x86/irq: remove leftover code from NUMA_MIGRATE_IRQ_DESC
[deliverable/linux.git] / arch / mips / cavium-octeon / octeon-irq.c
CommitLineData
5b3b1688
DD
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2004-2008 Cavium Networks
7 */
8#include <linux/irq.h>
9#include <linux/interrupt.h>
10#include <linux/hardirq.h>
11
12#include <asm/octeon/octeon.h>
13
14DEFINE_RWLOCK(octeon_irq_ciu0_rwlock);
15DEFINE_RWLOCK(octeon_irq_ciu1_rwlock);
16DEFINE_SPINLOCK(octeon_irq_msi_lock);
17
18static void octeon_irq_core_ack(unsigned int irq)
19{
20 unsigned int bit = irq - OCTEON_IRQ_SW0;
21 /*
22 * We don't need to disable IRQs to make these atomic since
23 * they are already disabled earlier in the low level
24 * interrupt code.
25 */
26 clear_c0_status(0x100 << bit);
27 /* The two user interrupts must be cleared manually. */
28 if (bit < 2)
29 clear_c0_cause(0x100 << bit);
30}
31
32static void octeon_irq_core_eoi(unsigned int irq)
33{
ae035505 34 struct irq_desc *desc = irq_desc + irq;
5b3b1688
DD
35 unsigned int bit = irq - OCTEON_IRQ_SW0;
36 /*
37 * If an IRQ is being processed while we are disabling it the
38 * handler will attempt to unmask the interrupt after it has
39 * been disabled.
40 */
41 if (desc->status & IRQ_DISABLED)
42 return;
43
44 /* There is a race here. We should fix it. */
45
46 /*
47 * We don't need to disable IRQs to make these atomic since
48 * they are already disabled earlier in the low level
49 * interrupt code.
50 */
51 set_c0_status(0x100 << bit);
52}
53
54static void octeon_irq_core_enable(unsigned int irq)
55{
56 unsigned long flags;
57 unsigned int bit = irq - OCTEON_IRQ_SW0;
58
59 /*
60 * We need to disable interrupts to make sure our updates are
61 * atomic.
62 */
63 local_irq_save(flags);
64 set_c0_status(0x100 << bit);
65 local_irq_restore(flags);
66}
67
68static void octeon_irq_core_disable_local(unsigned int irq)
69{
70 unsigned long flags;
71 unsigned int bit = irq - OCTEON_IRQ_SW0;
72 /*
73 * We need to disable interrupts to make sure our updates are
74 * atomic.
75 */
76 local_irq_save(flags);
77 clear_c0_status(0x100 << bit);
78 local_irq_restore(flags);
79}
80
81static void octeon_irq_core_disable(unsigned int irq)
82{
83#ifdef CONFIG_SMP
84 on_each_cpu((void (*)(void *)) octeon_irq_core_disable_local,
85 (void *) (long) irq, 1);
86#else
87 octeon_irq_core_disable_local(irq);
88#endif
89}
90
91static struct irq_chip octeon_irq_chip_core = {
92 .name = "Core",
93 .enable = octeon_irq_core_enable,
94 .disable = octeon_irq_core_disable,
95 .ack = octeon_irq_core_ack,
96 .eoi = octeon_irq_core_eoi,
97};
98
99
100static void octeon_irq_ciu0_ack(unsigned int irq)
101{
102 /*
103 * In order to avoid any locking accessing the CIU, we
104 * acknowledge CIU interrupts by disabling all of them. This
105 * way we can use a per core register and avoid any out of
106 * core locking requirements. This has the side affect that
107 * CIU interrupts can't be processed recursively.
108 *
109 * We don't need to disable IRQs to make these atomic since
110 * they are already disabled earlier in the low level
111 * interrupt code.
112 */
113 clear_c0_status(0x100 << 2);
114}
115
116static void octeon_irq_ciu0_eoi(unsigned int irq)
117{
118 /*
119 * Enable all CIU interrupts again. We don't need to disable
120 * IRQs to make these atomic since they are already disabled
121 * earlier in the low level interrupt code.
