[PATCH] V5 ia64 SPARSEMEM - conditional changes for SPARSEMEM
[deliverable/linux.git] / arch / ia64 / mm / init.c
CommitLineData
1da177e4
LT
1/*
2 * Initialize MMU support.
3 *
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 */
7#include <linux/config.h>
8#include <linux/kernel.h>
9#include <linux/init.h>
10
11#include <linux/bootmem.h>
12#include <linux/efi.h>
13#include <linux/elf.h>
14#include <linux/mm.h>
15#include <linux/mmzone.h>
16#include <linux/module.h>
17#include <linux/personality.h>
18#include <linux/reboot.h>
19#include <linux/slab.h>
20#include <linux/swap.h>
21#include <linux/proc_fs.h>
22#include <linux/bitops.h>
23
24#include <asm/a.out.h>
25#include <asm/dma.h>
26#include <asm/ia32.h>
27#include <asm/io.h>
28#include <asm/machvec.h>
29#include <asm/numa.h>
30#include <asm/patch.h>
31#include <asm/pgalloc.h>
32#include <asm/sal.h>
33#include <asm/sections.h>
34#include <asm/system.h>
35#include <asm/tlb.h>
36#include <asm/uaccess.h>
37#include <asm/unistd.h>
38#include <asm/mca.h>
39
40DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
41
fde740e4
RH
42DEFINE_PER_CPU(unsigned long *, __pgtable_quicklist);
43DEFINE_PER_CPU(long, __pgtable_quicklist_size);
44
1da177e4
LT
45extern void ia64_tlb_init (void);
46
47unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
48
49#ifdef CONFIG_VIRTUAL_MEM_MAP
50unsigned long vmalloc_end = VMALLOC_END_INIT;
51EXPORT_SYMBOL(vmalloc_end);
52struct page *vmem_map;
53EXPORT_SYMBOL(vmem_map);
54#endif
55
fde740e4 56struct page *zero_page_memmap_ptr; /* map entry for zero page */
1da177e4
LT
57EXPORT_SYMBOL(zero_page_memmap_ptr);
58
fde740e4 59#define MIN_PGT_PAGES 25UL
e96c9b47 60#define MAX_PGT_FREES_PER_PASS 16L
fde740e4
RH
61#define PGT_FRACTION_OF_NODE_MEM 16
62
63static inline long
64max_pgt_pages(void)
65{
66 u64 node_free_pages, max_pgt_pages;
67
68#ifndef CONFIG_NUMA
69 node_free_pages = nr_free_pages();
70#else
71 node_free_pages = nr_free_pages_pgdat(NODE_DATA(numa_node_id()));
72#endif
73 max_pgt_pages = node_free_pages / PGT_FRACTION_OF_NODE_MEM;
74 max_pgt_pages = max(max_pgt_pages, MIN_PGT_PAGES);
75 return max_pgt_pages;
76}
77
78static inline long
79min_pages_to_free(void)
80{
81 long pages_to_free;
82
83 pages_to_free = pgtable_quicklist_size - max_pgt_pages();
84 pages_to_free = min(pages_to_free, MAX_PGT_FREES_PER_PASS);
85 return pages_to_free;
86}
87
1da177e4 88void
fde740e4 89check_pgt_cache(void)
1da177e4 90{
fde740e4 91 long pages_to_free;
1da177e4 92
fde740e4
RH
93 if (unlikely(pgtable_quicklist_size <= MIN_PGT_PAGES))
94 return;
1da177e4
LT
95
96 preempt_disable();
fde740e4
RH
97 while (unlikely((pages_to_free = min_pages_to_free()) > 0)) {
98 while (pages_to_free--) {
99 free_page((unsigned long)pgtable_quicklist_alloc());
100 }
101 preempt_enable();
102 preempt_disable();
1da177e4
LT
103 }
104 preempt_enable();
105}
106
107void
108lazy_mmu_prot_update (pte_t pte)
109{
110 unsigned long addr;
111 struct page *page;
112
113 if (!pte_exec(pte))
114 return; /* not an executable page... */
115
116 page = pte_page(pte);
117 addr = (unsigned long) page_address(page);
118
119 if (test_bit(PG_arch_1, &page->flags))
120 return; /* i-cache is already coherent with d-cache */
121
122 flush_icache_range(addr, addr + PAGE_SIZE);
123 set_bit(PG_arch_1, &page->flags); /* mark page as clean */
124}
125
126inline void
127ia64_set_rbs_bot (void)
128{
129 unsigned long stack_size = current->signal->rlim[RLIMIT_STACK].rlim_max & -16;
130
131 if (stack_size > MAX_USER_STACK_SIZE)
132 stack_size = MAX_USER_STACK_SIZE;
133 current->thread.rbs_bot = STACK_TOP - stack_size;
134}
135
136/*
137 * This performs some platform-dependent address space initialization.
