CLOCKSOURCE: mips-gic: Allow GIC clock to be specified in device-tree
[deliverable/linux.git] / arch / mips / kernel / perf_event_mipsxx.c
CommitLineData
e5dcb58a
DD
1/*
2 * Linux performance counter support for MIPS.
3 *
4 * Copyright (C) 2010 MIPS Technologies, Inc.
82091564 5 * Copyright (C) 2011 Cavium Networks, Inc.
e5dcb58a
DD
6 * Author: Deng-Cheng Zhu
7 *
8 * This code is based on the implementation for ARM, which is in turn
9 * based on the sparc64 perf event code and the x86 code. Performance
10 * counter access is based on the MIPS Oprofile code. And the callchain
11 * support references the code of MIPS stacktrace.c.
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 */
17
18#include <linux/cpumask.h>
19#include <linux/interrupt.h>
20#include <linux/smp.h>
21#include <linux/kernel.h>
22#include <linux/perf_event.h>
23#include <linux/uaccess.h>
24
25#include <asm/irq.h>
26#include <asm/irq_regs.h>
27#include <asm/stacktrace.h>
28#include <asm/time.h> /* For perf_irq */
29
e5dcb58a 30#define MIPS_MAX_HWEVENTS 4
a7911a8f
AC
31#define MIPS_TCS_PER_COUNTER 2
32#define MIPS_CPUID_TO_COUNTER_MASK (MIPS_TCS_PER_COUNTER - 1)
e5dcb58a
DD
33
34struct cpu_hw_events {
35 /* Array of events on this cpu. */
36 struct perf_event *events[MIPS_MAX_HWEVENTS];
37
38 /*
39 * Set the bit (indexed by the counter number) when the counter
40 * is used for an event.
41 */
42 unsigned long used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
43
e5dcb58a
DD
44 /*
45 * Software copy of the control register for each performance counter.
46 * MIPS CPUs vary in performance counters. They use this differently,
47 * and even may not use it.
48 */
49 unsigned int saved_ctrl[MIPS_MAX_HWEVENTS];
50};
51DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
52 .saved_ctrl = {0},
53};
54
55/* The description of MIPS performance events. */
56struct mips_perf_event {
57 unsigned int event_id;
58 /*
59 * MIPS performance counters are indexed starting from 0.
60 * CNTR_EVEN indicates the indexes of the counters to be used are
61 * even numbers.
62 */
63 unsigned int cntr_mask;
64 #define CNTR_EVEN 0x55555555
65 #define CNTR_ODD 0xaaaaaaaa
82091564 66 #define CNTR_ALL 0xffffffff
e5dcb58a
DD
67#ifdef CONFIG_MIPS_MT_SMP
68 enum {
69 T = 0,
70 V = 1,
71 P = 2,
72 } range;
73#else
74 #define T
75 #define V
76 #define P
77#endif
78};
79
80static struct mips_perf_event raw_event;
81static DEFINE_MUTEX(raw_event_mutex);
82
e5dcb58a
DD
83#define C(x) PERF_COUNT_HW_CACHE_##x
84
85struct mips_pmu {
82091564
DD
86 u64 max_period;
87 u64 valid_count;
88 u64 overflow;
e5dcb58a
DD
89 const char *name;
90 int irq;
e5dcb58a
DD
91 u64 (*read_counter)(unsigned int idx);
92 void (*write_counter)(unsigned int idx, u64 val);
e5dcb58a
DD
93 const struct mips_perf_event *(*map_raw_event)(u64 config);
94 const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
95 const struct mips_perf_event (*cache_event_map)
96 [PERF_COUNT_HW_CACHE_MAX]
97 [PERF_COUNT_HW_CACHE_OP_MAX]
98 [PERF_COUNT_HW_CACHE_RESULT_MAX];
99 unsigned int num_counters;
100};
101
82091564
DD
102static struct mips_pmu mipspmu;
103
104#define M_CONFIG1_PC (1 << 4)
105
70342287
RB
106#define M_PERFCTL_EXL (1 << 0)
107#define M_PERFCTL_KERNEL (1 << 1)
108#define M_PERFCTL_SUPERVISOR (1 << 2)
109#define M_PERFCTL_USER (1 << 3)
110#define M_PERFCTL_INTERRUPT_ENABLE (1 << 4)
82091564 111#define M_PERFCTL_EVENT(event) (((event) & 0x3ff) << 5)
70342287 112#define M_PERFCTL_VPEID(vpe) ((vpe) << 16)
a7911a8f
AC
113
114#ifdef CONFIG_CPU_BMIPS5000
115#define M_PERFCTL_MT_EN(filter) 0
116#else /* !CONFIG_CPU_BMIPS5000 */
82091564 117#define M_PERFCTL_MT_EN(filter) ((filter) << 20)
a7911a8f
AC
118#endif /* CONFIG_CPU_BMIPS5000 */
119
70342287
RB
120#define M_TC_EN_ALL M_PERFCTL_MT_EN(0)
121#define M_TC_EN_VPE M_PERFCTL_MT_EN(1)
122#define M_TC_EN_TC M_PERFCTL_MT_EN(2)
123#define M_PERFCTL_TCID(tcid) ((tcid) << 22)
124#define M_PERFCTL_WIDE (1 << 30)
125#define M_PERFCTL_MORE (1 << 31)
126#define M_PERFCTL_TC (1 << 30)
82091564
DD
127
128#define M_PERFCTL_COUNT_EVENT_WHENEVER (M_PERFCTL_EXL | \
129 M_PERFCTL_KERNEL | \
130 M_PERFCTL_USER | \
131 M_PERFCTL_SUPERVISOR | \
132 M_PERFCTL_INTERRUPT_ENABLE)
133
134#ifdef CONFIG_MIPS_MT_SMP
135#define M_PERFCTL_CONFIG_MASK 0x3fff801f
136#else
137#define M_PERFCTL_CONFIG_MASK 0x1f
138#endif
139#define M_PERFCTL_EVENT_MASK 0xfe0
140
141
399aaa25 142#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
82091564
DD
143static int cpu_has_mipsmt_pertccounters;
144
145static DEFINE_RWLOCK(pmuint_rwlock);
146
a7911a8f
AC
147#if defined(CONFIG_CPU_BMIPS5000)
148#define vpe_id() (cpu_has_mipsmt_pertccounters ? \
149 0 : (smp_processor_id() & MIPS_CPUID_TO_COUNTER_MASK))
150#else
82091564
DD
151/*
152 * FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
153 * cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
154 */
82091564 155#define vpe_id() (cpu_has_mipsmt_pertccounters ? \
a7911a8f
AC
156 0 : smp_processor_id())
157#endif
82091564
DD
158
159/* Copied from op_model_mipsxx.c */
160static unsigned int vpe_shift(void)
161{
162 if (num_possible_cpus() > 1)
163 return 1;
164
165 return 0;
166}
167
168static unsigned int counters_total_to_per_cpu(unsigned int counters)
169{
170 return counters >> vpe_shift();
171}
172
399aaa25 173#else /* !CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
82091564
DD
174#define vpe_id() 0
175
399aaa25 176#endif /* CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
82091564
DD
177
178static void resume_local_counters(void);
179static void pause_local_counters(void);
180static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
181static int mipsxx_pmu_handle_shared_irq(void);
182
183static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
184{
185 if (vpe_id() == 1)
186 idx = (idx + 2) & 3;
187 return idx;
188}
189
190static u64 mipsxx_pmu_read_counter(unsigned int idx)
191{
192 idx = mipsxx_pmu_swizzle_perf_idx(idx);
193
194 switch (idx) {
195 case 0:
196 /*
197 * The counters are unsigned, we must cast to truncate
198 * off the high bits.
