[MIPS] SMTC: Instant IPI replay.
[deliverable/linux.git] / arch / mips / kernel / smtc.c
CommitLineData
41c594ab
RB
1/* Copyright (C) 2004 Mips Technologies, Inc */
2
3#include <linux/kernel.h>
4#include <linux/sched.h>
5#include <linux/cpumask.h>
6#include <linux/interrupt.h>
7
8#include <asm/cpu.h>
9#include <asm/processor.h>
10#include <asm/atomic.h>
11#include <asm/system.h>
12#include <asm/hardirq.h>
13#include <asm/hazards.h>
14#include <asm/mmu_context.h>
15#include <asm/smp.h>
16#include <asm/mipsregs.h>
17#include <asm/cacheflush.h>
18#include <asm/time.h>
19#include <asm/addrspace.h>
20#include <asm/smtc.h>
21#include <asm/smtc_ipi.h>
22#include <asm/smtc_proc.h>
23
24/*
25 * This file should be built into the kernel only if CONFIG_MIPS_MT_SMTC is set.
26 */
27
28/*
29 * MIPSCPU_INT_BASE is identically defined in both
30 * asm-mips/mips-boards/maltaint.h and asm-mips/mips-boards/simint.h,
31 * but as yet there's no properly organized include structure that
32 * will ensure that the right *int.h file will be included for a
33 * given platform build.
34 */
35
36#define MIPSCPU_INT_BASE 16
37
38#define MIPS_CPU_IPI_IRQ 1
39
40#define LOCK_MT_PRA() \
41 local_irq_save(flags); \
42 mtflags = dmt()
43
44#define UNLOCK_MT_PRA() \
45 emt(mtflags); \
46 local_irq_restore(flags)
47
48#define LOCK_CORE_PRA() \
49 local_irq_save(flags); \
50 mtflags = dvpe()
51
52#define UNLOCK_CORE_PRA() \
53 evpe(mtflags); \
54 local_irq_restore(flags)
55
56/*
57 * Data structures purely associated with SMTC parallelism
58 */
59
60
61/*
62 * Table for tracking ASIDs whose lifetime is prolonged.
63 */
64
65asiduse smtc_live_asid[MAX_SMTC_TLBS][MAX_SMTC_ASIDS];
66
67/*
68 * Clock interrupt "latch" buffers, per "CPU"
69 */
70
71unsigned int ipi_timer_latch[NR_CPUS];
72
73/*
74 * Number of InterProcessor Interupt (IPI) message buffers to allocate
75 */
76
77#define IPIBUF_PER_CPU 4
78
79struct smtc_ipi_q IPIQ[NR_CPUS];
80struct smtc_ipi_q freeIPIq;
81
82
83/* Forward declarations */
84
937a8015 85void ipi_decode(struct smtc_ipi *);
41c594ab
RB
86void post_direct_ipi(int cpu, struct smtc_ipi *pipi);
87void setup_cross_vpe_interrupts(void);
88void init_smtc_stats(void);
89
90/* Global SMTC Status */
91
92unsigned int smtc_status = 0;
93
94/* Boot command line configuration overrides */
95
96static int vpelimit = 0;
97static int tclimit = 0;
98static int ipibuffers = 0;
99static int nostlb = 0;
100static int asidmask = 0;
101unsigned long smtc_asid_mask = 0xff;
102
103static int __init maxvpes(char *str)
104{
105 get_option(&str, &vpelimit);
106 return 1;
107}
108
109static int __init maxtcs(char *str)
110{
111 get_option(&str, &tclimit);
112 return 1;
113}
114
115static int __init ipibufs(char *str)
116{
117 get_option(&str, &ipibuffers);
118 return 1;
119}
120
121static int __init stlb_disable(char *s)
122{
123 nostlb = 1;
124 return 1;
125}
126
127static int __init asidmask_set(char *str)
128{
129 get_option(&str, &asidmask);
4bf42d42 130 switch (asidmask) {
41c594ab
RB
131 case 0x1:
132 case 0x3:
133 case 0x7:
134 case 0xf:
135 case 0x1f:
136 case 0x3f:
137 case 0x7f:
138 case 0xff:
139 smtc_asid_mask = (unsigned long)asidmask;
140 break;
141 default:
142 printk("ILLEGAL ASID mask 0x%x from command line\n", asidmask);
143 }
144 return 1;
145}
146
147__setup("maxvpes=", maxvpes);
148__setup("maxtcs=", maxtcs);
149__setup("ipibufs=", ipibufs);
150__setup("nostlb", stlb_disable);
151__setup("asidmask=", asidmask_set);
152
153/* Enable additional debug checks before going into CPU idle loop */
154#define SMTC_IDLE_HOOK_DEBUG
155
156#ifdef SMTC_IDLE_HOOK_DEBUG
157
158static int hang_trig = 0;
159
160static int __init hangtrig_enable(char *s)
161{
162 hang_trig = 1;
163 return 1;
164}
165
166
167__setup("hangtrig", hangtrig_enable);
168
169#define DEFAULT_BLOCKED_IPI_LIMIT 32
170
171static int timerq_limit = DEFAULT_BLOCKED_IPI_LIMIT;
172
173static int __init tintq(char *str)
174{
175 get_option(&str, &timerq_limit);
176 return 1;
177}
178
179__setup("tintq=", tintq);
180
181int imstuckcount[2][8];
182/* vpemask represents IM/IE bits of per-VPE Status registers, low-to-high */
183int vpemask[2][8] = {{0,1,1,0,0,0,0,1},{0,1,0,0,0,0,0,1}};
184int tcnoprog[NR_CPUS];
185static atomic_t idle_hook_initialized = {0};
186static int clock_hang_reported[NR_CPUS];
187
188#endif /* SMTC_IDLE_HOOK_DEBUG */
189
190/* Initialize shared TLB - the should probably migrate to smtc_setup_cpus() */
191
192void __init sanitize_tlb_entries(void)
193{
194 printk("Deprecated sanitize_tlb_entries() invoked\n");
195}
196
197
198/*
199 * Configure shared TLB - VPC configuration bit must be set by caller
200 */
201
202void smtc_configure_tlb(void)
203{
204 int i,tlbsiz,vpes;
205 unsigned long mvpconf0;
206 unsigned long config1val;
207
208 /* Set up ASID preservation table */
209 for (vpes=0; vpes<MAX_SMTC_TLBS; vpes++) {
210 for(i = 0; i < MAX_SMTC_ASIDS; i++) {
211 smtc_live_asid[vpes][i] = 0;
212 }
213 }
214 mvpconf0 = read_c0_mvpconf0();
215
216 if ((vpes = ((mvpconf0 & MVPCONF0_PVPE)
217 >> MVPCONF0_PVPE_SHIFT) + 1) > 1) {
218 /* If we have multiple VPEs, try to share the TLB */
219 if ((mvpconf0 & MVPCONF0_TLBS) && !nostlb) {
220 /*
221 * If TLB sizing is programmable, shared TLB
222 * size is the total available complement.
