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task->pid);
3537 ret = -1;
3538 } else {
3539 pfm_sessions.pfs_ptrace_use_dbregs--;
3540 ret = 0;
3541 }
3542 UNLOCK_PFS(flags);
3543
3544 return ret;
3545}
3546
3547static int
3548pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3549{
3550 struct task_struct *task;
3551 pfm_buffer_fmt_t *fmt;
3552 pfm_ovfl_ctrl_t rst_ctrl;
3553 int state, is_system;
3554 int ret = 0;
3555
3556 state = ctx->ctx_state;
3557 fmt = ctx->ctx_buf_fmt;
3558 is_system = ctx->ctx_fl_system;
3559 task = PFM_CTX_TASK(ctx);
3560
3561 switch(state) {
3562 case PFM_CTX_MASKED:
3563 break;
3564 case PFM_CTX_LOADED:
3565 if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3566 /* fall through */
3567 case PFM_CTX_UNLOADED:
3568 case PFM_CTX_ZOMBIE:
3569 DPRINT(("invalid state=%d\n", state));
3570 return -EBUSY;
3571 default:
3572 DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3573 return -EINVAL;
3574 }
3575
3576 /*
3577 * In system wide and when the context is loaded, access can only happen
3578 * when the caller is running on the CPU being monitored by the session.
3579 * It does not have to be the owner (ctx_task) of the context per se.
3580 */
3581 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3582 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3583 return -EBUSY;
3584 }
3585
3586 /* sanity check */
3587 if (unlikely(task == NULL)) {
3588 printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", current->pid);
3589 return -EINVAL;
3590 }
3591
3592 if (task == current || is_system) {
3593
3594 fmt = ctx->ctx_buf_fmt;
3595
3596 DPRINT(("restarting self %d ovfl=0x%lx\n",
3597 task->pid,
3598 ctx->ctx_ovfl_regs[0]));
3599
3600 if (CTX_HAS_SMPL(ctx)) {
3601
3602 prefetch(ctx->ctx_smpl_hdr);
3603
3604 rst_ctrl.bits.mask_monitoring = 0;
3605 rst_ctrl.bits.reset_ovfl_pmds = 0;
3606
3607 if (state == PFM_CTX_LOADED)
3608 ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3609 else
3610 ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3611 } else {
3612 rst_ctrl.bits.mask_monitoring = 0;
3613 rst_ctrl.bits.reset_ovfl_pmds = 1;
3614 }
3615
3616 if (ret == 0) {
3617 if (rst_ctrl.bits.reset_ovfl_pmds)
3618 pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3619
3620 if (rst_ctrl.bits.mask_monitoring == 0) {
3621 DPRINT(("resuming monitoring for [%d]\n", task->pid));
3622
3623 if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3624 } else {
3625 DPRINT(("keeping monitoring stopped for [%d]\n", task->pid));
3626
3627 // cannot use pfm_stop_monitoring(task, regs);
3628 }
3629 }
3630 /*
3631 * clear overflowed PMD mask to remove any stale information
3632 */
3633 ctx->ctx_ovfl_regs[0] = 0UL;
3634
3635 /*
3636 * back to LOADED state
3637 */
3638 ctx->ctx_state = PFM_CTX_LOADED;
3639
3640 /*
3641 * XXX: not really useful for self monitoring
3642 */
3643 ctx->ctx_fl_can_restart = 0;
3644
3645 return 0;
3646 }
3647
3648 /*
3649 * restart another task
3650 */
3651
3652 /*
3653 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3654 * one is seen by the task.
3655 */
3656 if (state == PFM_CTX_MASKED) {
3657 if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3658 /*
3659 * will prevent subsequent restart before this one is
3660 * seen by other task
3661 */
3662 ctx->ctx_fl_can_restart = 0;
3663 }
3664
3665 /*
3666 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3667 * the task is blocked or on its way to block. That's the normal
3668 * restart path. If the monitoring is not masked, then the task
3669 * can be actively monitoring and we cannot directly intervene.
3670 * Therefore we use the trap mechanism to catch the task and
3671 * force it to reset the buffer/reset PMDs.
3672 *
3673 * if non-blocking, then we ensure that the task will go into
3674 * pfm_handle_work() before returning to user mode.
3675 *
3676 * We cannot explicitely reset another task, it MUST always
3677 * be done by the task itself. This works for system wide because
3678 * the tool that is controlling the session is logically doing
3679 * "self-monitoring".
3680 */
3681 if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3682 DPRINT(("unblocking [%d] \n", task->pid));
3683 up(&ctx->ctx_restart_sem);
3684 } else {
3685 DPRINT(("[%d] armed exit trap\n", task->pid));
3686
3687 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3688
3689 PFM_SET_WORK_PENDING(task, 1);
3690
3691 pfm_set_task_notify(task);
3692
3693 /*
3694 * XXX: send reschedule if task runs on another CPU
3695 */
3696 }
3697 return 0;
3698}
3699
3700static int
3701pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3702{
3703 unsigned int m = *(unsigned int *)arg;
3704
3705 pfm_sysctl.debug = m == 0 ? 0 : 1;
3706
1da177e4
LT
3707 printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3708
3709 if (m == 0) {
3710 memset(pfm_stats, 0, sizeof(pfm_stats));
3711 for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3712 }
3713 return 0;
3714}
3715
3716/*
3717 * arg can be NULL and count can be zero for this function
3718 */
3719static int
3720pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3721{
3722 struct thread_struct *thread = NULL;
3723 struct task_struct *task;
3724 pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3725 unsigned long flags;
3726 dbreg_t dbreg;
3727 unsigned int rnum;
3728 int first_time;
3729 int ret = 0, state;
3730 int i, can_access_pmu = 0;
3731 int is_system, is_loaded;
3732
3733 if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3734
3735 state = ctx->ctx_state;
3736 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3737 is_system = ctx->ctx_fl_system;
3738 task = ctx->ctx_task;
3739
3740 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3741
3742 /*
3743 * on both UP and SMP, we can only write to the PMC when the task is
3744 * the owner of the local PMU.
3745 */
3746 if (is_loaded) {
3747 thread = &task->thread;
3748 /*
3749 * In system wide and when the context is loaded, access can only happen
3750 * when the caller is running on the CPU being monitored by the session.
3751 * It does not have to be the owner (ctx_task) of the context per se.
3752 */
3753 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3754 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3755 return -EBUSY;
3756 }
3757 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3758 }
3759
3760 /*
3761 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3762 * ensuring that no real breakpoint can be installed via this call.
3763 *
3764 * IMPORTANT: regs can be NULL in this function
3765 */
3766
3767 first_time = ctx->ctx_fl_using_dbreg == 0;
3768
3769 /*
3770 * don't bother if we are loaded and task is being debugged
3771 */
3772 if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3773 DPRINT(("debug registers already in use for [%d]\n", task->pid));
3774 return -EBUSY;
3775 }
3776
3777 /*
3778 * check for debug registers in system wide mode
3779 *
3780 * If though a check is done in pfm_context_load(),
3781 * we must repeat it here, in case the registers are
3782 * written after the context is loaded
3783 */
3784 if (is_loaded) {
3785 LOCK_PFS(flags);
3786
3787 if (first_time && is_system) {
3788 if (pfm_sessions.pfs_ptrace_use_dbregs)
3789 ret = -EBUSY;
3790 else
3791 pfm_sessions.pfs_sys_use_dbregs++;
3792 }
3793 UNLOCK_PFS(flags);
3794 }
3795
3796 if (ret != 0) return ret;
3797
3798 /*
3799 * mark ourself as user of the debug registers for
3800 * perfmon purposes.
3801 */
3802 ctx->ctx_fl_using_dbreg = 1;
3803
3804 /*
3805 * clear hardware registers to make sure we don't
3806 * pick up stale state.
3807 *
3808 * for a system wide session, we do not use
3809 * thread.dbr, thread.ibr because this process
3810 * never leaves the current CPU and the state
3811 * is shared by all processes running on it
3812 */
3813 if (first_time && can_access_pmu) {
3814 DPRINT(("[%d] clearing ibrs, dbrs\n", task->pid));
3815 for (i=0; i < pmu_conf->num_ibrs; i++) {
3816 ia64_set_ibr(i, 0UL);
3817 ia64_dv_serialize_instruction();
3818 }
3819 ia64_srlz_i();
3820 for (i=0; i < pmu_conf->num_dbrs; i++) {
3821 ia64_set_dbr(i, 0UL);
3822 ia64_dv_serialize_data();
3823 }
3824 ia64_srlz_d();
3825 }
3826
3827 /*
3828 * Now install the values into the registers
3829 */
3830 for (i = 0; i < count; i++, req++) {
3831
3832 rnum = req->dbreg_num;
3833 dbreg.val = req->dbreg_value;
3834
3835 ret = -EINVAL;
3836
3837 if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3838 DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3839 rnum, dbreg.val, mode, i, count));
3840
3841 goto abort_mission;
3842 }
3843
3844 /*
3845 * make sure we do not install enabled breakpoint
3846 */
3847 if (rnum & 0x1) {
3848 if (mode == PFM_CODE_RR)
3849 dbreg.ibr.ibr_x = 0;
3850 else
3851 dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3852 }
3853
3854 PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3855
3856 /*
3857 * Debug registers, just like PMC, can only be modified
3858 * by a kernel call. Moreover, perfmon() access to those
3859 * registers are centralized in this routine. The hardware
3860 * does not modify the value of these registers, therefore,
3861 * if we save them as they are written, we can avoid having
3862 * to save them on context switch out. This is made possible
3863 * by the fact that when perfmon uses debug registers, ptrace()
3864 * won't be able to modify them concurrently.
3865 */
3866 if (mode == PFM_CODE_RR) {
3867 CTX_USED_IBR(ctx, rnum);
3868
3869 if (can_access_pmu) {
3870 ia64_set_ibr(rnum, dbreg.val);
3871 ia64_dv_serialize_instruction();
3872 }
3873
3874 ctx->ctx_ibrs[rnum] = dbreg.val;
3875
3876 DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3877 rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3878 } else {
3879 CTX_USED_DBR(ctx, rnum);
3880
3881 if (can_access_pmu) {
3882 ia64_set_dbr(rnum, dbreg.val);
3883 ia64_dv_serialize_data();
3884 }
3885 ctx->ctx_dbrs[rnum] = dbreg.val;
3886
3887 DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3888 rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3889 }
3890 }
3891
3892 return 0;
3893
3894abort_mission:
3895 /*
3896 * in case it was our first attempt, we undo the global modifications
3897 */
3898 if (first_time) {
3899 LOCK_PFS(flags);
3900 if (ctx->ctx_fl_system) {
3901 pfm_sessions.pfs_sys_use_dbregs--;
3902 }
3903 UNLOCK_PFS(flags);
3904 ctx->ctx_fl_using_dbreg = 0;
3905 }
3906 /*
3907 * install error return flag
3908 */
3909 PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3910
3911 return ret;
3912}
3913
3914static int
3915pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3916{
3917 return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3918}
3919
3920static int
3921pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3922{
3923 return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3924}
3925
3926int
3927pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3928{
3929 pfm_context_t *ctx;
3930
3931 if (req == NULL) return -EINVAL;
3932
3933 ctx = GET_PMU_CTX();
3934
3935 if (ctx == NULL) return -EINVAL;
3936
3937 /*
3938 * for now limit to current task, which is enough when calling
3939 * from overflow handler
3940 */
3941 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3942
3943 return pfm_write_ibrs(ctx, req, nreq, regs);
3944}
3945EXPORT_SYMBOL(pfm_mod_write_ibrs);
3946
3947int
3948pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3949{
3950 pfm_context_t *ctx;
3951
3952 if (req == NULL) return -EINVAL;
3953
3954 ctx = GET_PMU_CTX();
3955
3956 if (ctx == NULL) return -EINVAL;
3957
3958 /*
3959 * for now limit to current task, which is enough when calling
3960 * from overflow handler
3961 */
3962 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3963
3964 return pfm_write_dbrs(ctx, req, nreq, regs);
3965}
3966EXPORT_SYMBOL(pfm_mod_write_dbrs);
3967
3968
3969static int
3970pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3971{
3972 pfarg_features_t *req = (pfarg_features_t *)arg;
3973
3974 req->ft_version = PFM_VERSION;
3975 return 0;
3976}
3977
3978static int
3979pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3980{
3981 struct pt_regs *tregs;
3982 struct task_struct *task = PFM_CTX_TASK(ctx);
3983 int state, is_system;
3984
3985 state = ctx->ctx_state;
3986 is_system = ctx->ctx_fl_system;
3987
3988 /*
3989 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3990 */
3991 if (state == PFM_CTX_UNLOADED) return -EINVAL;
3992
3993 /*
3994 * In system wide and when the context is loaded, access can only happen
3995 * when the caller is running on the CPU being monitored by the session.