199 */
200 return (u32)read_c0_perfcntr0();
201 case 1:
202 return (u32)read_c0_perfcntr1();
203 case 2:
204 return (u32)read_c0_perfcntr2();
205 case 3:
206 return (u32)read_c0_perfcntr3();
207 default:
208 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
209 return 0;
210 }
211}
212
213static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
214{
215 idx = mipsxx_pmu_swizzle_perf_idx(idx);
216
217 switch (idx) {
218 case 0:
219 return read_c0_perfcntr0_64();
220 case 1:
221 return read_c0_perfcntr1_64();
222 case 2:
223 return read_c0_perfcntr2_64();
224 case 3:
225 return read_c0_perfcntr3_64();
226 default:
227 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
228 return 0;
229 }
230}
231
232static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
233{
234 idx = mipsxx_pmu_swizzle_perf_idx(idx);
235
236 switch (idx) {
237 case 0:
238 write_c0_perfcntr0(val);
239 return;
240 case 1:
241 write_c0_perfcntr1(val);
242 return;
243 case 2:
244 write_c0_perfcntr2(val);
245 return;
246 case 3:
247 write_c0_perfcntr3(val);
248 return;
249 }
250}
251
252static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
253{
254 idx = mipsxx_pmu_swizzle_perf_idx(idx);
255
256 switch (idx) {
257 case 0:
258 write_c0_perfcntr0_64(val);
259 return;
260 case 1:
261 write_c0_perfcntr1_64(val);
262 return;
263 case 2:
264 write_c0_perfcntr2_64(val);
265 return;
266 case 3:
267 write_c0_perfcntr3_64(val);
268 return;
269 }
270}
271
272static unsigned int mipsxx_pmu_read_control(unsigned int idx)
273{
274 idx = mipsxx_pmu_swizzle_perf_idx(idx);
275
276 switch (idx) {
277 case 0:
278 return read_c0_perfctrl0();
279 case 1:
280 return read_c0_perfctrl1();
281 case 2:
282 return read_c0_perfctrl2();
283 case 3:
284 return read_c0_perfctrl3();
285 default:
286 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
287 return 0;
288 }
289}
290
291static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
292{
293 idx = mipsxx_pmu_swizzle_perf_idx(idx);
294
295 switch (idx) {
296 case 0:
297 write_c0_perfctrl0(val);
298 return;
299 case 1:
300 write_c0_perfctrl1(val);
301 return;
302 case 2:
303 write_c0_perfctrl2(val);
304 return;
305 case 3:
306 write_c0_perfctrl3(val);
307 return;
308 }
309}
310
311static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
312 struct hw_perf_event *hwc)
313{
314 int i;
315
316 /*
317 * We only need to care the counter mask. The range has been
318 * checked definitely.
319 */
320 unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;
321
322 for (i = mipspmu.num_counters - 1; i >= 0; i--) {
323 /*
324 * Note that some MIPS perf events can be counted by both
325 * even and odd counters, wheresas many other are only by
326 * even _or_ odd counters. This introduces an issue that
327 * when the former kind of event takes the counter the
328 * latter kind of event wants to use, then the "counter
329 * allocation" for the latter event will fail. In fact if
330 * they can be dynamically swapped, they both feel happy.
331 * But here we leave this issue alone for now.
332 */
333 if (test_bit(i, &cntr_mask) &&
334 !test_and_set_bit(i, cpuc->used_mask))
335 return i;
336 }
337
338 return -EAGAIN;
339}
340
341static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
342{
35898716 343 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
82091564
DD
344
345 WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
346
347 cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
348 (evt->config_base & M_PERFCTL_CONFIG_MASK) |
349 /* Make sure interrupt enabled. */
350 M_PERFCTL_INTERRUPT_ENABLE;
a7911a8f
AC
351 if (IS_ENABLED(CONFIG_CPU_BMIPS5000))
352 /* enable the counter for the calling thread */
353 cpuc->saved_ctrl[idx] |=
354 (1 << (12 + vpe_id())) | M_PERFCTL_TC;
355
82091564
DD
356 /*
357 * We do not actually let the counter run. Leave it until start().
358 */
359}
360
361static void mipsxx_pmu_disable_event(int idx)
362{
35898716 363 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
82091564
DD
364 unsigned long flags;
365
366 WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
367
368 local_irq_save(flags);
369 cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
370 ~M_PERFCTL_COUNT_EVENT_WHENEVER;
371 mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
372 local_irq_restore(flags);
373}
e5dcb58a
DD
374
375static int mipspmu_event_set_period(struct perf_event *event,
376 struct hw_perf_event *hwc,
377 int idx)
378{
82091564
DD
379 u64 left = local64_read(&hwc->period_left);
380 u64 period = hwc->sample_period;
e5dcb58a 381 int ret = 0;
e5dcb58a 382
82091564
DD
383 if (unlikely((left + period) & (1ULL << 63))) {
384 /* left underflowed by more than period. */
e5dcb58a
DD
385 left = period;
386 local64_set(&hwc->period_left, left);
387 hwc->last_period = period;
388 ret = 1;
82091564
DD
389 } else if (unlikely((left + period) <= period)) {
390 /* left underflowed by less than period. */
e5dcb58a
DD
391 left += period;
392 local64_set(&hwc->period_left, left);
393 hwc->last_period = period;
394 ret = 1;
395 }
396
82091564
DD
397 if (left > mipspmu.max_period) {
398 left = mipspmu.max_period;
399 local64_set(&hwc->period_left, left);
400 }
e5dcb58a 401
82091564 402 local64_set(&hwc->prev_count, mipspmu.overflow - left);
e5dcb58a 403
82091564 404 mipspmu.write_counter(idx, mipspmu.overflow - left);
e5dcb58a
DD
405
406 perf_event_update_userpage(event);
407
408 return ret;
409}
410
411static void mipspmu_event_update(struct perf_event *event,
412 struct hw_perf_event *hwc,
413 int idx)
414{
82091564 415 u64 prev_raw_count, new_raw_count;
e5dcb58a
DD
416 u64 delta;
417
418again:
419 prev_raw_count = local64_read(&hwc->prev_count);
82091564 420 new_raw_count = mipspmu.read_counter(idx);
e5dcb58a
DD
421
422 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
423 new_raw_count) != prev_raw_count)
424 goto again;
425
82091564 426 delta = new_raw_count - prev_raw_count;
e5dcb58a
DD
427
428 local64_add(delta, &event->count);
429 local64_sub(delta, &hwc->period_left);
430}
431
432static void mipspmu_start(struct perf_event *event, int flags)
433{
434 struct hw_perf_event *hwc = &event->hw;
435
e5dcb58a
DD
436 if (flags & PERF_EF_RELOAD)
437 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
438
439 hwc->state = 0;
440
441 /* Set the period for the event. */
442 mipspmu_event_set_period(event, hwc, hwc->idx);
443
444 /* Enable the event. */
82091564 445 mipsxx_pmu_enable_event(hwc, hwc->idx);
e5dcb58a
DD
446}
447
448static void mipspmu_stop(struct perf_event *event, int flags)
449{
450 struct hw_perf_event *hwc = &event->hw;
451
e5dcb58a
DD
452 if (!(hwc->state & PERF_HES_STOPPED)) {
453 /* We are working on a local event. */
82091564 454 mipsxx_pmu_disable_event(hwc->idx);
e5dcb58a
DD
455 barrier();
456 mipspmu_event_update(event, hwc, hwc->idx);
457 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
458 }
459}
460
461static int mipspmu_add(struct perf_event *event, int flags)
462{
35898716 463 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
e5dcb58a
DD
464 struct hw_perf_event *hwc = &event->hw;
465 int idx;
466 int err = 0;
467
468 perf_pmu_disable(event->pmu);
469
470 /* To look for a free counter for this event. */
82091564 471 idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
e5dcb58a
DD
472 if (idx < 0) {
473 err = idx;
474 goto out;
475 }
476
477 /*
478 * If there is an event in the counter we are going to use then
479 * make sure it is disabled.