223 * Otherwise, we have to take the sum of all
224 * static VPE TLB entries.
225 */
226 if ((tlbsiz = ((mvpconf0 & MVPCONF0_PTLBE)
227 >> MVPCONF0_PTLBE_SHIFT)) == 0) {
228 /*
229 * If there's more than one VPE, there had better
230 * be more than one TC, because we need one to bind
231 * to each VPE in turn to be able to read
232 * its configuration state!
233 */
234 settc(1);
235 /* Stop the TC from doing anything foolish */
236 write_tc_c0_tchalt(TCHALT_H);
237 mips_ihb();
238 /* No need to un-Halt - that happens later anyway */
239 for (i=0; i < vpes; i++) {
240 write_tc_c0_tcbind(i);
241 /*
242 * To be 100% sure we're really getting the right
243 * information, we exit the configuration state
244 * and do an IHB after each rebinding.
245 */
246 write_c0_mvpcontrol(
247 read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
248 mips_ihb();
249 /*
250 * Only count if the MMU Type indicated is TLB
251 */
4bf42d42 252 if (((read_vpe_c0_config() & MIPS_CONF_MT) >> 7) == 1) {
41c594ab
RB
253 config1val = read_vpe_c0_config1();
254 tlbsiz += ((config1val >> 25) & 0x3f) + 1;
255 }
256
257 /* Put core back in configuration state */
258 write_c0_mvpcontrol(
259 read_c0_mvpcontrol() | MVPCONTROL_VPC );
260 mips_ihb();
261 }
262 }
263 write_c0_mvpcontrol(read_c0_mvpcontrol() | MVPCONTROL_STLB);
c80697b3 264 ehb();
41c594ab
RB
265
266 /*
267 * Setup kernel data structures to use software total,
268 * rather than read the per-VPE Config1 value. The values
269 * for "CPU 0" gets copied to all the other CPUs as part
270 * of their initialization in smtc_cpu_setup().
271 */
272
273 tlbsiz = tlbsiz & 0x3f; /* MIPS32 limits TLB indices to 64 */
274 cpu_data[0].tlbsize = tlbsiz;
275 smtc_status |= SMTC_TLB_SHARED;
276
277 printk("TLB of %d entry pairs shared by %d VPEs\n",
278 tlbsiz, vpes);
279 } else {
280 printk("WARNING: TLB Not Sharable on SMTC Boot!\n");
281 }
282 }
283}
284
285
286/*
287 * Incrementally build the CPU map out of constituent MIPS MT cores,
288 * using the specified available VPEs and TCs. Plaform code needs
289 * to ensure that each MIPS MT core invokes this routine on reset,
290 * one at a time(!).
291 *
292 * This version of the build_cpu_map and prepare_cpus routines assumes
293 * that *all* TCs of a MIPS MT core will be used for Linux, and that
294 * they will be spread across *all* available VPEs (to minimise the
295 * loss of efficiency due to exception service serialization).
296 * An improved version would pick up configuration information and
297 * possibly leave some TCs/VPEs as "slave" processors.
298 *
299 * Use c0_MVPConf0 to find out how many TCs are available, setting up
300 * phys_cpu_present_map and the logical/physical mappings.
301 */
302
303int __init mipsmt_build_cpu_map(int start_cpu_slot)
304{
305 int i, ntcs;
306
307 /*
308 * The CPU map isn't actually used for anything at this point,
309 * so it's not clear what else we should do apart from set
310 * everything up so that "logical" = "physical".
311 */
312 ntcs = ((read_c0_mvpconf0() & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
313 for (i=start_cpu_slot; i<NR_CPUS && i<ntcs; i++) {
314 cpu_set(i, phys_cpu_present_map);
315 __cpu_number_map[i] = i;
316 __cpu_logical_map[i] = i;
317 }
318 /* Initialize map of CPUs with FPUs */
319 cpus_clear(mt_fpu_cpumask);
320
321 /* One of those TC's is the one booting, and not a secondary... */
322 printk("%i available secondary CPU TC(s)\n", i - 1);
323
324 return i;
325}
326
327/*
328 * Common setup before any secondaries are started
329 * Make sure all CPU's are in a sensible state before we boot any of the
330 * secondaries.
331 *
332 * For MIPS MT "SMTC" operation, we set up all TCs, spread as evenly
333 * as possible across the available VPEs.
334 */
335
336static void smtc_tc_setup(int vpe, int tc, int cpu)
337{
338 settc(tc);
339 write_tc_c0_tchalt(TCHALT_H);
340 mips_ihb();
341 write_tc_c0_tcstatus((read_tc_c0_tcstatus()
342 & ~(TCSTATUS_TKSU | TCSTATUS_DA | TCSTATUS_IXMT))
343 | TCSTATUS_A);
344 write_tc_c0_tccontext(0);
345 /* Bind tc to vpe */
346 write_tc_c0_tcbind(vpe);
347 /* In general, all TCs should have the same cpu_data indications */
348 memcpy(&cpu_data[cpu], &cpu_data[0], sizeof(struct cpuinfo_mips));
349 /* For 34Kf, start with TC/CPU 0 as sole owner of single FPU context */
350 if (cpu_data[0].cputype == CPU_34K)
351 cpu_data[cpu].options &= ~MIPS_CPU_FPU;
352 cpu_data[cpu].vpe_id = vpe;
353 cpu_data[cpu].tc_id = tc;
354}
355
356
357void mipsmt_prepare_cpus(void)
358{
359 int i, vpe, tc, ntc, nvpe, tcpervpe, slop, cpu;
360 unsigned long flags;
361 unsigned long val;
362 int nipi;
363 struct smtc_ipi *pipi;
364
365 /* disable interrupts so we can disable MT */
366 local_irq_save(flags);
367 /* disable MT so we can configure */
368 dvpe();
369 dmt();
370
34af946a 371 spin_lock_init(&freeIPIq.lock);
41c594ab
RB
372
373 /*
374 * We probably don't have as many VPEs as we do SMP "CPUs",
375 * but it's possible - and in any case we'll never use more!