122 */
123 set_c0_status(0x100 << 2);
124}
125
126static void octeon_irq_ciu0_enable(unsigned int irq)
127{
128 int coreid = cvmx_get_core_num();
129 unsigned long flags;
130 uint64_t en0;
131 int bit = irq - OCTEON_IRQ_WORKQ0; /* Bit 0-63 of EN0 */
132
133 /*
134 * A read lock is used here to make sure only one core is ever
135 * updating the CIU enable bits at a time. During an enable
136 * the cores don't interfere with each other. During a disable
137 * the write lock stops any enables that might cause a
138 * problem.
139 */
140 read_lock_irqsave(&octeon_irq_ciu0_rwlock, flags);
141 en0 = cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2));
142 en0 |= 1ull << bit;
143 cvmx_write_csr(CVMX_CIU_INTX_EN0(coreid * 2), en0);
144 cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2));
145 read_unlock_irqrestore(&octeon_irq_ciu0_rwlock, flags);
146}
147
148static void octeon_irq_ciu0_disable(unsigned int irq)
149{
150 int bit = irq - OCTEON_IRQ_WORKQ0; /* Bit 0-63 of EN0 */
151 unsigned long flags;
152 uint64_t en0;
153#ifdef CONFIG_SMP
154 int cpu;
155 write_lock_irqsave(&octeon_irq_ciu0_rwlock, flags);
156 for_each_online_cpu(cpu) {
157 int coreid = cpu_logical_map(cpu);
158 en0 = cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2));
159 en0 &= ~(1ull << bit);
160 cvmx_write_csr(CVMX_CIU_INTX_EN0(coreid * 2), en0);
161 }
162 /*
163 * We need to do a read after the last update to make sure all
164 * of them are done.
165 */
166 cvmx_read_csr(CVMX_CIU_INTX_EN0(cvmx_get_core_num() * 2));
167 write_unlock_irqrestore(&octeon_irq_ciu0_rwlock, flags);
168#else
169 int coreid = cvmx_get_core_num();
170 local_irq_save(flags);
171 en0 = cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2));
172 en0 &= ~(1ull << bit);
173 cvmx_write_csr(CVMX_CIU_INTX_EN0(coreid * 2), en0);
174 cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2));
175 local_irq_restore(flags);
176#endif
177}
178
179#ifdef CONFIG_SMP
180static void octeon_irq_ciu0_set_affinity(unsigned int irq, const struct cpumask *dest)
181{
182 int cpu;
183 int bit = irq - OCTEON_IRQ_WORKQ0; /* Bit 0-63 of EN0 */
184
185 write_lock(&octeon_irq_ciu0_rwlock);
186 for_each_online_cpu(cpu) {
187 int coreid = cpu_logical_map(cpu);
188 uint64_t en0 =
189 cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2));
190 if (cpumask_test_cpu(cpu, dest))
191 en0 |= 1ull << bit;
192 else
193 en0 &= ~(1ull << bit);
194 cvmx_write_csr(CVMX_CIU_INTX_EN0(coreid * 2), en0);
195 }
196 /*
197 * We need to do a read after the last update to make sure all
198 * of them are done.
199 */
200 cvmx_read_csr(CVMX_CIU_INTX_EN0(cvmx_get_core_num() * 2));
201 write_unlock(&octeon_irq_ciu0_rwlock);
202}
203#endif
204
205static struct irq_chip octeon_irq_chip_ciu0 = {
206 .name = "CIU0",
207 .enable = octeon_irq_ciu0_enable,
208 .disable = octeon_irq_ciu0_disable,
209 .ack = octeon_irq_ciu0_ack,
210 .eoi = octeon_irq_ciu0_eoi,
211#ifdef CONFIG_SMP
212 .set_affinity = octeon_irq_ciu0_set_affinity,
213#endif
214};
215
216
217static void octeon_irq_ciu1_ack(unsigned int irq)
218{
219 /*
220 * In order to avoid any locking accessing the CIU, we
221 * acknowledge CIU interrupts by disabling all of them. This
222 * way we can use a per core register and avoid any out of
223 * core locking requirements. This has the side affect that
224 * CIU interrupts can't be processed recursively. We don't
225 * need to disable IRQs to make these atomic since they are
226 * already disabled earlier in the low level interrupt code.