480 */
481 event->hw.idx = idx;
82091564 482 mipsxx_pmu_disable_event(idx);
e5dcb58a
DD
483 cpuc->events[idx] = event;
484
485 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
486 if (flags & PERF_EF_START)
487 mipspmu_start(event, PERF_EF_RELOAD);
488
489 /* Propagate our changes to the userspace mapping. */
490 perf_event_update_userpage(event);
491
492out:
493 perf_pmu_enable(event->pmu);
494 return err;
495}
496
497static void mipspmu_del(struct perf_event *event, int flags)
498{
35898716 499 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
e5dcb58a
DD
500 struct hw_perf_event *hwc = &event->hw;
501 int idx = hwc->idx;
502
82091564 503 WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
e5dcb58a
DD
504
505 mipspmu_stop(event, PERF_EF_UPDATE);
506 cpuc->events[idx] = NULL;
507 clear_bit(idx, cpuc->used_mask);
508
509 perf_event_update_userpage(event);
510}
511
512static void mipspmu_read(struct perf_event *event)
513{
514 struct hw_perf_event *hwc = &event->hw;
515
516 /* Don't read disabled counters! */
517 if (hwc->idx < 0)
518 return;
519
520 mipspmu_event_update(event, hwc, hwc->idx);
521}
522
523static void mipspmu_enable(struct pmu *pmu)
524{
399aaa25 525#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
82091564
DD
526 write_unlock(&pmuint_rwlock);
527#endif
528 resume_local_counters();
e5dcb58a
DD
529}
530
82091564
DD
531/*
532 * MIPS performance counters can be per-TC. The control registers can
533 * not be directly accessed accross CPUs. Hence if we want to do global
534 * control, we need cross CPU calls. on_each_cpu() can help us, but we
535 * can not make sure this function is called with interrupts enabled. So
536 * here we pause local counters and then grab a rwlock and leave the
537 * counters on other CPUs alone. If any counter interrupt raises while
538 * we own the write lock, simply pause local counters on that CPU and
539 * spin in the handler. Also we know we won't be switched to another
540 * CPU after pausing local counters and before grabbing the lock.
541 */
e5dcb58a
DD
542static void mipspmu_disable(struct pmu *pmu)
543{
82091564 544 pause_local_counters();
399aaa25 545#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
82091564
DD
546 write_lock(&pmuint_rwlock);
547#endif
e5dcb58a
DD
548}
549
550static atomic_t active_events = ATOMIC_INIT(0);
551static DEFINE_MUTEX(pmu_reserve_mutex);
552static int (*save_perf_irq)(void);
553
554static int mipspmu_get_irq(void)
555{
556 int err;
557
82091564 558 if (mipspmu.irq >= 0) {
e5dcb58a 559 /* Request my own irq handler. */
82091564 560 err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
a1ec0e18
JH
561 IRQF_PERCPU | IRQF_NOBALANCING |
562 IRQF_NO_THREAD | IRQF_NO_SUSPEND |
563 IRQF_SHARED,
564 "mips_perf_pmu", &mipspmu);
e5dcb58a 565 if (err) {
7178d2cd
JP
566 pr_warn("Unable to request IRQ%d for MIPS performance counters!\n",
567 mipspmu.irq);
e5dcb58a
DD
568 }
569 } else if (cp0_perfcount_irq < 0) {
570 /*
571 * We are sharing the irq number with the timer interrupt.
572 */
573 save_perf_irq = perf_irq;
82091564 574 perf_irq = mipsxx_pmu_handle_shared_irq;
e5dcb58a
DD
575 err = 0;
576 } else {
7178d2cd 577 pr_warn("The platform hasn't properly defined its interrupt controller\n");
e5dcb58a
DD
578 err = -ENOENT;
579 }
580
581 return err;
582}
583
584static void mipspmu_free_irq(void)
585{
82091564 586 if (mipspmu.irq >= 0)
a1ec0e18 587 free_irq(mipspmu.irq, &mipspmu);
e5dcb58a
DD
588 else if (cp0_perfcount_irq < 0)
589 perf_irq = save_perf_irq;
590}
591
592/*
593 * mipsxx/rm9000/loongson2 have different performance counters, they have
594 * specific low-level init routines.
595 */
596static void reset_counters(void *arg);
597static int __hw_perf_event_init(struct perf_event *event);
598
599static void hw_perf_event_destroy(struct perf_event *event)
600{
601 if (atomic_dec_and_mutex_lock(&active_events,
602 &pmu_reserve_mutex)) {
603 /*
604 * We must not call the destroy function with interrupts
605 * disabled.
606 */
607 on_each_cpu(reset_counters,
82091564 608 (void *)(long)mipspmu.num_counters, 1);
e5dcb58a
DD
609 mipspmu_free_irq();
610 mutex_unlock(&pmu_reserve_mutex);
611 }
612}
613
614static int mipspmu_event_init(struct perf_event *event)
615{
616 int err = 0;
617
2481c5fa
SE
618 /* does not support taken branch sampling */
619 if (has_branch_stack(event))
620 return -EOPNOTSUPP;
621
e5dcb58a
DD
622 switch (event->attr.type) {
623 case PERF_TYPE_RAW:
624 case PERF_TYPE_HARDWARE:
625 case PERF_TYPE_HW_CACHE:
626 break;
627
628 default:
629 return -ENOENT;
630 }
631
82091564
DD
632 if (event->cpu >= nr_cpumask_bits ||
633 (event->cpu >= 0 && !cpu_online(event->cpu)))
e5dcb58a
DD
634 return -ENODEV;
635
636 if (!atomic_inc_not_zero(&active_events)) {
e5dcb58a
DD
637 mutex_lock(&pmu_reserve_mutex);
638 if (atomic_read(&active_events) == 0)
639 err = mipspmu_get_irq();
640
641 if (!err)
642 atomic_inc(&active_events);
643 mutex_unlock(&pmu_reserve_mutex);
644 }
645
646 if (err)
647 return err;
648
ff5d7265 649 return __hw_perf_event_init(event);
e5dcb58a
DD
650}
651
652static struct pmu pmu = {
653 .pmu_enable = mipspmu_enable,
654 .pmu_disable = mipspmu_disable,
655 .event_init = mipspmu_event_init,
656 .add = mipspmu_add,
657 .del = mipspmu_del,
658 .start = mipspmu_start,
659 .stop = mipspmu_stop,
660 .read = mipspmu_read,
661};
662
663static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
664{
665/*
666 * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
667 * event_id.
