[IA64] fix: warning: `ql_size' might be used uninitialized
[deliverable/linux.git] / arch / ia64 / mm / init.c
CommitLineData
1da177e4
LT
1/*
2 * Initialize MMU support.
3 *
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 */
7#include <linux/config.h>
8#include <linux/kernel.h>
9#include <linux/init.h>
10
11#include <linux/bootmem.h>
12#include <linux/efi.h>
13#include <linux/elf.h>
14#include <linux/mm.h>
15#include <linux/mmzone.h>
16#include <linux/module.h>
17#include <linux/personality.h>
18#include <linux/reboot.h>
19#include <linux/slab.h>
20#include <linux/swap.h>
21#include <linux/proc_fs.h>
22#include <linux/bitops.h>
23
24#include <asm/a.out.h>
25#include <asm/dma.h>
26#include <asm/ia32.h>
27#include <asm/io.h>
28#include <asm/machvec.h>
29#include <asm/numa.h>
30#include <asm/patch.h>
31#include <asm/pgalloc.h>
32#include <asm/sal.h>
33#include <asm/sections.h>
34#include <asm/system.h>
35#include <asm/tlb.h>
36#include <asm/uaccess.h>
37#include <asm/unistd.h>
38#include <asm/mca.h>
39
40DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
41
fde740e4
RH
42DEFINE_PER_CPU(unsigned long *, __pgtable_quicklist);
43DEFINE_PER_CPU(long, __pgtable_quicklist_size);
44
1da177e4
LT
45extern void ia64_tlb_init (void);
46
47unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
48
49#ifdef CONFIG_VIRTUAL_MEM_MAP
50unsigned long vmalloc_end = VMALLOC_END_INIT;
51EXPORT_SYMBOL(vmalloc_end);
52struct page *vmem_map;
53EXPORT_SYMBOL(vmem_map);
54#endif
55
fde740e4 56struct page *zero_page_memmap_ptr; /* map entry for zero page */
1da177e4
LT
57EXPORT_SYMBOL(zero_page_memmap_ptr);
58
fde740e4
RH
59#define MIN_PGT_PAGES 25UL
60#define MAX_PGT_FREES_PER_PASS 16
61#define PGT_FRACTION_OF_NODE_MEM 16
62
63static inline long
64max_pgt_pages(void)
65{
66 u64 node_free_pages, max_pgt_pages;
67
68#ifndef CONFIG_NUMA
69 node_free_pages = nr_free_pages();
70#else
71 node_free_pages = nr_free_pages_pgdat(NODE_DATA(numa_node_id()));
72#endif
73 max_pgt_pages = node_free_pages / PGT_FRACTION_OF_NODE_MEM;
74 max_pgt_pages = max(max_pgt_pages, MIN_PGT_PAGES);
75 return max_pgt_pages;
76}
77
78static inline long
79min_pages_to_free(void)
80{
81 long pages_to_free;
82
83 pages_to_free = pgtable_quicklist_size - max_pgt_pages();
84 pages_to_free = min(pages_to_free, MAX_PGT_FREES_PER_PASS);
85 return pages_to_free;
86}
87
1da177e4 88void
fde740e4 89check_pgt_cache(void)
1da177e4 90{
fde740e4 91 long pages_to_free;
1da177e4 92
fde740e4
RH
93 if (unlikely(pgtable_quicklist_size <= MIN_PGT_PAGES))
94 return;
1da177e4
LT
95
96 preempt_disable();
fde740e4
RH
97 while (unlikely((pages_to_free = min_pages_to_free()) > 0)) {
98 while (pages_to_free--) {
99 free_page((unsigned long)pgtable_quicklist_alloc());
100 }
101 preempt_enable();
102 preempt_disable();
1da177e4
LT
103 }
104 preempt_enable();
105}
106
107void
108lazy_mmu_prot_update (pte_t pte)
109{
110 unsigned long addr;
111 struct page *page;
112
113 if (!pte_exec(pte))
114 return; /* not an executable page... */
115
116 page = pte_page(pte);
117 addr = (unsigned long) page_address(page);
118
119 if (test_bit(PG_arch_1, &page->flags))
120 return; /* i-cache is already coherent with d-cache */
121
122 flush_icache_range(addr, addr + PAGE_SIZE);
123 set_bit(PG_arch_1, &page->flags); /* mark page as clean */
124}
125
126inline void
127ia64_set_rbs_bot (void)
128{
129 unsigned long stack_size = current->signal->rlim[RLIMIT_STACK].rlim_max & -16;
130
131 if (stack_size > MAX_USER_STACK_SIZE)
132 stack_size = MAX_USER_STACK_SIZE;
133 current->thread.rbs_bot = STACK_TOP - stack_size;
134}
135
136/*
137 * This performs some platform-dependent address space initialization.