376 */
377 for (i=0; i<NR_CPUS; i++) {
378 IPIQ[i].head = IPIQ[i].tail = NULL;
34af946a 379 spin_lock_init(&IPIQ[i].lock);
41c594ab
RB
380 IPIQ[i].depth = 0;
381 ipi_timer_latch[i] = 0;
382 }
383
384 /* cpu_data index starts at zero */
385 cpu = 0;
386 cpu_data[cpu].vpe_id = 0;
387 cpu_data[cpu].tc_id = 0;
388 cpu++;
389
390 /* Report on boot-time options */
391 mips_mt_set_cpuoptions ();
392 if (vpelimit > 0)
393 printk("Limit of %d VPEs set\n", vpelimit);
394 if (tclimit > 0)
395 printk("Limit of %d TCs set\n", tclimit);
396 if (nostlb) {
397 printk("Shared TLB Use Inhibited - UNSAFE for Multi-VPE Operation\n");
398 }
399 if (asidmask)
400 printk("ASID mask value override to 0x%x\n", asidmask);
401
402 /* Temporary */
403#ifdef SMTC_IDLE_HOOK_DEBUG
404 if (hang_trig)
405 printk("Logic Analyser Trigger on suspected TC hang\n");
406#endif /* SMTC_IDLE_HOOK_DEBUG */
407
408 /* Put MVPE's into 'configuration state' */
409 write_c0_mvpcontrol( read_c0_mvpcontrol() | MVPCONTROL_VPC );
410
411 val = read_c0_mvpconf0();
412 nvpe = ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1;
413 if (vpelimit > 0 && nvpe > vpelimit)
414 nvpe = vpelimit;
415 ntc = ((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
416 if (ntc > NR_CPUS)
417 ntc = NR_CPUS;
418 if (tclimit > 0 && ntc > tclimit)
419 ntc = tclimit;
420 tcpervpe = ntc / nvpe;
421 slop = ntc % nvpe; /* Residual TCs, < NVPE */
422
423 /* Set up shared TLB */
424 smtc_configure_tlb();
425
426 for (tc = 0, vpe = 0 ; (vpe < nvpe) && (tc < ntc) ; vpe++) {
427 /*
428 * Set the MVP bits.
429 */
430 settc(tc);
431 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_MVP);
432 if (vpe != 0)
433 printk(", ");
434 printk("VPE %d: TC", vpe);
435 for (i = 0; i < tcpervpe; i++) {
436 /*
437 * TC 0 is bound to VPE 0 at reset,
438 * and is presumably executing this
439 * code. Leave it alone!
440 */
441 if (tc != 0) {
442 smtc_tc_setup(vpe,tc, cpu);
443 cpu++;
444 }
445 printk(" %d", tc);
446 tc++;
447 }
448 if (slop) {
449 if (tc != 0) {
450 smtc_tc_setup(vpe,tc, cpu);
451 cpu++;
452 }
453 printk(" %d", tc);
454 tc++;
455 slop--;
456 }
457 if (vpe != 0) {
458 /*
459 * Clear any stale software interrupts from VPE's Cause
460 */
461 write_vpe_c0_cause(0);
462
463 /*
464 * Clear ERL/EXL of VPEs other than 0
465 * and set restricted interrupt enable/mask.
466 */
467 write_vpe_c0_status((read_vpe_c0_status()
468 & ~(ST0_BEV | ST0_ERL | ST0_EXL | ST0_IM))
469 | (STATUSF_IP0 | STATUSF_IP1 | STATUSF_IP7
470 | ST0_IE));
471 /*
472 * set config to be the same as vpe0,
473 * particularly kseg0 coherency alg
474 */
475 write_vpe_c0_config(read_c0_config());
476 /* Clear any pending timer interrupt */
477 write_vpe_c0_compare(0);
478 /* Propagate Config7 */
479 write_vpe_c0_config7(read_c0_config7());
64c590b7 480 write_vpe_c0_count(read_c0_count());
41c594ab
RB
481 }
482 /* enable multi-threading within VPE */
483 write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() | VPECONTROL_TE);
484 /* enable the VPE */
485 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
486 }
487
488 /*
489 * Pull any physically present but unused TCs out of circulation.
490 */
491 while (tc < (((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1)) {
492 cpu_clear(tc, phys_cpu_present_map);
493 cpu_clear(tc, cpu_present_map);
494 tc++;
495 }
496
497 /* release config state */
498 write_c0_mvpcontrol( read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
499
500 printk("\n");
501
502 /* Set up coprocessor affinity CPU mask(s) */
503
504 for (tc = 0; tc < ntc; tc++) {
4bf42d42 505 if (cpu_data[tc].options & MIPS_CPU_FPU)
41c594ab
RB
506 cpu_set(tc, mt_fpu_cpumask);
507 }
508
509 /* set up ipi interrupts... */
510
511 /* If we have multiple VPEs running, set up the cross-VPE interrupt */
512
513 if (nvpe > 1)
514 setup_cross_vpe_interrupts();
515
516 /* Set up queue of free IPI "messages". */
517 nipi = NR_CPUS * IPIBUF_PER_CPU;
518 if (ipibuffers > 0)
519 nipi = ipibuffers;
520
521 pipi = kmalloc(nipi *sizeof(struct smtc_ipi), GFP_KERNEL);
522 if (pipi == NULL)
523 panic("kmalloc of IPI message buffers failed\n");
524 else
525 printk("IPI buffer pool of %d buffers\n", nipi);
526 for (i = 0; i < nipi; i++) {
527 smtc_ipi_nq(&freeIPIq, pipi);
528 pipi++;
529 }
530
531 /* Arm multithreading and enable other VPEs - but all TCs are Halted */
532 emt(EMT_ENABLE);
533 evpe(EVPE_ENABLE);
534 local_irq_restore(flags);
535 /* Initialize SMTC /proc statistics/diagnostics */
536 init_smtc_stats();
537}
538
539
540/*
541 * Setup the PC, SP, and GP of a secondary processor and start it
542 * running!