3996 * It does not have to be the owner (ctx_task) of the context per se.
3997 */
3998 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3999 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4000 return -EBUSY;
4001 }
4002 DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
4003 PFM_CTX_TASK(ctx)->pid,
4004 state,
4005 is_system));
4006 /*
4007 * in system mode, we need to update the PMU directly
4008 * and the user level state of the caller, which may not
4009 * necessarily be the creator of the context.
4010 */
4011 if (is_system) {
4012 /*
4013 * Update local PMU first
4014 *
4015 * disable dcr pp
4016 */
4017 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
4018 ia64_srlz_i();
4019
4020 /*
4021 * update local cpuinfo
4022 */
4023 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4024
4025 /*
4026 * stop monitoring, does srlz.i
4027 */
4028 pfm_clear_psr_pp();
4029
4030 /*
4031 * stop monitoring in the caller
4032 */
4033 ia64_psr(regs)->pp = 0;
4034
4035 return 0;
4036 }
4037 /*
4038 * per-task mode
4039 */
4040
4041 if (task == current) {
4042 /* stop monitoring at kernel level */
4043 pfm_clear_psr_up();
4044
4045 /*
4046 * stop monitoring at the user level
4047 */
4048 ia64_psr(regs)->up = 0;
4049 } else {
4050 tregs = ia64_task_regs(task);
4051
4052 /*
4053 * stop monitoring at the user level
4054 */
4055 ia64_psr(tregs)->up = 0;
4056
4057 /*
4058 * monitoring disabled in kernel at next reschedule
4059 */
4060 ctx->ctx_saved_psr_up = 0;
4061 DPRINT(("task=[%d]\n", task->pid));
4062 }
4063 return 0;
4064}
4065
4066
4067static int
4068pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4069{
4070 struct pt_regs *tregs;
4071 int state, is_system;
4072
4073 state = ctx->ctx_state;
4074 is_system = ctx->ctx_fl_system;
4075
4076 if (state != PFM_CTX_LOADED) return -EINVAL;
4077
4078 /*
4079 * In system wide and when the context is loaded, access can only happen
4080 * when the caller is running on the CPU being monitored by the session.
4081 * It does not have to be the owner (ctx_task) of the context per se.
4082 */
4083 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4084 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4085 return -EBUSY;
4086 }
4087
4088 /*
4089 * in system mode, we need to update the PMU directly
4090 * and the user level state of the caller, which may not
4091 * necessarily be the creator of the context.
4092 */
4093 if (is_system) {
4094
4095 /*
4096 * set user level psr.pp for the caller
4097 */
4098 ia64_psr(regs)->pp = 1;
4099
4100 /*
4101 * now update the local PMU and cpuinfo
4102 */
4103 PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4104
4105 /*
4106 * start monitoring at kernel level
4107 */
4108 pfm_set_psr_pp();
4109
4110 /* enable dcr pp */
4111 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4112 ia64_srlz_i();
4113
4114 return 0;
4115 }
4116
4117 /*
4118 * per-process mode
4119 */
4120
4121 if (ctx->ctx_task == current) {
4122
4123 /* start monitoring at kernel level */
4124 pfm_set_psr_up();
4125
4126 /*
4127 * activate monitoring at user level
4128 */
4129 ia64_psr(regs)->up = 1;
4130
4131 } else {
4132 tregs = ia64_task_regs(ctx->ctx_task);
4133
4134 /*
4135 * start monitoring at the kernel level the next
4136 * time the task is scheduled
4137 */
4138 ctx->ctx_saved_psr_up = IA64_PSR_UP;
4139
4140 /*
4141 * activate monitoring at user level
4142 */
4143 ia64_psr(tregs)->up = 1;
4144 }
4145 return 0;
4146}
4147
4148static int
4149pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4150{
4151 pfarg_reg_t *req = (pfarg_reg_t *)arg;
4152 unsigned int cnum;
4153 int i;
4154 int ret = -EINVAL;
4155
4156 for (i = 0; i < count; i++, req++) {
4157
4158 cnum = req->reg_num;
4159
4160 if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4161
4162 req->reg_value = PMC_DFL_VAL(cnum);
4163
4164 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4165
4166 DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4167 }
4168 return 0;
4169
4170abort_mission:
4171 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4172 return ret;
4173}
4174
4175static int
4176pfm_check_task_exist(pfm_context_t *ctx)
4177{
4178 struct task_struct *g, *t;
4179 int ret = -ESRCH;
4180
4181 read_lock(&tasklist_lock);
4182
4183 do_each_thread (g, t) {
4184 if (t->thread.pfm_context == ctx) {
4185 ret = 0;
4186 break;
4187 }
4188 } while_each_thread (g, t);
4189
4190 read_unlock(&tasklist_lock);
4191
4192 DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4193
4194 return ret;
4195}
4196
4197static int
4198pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4199{
4200 struct task_struct *task;
4201 struct thread_struct *thread;
4202 struct pfm_context_t *old;
4203 unsigned long flags;
4204#ifndef CONFIG_SMP
4205 struct task_struct *owner_task = NULL;
4206#endif
4207 pfarg_load_t *req = (pfarg_load_t *)arg;
4208 unsigned long *pmcs_source, *pmds_source;
4209 int the_cpu;
4210 int ret = 0;
4211 int state, is_system, set_dbregs = 0;
4212
4213 state = ctx->ctx_state;
4214 is_system = ctx->ctx_fl_system;
4215 /*
4216 * can only load from unloaded or terminated state
4217 */
4218 if (state != PFM_CTX_UNLOADED) {
4219 DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4220 req->load_pid,
4221 ctx->ctx_state));
a5a70b75 4222 return -EBUSY;
1da177e4
LT
4223 }
4224
4225 DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4226
4227 if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4228 DPRINT(("cannot use blocking mode on self\n"));
4229 return -EINVAL;
4230 }
4231
4232 ret = pfm_get_task(ctx, req->load_pid, &task);
4233 if (ret) {
4234 DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4235 return ret;
4236 }
4237
4238 ret = -EINVAL;
4239
4240 /*
4241 * system wide is self monitoring only
4242 */
4243 if (is_system && task != current) {
4244 DPRINT(("system wide is self monitoring only load_pid=%d\n",
4245 req->load_pid));
4246 goto error;
4247 }
4248
4249 thread = &task->thread;
4250
4251 ret = 0;
4252 /*
4253 * cannot load a context which is using range restrictions,
4254 * into a task that is being debugged.
4255 */
4256 if (ctx->ctx_fl_using_dbreg) {
4257 if (thread->flags & IA64_THREAD_DBG_VALID) {
4258 ret = -EBUSY;
4259 DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4260 goto error;
4261 }
4262 LOCK_PFS(flags);
4263
4264 if (is_system) {
4265 if (pfm_sessions.pfs_ptrace_use_dbregs) {
4266 DPRINT(("cannot load [%d] dbregs in use\n", task->pid));
4267 ret = -EBUSY;
4268 } else {
4269 pfm_sessions.pfs_sys_use_dbregs++;
4270 DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task->pid, pfm_sessions.pfs_sys_use_dbregs));
4271 set_dbregs = 1;
4272 }
4273 }
4274
4275 UNLOCK_PFS(flags);
4276
4277 if (ret) goto error;
4278 }
4279
4280 /*
4281 * SMP system-wide monitoring implies self-monitoring.
4282 *
4283 * The programming model expects the task to
4284 * be pinned on a CPU throughout the session.
4285 * Here we take note of the current CPU at the
4286 * time the context is loaded. No call from
4287 * another CPU will be allowed.
4288 *
4289 * The pinning via shed_setaffinity()
4290 * must be done by the calling task prior
4291 * to this call.
4292 *
4293 * systemwide: keep track of CPU this session is supposed to run on
4294 */
4295 the_cpu = ctx->ctx_cpu = smp_processor_id();
4296
4297 ret = -EBUSY;
4298 /*
4299 * now reserve the session
4300 */
4301 ret = pfm_reserve_session(current, is_system, the_cpu);
4302 if (ret) goto error;
4303
4304 /*
4305 * task is necessarily stopped at this point.
4306 *
4307 * If the previous context was zombie, then it got removed in
4308 * pfm_save_regs(). Therefore we should not see it here.
4309 * If we see a context, then this is an active context
4310 *
4311 * XXX: needs to be atomic
4312 */
4313 DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4314 thread->pfm_context, ctx));
4315
4316 old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4317 if (old != NULL) {
4318 DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4319 goto error_unres;
4320 }
4321
4322 pfm_reset_msgq(ctx);
4323
4324 ctx->ctx_state = PFM_CTX_LOADED;
4325
4326 /*
4327 * link context to task
4328 */
4329 ctx->ctx_task = task;
4330
4331 if (is_system) {
4332 /*
4333 * we load as stopped
4334 */
4335 PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4336 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4337
4338 if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4339 } else {
4340 thread->flags |= IA64_THREAD_PM_VALID;
4341 }
4342
4343 /*
4344 * propagate into thread-state
4345 */
4346 pfm_copy_pmds(task, ctx);
4347 pfm_copy_pmcs(task, ctx);
4348
4349 pmcs_source = thread->pmcs;
4350 pmds_source = thread->pmds;
4351
4352 /*
4353 * always the case for system-wide
4354 */
4355 if (task == current) {
4356
4357 if (is_system == 0) {
4358
4359 /* allow user level control */
4360 ia64_psr(regs)->sp = 0;
4361 DPRINT(("clearing psr.sp for [%d]\n", task->pid));
4362
4363 SET_LAST_CPU(ctx, smp_processor_id());
4364 INC_ACTIVATION();
4365 SET_ACTIVATION(ctx);
4366#ifndef CONFIG_SMP
4367 /*
4368 * push the other task out, if any
4369 */
4370 owner_task = GET_PMU_OWNER();
4371 if (owner_task) pfm_lazy_save_regs(owner_task);
4372#endif
4373 }
4374 /*
4375 * load all PMD from ctx to PMU (as opposed to thread state)
4376 * restore all PMC from ctx to PMU
4377 */
4378 pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4379 pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4380
4381 ctx->ctx_reload_pmcs[0] = 0UL;
4382 ctx->ctx_reload_pmds[0] = 0UL;
4383
4384 /*
4385 * guaranteed safe by earlier check against DBG_VALID
4386 */
4387 if (ctx->ctx_fl_using_dbreg) {
4388 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4389 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4390 }
4391 /*
4392 * set new ownership
4393 */
4394 SET_PMU_OWNER(task, ctx);
4395
4396 DPRINT(("context loaded on PMU for [%d]\n", task->pid));
4397 } else {
4398 /*
4399 * when not current, task MUST be stopped, so this is safe
4400 */
4401 regs = ia64_task_regs(task);
4402
4403 /* force a full reload */
4404 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4405 SET_LAST_CPU(ctx, -1);
4406
4407 /* initial saved psr (stopped) */
4408 ctx->ctx_saved_psr_up = 0UL;
4409 ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4410 }
4411
4412 ret = 0;
4413
4414error_unres:
4415 if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4416error:
4417 /*
4418 * we must undo the dbregs setting (for system-wide)
4419 */
4420 if (ret && set_dbregs) {
4421 LOCK_PFS(flags);
4422 pfm_sessions.pfs_sys_use_dbregs--;
4423 UNLOCK_PFS(flags);
4424 }
4425 /*
4426 * release task, there is now a link with the context
4427 */
4428 if (is_system == 0 && task != current) {
4429 pfm_put_task(task);
4430
4431 if (ret == 0) {
4432 ret = pfm_check_task_exist(ctx);
4433 if (ret) {
4434 ctx->ctx_state = PFM_CTX_UNLOADED;
4435 ctx->ctx_task = NULL;
4436 }
4437 }
4438 }
4439 return ret;
4440}
4441
4442/*
4443 * in this function, we do not need to increase the use count
4444 * for the task via get_task_struct(), because we hold the
4445 * context lock. If the task were to disappear while having
4446 * a context attached, it would go through pfm_exit_thread()
4447 * which also grabs the context lock and would therefore be blocked
4448 * until we are here.