138 * On IA-64, we want to setup the VM area for the register backing
139 * store (which grows upwards) and install the gateway page which is
140 * used for signal trampolines, etc.
141 */
142void
143ia64_init_addr_space (void)
144{
145 struct vm_area_struct *vma;
146
147 ia64_set_rbs_bot();
148
149 /*
150 * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
151 * the problem. When the process attempts to write to the register backing store
152 * for the first time, it will get a SEGFAULT in this case.
153 */
154 vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
155 if (vma) {
156 memset(vma, 0, sizeof(*vma));
157 vma->vm_mm = current->mm;
158 vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
159 vma->vm_end = vma->vm_start + PAGE_SIZE;
160 vma->vm_page_prot = protection_map[VM_DATA_DEFAULT_FLAGS & 0x7];
161 vma->vm_flags = VM_DATA_DEFAULT_FLAGS | VM_GROWSUP;
162 down_write(&current->mm->mmap_sem);
163 if (insert_vm_struct(current->mm, vma)) {
164 up_write(&current->mm->mmap_sem);
165 kmem_cache_free(vm_area_cachep, vma);
166 return;
167 }
168 up_write(&current->mm->mmap_sem);
169 }
170
171 /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
172 if (!(current->personality & MMAP_PAGE_ZERO)) {
173 vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
174 if (vma) {
175 memset(vma, 0, sizeof(*vma));
176 vma->vm_mm = current->mm;
177 vma->vm_end = PAGE_SIZE;
178 vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
179 vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED;
180 down_write(&current->mm->mmap_sem);
181 if (insert_vm_struct(current->mm, vma)) {
182 up_write(&current->mm->mmap_sem);
183 kmem_cache_free(vm_area_cachep, vma);
184 return;
185 }
186 up_write(&current->mm->mmap_sem);
187 }
188 }
189}
190
191void
192free_initmem (void)
193{
194 unsigned long addr, eaddr;
195
196 addr = (unsigned long) ia64_imva(__init_begin);
197 eaddr = (unsigned long) ia64_imva(__init_end);
198 while (addr < eaddr) {
199 ClearPageReserved(virt_to_page(addr));
200 set_page_count(virt_to_page(addr), 1);
201 free_page(addr);
202 ++totalram_pages;
203 addr += PAGE_SIZE;
204 }
205 printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n",
206 (__init_end - __init_begin) >> 10);
207}
208
209void
210free_initrd_mem (unsigned long start, unsigned long end)
211{
212 struct page *page;
213 /*
214 * EFI uses 4KB pages while the kernel can use 4KB or bigger.
215 * Thus EFI and the kernel may have different page sizes. It is
216 * therefore possible to have the initrd share the same page as
217 * the end of the kernel (given current setup).