543 * smp_bootstrap is the place to resume from
544 * __KSTK_TOS(idle) is apparently the stack pointer
545 * (unsigned long)idle->thread_info the gp
546 *
547 */
548void smtc_boot_secondary(int cpu, struct task_struct *idle)
549{
550 extern u32 kernelsp[NR_CPUS];
551 long flags;
552 int mtflags;
553
554 LOCK_MT_PRA();
555 if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
556 dvpe();
557 }
558 settc(cpu_data[cpu].tc_id);
559
560 /* pc */
561 write_tc_c0_tcrestart((unsigned long)&smp_bootstrap);
562
563 /* stack pointer */
564 kernelsp[cpu] = __KSTK_TOS(idle);
565 write_tc_gpr_sp(__KSTK_TOS(idle));
566
567 /* global pointer */
568 write_tc_gpr_gp((unsigned long)idle->thread_info);
569
570 smtc_status |= SMTC_MTC_ACTIVE;
571 write_tc_c0_tchalt(0);
572 if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
573 evpe(EVPE_ENABLE);
574 }
575 UNLOCK_MT_PRA();
576}
577
578void smtc_init_secondary(void)
579{
580 /*
581 * Start timer on secondary VPEs if necessary.
54d0a216 582 * plat_timer_setup has already have been invoked by init/main
41c594ab
RB
583 * on "boot" TC. Like per_cpu_trap_init() hack, this assumes that
584 * SMTC init code assigns TCs consdecutively and in ascending order
585 * to across available VPEs.
586 */
4bf42d42
RB
587 if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
588 ((read_c0_tcbind() & TCBIND_CURVPE)
41c594ab
RB
589 != cpu_data[smp_processor_id() - 1].vpe_id)){
590 write_c0_compare (read_c0_count() + mips_hpt_frequency/HZ);
591 }
592
593 local_irq_enable();
594}
595
596void smtc_smp_finish(void)
597{
598 printk("TC %d going on-line as CPU %d\n",
599 cpu_data[smp_processor_id()].tc_id, smp_processor_id());
600}
601
602void smtc_cpus_done(void)
603{
604}
605
606/*
607 * Support for SMTC-optimized driver IRQ registration
608 */
609
610/*
611 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
612 * in do_IRQ. These are passed in setup_irq_smtc() and stored
613 * in this table.
614 */
615
616int setup_irq_smtc(unsigned int irq, struct irqaction * new,
617 unsigned long hwmask)
618{
619 irq_hwmask[irq] = hwmask;
620
621 return setup_irq(irq, new);
622}
623
624/*
625 * IPI model for SMTC is tricky, because interrupts aren't TC-specific.
626 * Within a VPE one TC can interrupt another by different approaches.
627 * The easiest to get right would probably be to make all TCs except
628 * the target IXMT and set a software interrupt, but an IXMT-based
629 * scheme requires that a handler must run before a new IPI could
630 * be sent, which would break the "broadcast" loops in MIPS MT.
631 * A more gonzo approach within a VPE is to halt the TC, extract
632 * its Restart, Status, and a couple of GPRs, and program the Restart
633 * address to emulate an interrupt.
634 *
635 * Within a VPE, one can be confident that the target TC isn't in
636 * a critical EXL state when halted, since the write to the Halt
637 * register could not have issued on the writing thread if the
638 * halting thread had EXL set. So k0 and k1 of the target TC
639 * can be used by the injection code. Across VPEs, one can't
640 * be certain that the target TC isn't in a critical exception
641 * state. So we try a two-step process of sending a software
642 * interrupt to the target VPE, which either handles the event
643 * itself (if it was the target) or injects the event within
644 * the VPE.
645 */
646
647void smtc_ipi_qdump(void)
648{
649 int i;
650
651 for (i = 0; i < NR_CPUS ;i++) {
652 printk("IPIQ[%d]: head = 0x%x, tail = 0x%x, depth = %d\n",
653 i, (unsigned)IPIQ[i].head, (unsigned)IPIQ[i].tail,
654 IPIQ[i].depth);
655 }
656}
657
658/*
659 * The standard atomic.h primitives don't quite do what we want
660 * here: We need an atomic add-and-return-previous-value (which
661 * could be done with atomic_add_return and a decrement) and an
662 * atomic set/zero-and-return-previous-value (which can't really
663 * be done with the atomic.h primitives). And since this is
664 * MIPS MT, we can assume that we have LL/SC.