668 */
669#ifdef CONFIG_MIPS_MT_SMP
670 return ((unsigned int)pev->range << 24) |
671 (pev->cntr_mask & 0xffff00) |
672 (pev->event_id & 0xff);
673#else
674 return (pev->cntr_mask & 0xffff00) |
675 (pev->event_id & 0xff);
676#endif
677}
678
679static const struct mips_perf_event *mipspmu_map_general_event(int idx)
680{
e5dcb58a 681
c5600b2d
AC
682 if ((*mipspmu.general_event_map)[idx].cntr_mask == 0)
683 return ERR_PTR(-EOPNOTSUPP);
684 return &(*mipspmu.general_event_map)[idx];
e5dcb58a
DD
685}
686
687static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
688{
689 unsigned int cache_type, cache_op, cache_result;
690 const struct mips_perf_event *pev;
691
692 cache_type = (config >> 0) & 0xff;
693 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
694 return ERR_PTR(-EINVAL);
695
696 cache_op = (config >> 8) & 0xff;
697 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
698 return ERR_PTR(-EINVAL);
699
700 cache_result = (config >> 16) & 0xff;
701 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
702 return ERR_PTR(-EINVAL);
703
82091564 704 pev = &((*mipspmu.cache_event_map)
e5dcb58a
DD
705 [cache_type]
706 [cache_op]
707 [cache_result]);
708
c5600b2d 709 if (pev->cntr_mask == 0)
e5dcb58a
DD
710 return ERR_PTR(-EOPNOTSUPP);
711
712 return pev;
713
714}
715
e5dcb58a
DD
716static int validate_group(struct perf_event *event)
717{
718 struct perf_event *sibling, *leader = event->group_leader;
719 struct cpu_hw_events fake_cpuc;
720
721 memset(&fake_cpuc, 0, sizeof(fake_cpuc));
722
266623b7 723 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
aa2bc1ad 724 return -EINVAL;
e5dcb58a
DD
725
726 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
266623b7 727 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
aa2bc1ad 728 return -EINVAL;
e5dcb58a
DD
729 }
730
266623b7 731 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
aa2bc1ad 732 return -EINVAL;
e5dcb58a
DD
733
734 return 0;
735}
736
737/* This is needed by specific irq handlers in perf_event_*.c */
738static void handle_associated_event(struct cpu_hw_events *cpuc,
739 int idx, struct perf_sample_data *data,
740 struct pt_regs *regs)
741{
742 struct perf_event *event = cpuc->events[idx];
743 struct hw_perf_event *hwc = &event->hw;
744
745 mipspmu_event_update(event, hwc, idx);
746 data->period = event->hw.last_period;
747 if (!mipspmu_event_set_period(event, hwc, idx))
748 return;
749
750 if (perf_event_overflow(event, data, regs))
82091564 751 mipsxx_pmu_disable_event(idx);
e5dcb58a 752}
3a9ab99e 753
3a9ab99e 754
4409af37 755static int __n_counters(void)
3a9ab99e
DCZ
756{
757 if (!(read_c0_config1() & M_CONFIG1_PC))
758 return 0;
759 if (!(read_c0_perfctrl0() & M_PERFCTL_MORE))
760 return 1;
761 if (!(read_c0_perfctrl1() & M_PERFCTL_MORE))
762 return 2;
763 if (!(read_c0_perfctrl2() & M_PERFCTL_MORE))
764 return 3;
765
766 return 4;
767}
768
4409af37 769static int n_counters(void)
3a9ab99e
DCZ
770{
771 int counters;
772
773 switch (current_cpu_type()) {
774 case CPU_R10000:
775 counters = 2;
776 break;
777
778 case CPU_R12000:
779 case CPU_R14000:
780 counters = 4;
781 break;
782
783 default:
784 counters = __n_counters();
785 }
786
787 return counters;
788}
789
790static void reset_counters(void *arg)
791{
792 int counters = (int)(long)arg;
793 switch (counters) {
794 case 4:
82091564
DD
795 mipsxx_pmu_write_control(3, 0);
796 mipspmu.write_counter(3, 0);
3a9ab99e 797 case 3:
82091564
DD
798 mipsxx_pmu_write_control(2, 0);
799 mipspmu.write_counter(2, 0);
3a9ab99e 800 case 2:
82091564
DD
801 mipsxx_pmu_write_control(1, 0);
802 mipspmu.write_counter(1, 0);
3a9ab99e 803 case 1:
82091564
DD
804 mipsxx_pmu_write_control(0, 0);
805 mipspmu.write_counter(0, 0);
3a9ab99e
DCZ
806 }
807}
808
9597e432 809/* 24K/34K/1004K/interAptiv/loongson1 cores share the same event map. */
3a9ab99e
DCZ
810static const struct mips_perf_event mipsxxcore_event_map
811 [PERF_COUNT_HW_MAX] = {
812 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
813 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
3a9ab99e
DCZ
814 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
815 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
3a9ab99e
DCZ
816};
817
c52068bd 818/* 74K/proAptiv core has different branch event code. */
6b0b8429 819static const struct mips_perf_event mipsxxcore_event_map2
3a9ab99e
DCZ
820 [PERF_COUNT_HW_MAX] = {
821 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
822 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
3a9ab99e
DCZ
823 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
824 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
3a9ab99e
DCZ
825};
826
939991cf
DD
827static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
828 [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
829 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
830 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
70342287 831 [PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL },
939991cf
DD
832 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
833 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
834 [PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
835};
836
a7911a8f
AC
837static const struct mips_perf_event bmips5000_event_map
838 [PERF_COUNT_HW_MAX] = {
839 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, T },
840 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
841 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
842};
843
4be3d2f3
ZSL
844static const struct mips_perf_event xlp_event_map[PERF_COUNT_HW_MAX] = {
845 [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
846 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x18, CNTR_ALL }, /* PAPI_TOT_INS */
847 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
848 [PERF_COUNT_HW_CACHE_MISSES] = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
849 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x1b, CNTR_ALL }, /* PAPI_BR_CN */
850 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x1c, CNTR_ALL }, /* PAPI_BR_MSP */
4be3d2f3
ZSL
851};
852
9597e432 853/* 24K/34K/1004K/interAptiv/loongson1 cores share the same cache event map. */
3a9ab99e
DCZ
854static const struct mips_perf_event mipsxxcore_cache_map
855 [PERF_COUNT_HW_CACHE_MAX]
856 [PERF_COUNT_HW_CACHE_OP_MAX]
857 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
858[C(L1D)] = {
859 /*
860 * Like some other architectures (e.g. ARM), the performance
861 * counters don't differentiate between read and write
862 * accesses/misses, so this isn't strictly correct, but it's the
863 * best we can do. Writes and reads get combined.
864 */
865 [C(OP_READ)] = {
866 [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
867 [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
868 },
869 [C(OP_WRITE)] = {
870 [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
871 [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
872 },
3a9ab99e
DCZ
873},
874[C(L1I)] = {
875 [C(OP_READ)] = {
876 [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
877 [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
878 },
879 [C(OP_WRITE)] = {
880 [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
881 [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
882 },
883 [C(OP_PREFETCH)] = {
884 [C(RESULT_ACCESS)] = { 0x14, CNTR_EVEN, T },
885 /*
886 * Note that MIPS has only "hit" events countable for
887 * the prefetch operation.
888 */
3a9ab99e
DCZ
889 },
890},
891[C(LL)] = {
892 [C(OP_READ)] = {
893 [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
894 [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
895 },
896 [C(OP_WRITE)] = {
897 [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
898 [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
899 },
3a9ab99e
DCZ
900},
901[C(DTLB)] = {
902 [C(OP_READ)] = {
903 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
904 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
905 },
906 [C(OP_WRITE)] = {
907 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
908 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
909 },
3a9ab99e
DCZ
910},
911[C(ITLB)] = {
912 [C(OP_READ)] = {
913 [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
914 [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
915 },
916 [C(OP_WRITE)] = {
917 [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
918 [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
919 },
3a9ab99e
DCZ
920},
921[C(BPU)] = {
922 /* Using the same code for *HW_BRANCH* */
923 [C(OP_READ)] = {
924 [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
925 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
926 },
927 [C(OP_WRITE)] = {
928 [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
929 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
930 },
89d6c0b5 931},
3a9ab99e
DCZ
932};
933
c52068bd 934/* 74K/proAptiv core has completely different cache event map. */
6b0b8429 935static const struct mips_perf_event mipsxxcore_cache_map2
3a9ab99e
DCZ
936 [PERF_COUNT_HW_CACHE_MAX]
937 [PERF_COUNT_HW_CACHE_OP_MAX]
938 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
939[C(L1D)] = {
940 /*
941 * Like some other architectures (e.g. ARM), the performance
942 * counters don't differentiate between read and write
943 * accesses/misses, so this isn't strictly correct, but it's the
944 * best we can do. Writes and reads get combined.
945 */
946 [C(OP_READ)] = {
947 [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
948 [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
949 },
950 [C(OP_WRITE)] = {
951 [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
952 [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
953 },
3a9ab99e
DCZ
954},
955[C(L1I)] = {
956 [C(OP_READ)] = {
957 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
958 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
959 },
960 [C(OP_WRITE)] = {
961 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
962 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
963 },
964 [C(OP_PREFETCH)] = {
965 [C(RESULT_ACCESS)] = { 0x34, CNTR_EVEN, T },
966 /*
967 * Note that MIPS has only "hit" events countable for
968 * the prefetch operation.