138 * On IA-64, we want to setup the VM area for the register backing
139 * store (which grows upwards) and install the gateway page which is
140 * used for signal trampolines, etc.
141 */
142void
143ia64_init_addr_space (void)
144{
145 struct vm_area_struct *vma;
146
147 ia64_set_rbs_bot();
148
149 /*
150 * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
151 * the problem. When the process attempts to write to the register backing store
152 * for the first time, it will get a SEGFAULT in this case.
153 */
154 vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
155 if (vma) {
156 memset(vma, 0, sizeof(*vma));
157 vma->vm_mm = current->mm;
158 vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
159 vma->vm_end = vma->vm_start + PAGE_SIZE;
160 vma->vm_page_prot = protection_map[VM_DATA_DEFAULT_FLAGS & 0x7];
161 vma->vm_flags = VM_DATA_DEFAULT_FLAGS | VM_GROWSUP;
162 down_write(&current->mm->mmap_sem);
163 if (insert_vm_struct(current->mm, vma)) {
164 up_write(&current->mm->mmap_sem);
165 kmem_cache_free(vm_area_cachep, vma);
166 return;
167 }
168 up_write(&current->mm->mmap_sem);
169 }
170
171 /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
172 if (!(current->personality & MMAP_PAGE_ZERO)) {
173 vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
174 if (vma) {
175 memset(vma, 0, sizeof(*vma));
176 vma->vm_mm = current->mm;
177 vma->vm_end = PAGE_SIZE;
178 vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
179 vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED;
180 down_write(&current->mm->mmap_sem);
181 if (insert_vm_struct(current->mm, vma)) {
182 up_write(&current->mm->mmap_sem);
183 kmem_cache_free(vm_area_cachep, vma);
184 return;
185 }
186 up_write(&current->mm->mmap_sem);
187 }
188 }
189}
190
191void
192free_initmem (void)
193{
194 unsigned long addr, eaddr;
195
196 addr = (unsigned long) ia64_imva(__init_begin);
197 eaddr = (unsigned long) ia64_imva(__init_end);
198 while (addr < eaddr) {
199 ClearPageReserved(virt_to_page(addr));
200 set_page_count(virt_to_page(addr), 1);
201 free_page(addr);
202 ++totalram_pages;
203 addr += PAGE_SIZE;
204 }
205 printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n",
206 (__init_end - __init_begin) >> 10);
207}
208
209void
210free_initrd_mem (unsigned long start, unsigned long end)
211{
212 struct page *page;
213 /*
214 * EFI uses 4KB pages while the kernel can use 4KB or bigger.
215 * Thus EFI and the kernel may have different page sizes. It is
216 * therefore possible to have the initrd share the same page as
217 * the end of the kernel (given current setup).
218 *
219 * To avoid freeing/using the wrong page (kernel sized) we:
220 * - align up the beginning of initrd
221 * - align down the end of initrd
222 *
223 * | |
224 * |=============| a000
225 * | |
226 * | |
227 * | | 9000
228 * |/////////////|
229 * |/////////////|
230 * |=============| 8000
231 * |///INITRD////|
232 * |/////////////|
233 * |/////////////| 7000
234 * | |
235 * |KKKKKKKKKKKKK|
236 * |=============| 6000
237 * |KKKKKKKKKKKKK|
238 * |KKKKKKKKKKKKK|
239 * K=kernel using 8KB pages
240 *
241 * In this example, we must free page 8000 ONLY. So we must align up
242 * initrd_start and keep initrd_end as is.