665 */
666static __inline__ int atomic_postincrement(unsigned int *pv)
667{
668 unsigned long result;
669
670 unsigned long temp;
671
672 __asm__ __volatile__(
673 "1: ll %0, %2 \n"
674 " addu %1, %0, 1 \n"
675 " sc %1, %2 \n"
676 " beqz %1, 1b \n"
677 " sync \n"
678 : "=&r" (result), "=&r" (temp), "=m" (*pv)
679 : "m" (*pv)
680 : "memory");
681
682 return result;
683}
684
685/* No longer used in IPI dispatch, but retained for future recycling */
686
687static __inline__ int atomic_postclear(unsigned int *pv)
688{
689 unsigned long result;
690
691 unsigned long temp;
692
693 __asm__ __volatile__(
694 "1: ll %0, %2 \n"
695 " or %1, $0, $0 \n"
696 " sc %1, %2 \n"
697 " beqz %1, 1b \n"
698 " sync \n"
699 : "=&r" (result), "=&r" (temp), "=m" (*pv)
700 : "m" (*pv)
701 : "memory");
702
703 return result;
704}
705
706
707void smtc_send_ipi(int cpu, int type, unsigned int action)
708{
709 int tcstatus;
710 struct smtc_ipi *pipi;
711 long flags;
712 int mtflags;
713
714 if (cpu == smp_processor_id()) {
715 printk("Cannot Send IPI to self!\n");
716 return;
717 }
718 /* Set up a descriptor, to be delivered either promptly or queued */
719 pipi = smtc_ipi_dq(&freeIPIq);
720 if (pipi == NULL) {
721 bust_spinlocks(1);
722 mips_mt_regdump(dvpe());
723 panic("IPI Msg. Buffers Depleted\n");
724 }
725 pipi->type = type;
726 pipi->arg = (void *)action;
727 pipi->dest = cpu;
728 if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
729 /* If not on same VPE, enqueue and send cross-VPE interupt */
730 smtc_ipi_nq(&IPIQ[cpu], pipi);
731 LOCK_CORE_PRA();
732 settc(cpu_data[cpu].tc_id);
733 write_vpe_c0_cause(read_vpe_c0_cause() | C_SW1);
734 UNLOCK_CORE_PRA();
735 } else {
736 /*
737 * Not sufficient to do a LOCK_MT_PRA (dmt) here,
738 * since ASID shootdown on the other VPE may
739 * collide with this operation.
740 */
741 LOCK_CORE_PRA();
742 settc(cpu_data[cpu].tc_id);
743 /* Halt the targeted TC */
744 write_tc_c0_tchalt(TCHALT_H);
745 mips_ihb();
746
747 /*
748 * Inspect TCStatus - if IXMT is set, we have to queue
749 * a message. Otherwise, we set up the "interrupt"
750 * of the other TC
751 */
752 tcstatus = read_tc_c0_tcstatus();
753
754 if ((tcstatus & TCSTATUS_IXMT) != 0) {
755 /*
756 * Spin-waiting here can deadlock,
757 * so we queue the message for the target TC.
758 */
759 write_tc_c0_tchalt(0);
760 UNLOCK_CORE_PRA();
761 /* Try to reduce redundant timer interrupt messages */
4bf42d42
RB
762 if (type == SMTC_CLOCK_TICK) {
763 if (atomic_postincrement(&ipi_timer_latch[cpu])!=0){
41c594ab
RB
764 smtc_ipi_nq(&freeIPIq, pipi);
765 return;
766 }
767 }
768 smtc_ipi_nq(&IPIQ[cpu], pipi);
769 } else {
770 post_direct_ipi(cpu, pipi);
771 write_tc_c0_tchalt(0);
772 UNLOCK_CORE_PRA();
773 }
774 }
775}
776
777/*
778 * Send IPI message to Halted TC, TargTC/TargVPE already having been set
779 */
780void post_direct_ipi(int cpu, struct smtc_ipi *pipi)
781{
782 struct pt_regs *kstack;
783 unsigned long tcstatus;
784 unsigned long tcrestart;
785 extern u32 kernelsp[NR_CPUS];
786 extern void __smtc_ipi_vector(void);
787
788 /* Extract Status, EPC from halted TC */
789 tcstatus = read_tc_c0_tcstatus();
790 tcrestart = read_tc_c0_tcrestart();
791 /* If TCRestart indicates a WAIT instruction, advance the PC */
792 if ((tcrestart & 0x80000000)
793 && ((*(unsigned int *)tcrestart & 0xfe00003f) == 0x42000020)) {
794 tcrestart += 4;
795 }
796 /*
797 * Save on TC's future kernel stack
798 *
799 * CU bit of Status is indicator that TC was
800 * already running on a kernel stack...
801 */
4bf42d42 802 if (tcstatus & ST0_CU0) {
41c594ab
RB
803 /* Note that this "- 1" is pointer arithmetic */
804 kstack = ((struct pt_regs *)read_tc_gpr_sp()) - 1;
805 } else {
806 kstack = ((struct pt_regs *)kernelsp[cpu]) - 1;
807 }
808
809 kstack->cp0_epc = (long)tcrestart;
810 /* Save TCStatus */
811 kstack->cp0_tcstatus = tcstatus;
812 /* Pass token of operation to be performed kernel stack pad area */
813 kstack->pad0[4] = (unsigned long)pipi;
814 /* Pass address of function to be called likewise */
815 kstack->pad0[5] = (unsigned long)&ipi_decode;
816 /* Set interrupt exempt and kernel mode */
817 tcstatus |= TCSTATUS_IXMT;
818 tcstatus &= ~TCSTATUS_TKSU;
819 write_tc_c0_tcstatus(tcstatus);
820 ehb();
821 /* Set TC Restart address to be SMTC IPI vector */
822 write_tc_c0_tcrestart(__smtc_ipi_vector);
823}
824
937a8015 825static void ipi_resched_interrupt(void)
41c594ab
RB
826{
827 /* Return from interrupt should be enough to cause scheduler check */
828}
829
830
937a8015 831static void ipi_call_interrupt(void)
41c594ab
RB
832{
833 /* Invoke generic function invocation code in smp.c */
834 smp_call_function_interrupt();
835}
836
937a8015 837void ipi_decode(struct smtc_ipi *pipi)
41c594ab
RB
838{
839 void *arg_copy = pipi->arg;
840 int type_copy = pipi->type;
841 int dest_copy = pipi->dest;
842
843 smtc_ipi_nq(&freeIPIq, pipi);
844 switch (type_copy) {
4bf42d42
RB
845 case SMTC_CLOCK_TICK:
846 /* Invoke Clock "Interrupt" */
847 ipi_timer_latch[dest_copy] = 0;
41c594ab 848#ifdef SMTC_IDLE_HOOK_DEBUG
4bf42d42 849 clock_hang_reported[dest_copy] = 0;
41c594ab 850#endif /* SMTC_IDLE_HOOK_DEBUG */
937a8015 851 local_timer_interrupt(0, NULL);
4bf42d42
RB
852 break;
853 case LINUX_SMP_IPI:
854 switch ((int)arg_copy) {
855 case SMP_RESCHEDULE_YOURSELF:
937a8015 856 ipi_resched_interrupt();
41c594ab 857 break;
4bf42d42 858 case SMP_CALL_FUNCTION:
937a8015 859 ipi_call_interrupt();
41c594ab
RB
860 break;
861 default:
4bf42d42
RB
862 printk("Impossible SMTC IPI Argument 0x%x\n",
863 (int)arg_copy);
41c594ab 864 break;
4bf42d42
RB
865 }
866 break;
867 default:
868 printk("Impossible SMTC IPI Type 0x%x\n", type_copy);
869 break;
41c594ab
RB
870 }
871}
872
937a8015 873void deferred_smtc_ipi(void)
41c594ab
RB
874{
875 struct smtc_ipi *pipi;
876 unsigned long flags;
877/* DEBUG */
878 int q = smp_processor_id();
879
880 /*
881 * Test is not atomic, but much faster than a dequeue,
882 * and the vast majority of invocations will have a null queue.