969 */
3a9ab99e
DCZ
970 },
971},
972[C(LL)] = {
973 [C(OP_READ)] = {
974 [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
7f081f17 975 [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN, P },
3a9ab99e
DCZ
976 },
977 [C(OP_WRITE)] = {
978 [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
7f081f17 979 [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN, P },
3a9ab99e 980 },
3a9ab99e 981},
c52068bd
DCZ
982/*
983 * 74K core does not have specific DTLB events. proAptiv core has
984 * "speculative" DTLB events which are numbered 0x63 (even/odd) and
985 * not included here. One can use raw events if really needed.
986 */
3a9ab99e
DCZ
987[C(ITLB)] = {
988 [C(OP_READ)] = {
989 [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
990 [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
991 },
992 [C(OP_WRITE)] = {
993 [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
994 [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
995 },
3a9ab99e
DCZ
996},
997[C(BPU)] = {
998 /* Using the same code for *HW_BRANCH* */
999 [C(OP_READ)] = {
1000 [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
1001 [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
1002 },
1003 [C(OP_WRITE)] = {
1004 [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
1005 [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
1006 },
89d6c0b5 1007},
3a9ab99e
DCZ
1008};
1009
a7911a8f
AC
1010/* BMIPS5000 */
1011static const struct mips_perf_event bmips5000_cache_map
1012 [PERF_COUNT_HW_CACHE_MAX]
1013 [PERF_COUNT_HW_CACHE_OP_MAX]
1014 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1015[C(L1D)] = {
1016 /*
1017 * Like some other architectures (e.g. ARM), the performance
1018 * counters don't differentiate between read and write
1019 * accesses/misses, so this isn't strictly correct, but it's the
1020 * best we can do. Writes and reads get combined.
1021 */
1022 [C(OP_READ)] = {
1023 [C(RESULT_ACCESS)] = { 12, CNTR_EVEN, T },
1024 [C(RESULT_MISS)] = { 12, CNTR_ODD, T },
1025 },
1026 [C(OP_WRITE)] = {
1027 [C(RESULT_ACCESS)] = { 12, CNTR_EVEN, T },
1028 [C(RESULT_MISS)] = { 12, CNTR_ODD, T },
1029 },
1030},
1031[C(L1I)] = {
1032 [C(OP_READ)] = {
1033 [C(RESULT_ACCESS)] = { 10, CNTR_EVEN, T },
1034 [C(RESULT_MISS)] = { 10, CNTR_ODD, T },
1035 },
1036 [C(OP_WRITE)] = {
1037 [C(RESULT_ACCESS)] = { 10, CNTR_EVEN, T },
1038 [C(RESULT_MISS)] = { 10, CNTR_ODD, T },
1039 },
1040 [C(OP_PREFETCH)] = {
1041 [C(RESULT_ACCESS)] = { 23, CNTR_EVEN, T },
1042 /*
1043 * Note that MIPS has only "hit" events countable for
1044 * the prefetch operation.
1045 */
1046 },
1047},
1048[C(LL)] = {
1049 [C(OP_READ)] = {
1050 [C(RESULT_ACCESS)] = { 28, CNTR_EVEN, P },
1051 [C(RESULT_MISS)] = { 28, CNTR_ODD, P },
1052 },
1053 [C(OP_WRITE)] = {
1054 [C(RESULT_ACCESS)] = { 28, CNTR_EVEN, P },
1055 [C(RESULT_MISS)] = { 28, CNTR_ODD, P },
1056 },
1057},
1058[C(BPU)] = {
1059 /* Using the same code for *HW_BRANCH* */
1060 [C(OP_READ)] = {
1061 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
1062 },
1063 [C(OP_WRITE)] = {
1064 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
1065 },
1066},
1067};
1068
939991cf
DD
1069
1070static const struct mips_perf_event octeon_cache_map
1071 [PERF_COUNT_HW_CACHE_MAX]
1072 [PERF_COUNT_HW_CACHE_OP_MAX]
1073 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1074[C(L1D)] = {
1075 [C(OP_READ)] = {
1076 [C(RESULT_ACCESS)] = { 0x2b, CNTR_ALL },
1077 [C(RESULT_MISS)] = { 0x2e, CNTR_ALL },
1078 },
1079 [C(OP_WRITE)] = {
1080 [C(RESULT_ACCESS)] = { 0x30, CNTR_ALL },
939991cf
DD
1081 },
1082},
1083[C(L1I)] = {
1084 [C(OP_READ)] = {
1085 [C(RESULT_ACCESS)] = { 0x18, CNTR_ALL },
939991cf
DD
1086 },
1087 [C(OP_PREFETCH)] = {
1088 [C(RESULT_ACCESS)] = { 0x19, CNTR_ALL },
939991cf
DD
1089 },
1090},
1091[C(DTLB)] = {
1092 /*
1093 * Only general DTLB misses are counted use the same event for
1094 * read and write.
1095 */
1096 [C(OP_READ)] = {
939991cf
DD
1097 [C(RESULT_MISS)] = { 0x35, CNTR_ALL },
1098 },
1099 [C(OP_WRITE)] = {
939991cf
DD
1100 [C(RESULT_MISS)] = { 0x35, CNTR_ALL },
1101 },
939991cf
DD
1102},
1103[C(ITLB)] = {
1104 [C(OP_READ)] = {
939991cf
DD
1105 [C(RESULT_MISS)] = { 0x37, CNTR_ALL },
1106 },
939991cf
DD
1107},
1108};
1109
4be3d2f3
ZSL
1110static const struct mips_perf_event xlp_cache_map
1111 [PERF_COUNT_HW_CACHE_MAX]
1112 [PERF_COUNT_HW_CACHE_OP_MAX]
1113 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1114[C(L1D)] = {
1115 [C(OP_READ)] = {
1116 [C(RESULT_ACCESS)] = { 0x31, CNTR_ALL }, /* PAPI_L1_DCR */
1117 [C(RESULT_MISS)] = { 0x30, CNTR_ALL }, /* PAPI_L1_LDM */
1118 },
1119 [C(OP_WRITE)] = {
1120 [C(RESULT_ACCESS)] = { 0x2f, CNTR_ALL }, /* PAPI_L1_DCW */
1121 [C(RESULT_MISS)] = { 0x2e, CNTR_ALL }, /* PAPI_L1_STM */
1122 },
4be3d2f3
ZSL
1123},
1124[C(L1I)] = {
1125 [C(OP_READ)] = {
1126 [C(RESULT_ACCESS)] = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
1127 [C(RESULT_MISS)] = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
1128 },
4be3d2f3
ZSL
1129},
1130[C(LL)] = {
1131 [C(OP_READ)] = {
1132 [C(RESULT_ACCESS)] = { 0x35, CNTR_ALL }, /* PAPI_L2_DCR */
1133 [C(RESULT_MISS)] = { 0x37, CNTR_ALL }, /* PAPI_L2_LDM */
1134 },
1135 [C(OP_WRITE)] = {
1136 [C(RESULT_ACCESS)] = { 0x34, CNTR_ALL }, /* PAPI_L2_DCA */
1137 [C(RESULT_MISS)] = { 0x36, CNTR_ALL }, /* PAPI_L2_DCM */
1138 },
4be3d2f3
ZSL
1139},
1140[C(DTLB)] = {
1141 /*
1142 * Only general DTLB misses are counted use the same event for
1143 * read and write.