4449 */
4450static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4451
4452static int
4453pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4454{
4455 struct task_struct *task = PFM_CTX_TASK(ctx);
4456 struct pt_regs *tregs;
4457 int prev_state, is_system;
4458 int ret;
4459
4460 DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task->pid : -1));
4461
4462 prev_state = ctx->ctx_state;
4463 is_system = ctx->ctx_fl_system;
4464
4465 /*
4466 * unload only when necessary
4467 */
4468 if (prev_state == PFM_CTX_UNLOADED) {
4469 DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4470 return 0;
4471 }
4472
4473 /*
4474 * clear psr and dcr bits
4475 */
4476 ret = pfm_stop(ctx, NULL, 0, regs);
4477 if (ret) return ret;
4478
4479 ctx->ctx_state = PFM_CTX_UNLOADED;
4480
4481 /*
4482 * in system mode, we need to update the PMU directly
4483 * and the user level state of the caller, which may not
4484 * necessarily be the creator of the context.
4485 */
4486 if (is_system) {
4487
4488 /*
4489 * Update cpuinfo
4490 *
4491 * local PMU is taken care of in pfm_stop()
4492 */
4493 PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4494 PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4495
4496 /*
4497 * save PMDs in context
4498 * release ownership
4499 */
4500 pfm_flush_pmds(current, ctx);
4501
4502 /*
4503 * at this point we are done with the PMU
4504 * so we can unreserve the resource.
4505 */
4506 if (prev_state != PFM_CTX_ZOMBIE)
4507 pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4508
4509 /*
4510 * disconnect context from task
4511 */
4512 task->thread.pfm_context = NULL;
4513 /*
4514 * disconnect task from context
4515 */
4516 ctx->ctx_task = NULL;
4517
4518 /*
4519 * There is nothing more to cleanup here.
4520 */
4521 return 0;
4522 }
4523
4524 /*
4525 * per-task mode
4526 */
4527 tregs = task == current ? regs : ia64_task_regs(task);
4528
4529 if (task == current) {
4530 /*
4531 * cancel user level control
4532 */
4533 ia64_psr(regs)->sp = 1;
4534
4535 DPRINT(("setting psr.sp for [%d]\n", task->pid));
4536 }
4537 /*
4538 * save PMDs to context
4539 * release ownership
4540 */
4541 pfm_flush_pmds(task, ctx);
4542
4543 /*
4544 * at this point we are done with the PMU
4545 * so we can unreserve the resource.
4546 *
4547 * when state was ZOMBIE, we have already unreserved.
4548 */
4549 if (prev_state != PFM_CTX_ZOMBIE)
4550 pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4551
4552 /*
4553 * reset activation counter and psr
4554 */
4555 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4556 SET_LAST_CPU(ctx, -1);
4557
4558 /*
4559 * PMU state will not be restored
4560 */
4561 task->thread.flags &= ~IA64_THREAD_PM_VALID;
4562
4563 /*
4564 * break links between context and task
4565 */
4566 task->thread.pfm_context = NULL;
4567 ctx->ctx_task = NULL;
4568
4569 PFM_SET_WORK_PENDING(task, 0);
4570
4571 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
4572 ctx->ctx_fl_can_restart = 0;
4573 ctx->ctx_fl_going_zombie = 0;
4574
4575 DPRINT(("disconnected [%d] from context\n", task->pid));
4576
4577 return 0;
4578}
4579
4580
4581/*
4582 * called only from exit_thread(): task == current
4583 * we come here only if current has a context attached (loaded or masked)
4584 */
4585void
4586pfm_exit_thread(struct task_struct *task)
4587{
4588 pfm_context_t *ctx;
4589 unsigned long flags;
4590 struct pt_regs *regs = ia64_task_regs(task);
4591 int ret, state;
4592 int free_ok = 0;
4593
4594 ctx = PFM_GET_CTX(task);
4595
4596 PROTECT_CTX(ctx, flags);
4597
4598 DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task->pid));
4599
4600 state = ctx->ctx_state;
4601 switch(state) {
4602 case PFM_CTX_UNLOADED:
4603 /*
4604 * only comes to thios function if pfm_context is not NULL, i.e., cannot
4605 * be in unloaded state
4606 */
4607 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task->pid);
4608 break;
4609 case PFM_CTX_LOADED:
4610 case PFM_CTX_MASKED:
4611 ret = pfm_context_unload(ctx, NULL, 0, regs);
4612 if (ret) {
4613 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task->pid, state, ret);
4614 }
4615 DPRINT(("ctx unloaded for current state was %d\n", state));
4616
4617 pfm_end_notify_user(ctx);
4618 break;
4619 case PFM_CTX_ZOMBIE:
4620 ret = pfm_context_unload(ctx, NULL, 0, regs);
4621 if (ret) {
4622 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task->pid, state, ret);
4623 }
4624 free_ok = 1;
4625 break;
4626 default:
4627 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task->pid, state);
4628 break;
4629 }
4630 UNPROTECT_CTX(ctx, flags);
4631
4632 { u64 psr = pfm_get_psr();
4633 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4634 BUG_ON(GET_PMU_OWNER());
4635 BUG_ON(ia64_psr(regs)->up);
4636 BUG_ON(ia64_psr(regs)->pp);
4637 }
4638
4639 /*
4640 * All memory free operations (especially for vmalloc'ed memory)
4641 * MUST be done with interrupts ENABLED.
4642 */
4643 if (free_ok) pfm_context_free(ctx);
4644}
4645
4646/*
4647 * functions MUST be listed in the increasing order of their index (see permfon.h)
4648 */
4649#define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4650#define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4651#define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4652#define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
4653#define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
4654
4655static pfm_cmd_desc_t pfm_cmd_tab[]={
4656/* 0 */PFM_CMD_NONE,
4657/* 1 */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4658/* 2 */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4659/* 3 */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4660/* 4 */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4661/* 5 */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4662/* 6 */PFM_CMD_NONE,
4663/* 7 */PFM_CMD_NONE,
4664/* 8 */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4665/* 9 */PFM_CMD_NONE,
4666/* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4667/* 11 */PFM_CMD_NONE,
4668/* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4669/* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4670/* 14 */PFM_CMD_NONE,
4671/* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4672/* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4673/* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4674/* 18 */PFM_CMD_NONE,
4675/* 19 */PFM_CMD_NONE,
4676/* 20 */PFM_CMD_NONE,
4677/* 21 */PFM_CMD_NONE,
4678/* 22 */PFM_CMD_NONE,
4679/* 23 */PFM_CMD_NONE,
4680/* 24 */PFM_CMD_NONE,
4681/* 25 */PFM_CMD_NONE,
4682/* 26 */PFM_CMD_NONE,
4683/* 27 */PFM_CMD_NONE,
4684/* 28 */PFM_CMD_NONE,
4685/* 29 */PFM_CMD_NONE,
4686/* 30 */PFM_CMD_NONE,
4687/* 31 */PFM_CMD_NONE,
4688/* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4689/* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4690};
4691#define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4692
4693static int
4694pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4695{
4696 struct task_struct *task;
4697 int state, old_state;
4698
4699recheck:
4700 state = ctx->ctx_state;
4701 task = ctx->ctx_task;
4702
4703 if (task == NULL) {
4704 DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4705 return 0;
4706 }
4707
4708 DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4709 ctx->ctx_fd,
4710 state,
4711 task->pid,
4712 task->state, PFM_CMD_STOPPED(cmd)));
4713
4714 /*
4715 * self-monitoring always ok.
4716 *
4717 * for system-wide the caller can either be the creator of the
4718 * context (to one to which the context is attached to) OR
4719 * a task running on the same CPU as the session.
4720 */
4721 if (task == current || ctx->ctx_fl_system) return 0;
4722
4723 /*
a5a70b75 4724 * we are monitoring another thread
1da177e4 4725 */
a5a70b75 4726 switch(state) {
4727 case PFM_CTX_UNLOADED:
4728 /*
4729 * if context is UNLOADED we are safe to go
4730 */
4731 return 0;
4732 case PFM_CTX_ZOMBIE:
4733 /*
4734 * no command can operate on a zombie context
4735 */
4736 DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4737 return -EINVAL;
4738 case PFM_CTX_MASKED:
4739 /*
4740 * PMU state has been saved to software even though
4741 * the thread may still be running.
4742 */
4743 if (cmd != PFM_UNLOAD_CONTEXT) return 0;
1da177e4
LT
4744 }
4745
4746 /*
4747 * context is LOADED or MASKED. Some commands may need to have
4748 * the task stopped.
4749 *
4750 * We could lift this restriction for UP but it would mean that
4751 * the user has no guarantee the task would not run between
4752 * two successive calls to perfmonctl(). That's probably OK.
4753 * If this user wants to ensure the task does not run, then
4754 * the task must be stopped.
4755 */
4756 if (PFM_CMD_STOPPED(cmd)) {
4757 if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) {
4758 DPRINT(("[%d] task not in stopped state\n", task->pid));
4759 return -EBUSY;
4760 }
4761 /*
4762 * task is now stopped, wait for ctxsw out
4763 *
4764 * This is an interesting point in the code.
4765 * We need to unprotect the context because
4766 * the pfm_save_regs() routines needs to grab
4767 * the same lock. There are danger in doing
4768 * this because it leaves a window open for
4769 * another task to get access to the context
4770 * and possibly change its state. The one thing
4771 * that is not possible is for the context to disappear
4772 * because we are protected by the VFS layer, i.e.,
4773 * get_fd()/put_fd().