883 */
4bf42d42 884 if (IPIQ[q].head != NULL) {
41c594ab
RB
885 while((pipi = smtc_ipi_dq(&IPIQ[q])) != NULL) {
886 /* ipi_decode() should be called with interrupts off */
887 local_irq_save(flags);
937a8015 888 ipi_decode(pipi);
41c594ab
RB
889 local_irq_restore(flags);
890 }
891 }
892}
893
894/*
895 * Send clock tick to all TCs except the one executing the funtion
896 */
897
898void smtc_timer_broadcast(int vpe)
899{
900 int cpu;
901 int myTC = cpu_data[smp_processor_id()].tc_id;
902 int myVPE = cpu_data[smp_processor_id()].vpe_id;
903
904 smtc_cpu_stats[smp_processor_id()].timerints++;
905
906 for_each_online_cpu(cpu) {
907 if (cpu_data[cpu].vpe_id == myVPE &&
908 cpu_data[cpu].tc_id != myTC)
909 smtc_send_ipi(cpu, SMTC_CLOCK_TICK, 0);
910 }
911}
912
913/*
914 * Cross-VPE interrupts in the SMTC prototype use "software interrupts"
915 * set via cross-VPE MTTR manipulation of the Cause register. It would be
916 * in some regards preferable to have external logic for "doorbell" hardware
917 * interrupts.
918 */
919
920static int cpu_ipi_irq = MIPSCPU_INT_BASE + MIPS_CPU_IPI_IRQ;
921
937a8015 922static irqreturn_t ipi_interrupt(int irq, void *dev_idm)
41c594ab
RB
923{
924 int my_vpe = cpu_data[smp_processor_id()].vpe_id;
925 int my_tc = cpu_data[smp_processor_id()].tc_id;
926 int cpu;
927 struct smtc_ipi *pipi;
928 unsigned long tcstatus;
929 int sent;
930 long flags;
931 unsigned int mtflags;
932 unsigned int vpflags;
933
934 /*
935 * So long as cross-VPE interrupts are done via
936 * MFTR/MTTR read-modify-writes of Cause, we need
937 * to stop other VPEs whenever the local VPE does
938 * anything similar.
939 */
940 local_irq_save(flags);
941 vpflags = dvpe();
942 clear_c0_cause(0x100 << MIPS_CPU_IPI_IRQ);
943 set_c0_status(0x100 << MIPS_CPU_IPI_IRQ);
944 irq_enable_hazard();
945 evpe(vpflags);
946 local_irq_restore(flags);
947
948 /*
949 * Cross-VPE Interrupt handler: Try to directly deliver IPIs
950 * queued for TCs on this VPE other than the current one.
951 * Return-from-interrupt should cause us to drain the queue
952 * for the current TC, so we ought not to have to do it explicitly here.
953 */
954
955 for_each_online_cpu(cpu) {
956 if (cpu_data[cpu].vpe_id != my_vpe)
957 continue;
958
959 pipi = smtc_ipi_dq(&IPIQ[cpu]);
960 if (pipi != NULL) {
961 if (cpu_data[cpu].tc_id != my_tc) {
962 sent = 0;
963 LOCK_MT_PRA();
964 settc(cpu_data[cpu].tc_id);
965 write_tc_c0_tchalt(TCHALT_H);
966 mips_ihb();
967 tcstatus = read_tc_c0_tcstatus();
968 if ((tcstatus & TCSTATUS_IXMT) == 0) {
969 post_direct_ipi(cpu, pipi);
970 sent = 1;
971 }
972 write_tc_c0_tchalt(0);
973 UNLOCK_MT_PRA();
974 if (!sent) {
975 smtc_ipi_req(&IPIQ[cpu], pipi);
976 }
977 } else {
978 /*
979 * ipi_decode() should be called
980 * with interrupts off
981 */
982 local_irq_save(flags);
937a8015 983 ipi_decode(pipi);
41c594ab
RB
984 local_irq_restore(flags);
985 }
986 }
987 }
988
989 return IRQ_HANDLED;
990}
991
937a8015 992static void ipi_irq_dispatch(void)
41c594ab 993{
937a8015 994 do_IRQ(cpu_ipi_irq);
41c594ab
RB
995}
996
997static struct irqaction irq_ipi;
998
999void setup_cross_vpe_interrupts(void)
1000{
1001 if (!cpu_has_vint)
1002 panic("SMTC Kernel requires Vectored Interupt support");
1003
1004 set_vi_handler(MIPS_CPU_IPI_IRQ, ipi_irq_dispatch);
1005
1006 irq_ipi.handler = ipi_interrupt;
f40298fd 1007 irq_ipi.flags = IRQF_DISABLED;
41c594ab
RB
1008 irq_ipi.name = "SMTC_IPI";
1009
1010 setup_irq_smtc(cpu_ipi_irq, &irq_ipi, (0x100 << MIPS_CPU_IPI_IRQ));
1011
1012 irq_desc[cpu_ipi_irq].status |= IRQ_PER_CPU;
1417836e 1013 set_irq_handler(cpu_ipi_irq, handle_percpu_irq);
41c594ab
RB
1014}
1015
1016/*
1017 * SMTC-specific hacks invoked from elsewhere in the kernel.
1018 */
1019
ac8be955
RB
1020void smtc_ipi_replay(void)
1021{
1022 /*
1023 * To the extent that we've ever turned interrupts off,
1024 * we may have accumulated deferred IPIs. This is subtle.