243 */
244 start = PAGE_ALIGN(start);
245 end = end & PAGE_MASK;
246
247 if (start < end)
248 printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
249
250 for (; start < end; start += PAGE_SIZE) {
251 if (!virt_addr_valid(start))
252 continue;
253 page = virt_to_page(start);
254 ClearPageReserved(page);
255 set_page_count(page, 1);
256 free_page(start);
257 ++totalram_pages;
258 }
259}
260
261/*
262 * This installs a clean page in the kernel's page table.
263 */
264struct page *
265put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
266{
267 pgd_t *pgd;
268 pud_t *pud;
269 pmd_t *pmd;
270 pte_t *pte;
271
272 if (!PageReserved(page))
273 printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n",
274 page_address(page));
275
276 pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */
277
278 spin_lock(&init_mm.page_table_lock);
279 {
280 pud = pud_alloc(&init_mm, pgd, address);
281 if (!pud)
282 goto out;
283
284 pmd = pmd_alloc(&init_mm, pud, address);
285 if (!pmd)
286 goto out;
287 pte = pte_alloc_map(&init_mm, pmd, address);
288 if (!pte)
289 goto out;
290 if (!pte_none(*pte)) {
291 pte_unmap(pte);
292 goto out;
293 }
294 set_pte(pte, mk_pte(page, pgprot));
295 pte_unmap(pte);
296 }
297 out: spin_unlock(&init_mm.page_table_lock);
298 /* no need for flush_tlb */
299 return page;
300}
301
302static void
303setup_gate (void)
304{
305 struct page *page;
306
307 /*
ad597bd5
DMT
308 * Map the gate page twice: once read-only to export the ELF
309 * headers etc. and once execute-only page to enable
310 * privilege-promotion via "epc":
1da177e4
LT
311 */
312 page = virt_to_page(ia64_imva(__start_gate_section));
313 put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
314#ifdef HAVE_BUGGY_SEGREL
315 page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
316 put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
317#else
318 put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
ad597bd5
DMT
319 /* Fill in the holes (if any) with read-only zero pages: */
320 {
321 unsigned long addr;
322
323 for (addr = GATE_ADDR + PAGE_SIZE;
324 addr < GATE_ADDR + PERCPU_PAGE_SIZE;
325 addr += PAGE_SIZE)
326 {
327 put_kernel_page(ZERO_PAGE(0), addr,
328 PAGE_READONLY);
329 put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
330 PAGE_READONLY);
331 }
332 }
1da177e4
LT
333#endif
334 ia64_patch_gate();
335}
336
337void __devinit
338ia64_mmu_init (void *my_cpu_data)
339{
340 unsigned long psr, pta, impl_va_bits;
341 extern void __devinit tlb_init (void);
342
343#ifdef CONFIG_DISABLE_VHPT
344# define VHPT_ENABLE_BIT 0
345#else
346# define VHPT_ENABLE_BIT 1
347#endif
348
349 /* Pin mapping for percpu area into TLB */
350 psr = ia64_clear_ic();
351 ia64_itr(0x2, IA64_TR_PERCPU_DATA, PERCPU_ADDR,
352 pte_val(pfn_pte(__pa(my_cpu_data) >> PAGE_SHIFT, PAGE_KERNEL)),
353 PERCPU_PAGE_SHIFT);
354
355 ia64_set_psr(psr);
356 ia64_srlz_i();
357
358 /*
359 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
360 * address space. The IA-64 architecture guarantees that at least 50 bits of
361 * virtual address space are implemented but if we pick a large enough page size
362 * (e.g., 64KB), the mapped address space is big enough that it will overlap with
363 * VMLPT. I assume that once we run on machines big enough to warrant 64KB pages,
364 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
365 * problem in practice. Alternatively, we could truncate the top of the mapped
366 * address space to not permit mappings that would overlap with the VMLPT.
367 * --davidm 00/12/06
368 */
369# define pte_bits 3
370# define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
371 /*
372 * The virtual page table has to cover the entire implemented address space within
373 * a region even though not all of this space may be mappable. The reason for
374 * this is that the Access bit and Dirty bit fault handlers perform
375 * non-speculative accesses to the virtual page table, so the address range of the
376 * virtual page table itself needs to be covered by virtual page table.
