MIPS: KVM: Drop unused kvm_mips_sync_icache()
[deliverable/linux.git] / arch / mips / kvm / emulate.c
CommitLineData
e685c689 1/*
d116e812
DCZ
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * KVM/MIPS: Instruction/Exception emulation
7 *
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10 */
e685c689
SL
11
12#include <linux/errno.h>
13#include <linux/err.h>
e30492bb 14#include <linux/ktime.h>
e685c689
SL
15#include <linux/kvm_host.h>
16#include <linux/module.h>
17#include <linux/vmalloc.h>
18#include <linux/fs.h>
19#include <linux/bootmem.h>
20#include <linux/random.h>
21#include <asm/page.h>
22#include <asm/cacheflush.h>
f4956f62 23#include <asm/cacheops.h>
e685c689
SL
24#include <asm/cpu-info.h>
25#include <asm/mmu_context.h>
26#include <asm/tlbflush.h>
27#include <asm/inst.h>
28
29#undef CONFIG_MIPS_MT
30#include <asm/r4kcache.h>
31#define CONFIG_MIPS_MT
32
d7d5b05f
DCZ
33#include "interrupt.h"
34#include "commpage.h"
e685c689
SL
35
36#include "trace.h"
37
38/*
39 * Compute the return address and do emulate branch simulation, if required.
40 * This function should be called only in branch delay slot active.
41 */
42unsigned long kvm_compute_return_epc(struct kvm_vcpu *vcpu,
43 unsigned long instpc)
44{
45 unsigned int dspcontrol;
46 union mips_instruction insn;
47 struct kvm_vcpu_arch *arch = &vcpu->arch;
48 long epc = instpc;
49 long nextpc = KVM_INVALID_INST;
50
51 if (epc & 3)
52 goto unaligned;
53
d116e812 54 /* Read the instruction */
e685c689
SL
55 insn.word = kvm_get_inst((uint32_t *) epc, vcpu);
56
57 if (insn.word == KVM_INVALID_INST)
58 return KVM_INVALID_INST;
59
60 switch (insn.i_format.opcode) {
d116e812 61 /* jr and jalr are in r_format format. */
e685c689
SL
62 case spec_op:
63 switch (insn.r_format.func) {
64 case jalr_op:
65 arch->gprs[insn.r_format.rd] = epc + 8;
66 /* Fall through */
67 case jr_op:
68 nextpc = arch->gprs[insn.r_format.rs];
69 break;
70 }
71 break;
72
73 /*
74 * This group contains:
75 * bltz_op, bgez_op, bltzl_op, bgezl_op,
76 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
77 */
78 case bcond_op:
79 switch (insn.i_format.rt) {
80 case bltz_op:
81 case bltzl_op:
82 if ((long)arch->gprs[insn.i_format.rs] < 0)
83 epc = epc + 4 + (insn.i_format.simmediate << 2);
84 else
85 epc += 8;
86 nextpc = epc;
87 break;
88
89 case bgez_op:
90 case bgezl_op:
91 if ((long)arch->gprs[insn.i_format.rs] >= 0)
92 epc = epc + 4 + (insn.i_format.simmediate << 2);
93 else
94 epc += 8;
95 nextpc = epc;
96 break;
97
98 case bltzal_op:
99 case bltzall_op:
100 arch->gprs[31] = epc + 8;
101 if ((long)arch->gprs[insn.i_format.rs] < 0)
102 epc = epc + 4 + (insn.i_format.simmediate << 2);
103 else
104 epc += 8;
105 nextpc = epc;
106 break;
107
108 case bgezal_op:
109 case bgezall_op:
110 arch->gprs[31] = epc + 8;
111 if ((long)arch->gprs[insn.i_format.rs] >= 0)
112 epc = epc + 4 + (insn.i_format.simmediate << 2);
113 else
114 epc += 8;
115 nextpc = epc;
116 break;
117 case bposge32_op:
118 if (!cpu_has_dsp)
119 goto sigill;
120
121 dspcontrol = rddsp(0x01);
122
d116e812 123 if (dspcontrol >= 32)
e685c689 124 epc = epc + 4 + (insn.i_format.simmediate << 2);
d116e812 125 else
e685c689
SL
126 epc += 8;
127 nextpc = epc;
128 break;
129 }
130 break;
131
d116e812 132 /* These are unconditional and in j_format. */
e685c689
SL
133 case jal_op:
134 arch->gprs[31] = instpc + 8;
135 case j_op:
136 epc += 4;
137 epc >>= 28;
138 epc <<= 28;
139 epc |= (insn.j_format.target << 2);
140 nextpc = epc;
141 break;
142
d116e812 143 /* These are conditional and in i_format. */
e685c689
SL
144 case beq_op:
145 case beql_op:
146 if (arch->gprs[insn.i_format.rs] ==
147 arch->gprs[insn.i_format.rt])
148 epc = epc + 4 + (insn.i_format.simmediate << 2);
149 else
150 epc += 8;
151 nextpc = epc;
152 break;
153
154 case bne_op:
155 case bnel_op:
156 if (arch->gprs[insn.i_format.rs] !=
157 arch->gprs[insn.i_format.rt])
158 epc = epc + 4 + (insn.i_format.simmediate << 2);
159 else
160 epc += 8;
161 nextpc = epc;
162 break;
163
164 case blez_op: /* not really i_format */
