[IA64] support for cpu0 removal
[deliverable/linux.git] / arch / ia64 / kernel / time.c
CommitLineData
1da177e4
LT
1/*
2 * linux/arch/ia64/kernel/time.c
3 *
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * Stephane Eranian <eranian@hpl.hp.com>
6 * David Mosberger <davidm@hpl.hp.com>
7 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
8 * Copyright (C) 1999-2000 VA Linux Systems
9 * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
10 */
11#include <linux/config.h>
12
13#include <linux/cpu.h>
14#include <linux/init.h>
15#include <linux/kernel.h>
16#include <linux/module.h>
17#include <linux/profile.h>
18#include <linux/sched.h>
19#include <linux/time.h>
20#include <linux/interrupt.h>
21#include <linux/efi.h>
22#include <linux/profile.h>
23#include <linux/timex.h>
24
25#include <asm/machvec.h>
26#include <asm/delay.h>
27#include <asm/hw_irq.h>
28#include <asm/ptrace.h>
29#include <asm/sal.h>
30#include <asm/sections.h>
31#include <asm/system.h>
32
33extern unsigned long wall_jiffies;
34
ff741906 35volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
1da177e4
LT
36
37#ifdef CONFIG_IA64_DEBUG_IRQ
38
39unsigned long last_cli_ip;
40EXPORT_SYMBOL(last_cli_ip);
41
42#endif
43
44static struct time_interpolator itc_interpolator = {
45 .shift = 16,
46 .mask = 0xffffffffffffffffLL,
47 .source = TIME_SOURCE_CPU
48};
49
50static irqreturn_t
51timer_interrupt (int irq, void *dev_id, struct pt_regs *regs)
52{
53 unsigned long new_itm;
54
55 if (unlikely(cpu_is_offline(smp_processor_id()))) {
56 return IRQ_HANDLED;
57 }
58
59 platform_timer_interrupt(irq, dev_id, regs);
60
61 new_itm = local_cpu_data->itm_next;
62
63 if (!time_after(ia64_get_itc(), new_itm))
64 printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
65 ia64_get_itc(), new_itm);
66
67 profile_tick(CPU_PROFILING, regs);
68
69 while (1) {
70 update_process_times(user_mode(regs));
71
72 new_itm += local_cpu_data->itm_delta;
73
ff741906 74 if (smp_processor_id() == time_keeper_id) {
1da177e4
LT
75 /*
76 * Here we are in the timer irq handler. We have irqs locally
77 * disabled, but we don't know if the timer_bh is running on
78 * another CPU. We need to avoid to SMP race by acquiring the
79 * xtime_lock.
80 */
81 write_seqlock(&xtime_lock);
82 do_timer(regs);
83 local_cpu_data->itm_next = new_itm;
84 write_sequnlock(&xtime_lock);
85 } else
86 local_cpu_data->itm_next = new_itm;
87
88 if (time_after(new_itm, ia64_get_itc()))
89 break;
90 }
91
92 do {
93 /*
94 * If we're too close to the next clock tick for
95 * comfort, we increase the safety margin by
96 * intentionally dropping the next tick(s). We do NOT
97 * update itm.next because that would force us to call
98 * do_timer() which in turn would let our clock run
99 * too fast (with the potentially devastating effect
100 * of losing monotony of time).
101 */
102 while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
103 new_itm += local_cpu_data->itm_delta;
104 ia64_set_itm(new_itm);
105 /* double check, in case we got hit by a (slow) PMI: */
106 } while (time_after_eq(ia64_get_itc(), new_itm));
107 return IRQ_HANDLED;
108}
109
110/*
111 * Encapsulate access to the itm structure for SMP.
112 */
113void
114ia64_cpu_local_tick (void)
115{
116 int cpu = smp_processor_id();
117 unsigned long shift = 0, delta;
118
119 /* arrange for the cycle counter to generate a timer interrupt: */
120 ia64_set_itv(IA64_TIMER_VECTOR);
121
122 delta = local_cpu_data->itm_delta;
123 /*
124 * Stagger the timer tick for each CPU so they don't occur all at (almost) the
125 * same time:
126 */
127 if (cpu) {
128 unsigned long hi = 1UL << ia64_fls(cpu);
129 shift = (2*(cpu - hi) + 1) * delta/hi/2;
130 }
131 local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
132 ia64_set_itm(local_cpu_data->itm_next);
133}
134
135static int nojitter;
136
137static int __init nojitter_setup(char *str)
138{
139 nojitter = 1;
140 printk("Jitter checking for ITC timers disabled\n");
141 return 1;
142}
143
144__setup("nojitter", nojitter_setup);
145
146
147void __devinit
148ia64_init_itm (void)
149{
150 unsigned long platform_base_freq, itc_freq;
151 struct pal_freq_ratio itc_ratio, proc_ratio;
152 long status, platform_base_drift, itc_drift;
153
154 /*
155 * According to SAL v2.6, we need to use a SAL call to determine the platform base
156 * frequency and then a PAL call to determine the frequency ratio between the ITC
157 * and the base frequency.