377 */
378# define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits)
379# define POW2(n) (1ULL << (n))
380
381 impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
382
383 if (impl_va_bits < 51 || impl_va_bits > 61)
384 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
6cf07a8c
PC
385 /*
386 * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
387 * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
388 * the test makes sure that our mapped space doesn't overlap the
389 * unimplemented hole in the middle of the region.
390 */
391 if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
392 (mapped_space_bits > impl_va_bits - 1))
393 panic("Cannot build a big enough virtual-linear page table"
394 " to cover mapped address space.\n"
395 " Try using a smaller page size.\n");
396
1da177e4
LT
397
398 /* place the VMLPT at the end of each page-table mapped region: */
399 pta = POW2(61) - POW2(vmlpt_bits);
400
1da177e4
LT
401 /*
402 * Set the (virtually mapped linear) page table address. Bit
403 * 8 selects between the short and long format, bits 2-7 the
404 * size of the table, and bit 0 whether the VHPT walker is
405 * enabled.
406 */
407 ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
408
409 ia64_tlb_init();
410
411#ifdef CONFIG_HUGETLB_PAGE
412 ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
413 ia64_srlz_d();
414#endif
415}
416
417#ifdef CONFIG_VIRTUAL_MEM_MAP
418
419int
420create_mem_map_page_table (u64 start, u64 end, void *arg)
421{
422 unsigned long address, start_page, end_page;
423 struct page *map_start, *map_end;
424 int node;
425 pgd_t *pgd;
426 pud_t *pud;
427 pmd_t *pmd;
428 pte_t *pte;
429
430 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
431 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
432
433 start_page = (unsigned long) map_start & PAGE_MASK;
434 end_page = PAGE_ALIGN((unsigned long) map_end);
435 node = paddr_to_nid(__pa(start));
436
437 for (address = start_page; address < end_page; address += PAGE_SIZE) {
438 pgd = pgd_offset_k(address);
439 if (pgd_none(*pgd))
440 pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
441 pud = pud_offset(pgd, address);
442
443 if (pud_none(*pud))
444 pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
445 pmd = pmd_offset(pud, address);
446
447 if (pmd_none(*pmd))
448 pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
449 pte = pte_offset_kernel(pmd, address);
450
451 if (pte_none(*pte))
452 set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
453 PAGE_KERNEL));
454 }
455 return 0;
456}
457
458struct memmap_init_callback_data {
459 struct page *start;
460 struct page *end;
461 int nid;
462 unsigned long zone;
463};
464
465static int
466virtual_memmap_init (u64 start, u64 end, void *arg)
467{
468 struct memmap_init_callback_data *args;
469 struct page *map_start, *map_end;
470
471 args = (struct memmap_init_callback_data *) arg;
472 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
473 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
474
475 if (map_start < args->start)
476 map_start = args->start;
477 if (map_end > args->end)
478 map_end = args->end;
479
480 /*
481 * We have to initialize "out of bounds" struct page elements that fit completely
482 * on the same pages that were allocated for the "in bounds" elements because they
483 * may be referenced later (and found to be "reserved").