218 *
219 * To avoid freeing/using the wrong page (kernel sized) we:
220 * - align up the beginning of initrd
221 * - align down the end of initrd
222 *
223 * | |
224 * |=============| a000
225 * | |
226 * | |
227 * | | 9000
228 * |/////////////|
229 * |/////////////|
230 * |=============| 8000
231 * |///INITRD////|
232 * |/////////////|
233 * |/////////////| 7000
234 * | |
235 * |KKKKKKKKKKKKK|
236 * |=============| 6000
237 * |KKKKKKKKKKKKK|
238 * |KKKKKKKKKKKKK|
239 * K=kernel using 8KB pages
240 *
241 * In this example, we must free page 8000 ONLY. So we must align up
242 * initrd_start and keep initrd_end as is.
243 */
244 start = PAGE_ALIGN(start);
245 end = end & PAGE_MASK;
246
247 if (start < end)
248 printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
249
250 for (; start < end; start += PAGE_SIZE) {
251 if (!virt_addr_valid(start))
252 continue;
253 page = virt_to_page(start);
254 ClearPageReserved(page);
255 set_page_count(page, 1);
256 free_page(start);
257 ++totalram_pages;
258 }
259}
260
261/*
262 * This installs a clean page in the kernel's page table.
263 */
264struct page *
265put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
266{
267 pgd_t *pgd;
268 pud_t *pud;
269 pmd_t *pmd;
270 pte_t *pte;
271
272 if (!PageReserved(page))
273 printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n",
274 page_address(page));
275
276 pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */
277
278 spin_lock(&init_mm.page_table_lock);
279 {
280 pud = pud_alloc(&init_mm, pgd, address);
281 if (!pud)
282 goto out;
283
284 pmd = pmd_alloc(&init_mm, pud, address);
285 if (!pmd)
286 goto out;
287 pte = pte_alloc_map(&init_mm, pmd, address);
288 if (!pte)
289 goto out;
290 if (!pte_none(*pte)) {
291 pte_unmap(pte);
292 goto out;
293 }
294 set_pte(pte, mk_pte(page, pgprot));
295 pte_unmap(pte);
296 }
297 out: spin_unlock(&init_mm.page_table_lock);
298 /* no need for flush_tlb */
299 return page;
300}
301
302static void
303setup_gate (void)
304{
305 struct page *page;
306
307 /*
308 * Map the gate page twice: once read-only to export the ELF headers etc. and once
309 * execute-only page to enable privilege-promotion via "epc":
310 */
311 page = virt_to_page(ia64_imva(__start_gate_section));
312 put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
313#ifdef HAVE_BUGGY_SEGREL
314 page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
315 put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
316#else
317 put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
318#endif
319 ia64_patch_gate();
320}
321
322void __devinit
323ia64_mmu_init (void *my_cpu_data)
324{
325 unsigned long psr, pta, impl_va_bits;
326 extern void __devinit tlb_init (void);
327
328#ifdef CONFIG_DISABLE_VHPT
329# define VHPT_ENABLE_BIT 0
330#else
331# define VHPT_ENABLE_BIT 1
332#endif
333
334 /* Pin mapping for percpu area into TLB */
335 psr = ia64_clear_ic();
336 ia64_itr(0x2, IA64_TR_PERCPU_DATA, PERCPU_ADDR,
337 pte_val(pfn_pte(__pa(my_cpu_data) >> PAGE_SHIFT, PAGE_KERNEL)),
338 PERCPU_PAGE_SHIFT);
339
340 ia64_set_psr(psr);
341 ia64_srlz_i();
342
343 /*
344 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
345 * address space. The IA-64 architecture guarantees that at least 50 bits of
346 * virtual address space are implemented but if we pick a large enough page size
347 * (e.g., 64KB), the mapped address space is big enough that it will overlap with
348 * VMLPT. I assume that once we run on machines big enough to warrant 64KB pages,
349 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
350 * problem in practice. Alternatively, we could truncate the top of the mapped
351 * address space to not permit mappings that would overlap with the VMLPT.
352 * --davidm 00/12/06
353 */
354# define pte_bits 3
355# define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
356 /*
357 * The virtual page table has to cover the entire implemented address space within
358 * a region even though not all of this space may be mappable. The reason for
359 * this is that the Access bit and Dirty bit fault handlers perform
360 * non-speculative accesses to the virtual page table, so the address range of the
361 * virtual page table itself needs to be covered by virtual page table.