165 case blezl_op:
166 /* rt field assumed to be zero */
167 if ((long)arch->gprs[insn.i_format.rs] <= 0)
168 epc = epc + 4 + (insn.i_format.simmediate << 2);
169 else
170 epc += 8;
171 nextpc = epc;
172 break;
173
174 case bgtz_op:
175 case bgtzl_op:
176 /* rt field assumed to be zero */
177 if ((long)arch->gprs[insn.i_format.rs] > 0)
178 epc = epc + 4 + (insn.i_format.simmediate << 2);
179 else
180 epc += 8;
181 nextpc = epc;
182 break;
183
d116e812 184 /* And now the FPA/cp1 branch instructions. */
e685c689 185 case cop1_op:
6ad78a5c 186 kvm_err("%s: unsupported cop1_op\n", __func__);
e685c689
SL
187 break;
188 }
189
190 return nextpc;
191
192unaligned:
6ad78a5c 193 kvm_err("%s: unaligned epc\n", __func__);
e685c689
SL
194 return nextpc;
195
196sigill:
6ad78a5c 197 kvm_err("%s: DSP branch but not DSP ASE\n", __func__);
e685c689
SL
198 return nextpc;
199}
200
201enum emulation_result update_pc(struct kvm_vcpu *vcpu, uint32_t cause)
202{
203 unsigned long branch_pc;
204 enum emulation_result er = EMULATE_DONE;
205
206 if (cause & CAUSEF_BD) {
207 branch_pc = kvm_compute_return_epc(vcpu, vcpu->arch.pc);
208 if (branch_pc == KVM_INVALID_INST) {
209 er = EMULATE_FAIL;
210 } else {
211 vcpu->arch.pc = branch_pc;
d116e812
DCZ
212 kvm_debug("BD update_pc(): New PC: %#lx\n",
213 vcpu->arch.pc);
e685c689
SL
214 }
215 } else
216 vcpu->arch.pc += 4;
217
218 kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
219
220 return er;
221}
222
e30492bb
JH
223/**
224 * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
225 * @vcpu: Virtual CPU.
e685c689 226 *
f8239342
JH
227 * Returns: 1 if the CP0_Count timer is disabled by either the guest
228 * CP0_Cause.DC bit or the count_ctl.DC bit.
e30492bb 229 * 0 otherwise (in which case CP0_Count timer is running).
e685c689 230 */
e30492bb 231static inline int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
e685c689
SL
232{
233 struct mips_coproc *cop0 = vcpu->arch.cop0;
d116e812 234
f8239342
JH
235 return (vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
236 (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
e30492bb 237}
e685c689 238
e30492bb
JH
239/**
240 * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
241 *
242 * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
243 *
244 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
245 */
246static uint32_t kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
247{
248 s64 now_ns, periods;
249 u64 delta;
250
251 now_ns = ktime_to_ns(now);
252 delta = now_ns + vcpu->arch.count_dyn_bias;
253
254 if (delta >= vcpu->arch.count_period) {
255 /* If delta is out of safe range the bias needs adjusting */
256 periods = div64_s64(now_ns, vcpu->arch.count_period);
257 vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
258 /* Recalculate delta with new bias */
259 delta = now_ns + vcpu->arch.count_dyn_bias;
e685c689
SL
260 }
261
e30492bb
JH
262 /*
263 * We've ensured that:
264 * delta < count_period
265 *
266 * Therefore the intermediate delta*count_hz will never overflow since
267 * at the boundary condition:
268 * delta = count_period
269 * delta = NSEC_PER_SEC * 2^32 / count_hz
270 * delta * count_hz = NSEC_PER_SEC * 2^32
271 */
272 return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
273}
274
f8239342
JH
275/**
276 * kvm_mips_count_time() - Get effective current time.
277 * @vcpu: Virtual CPU.
278 *
279 * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
280 * except when the master disable bit is set in count_ctl, in which case it is
281 * count_resume, i.e. the time that the count was disabled.
282 *
283 * Returns: Effective monotonic ktime for CP0_Count.
284 */
285static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
286{
287 if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
288 return vcpu->arch.count_resume;
289
290 return ktime_get();
291}
292
e30492bb
JH
293/**
294 * kvm_mips_read_count_running() - Read the current count value as if running.
295 * @vcpu: Virtual CPU.
296 * @now: Kernel time to read CP0_Count at.