227 */
228 clear_c0_status(0x100 << 3);
229}
230
231static void octeon_irq_ciu1_eoi(unsigned int irq)
232{
233 /*
234 * Enable all CIU interrupts again. We don't need to disable
235 * IRQs to make these atomic since they are already disabled
236 * earlier in the low level interrupt code.
237 */
238 set_c0_status(0x100 << 3);
239}
240
241static void octeon_irq_ciu1_enable(unsigned int irq)
242{
243 int coreid = cvmx_get_core_num();
244 unsigned long flags;
245 uint64_t en1;
246 int bit = irq - OCTEON_IRQ_WDOG0; /* Bit 0-63 of EN1 */
247
248 /*
249 * A read lock is used here to make sure only one core is ever
250 * updating the CIU enable bits at a time. During an enable
251 * the cores don't interfere with each other. During a disable
252 * the write lock stops any enables that might cause a
253 * problem.
254 */
255 read_lock_irqsave(&octeon_irq_ciu1_rwlock, flags);
256 en1 = cvmx_read_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1));
257 en1 |= 1ull << bit;
258 cvmx_write_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1), en1);
259 cvmx_read_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1));
260 read_unlock_irqrestore(&octeon_irq_ciu1_rwlock, flags);
261}
262
263static void octeon_irq_ciu1_disable(unsigned int irq)
264{
265 int bit = irq - OCTEON_IRQ_WDOG0; /* Bit 0-63 of EN1 */
266 unsigned long flags;
267 uint64_t en1;
268#ifdef CONFIG_SMP
269 int cpu;
270 write_lock_irqsave(&octeon_irq_ciu1_rwlock, flags);
271 for_each_online_cpu(cpu) {
272 int coreid = cpu_logical_map(cpu);
273 en1 = cvmx_read_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1));
274 en1 &= ~(1ull << bit);
275 cvmx_write_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1), en1);
276 }
277 /*
278 * We need to do a read after the last update to make sure all
279 * of them are done.
280 */
281 cvmx_read_csr(CVMX_CIU_INTX_EN1(cvmx_get_core_num() * 2 + 1));
282 write_unlock_irqrestore(&octeon_irq_ciu1_rwlock, flags);
283#else
284 int coreid = cvmx_get_core_num();
285 local_irq_save(flags);
286 en1 = cvmx_read_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1));
287 en1 &= ~(1ull << bit);
288 cvmx_write_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1), en1);
289 cvmx_read_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1));
290 local_irq_restore(flags);
291#endif
292}
293
294#ifdef CONFIG_SMP
295static void octeon_irq_ciu1_set_affinity(unsigned int irq, const struct cpumask *dest)
296{
297 int cpu;
298 int bit = irq - OCTEON_IRQ_WDOG0; /* Bit 0-63 of EN1 */
299
300 write_lock(&octeon_irq_ciu1_rwlock);
301 for_each_online_cpu(cpu) {
302 int coreid = cpu_logical_map(cpu);
303 uint64_t en1 =
304 cvmx_read_csr(CVMX_CIU_INTX_EN1
305 (coreid * 2 + 1));
306 if (cpumask_test_cpu(cpu, dest))
307 en1 |= 1ull << bit;
308 else
309 en1 &= ~(1ull << bit);
310 cvmx_write_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1), en1);
311 }
312 /*
313 * We need to do a read after the last update to make sure all
314 * of them are done.