4774 */
4775 old_state = state;
4776
4777 UNPROTECT_CTX(ctx, flags);
4778
4779 wait_task_inactive(task);
4780
4781 PROTECT_CTX(ctx, flags);
4782
4783 /*
4784 * we must recheck to verify if state has changed
4785 */
4786 if (ctx->ctx_state != old_state) {
4787 DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4788 goto recheck;
4789 }
4790 }
4791 return 0;
4792}
4793
4794/*
4795 * system-call entry point (must return long)
4796 */
4797asmlinkage long
4798sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4799{
4800 struct file *file = NULL;
4801 pfm_context_t *ctx = NULL;
4802 unsigned long flags = 0UL;
4803 void *args_k = NULL;
4804 long ret; /* will expand int return types */
4805 size_t base_sz, sz, xtra_sz = 0;
4806 int narg, completed_args = 0, call_made = 0, cmd_flags;
4807 int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4808 int (*getsize)(void *arg, size_t *sz);
4809#define PFM_MAX_ARGSIZE 4096
4810
4811 /*
4812 * reject any call if perfmon was disabled at initialization
4813 */
4814 if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4815
4816 if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4817 DPRINT(("invalid cmd=%d\n", cmd));
4818 return -EINVAL;
4819 }
4820
4821 func = pfm_cmd_tab[cmd].cmd_func;
4822 narg = pfm_cmd_tab[cmd].cmd_narg;
4823 base_sz = pfm_cmd_tab[cmd].cmd_argsize;
4824 getsize = pfm_cmd_tab[cmd].cmd_getsize;
4825 cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4826
4827 if (unlikely(func == NULL)) {
4828 DPRINT(("invalid cmd=%d\n", cmd));
4829 return -EINVAL;
4830 }
4831
4832 DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4833 PFM_CMD_NAME(cmd),
4834 cmd,
4835 narg,
4836 base_sz,
4837 count));
4838
4839 /*
4840 * check if number of arguments matches what the command expects
4841 */
4842 if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4843 return -EINVAL;
4844
4845restart_args:
4846 sz = xtra_sz + base_sz*count;
4847 /*
4848 * limit abuse to min page size
4849 */
4850 if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4851 printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", current->pid, sz);
4852 return -E2BIG;
4853 }
4854
4855 /*
4856 * allocate default-sized argument buffer
4857 */
4858 if (likely(count && args_k == NULL)) {
4859 args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4860 if (args_k == NULL) return -ENOMEM;
4861 }
4862
4863 ret = -EFAULT;
4864
4865 /*
4866 * copy arguments
4867 *
4868 * assume sz = 0 for command without parameters
4869 */
4870 if (sz && copy_from_user(args_k, arg, sz)) {
4871 DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4872 goto error_args;
4873 }
4874
4875 /*
4876 * check if command supports extra parameters
4877 */
4878 if (completed_args == 0 && getsize) {
4879 /*
4880 * get extra parameters size (based on main argument)
4881 */
4882 ret = (*getsize)(args_k, &xtra_sz);
4883 if (ret) goto error_args;
4884
4885 completed_args = 1;
4886
4887 DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4888
4889 /* retry if necessary */
4890 if (likely(xtra_sz)) goto restart_args;
4891 }
4892
4893 if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4894
4895 ret = -EBADF;
4896
4897 file = fget(fd);
4898 if (unlikely(file == NULL)) {
4899 DPRINT(("invalid fd %d\n", fd));
4900 goto error_args;
4901 }
4902 if (unlikely(PFM_IS_FILE(file) == 0)) {
4903 DPRINT(("fd %d not related to perfmon\n", fd));
4904 goto error_args;
4905 }
4906
4907 ctx = (pfm_context_t *)file->private_data;
4908 if (unlikely(ctx == NULL)) {
4909 DPRINT(("no context for fd %d\n", fd));
4910 goto error_args;
4911 }
4912 prefetch(&ctx->ctx_state);
4913
4914 PROTECT_CTX(ctx, flags);
4915
4916 /*
4917 * check task is stopped
4918 */
4919 ret = pfm_check_task_state(ctx, cmd, flags);
4920 if (unlikely(ret)) goto abort_locked;
4921
4922skip_fd:
4923 ret = (*func)(ctx, args_k, count, ia64_task_regs(current));
4924
4925 call_made = 1;
4926
4927abort_locked:
4928 if (likely(ctx)) {
4929 DPRINT(("context unlocked\n"));
4930 UNPROTECT_CTX(ctx, flags);
4931 fput(file);
4932 }
4933
4934 /* copy argument back to user, if needed */
4935 if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4936
4937error_args:
4938 if (args_k) kfree(args_k);
4939
4940 DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4941
4942 return ret;
4943}
4944
4945static void
4946pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4947{
4948 pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4949 pfm_ovfl_ctrl_t rst_ctrl;
4950 int state;
4951 int ret = 0;
4952
4953 state = ctx->ctx_state;
4954 /*
4955 * Unlock sampling buffer and reset index atomically
4956 * XXX: not really needed when blocking
4957 */
4958 if (CTX_HAS_SMPL(ctx)) {
4959
4960 rst_ctrl.bits.mask_monitoring = 0;
4961 rst_ctrl.bits.reset_ovfl_pmds = 0;
4962
4963 if (state == PFM_CTX_LOADED)
4964 ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4965 else
4966 ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4967 } else {
4968 rst_ctrl.bits.mask_monitoring = 0;
4969 rst_ctrl.bits.reset_ovfl_pmds = 1;
4970 }
4971
4972 if (ret == 0) {
4973 if (rst_ctrl.bits.reset_ovfl_pmds) {
4974 pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4975 }
4976 if (rst_ctrl.bits.mask_monitoring == 0) {
4977 DPRINT(("resuming monitoring\n"));
4978 if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4979 } else {
4980 DPRINT(("stopping monitoring\n"));
4981 //pfm_stop_monitoring(current, regs);
4982 }
4983 ctx->ctx_state = PFM_CTX_LOADED;
4984 }
4985}
4986
4987/*
4988 * context MUST BE LOCKED when calling
4989 * can only be called for current
4990 */
4991static void
4992pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
4993{
4994 int ret;
4995
4996 DPRINT(("entering for [%d]\n", current->pid));
4997
4998 ret = pfm_context_unload(ctx, NULL, 0, regs);
4999 if (ret) {
5000 printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", current->pid, ret);
5001 }
5002
5003 /*
5004 * and wakeup controlling task, indicating we are now disconnected
5005 */
5006 wake_up_interruptible(&ctx->ctx_zombieq);
5007
5008 /*
5009 * given that context is still locked, the controlling
5010 * task will only get access when we return from
5011 * pfm_handle_work().
5012 */
5013}
5014
5015static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
4944930a
SE
5016 /*
5017 * pfm_handle_work() can be called with interrupts enabled
5018 * (TIF_NEED_RESCHED) or disabled. The down_interruptible
5019 * call may sleep, therefore we must re-enable interrupts
5020 * to avoid deadlocks. It is safe to do so because this function
5021 * is called ONLY when returning to user level (PUStk=1), in which case
5022 * there is no risk of kernel stack overflow due to deep
5023 * interrupt nesting.
5024 */
1da177e4
LT
5025void
5026pfm_handle_work(void)
5027{
5028 pfm_context_t *ctx;
5029 struct pt_regs *regs;
4944930a 5030 unsigned long flags, dummy_flags;
1da177e4
LT
5031 unsigned long ovfl_regs;
5032 unsigned int reason;
5033 int ret;
5034
5035 ctx = PFM_GET_CTX(current);
5036 if (ctx == NULL) {
5037 printk(KERN_ERR "perfmon: [%d] has no PFM context\n", current->pid);
5038 return;
5039 }
5040
5041 PROTECT_CTX(ctx, flags);
5042
5043 PFM_SET_WORK_PENDING(current, 0);
5044
5045 pfm_clear_task_notify();
5046
5047 regs = ia64_task_regs(current);
5048
5049 /*
5050 * extract reason for being here and clear
5051 */
5052 reason = ctx->ctx_fl_trap_reason;
5053 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5054 ovfl_regs = ctx->ctx_ovfl_regs[0];
5055
5056 DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5057
5058 /*
5059 * must be done before we check for simple-reset mode
5060 */
5061 if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE) goto do_zombie;
5062
5063
5064 //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5065 if (reason == PFM_TRAP_REASON_RESET) goto skip_blocking;
5066
4944930a
SE
5067 /*
5068 * restore interrupt mask to what it was on entry.
5069 * Could be enabled/diasbled.
5070 */
1da177e4
LT
5071 UNPROTECT_CTX(ctx, flags);
5072
4944930a
SE
5073 /*
5074 * force interrupt enable because of down_interruptible()
5075 */
1da177e4
LT
5076 local_irq_enable();
5077
5078 DPRINT(("before block sleeping\n"));
5079
5080 /*
5081 * may go through without blocking on SMP systems
5082 * if restart has been received already by the time we call down()
5083 */
5084 ret = down_interruptible(&ctx->ctx_restart_sem);
5085
5086 DPRINT(("after block sleeping ret=%d\n", ret));
5087
5088 /*
4944930a
SE
5089 * lock context and mask interrupts again
5090 * We save flags into a dummy because we may have
5091 * altered interrupts mask compared to entry in this
5092 * function.
1da177e4 5093 */
4944930a 5094 PROTECT_CTX(ctx, dummy_flags);
1da177e4
LT
5095
5096 /*
5097 * we need to read the ovfl_regs only after wake-up
5098 * because we may have had pfm_write_pmds() in between
5099 * and that can changed PMD values and therefore
5100 * ovfl_regs is reset for these new PMD values.
5101 */
5102 ovfl_regs = ctx->ctx_ovfl_regs[0];
5103
5104 if (ctx->ctx_fl_going_zombie) {
5105do_zombie:
5106 DPRINT(("context is zombie, bailing out\n"));
5107 pfm_context_force_terminate(ctx, regs);
5108 goto nothing_to_do;
5109 }
5110 /*
5111 * in case of interruption of down() we don't restart anything
5112 */
5113 if (ret < 0) goto nothing_to_do;
5114
5115skip_blocking:
5116 pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5117 ctx->ctx_ovfl_regs[0] = 0UL;
5118
5119nothing_to_do:
4944930a
SE
5120 /*
5121 * restore flags as they were upon entry
5122 */
1da177e4
LT
5123 UNPROTECT_CTX(ctx, flags);
5124}
5125
5126static int
5127pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5128{
5129 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5130 DPRINT(("ignoring overflow notification, owner is zombie\n"));
5131 return 0;
5132 }
5133
5134 DPRINT(("waking up somebody\n"));
5135
5136 if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5137
5138 /*
5139 * safe, we are not in intr handler, nor in ctxsw when
5140 * we come here
5141 */
5142 kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5143
5144 return 0;
5145}
5146
5147static int
5148pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5149{
5150 pfm_msg_t *msg = NULL;
5151
5152 if (ctx->ctx_fl_no_msg == 0) {
5153 msg = pfm_get_new_msg(ctx);
5154 if (msg == NULL) {
5155 printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5156 return -1;
5157 }
5158
5159 msg->pfm_ovfl_msg.msg_type = PFM_MSG_OVFL;
5160 msg->pfm_ovfl_msg.msg_ctx_fd = ctx->ctx_fd;
5161 msg->pfm_ovfl_msg.msg_active_set = 0;
5162 msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5163 msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5164 msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5165 msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5166 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5167 }
5168
5169 DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5170 msg,
5171 ctx->ctx_fl_no_msg,
5172 ctx->ctx_fd,
5173 ovfl_pmds));
5174
5175 return pfm_notify_user(ctx, msg);
5176}
5177
5178static int
5179pfm_end_notify_user(pfm_context_t *ctx)
5180{
5181 pfm_msg_t *msg;
5182
5183 msg = pfm_get_new_msg(ctx);
5184 if (msg == NULL) {
5185 printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5186 return -1;
5187 }
5188 /* no leak */
5189 memset(msg, 0, sizeof(*msg));
5190
5191 msg->pfm_end_msg.msg_type = PFM_MSG_END;
5192 msg->pfm_end_msg.msg_ctx_fd = ctx->ctx_fd;
5193 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5194
5195 DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5196 msg,
5197 ctx->ctx_fl_no_msg,
5198 ctx->ctx_fd));
5199
5200 return pfm_notify_user(ctx, msg);
5201}
5202
5203/*
5204 * main overflow processing routine.