297 *
298 * Returns the current guest CP0_Count register at time @now and handles if the
299 * timer interrupt is pending and hasn't been handled yet.
300 *
301 * Returns: The current value of the guest CP0_Count register.
302 */
303static uint32_t kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
304{
4355c44f
JH
305 struct mips_coproc *cop0 = vcpu->arch.cop0;
306 ktime_t expires, threshold;
307 uint32_t count, compare;
e30492bb
JH
308 int running;
309
4355c44f
JH
310 /* Calculate the biased and scaled guest CP0_Count */
311 count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
312 compare = kvm_read_c0_guest_compare(cop0);
313
314 /*
315 * Find whether CP0_Count has reached the closest timer interrupt. If
316 * not, we shouldn't inject it.
317 */
318 if ((int32_t)(count - compare) < 0)
319 return count;
320
321 /*
322 * The CP0_Count we're going to return has already reached the closest
323 * timer interrupt. Quickly check if it really is a new interrupt by
324 * looking at whether the interval until the hrtimer expiry time is
325 * less than 1/4 of the timer period.
326 */
e30492bb 327 expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
4355c44f
JH
328 threshold = ktime_add_ns(now, vcpu->arch.count_period / 4);
329 if (ktime_before(expires, threshold)) {
e30492bb
JH
330 /*
331 * Cancel it while we handle it so there's no chance of
332 * interference with the timeout handler.
333 */
334 running = hrtimer_cancel(&vcpu->arch.comparecount_timer);
335
336 /* Nothing should be waiting on the timeout */
337 kvm_mips_callbacks->queue_timer_int(vcpu);
338
339 /*
340 * Restart the timer if it was running based on the expiry time
341 * we read, so that we don't push it back 2 periods.
342 */
343 if (running) {
344 expires = ktime_add_ns(expires,
345 vcpu->arch.count_period);
346 hrtimer_start(&vcpu->arch.comparecount_timer, expires,
347 HRTIMER_MODE_ABS);
348 }
349 }
350
4355c44f 351 return count;
e30492bb
JH
352}
353
354/**
355 * kvm_mips_read_count() - Read the current count value.
356 * @vcpu: Virtual CPU.
357 *
358 * Read the current guest CP0_Count value, taking into account whether the timer
359 * is stopped.
360 *
361 * Returns: The current guest CP0_Count value.
362 */
363uint32_t kvm_mips_read_count(struct kvm_vcpu *vcpu)
364{
365 struct mips_coproc *cop0 = vcpu->arch.cop0;
366
367 /* If count disabled just read static copy of count */
368 if (kvm_mips_count_disabled(vcpu))
369 return kvm_read_c0_guest_count(cop0);
370
371 return kvm_mips_read_count_running(vcpu, ktime_get());
372}
373
374/**
375 * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
376 * @vcpu: Virtual CPU.
377 * @count: Output pointer for CP0_Count value at point of freeze.
378 *
379 * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
380 * at the point it was frozen. It is guaranteed that any pending interrupts at
381 * the point it was frozen are handled, and none after that point.
382 *
383 * This is useful where the time/CP0_Count is needed in the calculation of the
384 * new parameters.
385 *
386 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
387 *
388 * Returns: The ktime at the point of freeze.
389 */
390static ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu,
391 uint32_t *count)
392{
393 ktime_t now;
394
395 /* stop hrtimer before finding time */
396 hrtimer_cancel(&vcpu->arch.comparecount_timer);
397 now = ktime_get();
398
399 /* find count at this point and handle pending hrtimer */
400 *count = kvm_mips_read_count_running(vcpu, now);
401
402 return now;
403}
404
e30492bb
JH
405/**
406 * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
407 * @vcpu: Virtual CPU.
408 * @now: ktime at point of resume.
409 * @count: CP0_Count at point of resume.
410 *
411 * Resumes the timer and updates the timer expiry based on @now and @count.
412 * This can be used in conjunction with kvm_mips_freeze_timer() when timer
413 * parameters need to be changed.
414 *
415 * It is guaranteed that a timer interrupt immediately after resume will be
416 * handled, but not if CP_Compare is exactly at @count. That case is already
417 * handled by kvm_mips_freeze_timer().
418 *
419 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
420 */
421static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
422 ktime_t now, uint32_t count)
423{
424 struct mips_coproc *cop0 = vcpu->arch.cop0;
425 uint32_t compare;
426 u64 delta;
427 ktime_t expire;
428
429 /* Calculate timeout (wrap 0 to 2^32) */
430 compare = kvm_read_c0_guest_compare(cop0);
431 delta = (u64)(uint32_t)(compare - count - 1) + 1;
432 delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
433 expire = ktime_add_ns(now, delta);
434
435 /* Update hrtimer to use new timeout */
436 hrtimer_cancel(&vcpu->arch.comparecount_timer);
437 hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
438}
439
e30492bb
JH
440/**
441 * kvm_mips_write_count() - Modify the count and update timer.