484 */
485 map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
486 map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
487 / sizeof(struct page));
488
489 if (map_start < map_end)
490 memmap_init_zone((unsigned long)(map_end - map_start),
491 args->nid, args->zone, page_to_pfn(map_start));
492 return 0;
493}
494
495void
496memmap_init (unsigned long size, int nid, unsigned long zone,
497 unsigned long start_pfn)
498{
499 if (!vmem_map)
500 memmap_init_zone(size, nid, zone, start_pfn);
501 else {
502 struct page *start;
503 struct memmap_init_callback_data args;
504
505 start = pfn_to_page(start_pfn);
506 args.start = start;
507 args.end = start + size;
508 args.nid = nid;
509 args.zone = zone;
510
511 efi_memmap_walk(virtual_memmap_init, &args);
512 }
513}
514
515int
516ia64_pfn_valid (unsigned long pfn)
517{
518 char byte;
519 struct page *pg = pfn_to_page(pfn);
520
521 return (__get_user(byte, (char __user *) pg) == 0)
522 && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
523 || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
524}
525EXPORT_SYMBOL(ia64_pfn_valid);
526
527int
528find_largest_hole (u64 start, u64 end, void *arg)
529{
530 u64 *max_gap = arg;
531
532 static u64 last_end = PAGE_OFFSET;
533
534 /* NOTE: this algorithm assumes efi memmap table is ordered */
535
536 if (*max_gap < (start - last_end))
537 *max_gap = start - last_end;
538 last_end = end;
539 return 0;
540}
541#endif /* CONFIG_VIRTUAL_MEM_MAP */
542
543static int
544count_reserved_pages (u64 start, u64 end, void *arg)
545{
546 unsigned long num_reserved = 0;
547 unsigned long *count = arg;
548
549 for (; start < end; start += PAGE_SIZE)
550 if (PageReserved(virt_to_page(start)))
551 ++num_reserved;
552 *count += num_reserved;
553 return 0;
554}
555
556/*
557 * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
558 * system call handler. When this option is in effect, all fsyscalls will end up bubbling
559 * down into the kernel and calling the normal (heavy-weight) syscall handler. This is
560 * useful for performance testing, but conceivably could also come in handy for debugging
561 * purposes.
562 */
563
564static int nolwsys;
565
566static int __init
567nolwsys_setup (char *s)
568{
569 nolwsys = 1;
570 return 1;
571}
572
573__setup("nolwsys", nolwsys_setup);
574
575void
576mem_init (void)
577{
578 long reserved_pages, codesize, datasize, initsize;
1da177e4
LT
579 pg_data_t *pgdat;
580 int i;
581 static struct kcore_list kcore_mem, kcore_vmem, kcore_kernel;
582
fde740e4
RH
583 BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
584 BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
585 BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
586
1da177e4
LT
587#ifdef CONFIG_PCI
588 /*
589 * This needs to be called _after_ the command line has been parsed but _before_
590 * any drivers that may need the PCI DMA interface are initialized or bootmem has
591 * been freed.
592 */
593 platform_dma_init();
594#endif
595
596#ifndef CONFIG_DISCONTIGMEM
597 if (!mem_map)
598 BUG();
599 max_mapnr = max_low_pfn;
600#endif
601
602 high_memory = __va(max_low_pfn * PAGE_SIZE);
603
604 kclist_add(&kcore_mem, __va(0), max_low_pfn * PAGE_SIZE);
605 kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START);
606 kclist_add(&kcore_kernel, _stext, _end - _stext);
607
608 for_each_pgdat(pgdat)
564601a5 609 if (pgdat->bdata->node_bootmem_map)
610 totalram_pages += free_all_bootmem_node(pgdat);
1da177e4
LT
611
612 reserved_pages = 0;
613 efi_memmap_walk(count_reserved_pages, &reserved_pages);
614
615 codesize = (unsigned long) _etext - (unsigned long) _stext;
616 datasize = (unsigned long) _edata - (unsigned long) _etext;
617 initsize = (unsigned long) __init_end - (unsigned long) __init_begin;
618
619 printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, "
620 "%luk data, %luk init)\n", (unsigned long) nr_free_pages() << (PAGE_SHIFT - 10),
621 num_physpages << (PAGE_SHIFT - 10), codesize >> 10,
622 reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10);
623
1da177e4
LT
624
625 /*
626 * For fsyscall entrpoints with no light-weight handler, use the ordinary
627 * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
628 * code can tell them apart.
629 */
630 for (i = 0; i < NR_syscalls; ++i) {
631 extern unsigned long fsyscall_table[NR_syscalls];
632 extern unsigned long sys_call_table[NR_syscalls];
633
634 if (!fsyscall_table[i] || nolwsys)
635 fsyscall_table[i] = sys_call_table[i] | 1;
636 }
637 setup_gate();
638
639#ifdef CONFIG_IA32_SUPPORT
640 ia32_mem_init();
641#endif
642}
This page took 0.097405 seconds and 5 git commands to generate.