5205 * it can be called from the interrupt path or explicitely during the context switch code
5206 */
5207static void
5208pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx, u64 pmc0, struct pt_regs *regs)
5209{
5210 pfm_ovfl_arg_t *ovfl_arg;
5211 unsigned long mask;
5212 unsigned long old_val, ovfl_val, new_val;
5213 unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5214 unsigned long tstamp;
5215 pfm_ovfl_ctrl_t ovfl_ctrl;
5216 unsigned int i, has_smpl;
5217 int must_notify = 0;
5218
5219 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5220
5221 /*
5222 * sanity test. Should never happen
5223 */
5224 if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5225
5226 tstamp = ia64_get_itc();
5227 mask = pmc0 >> PMU_FIRST_COUNTER;
5228 ovfl_val = pmu_conf->ovfl_val;
5229 has_smpl = CTX_HAS_SMPL(ctx);
5230
5231 DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5232 "used_pmds=0x%lx\n",
5233 pmc0,
5234 task ? task->pid: -1,
5235 (regs ? regs->cr_iip : 0),
5236 CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5237 ctx->ctx_used_pmds[0]));
5238
5239
5240 /*
5241 * first we update the virtual counters
5242 * assume there was a prior ia64_srlz_d() issued
5243 */
5244 for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5245
5246 /* skip pmd which did not overflow */
5247 if ((mask & 0x1) == 0) continue;
5248
5249 /*
5250 * Note that the pmd is not necessarily 0 at this point as qualified events
5251 * may have happened before the PMU was frozen. The residual count is not
5252 * taken into consideration here but will be with any read of the pmd via
5253 * pfm_read_pmds().
5254 */
5255 old_val = new_val = ctx->ctx_pmds[i].val;
5256 new_val += 1 + ovfl_val;
5257 ctx->ctx_pmds[i].val = new_val;
5258
5259 /*
5260 * check for overflow condition
5261 */
5262 if (likely(old_val > new_val)) {
5263 ovfl_pmds |= 1UL << i;
5264 if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5265 }
5266
5267 DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5268 i,
5269 new_val,
5270 old_val,
5271 ia64_get_pmd(i) & ovfl_val,
5272 ovfl_pmds,
5273 ovfl_notify));
5274 }
5275
5276 /*
5277 * there was no 64-bit overflow, nothing else to do
5278 */
5279 if (ovfl_pmds == 0UL) return;
5280
5281 /*
5282 * reset all control bits
5283 */
5284 ovfl_ctrl.val = 0;
5285 reset_pmds = 0UL;
5286
5287 /*
5288 * if a sampling format module exists, then we "cache" the overflow by
5289 * calling the module's handler() routine.
5290 */
5291 if (has_smpl) {
5292 unsigned long start_cycles, end_cycles;
5293 unsigned long pmd_mask;
5294 int j, k, ret = 0;
5295 int this_cpu = smp_processor_id();
5296
5297 pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5298 ovfl_arg = &ctx->ctx_ovfl_arg;
5299
5300 prefetch(ctx->ctx_smpl_hdr);
5301
5302 for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5303
5304 mask = 1UL << i;
5305
5306 if ((pmd_mask & 0x1) == 0) continue;
5307
5308 ovfl_arg->ovfl_pmd = (unsigned char )i;
5309 ovfl_arg->ovfl_notify = ovfl_notify & mask ? 1 : 0;
5310 ovfl_arg->active_set = 0;
5311 ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5312 ovfl_arg->smpl_pmds[0] = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5313
5314 ovfl_arg->pmd_value = ctx->ctx_pmds[i].val;
5315 ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5316 ovfl_arg->pmd_eventid = ctx->ctx_pmds[i].eventid;
5317
5318 /*
5319 * copy values of pmds of interest. Sampling format may copy them
5320 * into sampling buffer.
5321 */
5322 if (smpl_pmds) {
5323 for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5324 if ((smpl_pmds & 0x1) == 0) continue;
5325 ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ? pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5326 DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5327 }
5328 }
5329
5330 pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5331
5332 start_cycles = ia64_get_itc();
5333
5334 /*
5335 * call custom buffer format record (handler) routine
5336 */
5337 ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5338
5339 end_cycles = ia64_get_itc();
5340
5341 /*
5342 * For those controls, we take the union because they have
5343 * an all or nothing behavior.
5344 */
5345 ovfl_ctrl.bits.notify_user |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5346 ovfl_ctrl.bits.block_task |= ovfl_arg->ovfl_ctrl.bits.block_task;
5347 ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5348 /*
5349 * build the bitmask of pmds to reset now
5350 */
5351 if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5352
5353 pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5354 }
5355 /*
5356 * when the module cannot handle the rest of the overflows, we abort right here
5357 */
5358 if (ret && pmd_mask) {
5359 DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5360 pmd_mask<<PMU_FIRST_COUNTER));
5361 }
5362 /*
5363 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5364 */
5365 ovfl_pmds &= ~reset_pmds;
5366 } else {
5367 /*
5368 * when no sampling module is used, then the default
5369 * is to notify on overflow if requested by user
5370 */
5371 ovfl_ctrl.bits.notify_user = ovfl_notify ? 1 : 0;
5372 ovfl_ctrl.bits.block_task = ovfl_notify ? 1 : 0;
5373 ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5374 ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5375 /*
5376 * if needed, we reset all overflowed pmds
5377 */
5378 if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5379 }
5380
5381 DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5382
5383 /*
5384 * reset the requested PMD registers using the short reset values
5385 */
5386 if (reset_pmds) {
5387 unsigned long bm = reset_pmds;
5388 pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5389 }
5390
5391 if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5392 /*
5393 * keep track of what to reset when unblocking
5394 */
5395 ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5396
5397 /*
5398 * check for blocking context
5399 */
5400 if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5401
5402 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5403
5404 /*
5405 * set the perfmon specific checking pending work for the task
5406 */
5407 PFM_SET_WORK_PENDING(task, 1);
5408
5409 /*
5410 * when coming from ctxsw, current still points to the
5411 * previous task, therefore we must work with task and not current.
5412 */
5413 pfm_set_task_notify(task);
5414 }
5415 /*
5416 * defer until state is changed (shorten spin window). the context is locked
5417 * anyway, so the signal receiver would come spin for nothing.
5418 */
5419 must_notify = 1;
5420 }
5421
5422 DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5423 GET_PMU_OWNER() ? GET_PMU_OWNER()->pid : -1,
5424 PFM_GET_WORK_PENDING(task),
5425 ctx->ctx_fl_trap_reason,
5426 ovfl_pmds,
5427 ovfl_notify,
5428 ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5429 /*
5430 * in case monitoring must be stopped, we toggle the psr bits
5431 */
5432 if (ovfl_ctrl.bits.mask_monitoring) {
5433 pfm_mask_monitoring(task);
5434 ctx->ctx_state = PFM_CTX_MASKED;
5435 ctx->ctx_fl_can_restart = 1;
5436 }
5437
5438 /*
5439 * send notification now
5440 */
5441 if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5442
5443 return;
5444
5445sanity_check:
5446 printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5447 smp_processor_id(),
5448 task ? task->pid : -1,
5449 pmc0);
5450 return;
5451
5452stop_monitoring:
5453 /*
5454 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5455 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5456 * come here as zombie only if the task is the current task. In which case, we
5457 * can access the PMU hardware directly.
5458 *
5459 * Note that zombies do have PM_VALID set. So here we do the minimal.
5460 *
5461 * In case the context was zombified it could not be reclaimed at the time
5462 * the monitoring program exited. At this point, the PMU reservation has been
5463 * returned, the sampiing buffer has been freed. We must convert this call
5464 * into a spurious interrupt. However, we must also avoid infinite overflows
5465 * by stopping monitoring for this task. We can only come here for a per-task
5466 * context. All we need to do is to stop monitoring using the psr bits which
5467 * are always task private. By re-enabling secure montioring, we ensure that
5468 * the monitored task will not be able to re-activate monitoring.
5469 * The task will eventually be context switched out, at which point the context
5470 * will be reclaimed (that includes releasing ownership of the PMU).
5471 *
5472 * So there might be a window of time where the number of per-task session is zero
5473 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5474 * context. This is safe because if a per-task session comes in, it will push this one
5475 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5476 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5477 * also push our zombie context out.
5478 *
5479 * Overall pretty hairy stuff....
5480 */
5481 DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task->pid: -1));
5482 pfm_clear_psr_up();
5483 ia64_psr(regs)->up = 0;
5484 ia64_psr(regs)->sp = 1;
5485 return;
5486}
5487
5488static int
5489pfm_do_interrupt_handler(int irq, void *arg, struct pt_regs *regs)
5490{
5491 struct task_struct *task;
5492 pfm_context_t *ctx;
5493 unsigned long flags;
5494 u64 pmc0;
5495 int this_cpu = smp_processor_id();
5496 int retval = 0;
5497
5498 pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5499
5500 /*
5501 * srlz.d done before arriving here
5502 */
5503 pmc0 = ia64_get_pmc(0);
5504
5505 task = GET_PMU_OWNER();
5506 ctx = GET_PMU_CTX();
5507
5508 /*
5509 * if we have some pending bits set
5510 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5511 */
5512 if (PMC0_HAS_OVFL(pmc0) && task) {
5513 /*
5514 * we assume that pmc0.fr is always set here
5515 */
5516
5517 /* sanity check */
5518 if (!ctx) goto report_spurious1;
5519
5520 if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
5521 goto report_spurious2;
5522
5523 PROTECT_CTX_NOPRINT(ctx, flags);
5524
5525 pfm_overflow_handler(task, ctx, pmc0, regs);
5526
5527 UNPROTECT_CTX_NOPRINT(ctx, flags);
5528
5529 } else {
5530 pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5531 retval = -1;
5532 }
5533 /*
5534 * keep it unfrozen at all times
5535 */
5536 pfm_unfreeze_pmu();
5537
5538 return retval;
5539
5540report_spurious1:
5541 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5542 this_cpu, task->pid);
5543 pfm_unfreeze_pmu();
5544 return -1;
5545report_spurious2:
5546 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5547 this_cpu,
5548 task->pid);
5549 pfm_unfreeze_pmu();
5550 return -1;
5551}
5552
5553static irqreturn_t
5554pfm_interrupt_handler(int irq, void *arg, struct pt_regs *regs)
5555{
5556 unsigned long start_cycles, total_cycles;
5557 unsigned long min, max;
5558 int this_cpu;
5559 int ret;
5560
5561 this_cpu = get_cpu();
a1ecf7f6
TL
5562 if (likely(!pfm_alt_intr_handler)) {
5563 min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5564 max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
1da177e4 5565
a1ecf7f6 5566 start_cycles = ia64_get_itc();
1da177e4 5567
a1ecf7f6 5568 ret = pfm_do_interrupt_handler(irq, arg, regs);