442 * @vcpu: Virtual CPU.
443 * @count: Guest CP0_Count value to set.
444 *
445 * Sets the CP0_Count value and updates the timer accordingly.
446 */
447void kvm_mips_write_count(struct kvm_vcpu *vcpu, uint32_t count)
448{
449 struct mips_coproc *cop0 = vcpu->arch.cop0;
450 ktime_t now;
451
452 /* Calculate bias */
f8239342 453 now = kvm_mips_count_time(vcpu);
e30492bb
JH
454 vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
455
456 if (kvm_mips_count_disabled(vcpu))
457 /* The timer's disabled, adjust the static count */
458 kvm_write_c0_guest_count(cop0, count);
459 else
460 /* Update timeout */
461 kvm_mips_resume_hrtimer(vcpu, now, count);
462}
463
464/**
465 * kvm_mips_init_count() - Initialise timer.
466 * @vcpu: Virtual CPU.
467 *
468 * Initialise the timer to a sensible frequency, namely 100MHz, zero it, and set
469 * it going if it's enabled.
470 */
471void kvm_mips_init_count(struct kvm_vcpu *vcpu)
472{
473 /* 100 MHz */
474 vcpu->arch.count_hz = 100*1000*1000;
475 vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32,
476 vcpu->arch.count_hz);
477 vcpu->arch.count_dyn_bias = 0;
478
479 /* Starting at 0 */
480 kvm_mips_write_count(vcpu, 0);
481}
482
f74a8e22
JH
483/**
484 * kvm_mips_set_count_hz() - Update the frequency of the timer.
485 * @vcpu: Virtual CPU.
486 * @count_hz: Frequency of CP0_Count timer in Hz.
487 *
488 * Change the frequency of the CP0_Count timer. This is done atomically so that
489 * CP0_Count is continuous and no timer interrupt is lost.
490 *
491 * Returns: -EINVAL if @count_hz is out of range.
492 * 0 on success.
493 */
494int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
495{
496 struct mips_coproc *cop0 = vcpu->arch.cop0;
497 int dc;
498 ktime_t now;
499 u32 count;
500
501 /* ensure the frequency is in a sensible range... */
502 if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
503 return -EINVAL;
504 /* ... and has actually changed */
505 if (vcpu->arch.count_hz == count_hz)
506 return 0;
507
508 /* Safely freeze timer so we can keep it continuous */
509 dc = kvm_mips_count_disabled(vcpu);
510 if (dc) {
511 now = kvm_mips_count_time(vcpu);
512 count = kvm_read_c0_guest_count(cop0);
513 } else {
514 now = kvm_mips_freeze_hrtimer(vcpu, &count);
515 }
516
517 /* Update the frequency */
518 vcpu->arch.count_hz = count_hz;
519 vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
520 vcpu->arch.count_dyn_bias = 0;
521
522 /* Calculate adjusted bias so dynamic count is unchanged */
523 vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
524
525 /* Update and resume hrtimer */
526 if (!dc)
527 kvm_mips_resume_hrtimer(vcpu, now, count);
528 return 0;
529}
530
e30492bb
JH
531/**
532 * kvm_mips_write_compare() - Modify compare and update timer.
533 * @vcpu: Virtual CPU.
534 * @compare: New CP0_Compare value.
b45bacd2 535 * @ack: Whether to acknowledge timer interrupt.
e30492bb
JH
536 *
537 * Update CP0_Compare to a new value and update the timeout.
b45bacd2
JH
538 * If @ack, atomically acknowledge any pending timer interrupt, otherwise ensure
539 * any pending timer interrupt is preserved.
e30492bb 540 */
b45bacd2 541void kvm_mips_write_compare(struct kvm_vcpu *vcpu, uint32_t compare, bool ack)
e30492bb
JH
542{
543 struct mips_coproc *cop0 = vcpu->arch.cop0;
b45bacd2
JH
544 int dc;
545 u32 old_compare = kvm_read_c0_guest_compare(cop0);
546 ktime_t now;
547 uint32_t count;
e30492bb
JH
548
549 /* if unchanged, must just be an ack */
b45bacd2
JH
550 if (old_compare == compare) {
551 if (!ack)
552 return;
553 kvm_mips_callbacks->dequeue_timer_int(vcpu);
554 kvm_write_c0_guest_compare(cop0, compare);
e30492bb 555 return;
b45bacd2
JH
556 }
557
558 /* freeze_hrtimer() takes care of timer interrupts <= count */
559 dc = kvm_mips_count_disabled(vcpu);
560 if (!dc)
561 now = kvm_mips_freeze_hrtimer(vcpu, &count);
562
563 if (ack)
564 kvm_mips_callbacks->dequeue_timer_int(vcpu);
e30492bb 565
e30492bb
JH
566 kvm_write_c0_guest_compare(cop0, compare);
567
b45bacd2
JH
568 /* resume_hrtimer() takes care of timer interrupts > count */
569 if (!dc)
570 kvm_mips_resume_hrtimer(vcpu, now, count);
e30492bb
JH
571}
572
573/**
574 * kvm_mips_count_disable() - Disable count.
