clocksource: convert x86 to generic i8253 clocksource
[deliverable/linux.git] / arch / mips / kernel / i8253.c
CommitLineData
d865bea4
RB
1/*
2 * i8253.c 8253/PIT functions
3 *
4 */
5#include <linux/clockchips.h>
6#include <linux/init.h>
7#include <linux/interrupt.h>
8#include <linux/jiffies.h>
9#include <linux/module.h>
631330f5 10#include <linux/smp.h>
d865bea4 11#include <linux/spinlock.h>
ca4d3e67 12#include <linux/irq.h>
d865bea4
RB
13
14#include <asm/delay.h>
15#include <asm/i8253.h>
16#include <asm/io.h>
dd3db6eb 17#include <asm/time.h>
d865bea4 18
ced918eb 19DEFINE_RAW_SPINLOCK(i8253_lock);
a05e623f 20EXPORT_SYMBOL(i8253_lock);
d865bea4
RB
21
22/*
23 * Initialize the PIT timer.
24 *
25 * This is also called after resume to bring the PIT into operation again.
26 */
27static void init_pit_timer(enum clock_event_mode mode,
28 struct clock_event_device *evt)
29{
ced918eb 30 raw_spin_lock(&i8253_lock);
d865bea4
RB
31
32 switch(mode) {
33 case CLOCK_EVT_MODE_PERIODIC:
34 /* binary, mode 2, LSB/MSB, ch 0 */
35 outb_p(0x34, PIT_MODE);
36 outb_p(LATCH & 0xff , PIT_CH0); /* LSB */
37 outb(LATCH >> 8 , PIT_CH0); /* MSB */
38 break;
39
40 case CLOCK_EVT_MODE_SHUTDOWN:
41 case CLOCK_EVT_MODE_UNUSED:
42 if (evt->mode == CLOCK_EVT_MODE_PERIODIC ||
43 evt->mode == CLOCK_EVT_MODE_ONESHOT) {
44 outb_p(0x30, PIT_MODE);
45 outb_p(0, PIT_CH0);
46 outb_p(0, PIT_CH0);
47 }
48 break;
49
50 case CLOCK_EVT_MODE_ONESHOT:
51 /* One shot setup */
52 outb_p(0x38, PIT_MODE);
53 break;
54
55 case CLOCK_EVT_MODE_RESUME:
56 /* Nothing to do here */
57 break;
58 }
ced918eb 59 raw_spin_unlock(&i8253_lock);
d865bea4
RB
60}
61
62/*
63 * Program the next event in oneshot mode
64 *
65 * Delta is given in PIT ticks
66 */
67static int pit_next_event(unsigned long delta, struct clock_event_device *evt)
68{
ced918eb 69 raw_spin_lock(&i8253_lock);
d865bea4
RB
70 outb_p(delta & 0xff , PIT_CH0); /* LSB */
71 outb(delta >> 8 , PIT_CH0); /* MSB */
ced918eb 72 raw_spin_unlock(&i8253_lock);
d865bea4
RB
73
74 return 0;
75}
76
77/*
78 * On UP the PIT can serve all of the possible timer functions. On SMP systems
79 * it can be solely used for the global tick.
80 *
81 * The profiling and update capabilites are switched off once the local apic is
82 * registered. This mechanism replaces the previous #ifdef LOCAL_APIC -
83 * !using_apic_timer decisions in do_timer_interrupt_hook()
84 */
1ea6428c 85static struct clock_event_device pit_clockevent = {
d865bea4
RB
86 .name = "pit",
87 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
88 .set_mode = init_pit_timer,
89 .set_next_event = pit_next_event,
d865bea4
RB
90 .irq = 0,
91};
92
dd3db6eb 93static irqreturn_t timer_interrupt(int irq, void *dev_id)
d865bea4
RB
94{
95 pit_clockevent.event_handler(&pit_clockevent);
96
97 return IRQ_HANDLED;
98}
99
100static struct irqaction irq0 = {
101 .handler = timer_interrupt,
f45e5183 102 .flags = IRQF_DISABLED | IRQF_NOBALANCING | IRQF_TIMER,
d865bea4
RB
103 .name = "timer"
104};
105
106/*
107 * Initialize the conversion factor and the min/max deltas of the clock event
108 * structure and register the clock event source with the framework.