1144 */
1145 [C(OP_READ)] = {
4be3d2f3
ZSL
1146 [C(RESULT_MISS)] = { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1147 },
1148 [C(OP_WRITE)] = {
4be3d2f3
ZSL
1149 [C(RESULT_MISS)] = { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1150 },
4be3d2f3
ZSL
1151},
1152[C(ITLB)] = {
1153 [C(OP_READ)] = {
4be3d2f3
ZSL
1154 [C(RESULT_MISS)] = { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1155 },
1156 [C(OP_WRITE)] = {
4be3d2f3
ZSL
1157 [C(RESULT_MISS)] = { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1158 },
4be3d2f3
ZSL
1159},
1160[C(BPU)] = {
1161 [C(OP_READ)] = {
4be3d2f3
ZSL
1162 [C(RESULT_MISS)] = { 0x25, CNTR_ALL },
1163 },
4be3d2f3
ZSL
1164},
1165};
1166
3a9ab99e 1167#ifdef CONFIG_MIPS_MT_SMP
4409af37
DD
1168static void check_and_calc_range(struct perf_event *event,
1169 const struct mips_perf_event *pev)
3a9ab99e
DCZ
1170{
1171 struct hw_perf_event *hwc = &event->hw;
1172
1173 if (event->cpu >= 0) {
1174 if (pev->range > V) {
1175 /*
1176 * The user selected an event that is processor
1177 * wide, while expecting it to be VPE wide.
1178 */
1179 hwc->config_base |= M_TC_EN_ALL;
1180 } else {
1181 /*
1182 * FIXME: cpu_data[event->cpu].vpe_id reports 0
1183 * for both CPUs.
1184 */
1185 hwc->config_base |= M_PERFCTL_VPEID(event->cpu);
1186 hwc->config_base |= M_TC_EN_VPE;
1187 }
1188 } else
1189 hwc->config_base |= M_TC_EN_ALL;
1190}
1191#else
4409af37
DD
1192static void check_and_calc_range(struct perf_event *event,
1193 const struct mips_perf_event *pev)
3a9ab99e
DCZ
1194{
1195}
1196#endif
1197
1198static int __hw_perf_event_init(struct perf_event *event)
1199{
1200 struct perf_event_attr *attr = &event->attr;
1201 struct hw_perf_event *hwc = &event->hw;
1202 const struct mips_perf_event *pev;
1203 int err;
1204
1205 /* Returning MIPS event descriptor for generic perf event. */
1206 if (PERF_TYPE_HARDWARE == event->attr.type) {
1207 if (event->attr.config >= PERF_COUNT_HW_MAX)
1208 return -EINVAL;
1209 pev = mipspmu_map_general_event(event->attr.config);
1210 } else if (PERF_TYPE_HW_CACHE == event->attr.type) {
1211 pev = mipspmu_map_cache_event(event->attr.config);
1212 } else if (PERF_TYPE_RAW == event->attr.type) {
1213 /* We are working on the global raw event. */
1214 mutex_lock(&raw_event_mutex);
82091564 1215 pev = mipspmu.map_raw_event(event->attr.config);
3a9ab99e
DCZ
1216 } else {
1217 /* The event type is not (yet) supported. */
1218 return -EOPNOTSUPP;
1219 }
1220
1221 if (IS_ERR(pev)) {
1222 if (PERF_TYPE_RAW == event->attr.type)
1223 mutex_unlock(&raw_event_mutex);
1224 return PTR_ERR(pev);
1225 }
1226
1227 /*
1228 * We allow max flexibility on how each individual counter shared
1229 * by the single CPU operates (the mode exclusion and the range).
1230 */
1231 hwc->config_base = M_PERFCTL_INTERRUPT_ENABLE;
1232
1233 /* Calculate range bits and validate it. */
1234 if (num_possible_cpus() > 1)
1235 check_and_calc_range(event, pev);
1236
1237 hwc->event_base = mipspmu_perf_event_encode(pev);
1238 if (PERF_TYPE_RAW == event->attr.type)
1239 mutex_unlock(&raw_event_mutex);
1240
1241 if (!attr->exclude_user)
1242 hwc->config_base |= M_PERFCTL_USER;
1243 if (!attr->exclude_kernel) {
1244 hwc->config_base |= M_PERFCTL_KERNEL;
1245 /* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1246 hwc->config_base |= M_PERFCTL_EXL;
1247 }
1248 if (!attr->exclude_hv)
1249 hwc->config_base |= M_PERFCTL_SUPERVISOR;
1250
1251 hwc->config_base &= M_PERFCTL_CONFIG_MASK;
1252 /*
1253 * The event can belong to another cpu. We do not assign a local
1254 * counter for it for now.
1255 */
1256 hwc->idx = -1;
1257 hwc->config = 0;
1258
1259 if (!hwc->sample_period) {
82091564 1260 hwc->sample_period = mipspmu.max_period;
3a9ab99e
DCZ
1261 hwc->last_period = hwc->sample_period;
1262 local64_set(&hwc->period_left, hwc->sample_period);
1263 }
1264
1265 err = 0;
ff5d7265 1266 if (event->group_leader != event)
3a9ab99e 1267 err = validate_group(event);
3a9ab99e
DCZ
1268
1269 event->destroy = hw_perf_event_destroy;
ff5d7265
DCZ
1270
1271 if (err)
1272 event->destroy(event);
1273
3a9ab99e
DCZ
1274 return err;
1275}
1276
1277static void pause_local_counters(void)
1278{
35898716 1279 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
82091564 1280 int ctr = mipspmu.num_counters;
3a9ab99e
DCZ
1281 unsigned long flags;
1282
1283 local_irq_save(flags);
82091564
DD
1284 do {
1285 ctr--;
1286 cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
1287 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
1288 ~M_PERFCTL_COUNT_EVENT_WHENEVER);
1289 } while (ctr > 0);
3a9ab99e
DCZ
1290 local_irq_restore(flags);
1291}
1292
1293static void resume_local_counters(void)
1294{
35898716 1295 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
82091564 1296 int ctr = mipspmu.num_counters;
3a9ab99e 1297
82091564
DD
1298 do {
1299 ctr--;
1300 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
1301 } while (ctr > 0);
3a9ab99e
DCZ
1302}
1303
1304static int mipsxx_pmu_handle_shared_irq(void)
1305{
35898716 1306 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3a9ab99e 1307 struct perf_sample_data data;
82091564
DD
1308 unsigned int counters = mipspmu.num_counters;
1309 u64 counter;
3a9ab99e
DCZ
1310 int handled = IRQ_NONE;
1311 struct pt_regs *regs;
1312
da4b62cd 1313 if (cpu_has_perf_cntr_intr_bit && !(read_c0_cause() & CAUSEF_PCI))
3a9ab99e 1314 return handled;
3a9ab99e
DCZ
1315 /*
1316 * First we pause the local counters, so that when we are locked
1317 * here, the counters are all paused. When it gets locked due to
1318 * perf_disable(), the timer interrupt handler will be delayed.
1319 *
1320 * See also mipsxx_pmu_start().
1321 */
1322 pause_local_counters();
399aaa25 1323#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
3a9ab99e
DCZ
1324 read_lock(&pmuint_rwlock);
1325#endif
1326
1327 regs = get_irq_regs();
1328
fd0d000b 1329 perf_sample_data_init(&data, 0, 0);
3a9ab99e
DCZ
1330
1331 switch (counters) {
1332#define HANDLE_COUNTER(n) \
1333 case n + 1: \
1334 if (test_bit(n, cpuc->used_mask)) { \
82091564
DD
1335 counter = mipspmu.read_counter(n); \
1336 if (counter & mipspmu.overflow) { \
1337 handle_associated_event(cpuc, n, &data, regs); \
3a9ab99e
DCZ
1338 handled = IRQ_HANDLED; \
1339 } \
1340 }
1341 HANDLE_COUNTER(3)
1342 HANDLE_COUNTER(2)
1343 HANDLE_COUNTER(1)
1344 HANDLE_COUNTER(0)
1345 }
1346
1347 /*
1348 * Do all the work for the pending perf events. We can do this
1349 * in here because the performance counter interrupt is a regular
1350 * interrupt, not NMI.