575 * @vcpu: Virtual CPU.
576 *
577 * Disable the CP0_Count timer. A timer interrupt on or before the final stop
578 * time will be handled but not after.
579 *
f8239342
JH
580 * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
581 * count_ctl.DC has been set (count disabled).
e30492bb
JH
582 *
583 * Returns: The time that the timer was stopped.
584 */
585static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
586{
587 struct mips_coproc *cop0 = vcpu->arch.cop0;
588 uint32_t count;
589 ktime_t now;
590
591 /* Stop hrtimer */
592 hrtimer_cancel(&vcpu->arch.comparecount_timer);
593
594 /* Set the static count from the dynamic count, handling pending TI */
595 now = ktime_get();
596 count = kvm_mips_read_count_running(vcpu, now);
597 kvm_write_c0_guest_count(cop0, count);
598
599 return now;
600}
601
602/**
603 * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
604 * @vcpu: Virtual CPU.
605 *
606 * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
f8239342
JH
607 * before the final stop time will be handled if the timer isn't disabled by
608 * count_ctl.DC, but not after.
e30492bb
JH
609 *
610 * Assumes CP0_Cause.DC is clear (count enabled).
611 */
612void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
613{
614 struct mips_coproc *cop0 = vcpu->arch.cop0;
615
616 kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
f8239342
JH
617 if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
618 kvm_mips_count_disable(vcpu);
e30492bb
JH
619}
620
621/**
622 * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
623 * @vcpu: Virtual CPU.
624 *
625 * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
f8239342
JH
626 * the start time will be handled if the timer isn't disabled by count_ctl.DC,
627 * potentially before even returning, so the caller should be careful with
628 * ordering of CP0_Cause modifications so as not to lose it.
e30492bb
JH
629 *
630 * Assumes CP0_Cause.DC is set (count disabled).
631 */
632void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
633{
634 struct mips_coproc *cop0 = vcpu->arch.cop0;
635 uint32_t count;
636
637 kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);
638
639 /*
640 * Set the dynamic count to match the static count.
f8239342
JH
641 * This starts the hrtimer if count_ctl.DC allows it.
642 * Otherwise it conveniently updates the biases.
e30492bb
JH
643 */
644 count = kvm_read_c0_guest_count(cop0);
645 kvm_mips_write_count(vcpu, count);
646}
647
f8239342
JH
648/**
649 * kvm_mips_set_count_ctl() - Update the count control KVM register.
650 * @vcpu: Virtual CPU.
651 * @count_ctl: Count control register new value.
652 *
653 * Set the count control KVM register. The timer is updated accordingly.
654 *
655 * Returns: -EINVAL if reserved bits are set.
656 * 0 on success.
657 */
658int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
659{
660 struct mips_coproc *cop0 = vcpu->arch.cop0;
661 s64 changed = count_ctl ^ vcpu->arch.count_ctl;
662 s64 delta;
663 ktime_t expire, now;
664 uint32_t count, compare;
665
666 /* Only allow defined bits to be changed */
667 if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
668 return -EINVAL;
669
670 /* Apply new value */
671 vcpu->arch.count_ctl = count_ctl;
672
673 /* Master CP0_Count disable */
674 if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
675 /* Is CP0_Cause.DC already disabling CP0_Count? */
676 if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
677 if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
678 /* Just record the current time */
679 vcpu->arch.count_resume = ktime_get();
680 } else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
681 /* disable timer and record current time */
682 vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
683 } else {
684 /*
685 * Calculate timeout relative to static count at resume
686 * time (wrap 0 to 2^32).
687 */
688 count = kvm_read_c0_guest_count(cop0);
689 compare = kvm_read_c0_guest_compare(cop0);
690 delta = (u64)(uint32_t)(compare - count - 1) + 1;
691 delta = div_u64(delta * NSEC_PER_SEC,
692 vcpu->arch.count_hz);
693 expire = ktime_add_ns(vcpu->arch.count_resume, delta);
694
695 /* Handle pending interrupt */
696 now = ktime_get();
697 if (ktime_compare(now, expire) >= 0)
698 /* Nothing should be waiting on the timeout */
699 kvm_mips_callbacks->queue_timer_int(vcpu);
700
701 /* Resume hrtimer without changing bias */
702 count = kvm_mips_read_count_running(vcpu, now);
703 kvm_mips_resume_hrtimer(vcpu, now, count);
704 }
705 }
706
707 return 0;
708}
709
710/**
711 * kvm_mips_set_count_resume() - Update the count resume KVM register.