1025 * If we use the smtc_ipi_qdepth() macro, we'll get an
1026 * exact number - but we'll also disable interrupts
1027 * and create a window of failure where a new IPI gets
1028 * queued after we test the depth but before we re-enable
1029 * interrupts. So long as IXMT never gets set, however,
1030 * we should be OK: If we pick up something and dispatch
1031 * it here, that's great. If we see nothing, but concurrent
1032 * with this operation, another TC sends us an IPI, IXMT
1033 * is clear, and we'll handle it as a real pseudo-interrupt
1034 * and not a pseudo-pseudo interrupt.
1035 */
1036 if (IPIQ[smp_processor_id()].depth > 0) {
1037 struct smtc_ipi *pipi;
1038 extern void self_ipi(struct smtc_ipi *);
1039
1040 while ((pipi = smtc_ipi_dq(&IPIQ[smp_processor_id()]))) {
1041 self_ipi(pipi);
1042 smtc_cpu_stats[smp_processor_id()].selfipis++;
1043 }
1044 }
1045}
1046
41c594ab
RB
1047void smtc_idle_loop_hook(void)
1048{
1049#ifdef SMTC_IDLE_HOOK_DEBUG
1050 int im;
1051 int flags;
1052 int mtflags;
1053 int bit;
1054 int vpe;
1055 int tc;
1056 int hook_ntcs;
1057 /*
1058 * printk within DMT-protected regions can deadlock,
1059 * so buffer diagnostic messages for later output.
1060 */
1061 char *pdb_msg;
1062 char id_ho_db_msg[768]; /* worst-case use should be less than 700 */
1063
1064 if (atomic_read(&idle_hook_initialized) == 0) { /* fast test */
1065 if (atomic_add_return(1, &idle_hook_initialized) == 1) {
1066 int mvpconf0;
1067 /* Tedious stuff to just do once */
1068 mvpconf0 = read_c0_mvpconf0();
1069 hook_ntcs = ((mvpconf0 & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
1070 if (hook_ntcs > NR_CPUS)
1071 hook_ntcs = NR_CPUS;
1072 for (tc = 0; tc < hook_ntcs; tc++) {
1073 tcnoprog[tc] = 0;
1074 clock_hang_reported[tc] = 0;
1075 }
1076 for (vpe = 0; vpe < 2; vpe++)
1077 for (im = 0; im < 8; im++)
1078 imstuckcount[vpe][im] = 0;
1079 printk("Idle loop test hook initialized for %d TCs\n", hook_ntcs);
1080 atomic_set(&idle_hook_initialized, 1000);
1081 } else {
1082 /* Someone else is initializing in parallel - let 'em finish */
1083 while (atomic_read(&idle_hook_initialized) < 1000)
1084 ;
1085 }
1086 }
1087
1088 /* Have we stupidly left IXMT set somewhere? */
1089 if (read_c0_tcstatus() & 0x400) {
1090 write_c0_tcstatus(read_c0_tcstatus() & ~0x400);
1091 ehb();
1092 printk("Dangling IXMT in cpu_idle()\n");
1093 }
1094
1095 /* Have we stupidly left an IM bit turned off? */
1096#define IM_LIMIT 2000
1097 local_irq_save(flags);
1098 mtflags = dmt();
1099 pdb_msg = &id_ho_db_msg[0];
1100 im = read_c0_status();
1101 vpe = cpu_data[smp_processor_id()].vpe_id;
1102 for (bit = 0; bit < 8; bit++) {
1103 /*
1104 * In current prototype, I/O interrupts
1105 * are masked for VPE > 0
1106 */
1107 if (vpemask[vpe][bit]) {
1108 if (!(im & (0x100 << bit)))
1109 imstuckcount[vpe][bit]++;
1110 else
1111 imstuckcount[vpe][bit] = 0;
1112 if (imstuckcount[vpe][bit] > IM_LIMIT) {
1113 set_c0_status(0x100 << bit);
1114 ehb();
1115 imstuckcount[vpe][bit] = 0;
1116 pdb_msg += sprintf(pdb_msg,
1117 "Dangling IM %d fixed for VPE %d\n", bit,
1118 vpe);
1119 }
1120 }
1121 }
1122
1123 /*
1124 * Now that we limit outstanding timer IPIs, check for hung TC
1125 */
1126 for (tc = 0; tc < NR_CPUS; tc++) {
1127 /* Don't check ourself - we'll dequeue IPIs just below */
1128 if ((tc != smp_processor_id()) &&
1129 ipi_timer_latch[tc] > timerq_limit) {
1130 if (clock_hang_reported[tc] == 0) {
1131 pdb_msg += sprintf(pdb_msg,
1132 "TC %d looks hung with timer latch at %d\n",
1133 tc, ipi_timer_latch[tc]);
1134 clock_hang_reported[tc]++;
1135 }
1136 }
1137 }
1138 emt(mtflags);
1139 local_irq_restore(flags);
1140 if (pdb_msg != &id_ho_db_msg[0])
1141 printk("CPU%d: %s", smp_processor_id(), id_ho_db_msg);
1142#endif /* SMTC_IDLE_HOOK_DEBUG */
ac8be955 1143
41c594ab 1144 /*
ac8be955
RB
1145 * Replay any accumulated deferred IPIs. If "Instant Replay"
1146 * is in use, there should never be any.