315 */
316 cvmx_read_csr(CVMX_CIU_INTX_EN1(cvmx_get_core_num() * 2 + 1));
317 write_unlock(&octeon_irq_ciu1_rwlock);
318}
319#endif
320
321static struct irq_chip octeon_irq_chip_ciu1 = {
322 .name = "CIU1",
323 .enable = octeon_irq_ciu1_enable,
324 .disable = octeon_irq_ciu1_disable,
325 .ack = octeon_irq_ciu1_ack,
326 .eoi = octeon_irq_ciu1_eoi,
327#ifdef CONFIG_SMP
328 .set_affinity = octeon_irq_ciu1_set_affinity,
329#endif
330};
331
332#ifdef CONFIG_PCI_MSI
333
334static void octeon_irq_msi_ack(unsigned int irq)
335{
336 if (!octeon_has_feature(OCTEON_FEATURE_PCIE)) {
337 /* These chips have PCI */
338 cvmx_write_csr(CVMX_NPI_NPI_MSI_RCV,
339 1ull << (irq - OCTEON_IRQ_MSI_BIT0));
340 } else {
341 /*
342 * These chips have PCIe. Thankfully the ACK doesn't
343 * need any locking.
344 */
345 cvmx_write_csr(CVMX_PEXP_NPEI_MSI_RCV0,
346 1ull << (irq - OCTEON_IRQ_MSI_BIT0));
347 }
348}
349
350static void octeon_irq_msi_eoi(unsigned int irq)
351{
352 /* Nothing needed */
353}
354
355static void octeon_irq_msi_enable(unsigned int irq)
356{
357 if (!octeon_has_feature(OCTEON_FEATURE_PCIE)) {
358 /*
359 * Octeon PCI doesn't have the ability to mask/unmask
360 * MSI interrupts individually. Instead of
361 * masking/unmasking them in groups of 16, we simple
362 * assume MSI devices are well behaved. MSI
363 * interrupts are always enable and the ACK is assumed
364 * to be enough.
365 */
366 } else {
367 /* These chips have PCIe. Note that we only support
368 * the first 64 MSI interrupts. Unfortunately all the
369 * MSI enables are in the same register. We use
370 * MSI0's lock to control access to them all.
371 */
372 uint64_t en;
373 unsigned long flags;
374 spin_lock_irqsave(&octeon_irq_msi_lock, flags);
375 en = cvmx_read_csr(CVMX_PEXP_NPEI_MSI_ENB0);
376 en |= 1ull << (irq - OCTEON_IRQ_MSI_BIT0);
377 cvmx_write_csr(CVMX_PEXP_NPEI_MSI_ENB0, en);
378 cvmx_read_csr(CVMX_PEXP_NPEI_MSI_ENB0);
379 spin_unlock_irqrestore(&octeon_irq_msi_lock, flags);
380 }
381}
382
383static void octeon_irq_msi_disable(unsigned int irq)
384{
385 if (!octeon_has_feature(OCTEON_FEATURE_PCIE)) {
386 /* See comment in enable */
387 } else {
388 /*
389 * These chips have PCIe. Note that we only support
390 * the first 64 MSI interrupts. Unfortunately all the
391 * MSI enables are in the same register. We use
392 * MSI0's lock to control access to them all.