712 * @vcpu: Virtual CPU.
713 * @count_resume: Count resume register new value.
714 *
715 * Set the count resume KVM register.
716 *
717 * Returns: -EINVAL if out of valid range (0..now).
718 * 0 on success.
719 */
720int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
721{
722 /*
723 * It doesn't make sense for the resume time to be in the future, as it
724 * would be possible for the next interrupt to be more than a full
725 * period in the future.
726 */
727 if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
728 return -EINVAL;
729
730 vcpu->arch.count_resume = ns_to_ktime(count_resume);
731 return 0;
732}
733
e30492bb
JH
734/**
735 * kvm_mips_count_timeout() - Push timer forward on timeout.
736 * @vcpu: Virtual CPU.
737 *
738 * Handle an hrtimer event by push the hrtimer forward a period.
739 *
740 * Returns: The hrtimer_restart value to return to the hrtimer subsystem.
741 */
742enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
743{
744 /* Add the Count period to the current expiry time */
745 hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
746 vcpu->arch.count_period);
747 return HRTIMER_RESTART;
e685c689
SL
748}
749
750enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu)
751{
752 struct mips_coproc *cop0 = vcpu->arch.cop0;
753 enum emulation_result er = EMULATE_DONE;
754
755 if (kvm_read_c0_guest_status(cop0) & ST0_EXL) {
756 kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc,
757 kvm_read_c0_guest_epc(cop0));
758 kvm_clear_c0_guest_status(cop0, ST0_EXL);
759 vcpu->arch.pc = kvm_read_c0_guest_epc(cop0);
760
761 } else if (kvm_read_c0_guest_status(cop0) & ST0_ERL) {
762 kvm_clear_c0_guest_status(cop0, ST0_ERL);
763 vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0);
764 } else {
6ad78a5c
DCZ
765 kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n",
766 vcpu->arch.pc);
e685c689
SL
767 er = EMULATE_FAIL;
768 }
769
770 return er;
771}
772
773enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
774{
e685c689
SL
775 kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
776 vcpu->arch.pending_exceptions);
777
778 ++vcpu->stat.wait_exits;
779 trace_kvm_exit(vcpu, WAIT_EXITS);
780 if (!vcpu->arch.pending_exceptions) {
781 vcpu->arch.wait = 1;
782 kvm_vcpu_block(vcpu);
783
d116e812
DCZ
784 /*
785 * We we are runnable, then definitely go off to user space to
786 * check if any I/O interrupts are pending.
e685c689
SL
787 */
788 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
789 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
790 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
791 }
792 }
793
d98403a5 794 return EMULATE_DONE;
e685c689
SL
795}
796
d116e812
DCZ
797/*
798 * XXXKYMA: Linux doesn't seem to use TLBR, return EMULATE_FAIL for now so that
799 * we can catch this, if things ever change
e685c689
SL
800 */
801enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu)
802{
803 struct mips_coproc *cop0 = vcpu->arch.cop0;
e685c689
SL
804 uint32_t pc = vcpu->arch.pc;
805
6ad78a5c 806 kvm_err("[%#x] COP0_TLBR [%ld]\n", pc, kvm_read_c0_guest_index(cop0));
d98403a5 807 return EMULATE_FAIL;
e685c689
SL
808}
809
810/* Write Guest TLB Entry @ Index */
811enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu)
812{
813 struct mips_coproc *cop0 = vcpu->arch.cop0;
814 int index = kvm_read_c0_guest_index(cop0);
e685c689
SL
815 struct kvm_mips_tlb *tlb = NULL;
816 uint32_t pc = vcpu->arch.pc;
817
818 if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
6ad78a5c
DCZ
819 kvm_debug("%s: illegal index: %d\n", __func__, index);
820 kvm_debug("[%#x] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
821 pc, index, kvm_read_c0_guest_entryhi(cop0),
822 kvm_read_c0_guest_entrylo0(cop0),
823 kvm_read_c0_guest_entrylo1(cop0),
824 kvm_read_c0_guest_pagemask(cop0));
e685c689
SL
825 index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE;
826 }
827
828 tlb = &vcpu->arch.guest_tlb[index];
d116e812
DCZ
829 /*
830 * Probe the shadow host TLB for the entry being overwritten, if one
831 * matches, invalidate it
832 */
e685c689 833 kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);
e685c689
SL
834
835 tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
836 tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