1da177e4 5569
a1ecf7f6 5570 total_cycles = ia64_get_itc();
1da177e4 5571
a1ecf7f6
TL
5572 /*
5573 * don't measure spurious interrupts
5574 */
5575 if (likely(ret == 0)) {
5576 total_cycles -= start_cycles;
1da177e4 5577
a1ecf7f6
TL
5578 if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5579 if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
1da177e4 5580
a1ecf7f6
TL
5581 pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5582 }
5583 }
5584 else {
5585 (*pfm_alt_intr_handler->handler)(irq, arg, regs);
1da177e4 5586 }
a1ecf7f6 5587
1da177e4
LT
5588 put_cpu_no_resched();
5589 return IRQ_HANDLED;
5590}
5591
5592/*
5593 * /proc/perfmon interface, for debug only
5594 */
5595
5596#define PFM_PROC_SHOW_HEADER ((void *)NR_CPUS+1)
5597
5598static void *
5599pfm_proc_start(struct seq_file *m, loff_t *pos)
5600{
5601 if (*pos == 0) {
5602 return PFM_PROC_SHOW_HEADER;
5603 }
5604
5605 while (*pos <= NR_CPUS) {
5606 if (cpu_online(*pos - 1)) {
5607 return (void *)*pos;
5608 }
5609 ++*pos;
5610 }
5611 return NULL;
5612}
5613
5614static void *
5615pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5616{
5617 ++*pos;
5618 return pfm_proc_start(m, pos);
5619}
5620
5621static void
5622pfm_proc_stop(struct seq_file *m, void *v)
5623{
5624}
5625
5626static void
5627pfm_proc_show_header(struct seq_file *m)
5628{
5629 struct list_head * pos;
5630 pfm_buffer_fmt_t * entry;
5631 unsigned long flags;
5632
5633 seq_printf(m,
5634 "perfmon version : %u.%u\n"
5635 "model : %s\n"
5636 "fastctxsw : %s\n"
5637 "expert mode : %s\n"
5638 "ovfl_mask : 0x%lx\n"
5639 "PMU flags : 0x%x\n",
5640 PFM_VERSION_MAJ, PFM_VERSION_MIN,
5641 pmu_conf->pmu_name,
5642 pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5643 pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5644 pmu_conf->ovfl_val,
5645 pmu_conf->flags);
5646
5647 LOCK_PFS(flags);
5648
5649 seq_printf(m,
5650 "proc_sessions : %u\n"
5651 "sys_sessions : %u\n"
5652 "sys_use_dbregs : %u\n"
5653 "ptrace_use_dbregs : %u\n",
5654 pfm_sessions.pfs_task_sessions,
5655 pfm_sessions.pfs_sys_sessions,
5656 pfm_sessions.pfs_sys_use_dbregs,
5657 pfm_sessions.pfs_ptrace_use_dbregs);
5658
5659 UNLOCK_PFS(flags);
5660
5661 spin_lock(&pfm_buffer_fmt_lock);
5662
5663 list_for_each(pos, &pfm_buffer_fmt_list) {
5664 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5665 seq_printf(m, "format : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
5666 entry->fmt_uuid[0],
5667 entry->fmt_uuid[1],
5668 entry->fmt_uuid[2],
5669 entry->fmt_uuid[3],
5670 entry->fmt_uuid[4],
5671 entry->fmt_uuid[5],
5672 entry->fmt_uuid[6],
5673 entry->fmt_uuid[7],
5674 entry->fmt_uuid[8],
5675 entry->fmt_uuid[9],
5676 entry->fmt_uuid[10],
5677 entry->fmt_uuid[11],
5678 entry->fmt_uuid[12],
5679 entry->fmt_uuid[13],
5680 entry->fmt_uuid[14],
5681 entry->fmt_uuid[15],
5682 entry->fmt_name);
5683 }
5684 spin_unlock(&pfm_buffer_fmt_lock);
5685
5686}
5687
5688static int
5689pfm_proc_show(struct seq_file *m, void *v)
5690{
5691 unsigned long psr;
5692 unsigned int i;
5693 int cpu;
5694
5695 if (v == PFM_PROC_SHOW_HEADER) {
5696 pfm_proc_show_header(m);
5697 return 0;
5698 }
5699
5700 /* show info for CPU (v - 1) */
5701
5702 cpu = (long)v - 1;
5703 seq_printf(m,
5704 "CPU%-2d overflow intrs : %lu\n"
5705 "CPU%-2d overflow cycles : %lu\n"
5706 "CPU%-2d overflow min : %lu\n"
5707 "CPU%-2d overflow max : %lu\n"
5708 "CPU%-2d smpl handler calls : %lu\n"
5709 "CPU%-2d smpl handler cycles : %lu\n"
5710 "CPU%-2d spurious intrs : %lu\n"
5711 "CPU%-2d replay intrs : %lu\n"
5712 "CPU%-2d syst_wide : %d\n"
5713 "CPU%-2d dcr_pp : %d\n"
5714 "CPU%-2d exclude idle : %d\n"
5715 "CPU%-2d owner : %d\n"
5716 "CPU%-2d context : %p\n"
5717 "CPU%-2d activations : %lu\n",
5718 cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5719 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5720 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5721 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5722 cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5723 cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5724 cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5725 cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5726 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5727 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5728 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5729 cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5730 cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5731 cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5732
5733 if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5734
5735 psr = pfm_get_psr();
5736
5737 ia64_srlz_d();
5738
5739 seq_printf(m,
5740 "CPU%-2d psr : 0x%lx\n"
5741 "CPU%-2d pmc0 : 0x%lx\n",
5742 cpu, psr,
5743 cpu, ia64_get_pmc(0));
5744
5745 for (i=0; PMC_IS_LAST(i) == 0; i++) {
5746 if (PMC_IS_COUNTING(i) == 0) continue;
5747 seq_printf(m,
5748 "CPU%-2d pmc%u : 0x%lx\n"
5749 "CPU%-2d pmd%u : 0x%lx\n",
5750 cpu, i, ia64_get_pmc(i),
5751 cpu, i, ia64_get_pmd(i));
5752 }
5753 }
5754 return 0;
5755}
5756
5757struct seq_operations pfm_seq_ops = {
5758 .start = pfm_proc_start,
5759 .next = pfm_proc_next,
5760 .stop = pfm_proc_stop,
5761 .show = pfm_proc_show
5762};
5763
5764static int
5765pfm_proc_open(struct inode *inode, struct file *file)
5766{
5767 return seq_open(file, &pfm_seq_ops);
5768}
5769
5770
5771/*
5772 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5773 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5774 * is active or inactive based on mode. We must rely on the value in
5775 * local_cpu_data->pfm_syst_info
5776 */
5777void
5778pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5779{
5780 struct pt_regs *regs;
5781 unsigned long dcr;
5782 unsigned long dcr_pp;
5783
5784 dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5785
5786 /*
5787 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5788 * on every CPU, so we can rely on the pid to identify the idle task.
5789 */
5790 if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5791 regs = ia64_task_regs(task);
5792 ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5793 return;
5794 }
5795 /*
5796 * if monitoring has started
5797 */
5798 if (dcr_pp) {
5799 dcr = ia64_getreg(_IA64_REG_CR_DCR);
5800 /*
5801 * context switching in?
5802 */
5803 if (is_ctxswin) {
5804 /* mask monitoring for the idle task */
5805 ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5806 pfm_clear_psr_pp();
5807 ia64_srlz_i();
5808 return;
5809 }
5810 /*
5811 * context switching out
5812 * restore monitoring for next task
5813 *
5814 * Due to inlining this odd if-then-else construction generates
5815 * better code.
5816 */
5817 ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5818 pfm_set_psr_pp();
5819 ia64_srlz_i();
5820 }
5821}
5822
5823#ifdef CONFIG_SMP
5824
5825static void
5826pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5827{
5828 struct task_struct *task = ctx->ctx_task;
5829
5830 ia64_psr(regs)->up = 0;
5831 ia64_psr(regs)->sp = 1;
5832
5833 if (GET_PMU_OWNER() == task) {
5834 DPRINT(("cleared ownership for [%d]\n", ctx->ctx_task->pid));
5835 SET_PMU_OWNER(NULL, NULL);
5836 }
5837
5838 /*
5839 * disconnect the task from the context and vice-versa
5840 */
5841 PFM_SET_WORK_PENDING(task, 0);
5842
5843 task->thread.pfm_context = NULL;
5844 task->thread.flags &= ~IA64_THREAD_PM_VALID;
5845
5846 DPRINT(("force cleanup for [%d]\n", task->pid));
5847}
5848
5849
5850/*
5851 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5852 */
5853void
5854pfm_save_regs(struct task_struct *task)
5855{
5856 pfm_context_t *ctx;
5857 struct thread_struct *t;
5858 unsigned long flags;
5859 u64 psr;
5860
5861
5862 ctx = PFM_GET_CTX(task);
5863 if (ctx == NULL) return;
5864 t = &task->thread;
5865
5866 /*
5867 * we always come here with interrupts ALREADY disabled by
5868 * the scheduler. So we simply need to protect against concurrent
5869 * access, not CPU concurrency.
5870 */
5871 flags = pfm_protect_ctx_ctxsw(ctx);
5872
5873 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5874 struct pt_regs *regs = ia64_task_regs(task);
5875
5876 pfm_clear_psr_up();
5877
5878 pfm_force_cleanup(ctx, regs);
5879
5880 BUG_ON(ctx->ctx_smpl_hdr);
5881
5882 pfm_unprotect_ctx_ctxsw(ctx, flags);
5883
5884 pfm_context_free(ctx);
5885 return;
5886 }
5887
5888 /*
5889 * save current PSR: needed because we modify it
5890 */
5891 ia64_srlz_d();
5892 psr = pfm_get_psr();
5893
5894 BUG_ON(psr & (IA64_PSR_I));
5895
5896 /*
5897 * stop monitoring:
5898 * This is the last instruction which may generate an overflow
5899 *
5900 * We do not need to set psr.sp because, it is irrelevant in kernel.
5901 * It will be restored from ipsr when going back to user level
5902 */
5903 pfm_clear_psr_up();
5904
5905 /*
5906 * keep a copy of psr.up (for reload)
5907 */
5908 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5909
5910 /*
5911 * release ownership of this PMU.
5912 * PM interrupts are masked, so nothing
5913 * can happen.
5914 */
5915 SET_PMU_OWNER(NULL, NULL);
5916
5917 /*
5918 * we systematically save the PMD as we have no
5919 * guarantee we will be schedule at that same
5920 * CPU again.
5921 */
5922 pfm_save_pmds(t->pmds, ctx->ctx_used_pmds[0]);
5923
5924 /*
5925 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5926 * we will need it on the restore path to check
5927 * for pending overflow.
5928 */
5929 t->pmcs[0] = ia64_get_pmc(0);
5930
5931 /*
5932 * unfreeze PMU if had pending overflows
5933 */
5934 if (t->pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5935
5936 /*
5937 * finally, allow context access.
5938 * interrupts will still be masked after this call.
5939 */
5940 pfm_unprotect_ctx_ctxsw(ctx, flags);
5941}
5942
5943#else /* !CONFIG_SMP */
5944void
5945pfm_save_regs(struct task_struct *task)
5946{
5947 pfm_context_t *ctx;
5948 u64 psr;
5949
5950 ctx = PFM_GET_CTX(task);
5951 if (ctx == NULL) return;
5952
5953 /*
5954 * save current PSR: needed because we modify it
5955 */
5956 psr = pfm_get_psr();
5957
5958 BUG_ON(psr & (IA64_PSR_I));
5959
5960 /*
5961 * stop monitoring:
5962 * This is the last instruction which may generate an overflow
5963 *
5964 * We do not need to set psr.sp because, it is irrelevant in kernel.
5965 * It will be restored from ipsr when going back to user level
5966 */
5967 pfm_clear_psr_up();
5968
5969 /*
5970 * keep a copy of psr.up (for reload)
5971 */
5972 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5973}
5974
5975static void
5976pfm_lazy_save_regs (struct task_struct *task)
5977{
5978 pfm_context_t *ctx;
5979 struct thread_struct *t;
5980 unsigned long flags;
5981
5982 { u64 psr = pfm_get_psr();
5983 BUG_ON(psr & IA64_PSR_UP);
5984 }
5985
5986 ctx = PFM_GET_CTX(task);
5987 t = &task->thread;
5988
5989 /*
5990 * we need to mask PMU overflow here to
5991 * make sure that we maintain pmc0 until
5992 * we save it. overflow interrupts are
5993 * treated as spurious if there is no
5994 * owner.
5995 *
5996 * XXX: I don't think this is necessary
5997 */
5998 PROTECT_CTX(ctx,flags);
5999
6000 /*
6001 * release ownership of this PMU.
6002 * must be done before we save the registers.
6003 *
6004 * after this call any PMU interrupt is treated
6005 * as spurious.