41c594ab 1147 */
ac8be955
RB
1148#ifndef CONFIG_MIPS_MT_SMTC_INSTANT_REPLAY
1149 smtc_ipi_replay();
1150#endif /* CONFIG_MIPS_MT_SMTC_INSTANT_REPLAY */
41c594ab
RB
1151}
1152
1153void smtc_soft_dump(void)
1154{
1155 int i;
1156
1157 printk("Counter Interrupts taken per CPU (TC)\n");
1158 for (i=0; i < NR_CPUS; i++) {
1159 printk("%d: %ld\n", i, smtc_cpu_stats[i].timerints);
1160 }
1161 printk("Self-IPI invocations:\n");
1162 for (i=0; i < NR_CPUS; i++) {
1163 printk("%d: %ld\n", i, smtc_cpu_stats[i].selfipis);
1164 }
1165 smtc_ipi_qdump();
1166 printk("Timer IPI Backlogs:\n");
1167 for (i=0; i < NR_CPUS; i++) {
1168 printk("%d: %d\n", i, ipi_timer_latch[i]);
1169 }
1170 printk("%d Recoveries of \"stolen\" FPU\n",
1171 atomic_read(&smtc_fpu_recoveries));
1172}
1173
1174
1175/*
1176 * TLB management routines special to SMTC
1177 */
1178
1179void smtc_get_new_mmu_context(struct mm_struct *mm, unsigned long cpu)
1180{
1181 unsigned long flags, mtflags, tcstat, prevhalt, asid;
1182 int tlb, i;
1183
1184 /*
1185 * It would be nice to be able to use a spinlock here,
1186 * but this is invoked from within TLB flush routines
1187 * that protect themselves with DVPE, so if a lock is
1188 * held by another TC, it'll never be freed.
1189 *
1190 * DVPE/DMT must not be done with interrupts enabled,
1191 * so even so most callers will already have disabled
1192 * them, let's be really careful...
1193 */
1194
1195 local_irq_save(flags);
1196 if (smtc_status & SMTC_TLB_SHARED) {
1197 mtflags = dvpe();
1198 tlb = 0;
1199 } else {
1200 mtflags = dmt();
1201 tlb = cpu_data[cpu].vpe_id;
1202 }
1203 asid = asid_cache(cpu);
1204
1205 do {
1206 if (!((asid += ASID_INC) & ASID_MASK) ) {
1207 if (cpu_has_vtag_icache)
1208 flush_icache_all();
1209 /* Traverse all online CPUs (hack requires contigous range) */
1210 for (i = 0; i < num_online_cpus(); i++) {
1211 /*
1212 * We don't need to worry about our own CPU, nor those of
1213 * CPUs who don't share our TLB.
1214 */
1215 if ((i != smp_processor_id()) &&
1216 ((smtc_status & SMTC_TLB_SHARED) ||
1217 (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))) {
1218 settc(cpu_data[i].tc_id);
1219 prevhalt = read_tc_c0_tchalt() & TCHALT_H;
1220 if (!prevhalt) {
1221 write_tc_c0_tchalt(TCHALT_H);
1222 mips_ihb();
1223 }
1224 tcstat = read_tc_c0_tcstatus();
1225 smtc_live_asid[tlb][(tcstat & ASID_MASK)] |= (asiduse)(0x1 << i);
1226 if (!prevhalt)
1227 write_tc_c0_tchalt(0);
1228 }
1229 }
1230 if (!asid) /* fix version if needed */
1231 asid = ASID_FIRST_VERSION;
1232 local_flush_tlb_all(); /* start new asid cycle */
1233 }
1234 } while (smtc_live_asid[tlb][(asid & ASID_MASK)]);
1235
1236 /*
1237 * SMTC shares the TLB within VPEs and possibly across all VPEs.
1238 */
1239 for (i = 0; i < num_online_cpus(); i++) {
1240 if ((smtc_status & SMTC_TLB_SHARED) ||
1241 (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))
1242 cpu_context(i, mm) = asid_cache(i) = asid;
1243 }
1244
1245 if (smtc_status & SMTC_TLB_SHARED)
1246 evpe(mtflags);
1247 else
1248 emt(mtflags);
1249 local_irq_restore(flags);
1250}
1251
1252/*
1253 * Invoked from macros defined in mmu_context.h
1254 * which must already have disabled interrupts
1255 * and done a DVPE or DMT as appropriate.
1256 */
1257
1258void smtc_flush_tlb_asid(unsigned long asid)
1259{
1260 int entry;
1261 unsigned long ehi;
1262
1263 entry = read_c0_wired();
1264
1265 /* Traverse all non-wired entries */
1266 while (entry < current_cpu_data.tlbsize) {
1267 write_c0_index(entry);
1268 ehb();
1269 tlb_read();
1270 ehb();
1271 ehi = read_c0_entryhi();
4bf42d42 1272 if ((ehi & ASID_MASK) == asid) {
41c594ab
RB
1273 /*
1274 * Invalidate only entries with specified ASID,
1275 * makiing sure all entries differ.
1276 */
1277 write_c0_entryhi(CKSEG0 + (entry << (PAGE_SHIFT + 1)));
1278 write_c0_entrylo0(0);
1279 write_c0_entrylo1(0);
1280 mtc0_tlbw_hazard();
1281 tlb_write_indexed();
1282 }
1283 entry++;
1284 }
1285 write_c0_index(PARKED_INDEX);
1286 tlbw_use_hazard();
1287}
1288
1289/*
1290 * Support for single-threading cache flush operations.
1291 */
1292
1293int halt_state_save[NR_CPUS];
1294
1295/*
1296 * To really, really be sure that nothing is being done
1297 * by other TCs, halt them all. This code assumes that
1298 * a DVPE has already been done, so while their Halted
1299 * state is theoretically architecturally unstable, in
1300 * practice, it's not going to change while we're looking
1301 * at it.
1302 */
1303
1304void smtc_cflush_lockdown(void)
1305{
1306 int cpu;
1307
1308 for_each_online_cpu(cpu) {
1309 if (cpu != smp_processor_id()) {
1310 settc(cpu_data[cpu].tc_id);
1311 halt_state_save[cpu] = read_tc_c0_tchalt();
1312 write_tc_c0_tchalt(TCHALT_H);
1313 }
1314 }
1315 mips_ihb();
1316}
1317
1318/* It would be cheating to change the cpu_online states during a flush! */
1319
1320void smtc_cflush_release(void)
1321{
1322 int cpu;
1323
1324 /*
1325 * Start with a hazard barrier to ensure
1326 * that all CACHE ops have played through.
1327 */
1328 mips_ihb();
1329
1330 for_each_online_cpu(cpu) {
1331 if (cpu != smp_processor_id()) {
1332 settc(cpu_data[cpu].tc_id);
1333 write_tc_c0_tchalt(halt_state_save[cpu]);
1334 }
1335 }
1336 mips_ihb();
1337}
This page took 0.165372 seconds and 5 git commands to generate.