837 tlb->tlb_lo0 = kvm_read_c0_guest_entrylo0(cop0);
838 tlb->tlb_lo1 = kvm_read_c0_guest_entrylo1(cop0);
839
d116e812
DCZ
840 kvm_debug("[%#x] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
841 pc, index, kvm_read_c0_guest_entryhi(cop0),
842 kvm_read_c0_guest_entrylo0(cop0),
843 kvm_read_c0_guest_entrylo1(cop0),
844 kvm_read_c0_guest_pagemask(cop0));
e685c689 845
d98403a5 846 return EMULATE_DONE;
e685c689
SL
847}
848
849/* Write Guest TLB Entry @ Random Index */
850enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu)
851{
852 struct mips_coproc *cop0 = vcpu->arch.cop0;
e685c689
SL
853 struct kvm_mips_tlb *tlb = NULL;
854 uint32_t pc = vcpu->arch.pc;
855 int index;
856
e685c689
SL
857 get_random_bytes(&index, sizeof(index));
858 index &= (KVM_MIPS_GUEST_TLB_SIZE - 1);
e685c689 859
e685c689
SL
860 tlb = &vcpu->arch.guest_tlb[index];
861
d116e812
DCZ
862 /*
863 * Probe the shadow host TLB for the entry being overwritten, if one
864 * matches, invalidate it
865 */
e685c689 866 kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);
e685c689
SL
867
868 tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
869 tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
870 tlb->tlb_lo0 = kvm_read_c0_guest_entrylo0(cop0);
871 tlb->tlb_lo1 = kvm_read_c0_guest_entrylo1(cop0);
872
d116e812
DCZ
873 kvm_debug("[%#x] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n",
874 pc, index, kvm_read_c0_guest_entryhi(cop0),
875 kvm_read_c0_guest_entrylo0(cop0),
876 kvm_read_c0_guest_entrylo1(cop0));
e685c689 877
d98403a5 878 return EMULATE_DONE;
e685c689
SL
879}
880
881enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu)
882{
883 struct mips_coproc *cop0 = vcpu->arch.cop0;
884 long entryhi = kvm_read_c0_guest_entryhi(cop0);
e685c689
SL
885 uint32_t pc = vcpu->arch.pc;
886 int index = -1;
887
888 index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
889
890 kvm_write_c0_guest_index(cop0, index);
891
892 kvm_debug("[%#x] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi,
893 index);
894
d98403a5 895 return EMULATE_DONE;
e685c689
SL
896}
897
c771607a
JH
898/**
899 * kvm_mips_config1_wrmask() - Find mask of writable bits in guest Config1
900 * @vcpu: Virtual CPU.
901 *
902 * Finds the mask of bits which are writable in the guest's Config1 CP0
903 * register, by userland (currently read-only to the guest).
904 */
905unsigned int kvm_mips_config1_wrmask(struct kvm_vcpu *vcpu)
906{
6cdc65e3
JH
907 unsigned int mask = 0;
908
909 /* Permit FPU to be present if FPU is supported */
910 if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
911 mask |= MIPS_CONF1_FP;
912
913 return mask;
c771607a
JH
914}
915
916/**
917 * kvm_mips_config3_wrmask() - Find mask of writable bits in guest Config3
918 * @vcpu: Virtual CPU.
919 *
920 * Finds the mask of bits which are writable in the guest's Config3 CP0
921 * register, by userland (currently read-only to the guest).
922 */
923unsigned int kvm_mips_config3_wrmask(struct kvm_vcpu *vcpu)
924{
925 /* Config4 is optional */
2b6009d6
JH
926 unsigned int mask = MIPS_CONF_M;
927
928 /* Permit MSA to be present if MSA is supported */
929 if (kvm_mips_guest_can_have_msa(&vcpu->arch))
930 mask |= MIPS_CONF3_MSA;
931
932 return mask;
c771607a
JH
933}
934
935/**
936 * kvm_mips_config4_wrmask() - Find mask of writable bits in guest Config4
937 * @vcpu: Virtual CPU.
938 *
939 * Finds the mask of bits which are writable in the guest's Config4 CP0
940 * register, by userland (currently read-only to the guest).
941 */
942unsigned int kvm_mips_config4_wrmask(struct kvm_vcpu *vcpu)
943{
944 /* Config5 is optional */
945 return MIPS_CONF_M;
946}
947
948/**
949 * kvm_mips_config5_wrmask() - Find mask of writable bits in guest Config5
950 * @vcpu: Virtual CPU.
951 *
952 * Finds the mask of bits which are writable in the guest's Config5 CP0
953 * register, by the guest itself.
954 */
955unsigned int kvm_mips_config5_wrmask(struct kvm_vcpu *vcpu)
956{
6cdc65e3
JH
957 unsigned int mask = 0;
958
2b6009d6
JH
959 /* Permit MSAEn changes if MSA supported and enabled */
960 if (kvm_mips_guest_has_msa(&vcpu->arch))
961 mask |= MIPS_CONF5_MSAEN;
962
6cdc65e3
JH
963 /*
964 * Permit guest FPU mode changes if FPU is enabled and the relevant
965 * feature exists according to FIR register.