362 */
363# define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits)
364# define POW2(n) (1ULL << (n))
365
366 impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
367
368 if (impl_va_bits < 51 || impl_va_bits > 61)
369 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
370
371 /* place the VMLPT at the end of each page-table mapped region: */
372 pta = POW2(61) - POW2(vmlpt_bits);
373
374 if (POW2(mapped_space_bits) >= pta)
375 panic("mm/init: overlap between virtually mapped linear page table and "
376 "mapped kernel space!");
377 /*
378 * Set the (virtually mapped linear) page table address. Bit
379 * 8 selects between the short and long format, bits 2-7 the
380 * size of the table, and bit 0 whether the VHPT walker is
381 * enabled.
382 */
383 ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
384
385 ia64_tlb_init();
386
387#ifdef CONFIG_HUGETLB_PAGE
388 ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
389 ia64_srlz_d();
390#endif
391}
392
393#ifdef CONFIG_VIRTUAL_MEM_MAP
394
395int
396create_mem_map_page_table (u64 start, u64 end, void *arg)
397{
398 unsigned long address, start_page, end_page;
399 struct page *map_start, *map_end;
400 int node;
401 pgd_t *pgd;
402 pud_t *pud;
403 pmd_t *pmd;
404 pte_t *pte;
405
406 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
407 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
408
409 start_page = (unsigned long) map_start & PAGE_MASK;
410 end_page = PAGE_ALIGN((unsigned long) map_end);
411 node = paddr_to_nid(__pa(start));
412
413 for (address = start_page; address < end_page; address += PAGE_SIZE) {
414 pgd = pgd_offset_k(address);
415 if (pgd_none(*pgd))
416 pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
417 pud = pud_offset(pgd, address);
418
419 if (pud_none(*pud))
420 pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
421 pmd = pmd_offset(pud, address);
422
423 if (pmd_none(*pmd))
424 pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
425 pte = pte_offset_kernel(pmd, address);
426
427 if (pte_none(*pte))
428 set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
429 PAGE_KERNEL));
430 }
431 return 0;
432}
433
434struct memmap_init_callback_data {
435 struct page *start;
436 struct page *end;
437 int nid;
438 unsigned long zone;
439};
440
441static int
442virtual_memmap_init (u64 start, u64 end, void *arg)
443{
444 struct memmap_init_callback_data *args;
445 struct page *map_start, *map_end;
446
447 args = (struct memmap_init_callback_data *) arg;
448 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
449 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
450
451 if (map_start < args->start)
452 map_start = args->start;
453 if (map_end > args->end)
454 map_end = args->end;
455
456 /*
457 * We have to initialize "out of bounds" struct page elements that fit completely
458 * on the same pages that were allocated for the "in bounds" elements because they
459 * may be referenced later (and found to be "reserved").