1351 */
1352 if (handled == IRQ_HANDLED)
91f01737 1353 irq_work_run();
3a9ab99e 1354
399aaa25 1355#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
3a9ab99e
DCZ
1356 read_unlock(&pmuint_rwlock);
1357#endif
1358 resume_local_counters();
1359 return handled;
1360}
1361
4409af37 1362static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
3a9ab99e
DCZ
1363{
1364 return mipsxx_pmu_handle_shared_irq();
1365}
1366
3a9ab99e 1367/* 24K */
3a9ab99e
DCZ
1368#define IS_BOTH_COUNTERS_24K_EVENT(b) \
1369 ((b) == 0 || (b) == 1 || (b) == 11)
1370
1371/* 34K */
3a9ab99e
DCZ
1372#define IS_BOTH_COUNTERS_34K_EVENT(b) \
1373 ((b) == 0 || (b) == 1 || (b) == 11)
1374#ifdef CONFIG_MIPS_MT_SMP
1375#define IS_RANGE_P_34K_EVENT(r, b) \
1376 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1377 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 || \
1378 (r) == 176 || ((b) >= 50 && (b) <= 55) || \
1379 ((b) >= 64 && (b) <= 67))
70342287 1380#define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
3a9ab99e
DCZ
1381#endif
1382
1383/* 74K */
3a9ab99e
DCZ
1384#define IS_BOTH_COUNTERS_74K_EVENT(b) \
1385 ((b) == 0 || (b) == 1)
1386
c52068bd
DCZ
1387/* proAptiv */
1388#define IS_BOTH_COUNTERS_PROAPTIV_EVENT(b) \
1389 ((b) == 0 || (b) == 1)
560b461b
JH
1390/* P5600 */
1391#define IS_BOTH_COUNTERS_P5600_EVENT(b) \
1392 ((b) == 0 || (b) == 1)
c52068bd 1393
3a9ab99e 1394/* 1004K */
3a9ab99e
DCZ
1395#define IS_BOTH_COUNTERS_1004K_EVENT(b) \
1396 ((b) == 0 || (b) == 1 || (b) == 11)
1397#ifdef CONFIG_MIPS_MT_SMP
1398#define IS_RANGE_P_1004K_EVENT(r, b) \
1399 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1400 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 || \
1401 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) || \
1402 (r) == 188 || (b) == 61 || (b) == 62 || \
1403 ((b) >= 64 && (b) <= 67))
1404#define IS_RANGE_V_1004K_EVENT(r) ((r) == 47)
1405#endif
1406
9597e432
DCZ
1407/* interAptiv */
1408#define IS_BOTH_COUNTERS_INTERAPTIV_EVENT(b) \
1409 ((b) == 0 || (b) == 1 || (b) == 11)
1410#ifdef CONFIG_MIPS_MT_SMP
1411/* The P/V/T info is not provided for "(b) == 38" in SUM, assume P. */
1412#define IS_RANGE_P_INTERAPTIV_EVENT(r, b) \
1413 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1414 (b) == 25 || (b) == 36 || (b) == 38 || (b) == 39 || \
1415 (r) == 44 || (r) == 174 || (r) == 176 || ((b) >= 50 && \
1416 (b) <= 59) || (r) == 188 || (b) == 61 || (b) == 62 || \
1417 ((b) >= 64 && (b) <= 67))
1418#define IS_RANGE_V_INTERAPTIV_EVENT(r) ((r) == 47 || (r) == 175)
1419#endif
1420
a7911a8f
AC
1421/* BMIPS5000 */
1422#define IS_BOTH_COUNTERS_BMIPS5000_EVENT(b) \
1423 ((b) == 0 || (b) == 1)
1424
1425
3a9ab99e 1426/*
67dca667
JH
1427 * For most cores the user can use 0-255 raw events, where 0-127 for the events
1428 * of even counters, and 128-255 for odd counters. Note that bit 7 is used to
1429 * indicate the even/odd bank selector. So, for example, when user wants to take
1430 * the Event Num of 15 for odd counters (by referring to the user manual), then
1431 * 128 needs to be added to 15 as the input for the event config, i.e., 143 (0x8F)
1432 * to be used.
1433 *
1434 * Some newer cores have even more events, in which case the user can use raw
1435 * events 0-511, where 0-255 are for the events of even counters, and 256-511
1436 * are for odd counters, so bit 8 is used to indicate the even/odd bank selector.
3a9ab99e 1437 */
4409af37 1438static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
3a9ab99e 1439{
67dca667 1440 /* currently most cores have 7-bit event numbers */
3a9ab99e
DCZ
1441 unsigned int raw_id = config & 0xff;
1442 unsigned int base_id = raw_id & 0x7f;
1443
1444 switch (current_cpu_type()) {
1445 case CPU_24K:
3a9ab99e
DCZ
1446 if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
1447 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1448 else
1449 raw_event.cntr_mask =
1450 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1451#ifdef CONFIG_MIPS_MT_SMP
1452 /*
1453 * This is actually doing nothing. Non-multithreading
1454 * CPUs will not check and calculate the range.
1455 */
1456 raw_event.range = P;
1457#endif
1458 break;
1459 case CPU_34K:
3a9ab99e
DCZ
1460 if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
1461 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1462 else
1463 raw_event.cntr_mask =
1464 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1465#ifdef CONFIG_MIPS_MT_SMP
1466 if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
1467 raw_event.range = P;
1468 else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
1469 raw_event.range = V;
1470 else
1471 raw_event.range = T;
1472#endif
1473 break;
1474 case CPU_74K:
442e14a2 1475 case CPU_1074K:
3a9ab99e
DCZ
1476 if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
1477 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1478 else
1479 raw_event.cntr_mask =
1480 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1481#ifdef CONFIG_MIPS_MT_SMP
1482 raw_event.range = P;
c52068bd
DCZ
1483#endif
1484 break;
1485 case CPU_PROAPTIV:
1486 if (IS_BOTH_COUNTERS_PROAPTIV_EVENT(base_id))
1487 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1488 else
1489 raw_event.cntr_mask =
1490 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1491#ifdef CONFIG_MIPS_MT_SMP
1492 raw_event.range = P;
560b461b
JH
1493#endif
1494 break;
1495 case CPU_P5600:
1496 /* 8-bit event numbers */
1497 raw_id = config & 0x1ff;
1498 base_id = raw_id & 0xff;
1499 if (IS_BOTH_COUNTERS_P5600_EVENT(base_id))
1500 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1501 else
1502 raw_event.cntr_mask =
1503 raw_id > 255 ? CNTR_ODD : CNTR_EVEN;
1504#ifdef CONFIG_MIPS_MT_SMP
1505 raw_event.range = P;
3a9ab99e
DCZ
1506#endif
1507 break;
1508 case CPU_1004K:
3a9ab99e
DCZ
1509 if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
1510 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1511 else
1512 raw_event.cntr_mask =
1513 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1514#ifdef CONFIG_MIPS_MT_SMP
1515 if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
1516 raw_event.range = P;
1517 else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
1518 raw_event.range = V;
1519 else
1520 raw_event.range = T;
9597e432
DCZ
1521#endif
1522 break;
1523 case CPU_INTERAPTIV:
1524 if (IS_BOTH_COUNTERS_INTERAPTIV_EVENT(base_id))
1525 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1526 else
1527 raw_event.cntr_mask =
1528 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1529#ifdef CONFIG_MIPS_MT_SMP