158 */
159 status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
160 &platform_base_freq, &platform_base_drift);
161 if (status != 0) {
162 printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
163 } else {
164 status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
165 if (status != 0)
166 printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
167 }
168 if (status != 0) {
169 /* invent "random" values */
170 printk(KERN_ERR
171 "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
172 platform_base_freq = 100000000;
173 platform_base_drift = -1; /* no drift info */
174 itc_ratio.num = 3;
175 itc_ratio.den = 1;
176 }
177 if (platform_base_freq < 40000000) {
178 printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
179 platform_base_freq);
180 platform_base_freq = 75000000;
181 platform_base_drift = -1;
182 }
183 if (!proc_ratio.den)
184 proc_ratio.den = 1; /* avoid division by zero */
185 if (!itc_ratio.den)
186 itc_ratio.den = 1; /* avoid division by zero */
187
188 itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
189
190 local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
191 printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%lu/%lu, "
192 "ITC freq=%lu.%03luMHz", smp_processor_id(),
193 platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
194 itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
195
196 if (platform_base_drift != -1) {
197 itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
198 printk("+/-%ldppm\n", itc_drift);
199 } else {
200 itc_drift = -1;
201 printk("\n");
202 }
203
204 local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
205 local_cpu_data->itc_freq = itc_freq;
206 local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
207 local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
208 + itc_freq/2)/itc_freq;
209
210 if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
211 itc_interpolator.frequency = local_cpu_data->itc_freq;
212 itc_interpolator.drift = itc_drift;
213#ifdef CONFIG_SMP
214 /* On IA64 in an SMP configuration ITCs are never accurately synchronized.
215 * Jitter compensation requires a cmpxchg which may limit
216 * the scalability of the syscalls for retrieving time.
217 * The ITC synchronization is usually successful to within a few
218 * ITC ticks but this is not a sure thing. If you need to improve
219 * timer performance in SMP situations then boot the kernel with the
220 * "nojitter" option. However, doing so may result in time fluctuating (maybe
221 * even going backward) if the ITC offsets between the individual CPUs
222 * are too large.
223 */
224 if (!nojitter) itc_interpolator.jitter = 1;
225#endif
226 register_time_interpolator(&itc_interpolator);
227 }
228
229 /* Setup the CPU local timer tick */
230 ia64_cpu_local_tick();
231}
232
233static struct irqaction timer_irqaction = {
234 .handler = timer_interrupt,
235 .flags = SA_INTERRUPT,
236 .name = "timer"
237};
238
ff741906
AR
239void __devinit ia64_disable_timer(void)
240{
241 ia64_set_itv(1 << 16);
242}
243
1da177e4
LT
244void __init
245time_init (void)
246{
247 register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
248 efi_gettimeofday(&xtime);
249 ia64_init_itm();
250
251 /*
252 * Initialize wall_to_monotonic such that adding it to xtime will yield zero, the
253 * tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC).
254 */
255 set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
256}
f5899b5d
JH
257
258#define SMALLUSECS 100
259
260void
261udelay (unsigned long usecs)
262{
263 unsigned long start;
264 unsigned long cycles;
265 unsigned long smallusecs;
266
267 /*
268 * Execute the non-preemptible delay loop (because the ITC might
269 * not be synchronized between CPUS) in relatively short time
270 * chunks, allowing preemption between the chunks.
271 */
272 while (usecs > 0) {
273 smallusecs = (usecs > SMALLUSECS) ? SMALLUSECS : usecs;
274 preempt_disable();
275 cycles = smallusecs*local_cpu_data->cyc_per_usec;
276 start = ia64_get_itc();
277
278 while (ia64_get_itc() - start < cycles)
279 cpu_relax();
280
281 preempt_enable();
282 usecs -= smallusecs;
283 }
284}
285EXPORT_SYMBOL(udelay);
This page took 0.088514 seconds and 5 git commands to generate.