393 */
394 uint64_t en;
395 unsigned long flags;
396 spin_lock_irqsave(&octeon_irq_msi_lock, flags);
397 en = cvmx_read_csr(CVMX_PEXP_NPEI_MSI_ENB0);
398 en &= ~(1ull << (irq - OCTEON_IRQ_MSI_BIT0));
399 cvmx_write_csr(CVMX_PEXP_NPEI_MSI_ENB0, en);
400 cvmx_read_csr(CVMX_PEXP_NPEI_MSI_ENB0);
401 spin_unlock_irqrestore(&octeon_irq_msi_lock, flags);
402 }
403}
404
405static struct irq_chip octeon_irq_chip_msi = {
406 .name = "MSI",
407 .enable = octeon_irq_msi_enable,
408 .disable = octeon_irq_msi_disable,
409 .ack = octeon_irq_msi_ack,
410 .eoi = octeon_irq_msi_eoi,
411};
412#endif
413
414void __init arch_init_irq(void)
415{
416 int irq;
417
418#ifdef CONFIG_SMP
419 /* Set the default affinity to the boot cpu. */
420 cpumask_clear(irq_default_affinity);
421 cpumask_set_cpu(smp_processor_id(), irq_default_affinity);
422#endif
423
424 if (NR_IRQS < OCTEON_IRQ_LAST)
425 pr_err("octeon_irq_init: NR_IRQS is set too low\n");
426
427 /* 0 - 15 reserved for i8259 master and slave controller. */
428
429 /* 17 - 23 Mips internal */
430 for (irq = OCTEON_IRQ_SW0; irq <= OCTEON_IRQ_TIMER; irq++) {
431 set_irq_chip_and_handler(irq, &octeon_irq_chip_core,
432 handle_percpu_irq);
433 }
434
435 /* 24 - 87 CIU_INT_SUM0 */
436 for (irq = OCTEON_IRQ_WORKQ0; irq <= OCTEON_IRQ_BOOTDMA; irq++) {
437 set_irq_chip_and_handler(irq, &octeon_irq_chip_ciu0,
438 handle_percpu_irq);
439 }
440
441 /* 88 - 151 CIU_INT_SUM1 */
442 for (irq = OCTEON_IRQ_WDOG0; irq <= OCTEON_IRQ_RESERVED151; irq++) {
443 set_irq_chip_and_handler(irq, &octeon_irq_chip_ciu1,
444 handle_percpu_irq);
445 }
446
447#ifdef CONFIG_PCI_MSI
448 /* 152 - 215 PCI/PCIe MSI interrupts */
449 for (irq = OCTEON_IRQ_MSI_BIT0; irq <= OCTEON_IRQ_MSI_BIT63; irq++) {
450 set_irq_chip_and_handler(irq, &octeon_irq_chip_msi,
451 handle_percpu_irq);
452 }
453#endif
454 set_c0_status(0x300 << 2);
455}
456
457asmlinkage void plat_irq_dispatch(void)
458{
459 const unsigned long core_id = cvmx_get_core_num();
460 const uint64_t ciu_sum0_address = CVMX_CIU_INTX_SUM0(core_id * 2);
461 const uint64_t ciu_en0_address = CVMX_CIU_INTX_EN0(core_id * 2);
462 const uint64_t ciu_sum1_address = CVMX_CIU_INT_SUM1;
463 const uint64_t ciu_en1_address = CVMX_CIU_INTX_EN1(core_id * 2 + 1);
464 unsigned long cop0_cause;
465 unsigned long cop0_status;
466 uint64_t ciu_en;
467 uint64_t ciu_sum;
468
469 while (1) {
470 cop0_cause = read_c0_cause();
471 cop0_status = read_c0_status();
472 cop0_cause &= cop0_status;
473 cop0_cause &= ST0_IM;
474
475 if (unlikely(cop0_cause & STATUSF_IP2)) {
476 ciu_sum = cvmx_read_csr(ciu_sum0_address);
477 ciu_en = cvmx_read_csr(ciu_en0_address);
478 ciu_sum &= ciu_en;
479 if (likely(ciu_sum))
480 do_IRQ(fls64(ciu_sum) + OCTEON_IRQ_WORKQ0 - 1);
481 else
482 spurious_interrupt();
483 } else if (unlikely(cop0_cause & STATUSF_IP3)) {
484 ciu_sum = cvmx_read_csr(ciu_sum1_address);
485 ciu_en = cvmx_read_csr(ciu_en1_address);
486 ciu_sum &= ciu_en;
487 if (likely(ciu_sum))
488 do_IRQ(fls64(ciu_sum) + OCTEON_IRQ_WDOG0 - 1);
489 else
490 spurious_interrupt();
491 } else if (likely(cop0_cause)) {
492 do_IRQ(fls(cop0_cause) - 9 + MIPS_CPU_IRQ_BASE);
493 } else {
494 break;
495 }
496 }
497}
This page took 0.064653 seconds and 5 git commands to generate.