1530 if (IS_RANGE_P_INTERAPTIV_EVENT(raw_id, base_id))
1531 raw_event.range = P;
1532 else if (unlikely(IS_RANGE_V_INTERAPTIV_EVENT(raw_id)))
1533 raw_event.range = V;
1534 else
1535 raw_event.range = T;
3a9ab99e
DCZ
1536#endif
1537 break;
a7911a8f
AC
1538 case CPU_BMIPS5000:
1539 if (IS_BOTH_COUNTERS_BMIPS5000_EVENT(base_id))
1540 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1541 else
1542 raw_event.cntr_mask =
1543 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
3a9ab99e
DCZ
1544 }
1545
67dca667
JH
1546 raw_event.event_id = base_id;
1547
3a9ab99e
DCZ
1548 return &raw_event;
1549}
1550
939991cf
DD
1551static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
1552{
1553 unsigned int raw_id = config & 0xff;
1554 unsigned int base_id = raw_id & 0x7f;
1555
1556
1557 raw_event.cntr_mask = CNTR_ALL;
1558 raw_event.event_id = base_id;
1559
1560 if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
1561 if (base_id > 0x42)
1562 return ERR_PTR(-EOPNOTSUPP);
1563 } else {
1564 if (base_id > 0x3a)
1565 return ERR_PTR(-EOPNOTSUPP);
1566 }
1567
1568 switch (base_id) {
1569 case 0x00:
1570 case 0x0f:
1571 case 0x1e:
1572 case 0x1f:
1573 case 0x2f:
1574 case 0x34:
1575 case 0x3b ... 0x3f:
1576 return ERR_PTR(-EOPNOTSUPP);
1577 default:
1578 break;
1579 }
1580
1581 return &raw_event;
1582}
1583
4be3d2f3
ZSL
1584static const struct mips_perf_event *xlp_pmu_map_raw_event(u64 config)
1585{
1586 unsigned int raw_id = config & 0xff;
1587
1588 /* Only 1-63 are defined */
1589 if ((raw_id < 0x01) || (raw_id > 0x3f))
1590 return ERR_PTR(-EOPNOTSUPP);
1591
1592 raw_event.cntr_mask = CNTR_ALL;
1593 raw_event.event_id = raw_id;
1594
1595 return &raw_event;
1596}
1597
3a9ab99e
DCZ
1598static int __init
1599init_hw_perf_events(void)
1600{
1601 int counters, irq;
82091564 1602 int counter_bits;
3a9ab99e
DCZ
1603
1604 pr_info("Performance counters: ");
1605
1606 counters = n_counters();
1607 if (counters == 0) {
1608 pr_cont("No available PMU.\n");
1609 return -ENODEV;
1610 }
1611
399aaa25 1612#ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
3a9ab99e
DCZ
1613 cpu_has_mipsmt_pertccounters = read_c0_config7() & (1<<19);
1614 if (!cpu_has_mipsmt_pertccounters)
1615 counters = counters_total_to_per_cpu(counters);
1616#endif
1617
a669efc4
AB
1618 if (get_c0_perfcount_int)
1619 irq = get_c0_perfcount_int();
7eca5b14 1620 else if (cp0_perfcount_irq >= 0)
a669efc4
AB
1621 irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1622 else
1623 irq = -1;
3a9ab99e 1624
82091564 1625 mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
3a9ab99e
DCZ
1626
1627 switch (current_cpu_type()) {
1628 case CPU_24K:
82091564
DD
1629 mipspmu.name = "mips/24K";
1630 mipspmu.general_event_map = &mipsxxcore_event_map;
1631 mipspmu.cache_event_map = &mipsxxcore_cache_map;
3a9ab99e
DCZ
1632 break;
1633 case CPU_34K:
82091564
DD
1634 mipspmu.name = "mips/34K";
1635 mipspmu.general_event_map = &mipsxxcore_event_map;
1636 mipspmu.cache_event_map = &mipsxxcore_cache_map;
3a9ab99e
DCZ
1637 break;
1638 case CPU_74K:
82091564 1639 mipspmu.name = "mips/74K";
6b0b8429
DCZ
1640 mipspmu.general_event_map = &mipsxxcore_event_map2;
1641 mipspmu.cache_event_map = &mipsxxcore_cache_map2;
3a9ab99e 1642 break;
c52068bd
DCZ
1643 case CPU_PROAPTIV:
1644 mipspmu.name = "mips/proAptiv";
1645 mipspmu.general_event_map = &mipsxxcore_event_map2;
1646 mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1647 break;
560b461b
JH
1648 case CPU_P5600:
1649 mipspmu.name = "mips/P5600";
1650 mipspmu.general_event_map = &mipsxxcore_event_map2;
1651 mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1652 break;
3a9ab99e 1653 case CPU_1004K:
82091564
DD
1654 mipspmu.name = "mips/1004K";
1655 mipspmu.general_event_map = &mipsxxcore_event_map;
1656 mipspmu.cache_event_map = &mipsxxcore_cache_map;
3a9ab99e 1657 break;
442e14a2
SH
1658 case CPU_1074K:
1659 mipspmu.name = "mips/1074K";
1660 mipspmu.general_event_map = &mipsxxcore_event_map;
1661 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1662 break;
9597e432
DCZ
1663 case CPU_INTERAPTIV:
1664 mipspmu.name = "mips/interAptiv";
1665 mipspmu.general_event_map = &mipsxxcore_event_map;
1666 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1667 break;
2fa36399
KC
1668 case CPU_LOONGSON1:
1669 mipspmu.name = "mips/loongson1";
1670 mipspmu.general_event_map = &mipsxxcore_event_map;
1671 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1672 break;
939991cf
DD
1673 case CPU_CAVIUM_OCTEON:
1674 case CPU_CAVIUM_OCTEON_PLUS:
1675 case CPU_CAVIUM_OCTEON2:
1676 mipspmu.name = "octeon";
1677 mipspmu.general_event_map = &octeon_event_map;
1678 mipspmu.cache_event_map = &octeon_cache_map;
1679 mipspmu.map_raw_event = octeon_pmu_map_raw_event;
1680 break;
a7911a8f
AC
1681 case CPU_BMIPS5000:
1682 mipspmu.name = "BMIPS5000";
1683 mipspmu.general_event_map = &bmips5000_event_map;
1684 mipspmu.cache_event_map = &bmips5000_cache_map;
1685 break;
4be3d2f3
ZSL
1686 case CPU_XLP:
1687 mipspmu.name = "xlp";
1688 mipspmu.general_event_map = &xlp_event_map;
1689 mipspmu.cache_event_map = &xlp_cache_map;
1690 mipspmu.map_raw_event = xlp_pmu_map_raw_event;
1691 break;
3a9ab99e
DCZ
1692 default:
1693 pr_cont("Either hardware does not support performance "
1694 "counters, or not yet implemented.\n");
1695 return -ENODEV;
1696 }
1697
82091564
DD
1698 mipspmu.num_counters = counters;
1699 mipspmu.irq = irq;
1700
1701 if (read_c0_perfctrl0() & M_PERFCTL_WIDE) {
1702 mipspmu.max_period = (1ULL << 63) - 1;
1703 mipspmu.valid_count = (1ULL << 63) - 1;
1704 mipspmu.overflow = 1ULL << 63;
1705 mipspmu.read_counter = mipsxx_pmu_read_counter_64;
1706 mipspmu.write_counter = mipsxx_pmu_write_counter_64;
1707 counter_bits = 64;
1708 } else {
1709 mipspmu.max_period = (1ULL << 31) - 1;
1710 mipspmu.valid_count = (1ULL << 31) - 1;
1711 mipspmu.overflow = 1ULL << 31;
1712 mipspmu.read_counter = mipsxx_pmu_read_counter;
1713 mipspmu.write_counter = mipsxx_pmu_write_counter;
1714 counter_bits = 32;
1715 }
1716
1717 on_each_cpu(reset_counters, (void *)(long)counters, 1);
1718
1719 pr_cont("%s PMU enabled, %d %d-bit counters available to each "
1720 "CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
1721 irq < 0 ? " (share with timer interrupt)" : "");
3a9ab99e 1722
404ff638
DCZ
1723 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1724
3a9ab99e
DCZ
1725 return 0;
1726}
004417a6 1727early_initcall(init_hw_perf_events);
This page took 0.270236 seconds and 5 git commands to generate.