6006 */
6007 SET_PMU_OWNER(NULL, NULL);
6008
6009 /*
6010 * save all the pmds we use
6011 */
6012 pfm_save_pmds(t->pmds, ctx->ctx_used_pmds[0]);
6013
6014 /*
6015 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
6016 * it is needed to check for pended overflow
6017 * on the restore path
6018 */
6019 t->pmcs[0] = ia64_get_pmc(0);
6020
6021 /*
6022 * unfreeze PMU if had pending overflows
6023 */
6024 if (t->pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
6025
6026 /*
6027 * now get can unmask PMU interrupts, they will
6028 * be treated as purely spurious and we will not
6029 * lose any information
6030 */
6031 UNPROTECT_CTX(ctx,flags);
6032}
6033#endif /* CONFIG_SMP */
6034
6035#ifdef CONFIG_SMP
6036/*
6037 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
6038 */
6039void
6040pfm_load_regs (struct task_struct *task)
6041{
6042 pfm_context_t *ctx;
6043 struct thread_struct *t;
6044 unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
6045 unsigned long flags;
6046 u64 psr, psr_up;
6047 int need_irq_resend;
6048
6049 ctx = PFM_GET_CTX(task);
6050 if (unlikely(ctx == NULL)) return;
6051
6052 BUG_ON(GET_PMU_OWNER());
6053
6054 t = &task->thread;
6055 /*
6056 * possible on unload
6057 */
6058 if (unlikely((t->flags & IA64_THREAD_PM_VALID) == 0)) return;
6059
6060 /*
6061 * we always come here with interrupts ALREADY disabled by
6062 * the scheduler. So we simply need to protect against concurrent
6063 * access, not CPU concurrency.
6064 */
6065 flags = pfm_protect_ctx_ctxsw(ctx);
6066 psr = pfm_get_psr();
6067
6068 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6069
6070 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6071 BUG_ON(psr & IA64_PSR_I);
6072
6073 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6074 struct pt_regs *regs = ia64_task_regs(task);
6075
6076 BUG_ON(ctx->ctx_smpl_hdr);
6077
6078 pfm_force_cleanup(ctx, regs);
6079
6080 pfm_unprotect_ctx_ctxsw(ctx, flags);
6081
6082 /*
6083 * this one (kmalloc'ed) is fine with interrupts disabled
6084 */
6085 pfm_context_free(ctx);
6086
6087 return;
6088 }
6089
6090 /*
6091 * we restore ALL the debug registers to avoid picking up
6092 * stale state.
6093 */
6094 if (ctx->ctx_fl_using_dbreg) {
6095 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6096 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6097 }
6098 /*
6099 * retrieve saved psr.up
6100 */
6101 psr_up = ctx->ctx_saved_psr_up;
6102
6103 /*
6104 * if we were the last user of the PMU on that CPU,
6105 * then nothing to do except restore psr
6106 */
6107 if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6108
6109 /*
6110 * retrieve partial reload masks (due to user modifications)
6111 */
6112 pmc_mask = ctx->ctx_reload_pmcs[0];
6113 pmd_mask = ctx->ctx_reload_pmds[0];
6114
6115 } else {
6116 /*
6117 * To avoid leaking information to the user level when psr.sp=0,
6118 * we must reload ALL implemented pmds (even the ones we don't use).
6119 * In the kernel we only allow PFM_READ_PMDS on registers which
6120 * we initialized or requested (sampling) so there is no risk there.
6121 */
6122 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6123
6124 /*
6125 * ALL accessible PMCs are systematically reloaded, unused registers
6126 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6127 * up stale configuration.
6128 *
6129 * PMC0 is never in the mask. It is always restored separately.
6130 */
6131 pmc_mask = ctx->ctx_all_pmcs[0];
6132 }
6133 /*
6134 * when context is MASKED, we will restore PMC with plm=0
6135 * and PMD with stale information, but that's ok, nothing
6136 * will be captured.
6137 *
6138 * XXX: optimize here
6139 */
6140 if (pmd_mask) pfm_restore_pmds(t->pmds, pmd_mask);
6141 if (pmc_mask) pfm_restore_pmcs(t->pmcs, pmc_mask);
6142
6143 /*
6144 * check for pending overflow at the time the state
6145 * was saved.
6146 */
6147 if (unlikely(PMC0_HAS_OVFL(t->pmcs[0]))) {
6148 /*
6149 * reload pmc0 with the overflow information
6150 * On McKinley PMU, this will trigger a PMU interrupt
6151 */
6152 ia64_set_pmc(0, t->pmcs[0]);
6153 ia64_srlz_d();
6154 t->pmcs[0] = 0UL;
6155
6156 /*
6157 * will replay the PMU interrupt
6158 */
6159 if (need_irq_resend) hw_resend_irq(NULL, IA64_PERFMON_VECTOR);
6160
6161 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6162 }
6163
6164 /*
6165 * we just did a reload, so we reset the partial reload fields
6166 */
6167 ctx->ctx_reload_pmcs[0] = 0UL;
6168 ctx->ctx_reload_pmds[0] = 0UL;
6169
6170 SET_LAST_CPU(ctx, smp_processor_id());
6171
6172 /*
6173 * dump activation value for this PMU
6174 */
6175 INC_ACTIVATION();
6176 /*
6177 * record current activation for this context
6178 */
6179 SET_ACTIVATION(ctx);
6180
6181 /*
6182 * establish new ownership.
6183 */
6184 SET_PMU_OWNER(task, ctx);
6185
6186 /*
6187 * restore the psr.up bit. measurement
6188 * is active again.
6189 * no PMU interrupt can happen at this point
6190 * because we still have interrupts disabled.
6191 */
6192 if (likely(psr_up)) pfm_set_psr_up();
6193
6194 /*
6195 * allow concurrent access to context
6196 */
6197 pfm_unprotect_ctx_ctxsw(ctx, flags);
6198}
6199#else /* !CONFIG_SMP */
6200/*
6201 * reload PMU state for UP kernels
6202 * in 2.5 we come here with interrupts disabled
6203 */
6204void
6205pfm_load_regs (struct task_struct *task)
6206{
6207 struct thread_struct *t;
6208 pfm_context_t *ctx;
6209 struct task_struct *owner;
6210 unsigned long pmd_mask, pmc_mask;
6211 u64 psr, psr_up;
6212 int need_irq_resend;
6213
6214 owner = GET_PMU_OWNER();
6215 ctx = PFM_GET_CTX(task);
6216 t = &task->thread;
6217 psr = pfm_get_psr();
6218
6219 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6220 BUG_ON(psr & IA64_PSR_I);
6221
6222 /*
6223 * we restore ALL the debug registers to avoid picking up
6224 * stale state.
6225 *
6226 * This must be done even when the task is still the owner
6227 * as the registers may have been modified via ptrace()
6228 * (not perfmon) by the previous task.
6229 */
6230 if (ctx->ctx_fl_using_dbreg) {
6231 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6232 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6233 }
6234
6235 /*
6236 * retrieved saved psr.up
6237 */
6238 psr_up = ctx->ctx_saved_psr_up;
6239 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6240
6241 /*
6242 * short path, our state is still there, just
6243 * need to restore psr and we go
6244 *
6245 * we do not touch either PMC nor PMD. the psr is not touched
6246 * by the overflow_handler. So we are safe w.r.t. to interrupt
6247 * concurrency even without interrupt masking.
6248 */
6249 if (likely(owner == task)) {
6250 if (likely(psr_up)) pfm_set_psr_up();
6251 return;
6252 }
6253
6254 /*
6255 * someone else is still using the PMU, first push it out and
6256 * then we'll be able to install our stuff !
6257 *
6258 * Upon return, there will be no owner for the current PMU
6259 */
6260 if (owner) pfm_lazy_save_regs(owner);
6261
6262 /*
6263 * To avoid leaking information to the user level when psr.sp=0,
6264 * we must reload ALL implemented pmds (even the ones we don't use).
6265 * In the kernel we only allow PFM_READ_PMDS on registers which
6266 * we initialized or requested (sampling) so there is no risk there.
6267 */
6268 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6269
6270 /*
6271 * ALL accessible PMCs are systematically reloaded, unused registers
6272 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6273 * up stale configuration.
6274 *
6275 * PMC0 is never in the mask. It is always restored separately
6276 */
6277 pmc_mask = ctx->ctx_all_pmcs[0];
6278
6279 pfm_restore_pmds(t->pmds, pmd_mask);
6280 pfm_restore_pmcs(t->pmcs, pmc_mask);
6281
6282 /*
6283 * check for pending overflow at the time the state
6284 * was saved.
6285 */
6286 if (unlikely(PMC0_HAS_OVFL(t->pmcs[0]))) {
6287 /*
6288 * reload pmc0 with the overflow information
6289 * On McKinley PMU, this will trigger a PMU interrupt
6290 */
6291 ia64_set_pmc(0, t->pmcs[0]);
6292 ia64_srlz_d();
6293
6294 t->pmcs[0] = 0UL;
6295
6296 /*
6297 * will replay the PMU interrupt
6298 */
6299 if (need_irq_resend) hw_resend_irq(NULL, IA64_PERFMON_VECTOR);
6300
6301 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6302 }
6303
6304 /*
6305 * establish new ownership.
6306 */
6307 SET_PMU_OWNER(task, ctx);
6308
6309 /*
6310 * restore the psr.up bit. measurement
6311 * is active again.
6312 * no PMU interrupt can happen at this point
6313 * because we still have interrupts disabled.
6314 */
6315 if (likely(psr_up)) pfm_set_psr_up();
6316}
6317#endif /* CONFIG_SMP */
6318
6319/*
6320 * this function assumes monitoring is stopped
6321 */
6322static void
6323pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6324{
6325 u64 pmc0;
6326 unsigned long mask2, val, pmd_val, ovfl_val;
6327 int i, can_access_pmu = 0;
6328 int is_self;
6329
6330 /*
6331 * is the caller the task being monitored (or which initiated the
6332 * session for system wide measurements)
6333 */
6334 is_self = ctx->ctx_task == task ? 1 : 0;
6335
6336 /*
6337 * can access PMU is task is the owner of the PMU state on the current CPU
6338 * or if we are running on the CPU bound to the context in system-wide mode
6339 * (that is not necessarily the task the context is attached to in this mode).
6340 * In system-wide we always have can_access_pmu true because a task running on an
6341 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6342 */
6343 can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6344 if (can_access_pmu) {
6345 /*
6346 * Mark the PMU as not owned
6347 * This will cause the interrupt handler to do nothing in case an overflow
6348 * interrupt was in-flight
6349 * This also guarantees that pmc0 will contain the final state
6350 * It virtually gives us full control on overflow processing from that point
6351 * on.