460 */
461 map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
462 map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
463 / sizeof(struct page));
464
465 if (map_start < map_end)
466 memmap_init_zone((unsigned long)(map_end - map_start),
467 args->nid, args->zone, page_to_pfn(map_start));
468 return 0;
469}
470
471void
472memmap_init (unsigned long size, int nid, unsigned long zone,
473 unsigned long start_pfn)
474{
475 if (!vmem_map)
476 memmap_init_zone(size, nid, zone, start_pfn);
477 else {
478 struct page *start;
479 struct memmap_init_callback_data args;
480
481 start = pfn_to_page(start_pfn);
482 args.start = start;
483 args.end = start + size;
484 args.nid = nid;
485 args.zone = zone;
486
487 efi_memmap_walk(virtual_memmap_init, &args);
488 }
489}
490
491int
492ia64_pfn_valid (unsigned long pfn)
493{
494 char byte;
495 struct page *pg = pfn_to_page(pfn);
496
497 return (__get_user(byte, (char __user *) pg) == 0)
498 && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
499 || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
500}
501EXPORT_SYMBOL(ia64_pfn_valid);
502
503int
504find_largest_hole (u64 start, u64 end, void *arg)
505{
506 u64 *max_gap = arg;
507
508 static u64 last_end = PAGE_OFFSET;
509
510 /* NOTE: this algorithm assumes efi memmap table is ordered */
511
512 if (*max_gap < (start - last_end))
513 *max_gap = start - last_end;
514 last_end = end;
515 return 0;
516}
517#endif /* CONFIG_VIRTUAL_MEM_MAP */
518
519static int
520count_reserved_pages (u64 start, u64 end, void *arg)
521{
522 unsigned long num_reserved = 0;
523 unsigned long *count = arg;
524
525 for (; start < end; start += PAGE_SIZE)
526 if (PageReserved(virt_to_page(start)))
527 ++num_reserved;
528 *count += num_reserved;
529 return 0;
530}
531
532/*
533 * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
534 * system call handler. When this option is in effect, all fsyscalls will end up bubbling
535 * down into the kernel and calling the normal (heavy-weight) syscall handler. This is
536 * useful for performance testing, but conceivably could also come in handy for debugging
537 * purposes.
538 */
539
540static int nolwsys;
541
542static int __init
543nolwsys_setup (char *s)
544{
545 nolwsys = 1;
546 return 1;
547}
548
549__setup("nolwsys", nolwsys_setup);
550
551void
552mem_init (void)
553{
554 long reserved_pages, codesize, datasize, initsize;
1da177e4
LT
555 pg_data_t *pgdat;
556 int i;
557 static struct kcore_list kcore_mem, kcore_vmem, kcore_kernel;
558
fde740e4
RH
559 BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
560 BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
561 BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
562
1da177e4
LT
563#ifdef CONFIG_PCI
564 /*
565 * This needs to be called _after_ the command line has been parsed but _before_
566 * any drivers that may need the PCI DMA interface are initialized or bootmem has
567 * been freed.
568 */
569 platform_dma_init();
570#endif
571
572#ifndef CONFIG_DISCONTIGMEM
573 if (!mem_map)
574 BUG();
575 max_mapnr = max_low_pfn;
576#endif
577
578 high_memory = __va(max_low_pfn * PAGE_SIZE);
579
580 kclist_add(&kcore_mem, __va(0), max_low_pfn * PAGE_SIZE);
581 kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START);
582 kclist_add(&kcore_kernel, _stext, _end - _stext);
583
584 for_each_pgdat(pgdat)
585 totalram_pages += free_all_bootmem_node(pgdat);
586
587 reserved_pages = 0;
588 efi_memmap_walk(count_reserved_pages, &reserved_pages);
589
590 codesize = (unsigned long) _etext - (unsigned long) _stext;
591 datasize = (unsigned long) _edata - (unsigned long) _etext;
592 initsize = (unsigned long) __init_end - (unsigned long) __init_begin;
593
594 printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, "
595 "%luk data, %luk init)\n", (unsigned long) nr_free_pages() << (PAGE_SHIFT - 10),
596 num_physpages << (PAGE_SHIFT - 10), codesize >> 10,
597 reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10);
598
1da177e4
LT
599
600 /*
601 * For fsyscall entrpoints with no light-weight handler, use the ordinary
602 * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
603 * code can tell them apart.
604 */
605 for (i = 0; i < NR_syscalls; ++i) {
606 extern unsigned long fsyscall_table[NR_syscalls];
607 extern unsigned long sys_call_table[NR_syscalls];
608
609 if (!fsyscall_table[i] || nolwsys)
610 fsyscall_table[i] = sys_call_table[i] | 1;
611 }
612 setup_gate();
613
614#ifdef CONFIG_IA32_SUPPORT
615 ia32_mem_init();
616#endif
617}
This page took 0.054135 seconds and 5 git commands to generate.