109 */
110void __init setup_pit_timer(void)
111{
dd3db6eb
RB
112 struct clock_event_device *cd = &pit_clockevent;
113 unsigned int cpu = smp_processor_id();
114
d865bea4
RB
115 /*
116 * Start pit with the boot cpu mask and make it global after the
117 * IO_APIC has been initialized.
118 */
320ab2b0 119 cd->cpumask = cpumask_of(cpu);
dd3db6eb
RB
120 clockevent_set_clock(cd, CLOCK_TICK_RATE);
121 cd->max_delta_ns = clockevent_delta2ns(0x7FFF, cd);
122 cd->min_delta_ns = clockevent_delta2ns(0xF, cd);
123 clockevents_register_device(cd);
124
d865bea4
RB
125 setup_irq(0, &irq0);
126}
127
128/*
129 * Since the PIT overflows every tick, its not very useful
130 * to just read by itself. So use jiffies to emulate a free
131 * running counter:
132 */
8e19608e 133static cycle_t pit_read(struct clocksource *cs)
d865bea4
RB
134{
135 unsigned long flags;
136 int count;
137 u32 jifs;
138 static int old_count;
139 static u32 old_jifs;
140
ced918eb 141 raw_spin_lock_irqsave(&i8253_lock, flags);
d865bea4
RB
142 /*
143 * Although our caller may have the read side of xtime_lock,
144 * this is now a seqlock, and we are cheating in this routine
145 * by having side effects on state that we cannot undo if
146 * there is a collision on the seqlock and our caller has to
147 * retry. (Namely, old_jifs and old_count.) So we must treat
148 * jiffies as volatile despite the lock. We read jiffies
149 * before latching the timer count to guarantee that although
150 * the jiffies value might be older than the count (that is,
151 * the counter may underflow between the last point where
152 * jiffies was incremented and the point where we latch the
153 * count), it cannot be newer.
154 */
155 jifs = jiffies;
156 outb_p(0x00, PIT_MODE); /* latch the count ASAP */
157 count = inb_p(PIT_CH0); /* read the latched count */
158 count |= inb_p(PIT_CH0) << 8;
159
160 /* VIA686a test code... reset the latch if count > max + 1 */
161 if (count > LATCH) {
162 outb_p(0x34, PIT_MODE);
163 outb_p(LATCH & 0xff, PIT_CH0);
164 outb(LATCH >> 8, PIT_CH0);
165 count = LATCH - 1;
166 }
167
168 /*
169 * It's possible for count to appear to go the wrong way for a
170 * couple of reasons:
171 *
172 * 1. The timer counter underflows, but we haven't handled the
173 * resulting interrupt and incremented jiffies yet.
174 * 2. Hardware problem with the timer, not giving us continuous time,
175 * the counter does small "jumps" upwards on some Pentium systems,
176 * (see c't 95/10 page 335 for Neptun bug.)
177 *
178 * Previous attempts to handle these cases intelligently were
179 * buggy, so we just do the simple thing now.
180 */
181 if (count > old_count && jifs == old_jifs) {
182 count = old_count;
183 }
184 old_count = count;
185 old_jifs = jifs;
186
ced918eb 187 raw_spin_unlock_irqrestore(&i8253_lock, flags);
d865bea4
RB
188
189 count = (LATCH - 1) - count;
190
191 return (cycle_t)(jifs * LATCH) + count;
192}
193
194static struct clocksource clocksource_pit = {
195 .name = "pit",
196 .rating = 110,
197 .read = pit_read,
198 .mask = CLOCKSOURCE_MASK(32),
199 .mult = 0,
200 .shift = 20,
201};
202
203static int __init init_pit_clocksource(void)
204{
205 if (num_possible_cpus() > 1) /* PIT does not scale! */
206 return 0;
207
208 clocksource_pit.mult = clocksource_hz2mult(CLOCK_TICK_RATE, 20);
209 return clocksource_register(&clocksource_pit);
210}
211arch_initcall(init_pit_clocksource);
This page took 0.343135 seconds and 5 git commands to generate.