6352 */
6353 SET_PMU_OWNER(NULL, NULL);
6354 DPRINT(("releasing ownership\n"));
6355
6356 /*
6357 * read current overflow status:
6358 *
6359 * we are guaranteed to read the final stable state
6360 */
6361 ia64_srlz_d();
6362 pmc0 = ia64_get_pmc(0); /* slow */
6363
6364 /*
6365 * reset freeze bit, overflow status information destroyed
6366 */
6367 pfm_unfreeze_pmu();
6368 } else {
6369 pmc0 = task->thread.pmcs[0];
6370 /*
6371 * clear whatever overflow status bits there were
6372 */
6373 task->thread.pmcs[0] = 0;
6374 }
6375 ovfl_val = pmu_conf->ovfl_val;
6376 /*
6377 * we save all the used pmds
6378 * we take care of overflows for counting PMDs
6379 *
6380 * XXX: sampling situation is not taken into account here
6381 */
6382 mask2 = ctx->ctx_used_pmds[0];
6383
6384 DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6385
6386 for (i = 0; mask2; i++, mask2>>=1) {
6387
6388 /* skip non used pmds */
6389 if ((mask2 & 0x1) == 0) continue;
6390
6391 /*
6392 * can access PMU always true in system wide mode
6393 */
6394 val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : task->thread.pmds[i];
6395
6396 if (PMD_IS_COUNTING(i)) {
6397 DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6398 task->pid,
6399 i,
6400 ctx->ctx_pmds[i].val,
6401 val & ovfl_val));
6402
6403 /*
6404 * we rebuild the full 64 bit value of the counter
6405 */
6406 val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6407
6408 /*
6409 * now everything is in ctx_pmds[] and we need
6410 * to clear the saved context from save_regs() such that
6411 * pfm_read_pmds() gets the correct value
6412 */
6413 pmd_val = 0UL;
6414
6415 /*
6416 * take care of overflow inline
6417 */
6418 if (pmc0 & (1UL << i)) {
6419 val += 1 + ovfl_val;
6420 DPRINT(("[%d] pmd[%d] overflowed\n", task->pid, i));
6421 }
6422 }
6423
6424 DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task->pid, i, val, pmd_val));
6425
6426 if (is_self) task->thread.pmds[i] = pmd_val;
6427
6428 ctx->ctx_pmds[i].val = val;
6429 }
6430}
6431
6432static struct irqaction perfmon_irqaction = {
6433 .handler = pfm_interrupt_handler,
6434 .flags = SA_INTERRUPT,
6435 .name = "perfmon"
6436};
6437
a1ecf7f6
TL
6438static void
6439pfm_alt_save_pmu_state(void *data)
6440{
6441 struct pt_regs *regs;
6442
6443 regs = ia64_task_regs(current);
6444
6445 DPRINT(("called\n"));
6446
6447 /*
6448 * should not be necessary but
6449 * let's take not risk
6450 */
6451 pfm_clear_psr_up();
6452 pfm_clear_psr_pp();
6453 ia64_psr(regs)->pp = 0;
6454
6455 /*
6456 * This call is required
6457 * May cause a spurious interrupt on some processors
6458 */
6459 pfm_freeze_pmu();
6460
6461 ia64_srlz_d();
6462}
6463
6464void
6465pfm_alt_restore_pmu_state(void *data)
6466{
6467 struct pt_regs *regs;
6468
6469 regs = ia64_task_regs(current);
6470
6471 DPRINT(("called\n"));
6472
6473 /*
6474 * put PMU back in state expected
6475 * by perfmon
6476 */
6477 pfm_clear_psr_up();
6478 pfm_clear_psr_pp();
6479 ia64_psr(regs)->pp = 0;
6480
6481 /*
6482 * perfmon runs with PMU unfrozen at all times
6483 */
6484 pfm_unfreeze_pmu();
6485
6486 ia64_srlz_d();
6487}
6488
6489int
6490pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6491{
6492 int ret, i;
6493 int reserve_cpu;
6494
6495 /* some sanity checks */
6496 if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6497
6498 /* do the easy test first */
6499 if (pfm_alt_intr_handler) return -EBUSY;
6500
6501 /* one at a time in the install or remove, just fail the others */
6502 if (!spin_trylock(&pfm_alt_install_check)) {
6503 return -EBUSY;
6504 }
6505
6506 /* reserve our session */
6507 for_each_online_cpu(reserve_cpu) {
6508 ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6509 if (ret) goto cleanup_reserve;
6510 }
6511
6512 /* save the current system wide pmu states */
6513 ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 0, 1);
6514 if (ret) {
6515 DPRINT(("on_each_cpu() failed: %d\n", ret));
6516 goto cleanup_reserve;
6517 }
6518
6519 /* officially change to the alternate interrupt handler */
6520 pfm_alt_intr_handler = hdl;
6521
6522 spin_unlock(&pfm_alt_install_check);
6523
6524 return 0;
6525
6526cleanup_reserve:
6527 for_each_online_cpu(i) {
6528 /* don't unreserve more than we reserved */
6529 if (i >= reserve_cpu) break;
6530
6531 pfm_unreserve_session(NULL, 1, i);
6532 }
6533
6534 spin_unlock(&pfm_alt_install_check);
6535
6536 return ret;
6537}
6538EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6539
6540int
6541pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6542{
6543 int i;
6544 int ret;
6545
6546 if (hdl == NULL) return -EINVAL;
6547
6548 /* cannot remove someone else's handler! */
6549 if (pfm_alt_intr_handler != hdl) return -EINVAL;
6550
6551 /* one at a time in the install or remove, just fail the others */
6552 if (!spin_trylock(&pfm_alt_install_check)) {
6553 return -EBUSY;
6554 }
6555
6556 pfm_alt_intr_handler = NULL;
6557
6558 ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 0, 1);
6559 if (ret) {
6560 DPRINT(("on_each_cpu() failed: %d\n", ret));
6561 }
6562
6563 for_each_online_cpu(i) {
6564 pfm_unreserve_session(NULL, 1, i);
6565 }
6566
6567 spin_unlock(&pfm_alt_install_check);
6568
6569 return 0;
6570}
6571EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6572
1da177e4
LT
6573/*
6574 * perfmon initialization routine, called from the initcall() table
6575 */
6576static int init_pfm_fs(void);
6577
6578static int __init
6579pfm_probe_pmu(void)
6580{
6581 pmu_config_t **p;
6582 int family;
6583
6584 family = local_cpu_data->family;
6585 p = pmu_confs;
6586
6587 while(*p) {
6588 if ((*p)->probe) {
6589 if ((*p)->probe() == 0) goto found;
6590 } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6591 goto found;
6592 }
6593 p++;
6594 }
6595 return -1;
6596found:
6597 pmu_conf = *p;
6598 return 0;
6599}
6600
6601static struct file_operations pfm_proc_fops = {
6602 .open = pfm_proc_open,
6603 .read = seq_read,
6604 .llseek = seq_lseek,
6605 .release = seq_release,
6606};
6607
6608int __init
6609pfm_init(void)
6610{
6611 unsigned int n, n_counters, i;
6612
6613 printk("perfmon: version %u.%u IRQ %u\n",
6614 PFM_VERSION_MAJ,
6615 PFM_VERSION_MIN,
6616 IA64_PERFMON_VECTOR);
6617
6618 if (pfm_probe_pmu()) {
6619 printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
6620 local_cpu_data->family);
6621 return -ENODEV;
6622 }
6623
6624 /*
6625 * compute the number of implemented PMD/PMC from the
6626 * description tables
6627 */
6628 n = 0;
6629 for (i=0; PMC_IS_LAST(i) == 0; i++) {
6630 if (PMC_IS_IMPL(i) == 0) continue;
6631 pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6632 n++;
6633 }
6634 pmu_conf->num_pmcs = n;
6635
6636 n = 0; n_counters = 0;
6637 for (i=0; PMD_IS_LAST(i) == 0; i++) {
6638 if (PMD_IS_IMPL(i) == 0) continue;
6639 pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6640 n++;
6641 if (PMD_IS_COUNTING(i)) n_counters++;
6642 }
6643 pmu_conf->num_pmds = n;
6644 pmu_conf->num_counters = n_counters;
6645
6646 /*
6647 * sanity checks on the number of debug registers
6648 */
6649 if (pmu_conf->use_rr_dbregs) {
6650 if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6651 printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6652 pmu_conf = NULL;
6653 return -1;
6654 }
6655 if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6656 printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6657 pmu_conf = NULL;
6658 return -1;
6659 }
6660 }
6661
6662 printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6663 pmu_conf->pmu_name,
6664 pmu_conf->num_pmcs,
6665 pmu_conf->num_pmds,
6666 pmu_conf->num_counters,
6667 ffz(pmu_conf->ovfl_val));
6668
6669 /* sanity check */
6670 if (pmu_conf->num_pmds >= IA64_NUM_PMD_REGS || pmu_conf->num_pmcs >= IA64_NUM_PMC_REGS) {
6671 printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6672 pmu_conf = NULL;
6673 return -1;
6674 }
6675
6676 /*
6677 * create /proc/perfmon (mostly for debugging purposes)
6678 */
6679 perfmon_dir = create_proc_entry("perfmon", S_IRUGO, NULL);
6680 if (perfmon_dir == NULL) {
6681 printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6682 pmu_conf = NULL;
6683 return -1;
6684 }
6685 /*
6686 * install customized file operations for /proc/perfmon entry
6687 */
6688 perfmon_dir->proc_fops = &pfm_proc_fops;
6689
6690 /*
6691 * create /proc/sys/kernel/perfmon (for debugging purposes)
6692 */
6693 pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root, 0);
6694
6695 /*
6696 * initialize all our spinlocks
6697 */
6698 spin_lock_init(&pfm_sessions.pfs_lock);
6699 spin_lock_init(&pfm_buffer_fmt_lock);
6700
6701 init_pfm_fs();
6702
6703 for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6704
6705 return 0;
6706}
6707
6708__initcall(pfm_init);
6709
6710/*
6711 * this function is called before pfm_init()
6712 */
6713void
6714pfm_init_percpu (void)
6715{
6716 /*
6717 * make sure no measurement is active
6718 * (may inherit programmed PMCs from EFI).
6719 */
6720 pfm_clear_psr_pp();
6721 pfm_clear_psr_up();
6722
6723 /*
6724 * we run with the PMU not frozen at all times
6725 */
6726 pfm_unfreeze_pmu();
6727
6728 if (smp_processor_id() == 0)
6729 register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6730
6731 ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6732 ia64_srlz_d();
6733}
6734
6735/*
6736 * used for debug purposes only
6737 */
6738void
6739dump_pmu_state(const char *from)
6740{
6741 struct task_struct *task;
6742 struct thread_struct *t;
6743 struct pt_regs *regs;
6744 pfm_context_t *ctx;
6745 unsigned long psr, dcr, info, flags;
6746 int i, this_cpu;
6747
6748 local_irq_save(flags);
6749
6750 this_cpu = smp_processor_id();
6751 regs = ia64_task_regs(current);
6752 info = PFM_CPUINFO_GET();
6753 dcr = ia64_getreg(_IA64_REG_CR_DCR);
6754
6755 if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6756 local_irq_restore(flags);
6757 return;
6758 }
6759
6760 printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6761 this_cpu,
6762 from,
6763 current->pid,
6764 regs->cr_iip,
6765 current->comm);
6766
6767 task = GET_PMU_OWNER();
6768 ctx = GET_PMU_CTX();
6769
6770 printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task->pid : -1, ctx);
6771
6772 psr = pfm_get_psr();
6773
6774 printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6775 this_cpu,
6776 ia64_get_pmc(0),
6777 psr & IA64_PSR_PP ? 1 : 0,
6778 psr & IA64_PSR_UP ? 1 : 0,
6779 dcr & IA64_DCR_PP ? 1 : 0,
6780 info,
6781 ia64_psr(regs)->up,
6782 ia64_psr(regs)->pp);
6783
6784 ia64_psr(regs)->up = 0;
6785 ia64_psr(regs)->pp = 0;
6786
6787 t = &current->thread;
6788
6789 for (i=1; PMC_IS_LAST(i) == 0; i++) {
6790 if (PMC_IS_IMPL(i) == 0) continue;
6791 printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, t->pmcs[i]);
6792 }
6793
6794 for (i=1; PMD_IS_LAST(i) == 0; i++) {
6795 if (PMD_IS_IMPL(i) == 0) continue;
6796 printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, t->pmds[i]);
6797 }
6798
6799 if (ctx) {
6800 printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6801 this_cpu,
6802 ctx->ctx_state,
6803 ctx->ctx_smpl_vaddr,
6804 ctx->ctx_smpl_hdr,
6805 ctx->ctx_msgq_head,
6806 ctx->ctx_msgq_tail,
6807 ctx->ctx_saved_psr_up);
6808 }
6809 local_irq_restore(flags);
6810}
6811
6812/*
6813 * called from process.c:copy_thread(). task is new child.
6814 */
6815void
6816pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6817{
6818 struct thread_struct *thread;
6819
6820 DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task->pid));
6821
6822 thread = &task->thread;
6823
6824 /*
6825 * cut links inherited from parent (current)
6826 */
6827 thread->pfm_context = NULL;
6828
6829 PFM_SET_WORK_PENDING(task, 0);
6830
6831 /*
6832 * the psr bits are already set properly in copy_threads()
6833 */
6834}
6835#else /* !CONFIG_PERFMON */
6836asmlinkage long
6837sys_perfmonctl (int fd, int cmd, void *arg, int count)
6838{
6839 return -ENOSYS;
6840}
6841#endif /* CONFIG_PERFMON */
This page took 0.305315 seconds and 5 git commands to generate.