966 */
967 if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
968 if (cpu_has_fre)
969 mask |= MIPS_CONF5_FRE;
970 /* We don't support UFR or UFE */
971 }
972
973 return mask;
c771607a
JH
974}
975
d116e812
DCZ
976enum emulation_result kvm_mips_emulate_CP0(uint32_t inst, uint32_t *opc,
977 uint32_t cause, struct kvm_run *run,
978 struct kvm_vcpu *vcpu)
e685c689
SL
979{
980 struct mips_coproc *cop0 = vcpu->arch.cop0;
981 enum emulation_result er = EMULATE_DONE;
982 int32_t rt, rd, copz, sel, co_bit, op;
983 uint32_t pc = vcpu->arch.pc;
984 unsigned long curr_pc;
985
986 /*
987 * Update PC and hold onto current PC in case there is
988 * an error and we want to rollback the PC
989 */
990 curr_pc = vcpu->arch.pc;
991 er = update_pc(vcpu, cause);
d116e812 992 if (er == EMULATE_FAIL)
e685c689 993 return er;
e685c689
SL
994
995 copz = (inst >> 21) & 0x1f;
996 rt = (inst >> 16) & 0x1f;
997 rd = (inst >> 11) & 0x1f;
998 sel = inst & 0x7;
999 co_bit = (inst >> 25) & 1;
1000
e685c689
SL
1001 if (co_bit) {
1002 op = (inst) & 0xff;
1003
1004 switch (op) {
1005 case tlbr_op: /* Read indexed TLB entry */
1006 er = kvm_mips_emul_tlbr(vcpu);
1007 break;
1008 case tlbwi_op: /* Write indexed */
1009 er = kvm_mips_emul_tlbwi(vcpu);
1010 break;
1011 case tlbwr_op: /* Write random */
1012 er = kvm_mips_emul_tlbwr(vcpu);
1013 break;
1014 case tlbp_op: /* TLB Probe */
1015 er = kvm_mips_emul_tlbp(vcpu);
1016 break;
1017 case rfe_op:
6ad78a5c 1018 kvm_err("!!!COP0_RFE!!!\n");
e685c689
SL
1019 break;
1020 case eret_op:
1021 er = kvm_mips_emul_eret(vcpu);
1022 goto dont_update_pc;
1023 break;
1024 case wait_op:
1025 er = kvm_mips_emul_wait(vcpu);
1026 break;
1027 }
1028 } else {
1029 switch (copz) {
1030 case mfc_op:
1031#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1032 cop0->stat[rd][sel]++;
1033#endif
1034 /* Get reg */
1035 if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
e30492bb 1036 vcpu->arch.gprs[rt] = kvm_mips_read_count(vcpu);
e685c689
SL
1037 } else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) {
1038 vcpu->arch.gprs[rt] = 0x0;
1039#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1040 kvm_mips_trans_mfc0(inst, opc, vcpu);
1041#endif
d116e812 1042 } else {
e685c689
SL
1043 vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1044
1045#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1046 kvm_mips_trans_mfc0(inst, opc, vcpu);
1047#endif
1048 }
1049
1050 kvm_debug
1051 ("[%#x] MFCz[%d][%d], vcpu->arch.gprs[%d]: %#lx\n",
1052 pc, rd, sel, rt, vcpu->arch.gprs[rt]);
1053
1054 break;
1055
1056 case dmfc_op:
1057 vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1058 break;
1059
1060 case mtc_op:
1061#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1062 cop0->stat[rd][sel]++;
1063#endif
1064 if ((rd == MIPS_CP0_TLB_INDEX)
1065 && (vcpu->arch.gprs[rt] >=
1066 KVM_MIPS_GUEST_TLB_SIZE)) {
6ad78a5c
DCZ
1067 kvm_err("Invalid TLB Index: %ld",
1068 vcpu->arch.gprs[rt]);
e685c689
SL
1069 er = EMULATE_FAIL;
1070 break;
1071 }
1072#define C0_EBASE_CORE_MASK 0xff
1073 if ((rd == MIPS_CP0_PRID) && (sel == 1)) {
1074 /* Preserve CORE number */
1075 kvm_change_c0_guest_ebase(cop0,
1076 ~(C0_EBASE_CORE_MASK),
1077 vcpu->arch.gprs[rt]);
6ad78a5c
DCZ
1078 kvm_err("MTCz, cop0->reg[EBASE]: %#lx\n",
1079 kvm_read_c0_guest_ebase(cop0));
e685c689 1080 } else if (rd == MIPS_CP0_TLB_HI && sel == 0) {
48c4ac97 1081 uint32_t nasid =
ca64c2be 1082 vcpu->arch.gprs[rt] & KVM_ENTRYHI_ASID;
d116e812 1083 if ((KSEGX(vcpu->arch.gprs[rt]) != CKSEG0) &&
48c4ac97 1084 ((kvm_read_c0_guest_entryhi(cop0) &
ca64c2be 1085 KVM_ENTRYHI_ASID) != nasid)) {
d116e812
DCZ
1086 kvm_debug("MTCz, change ASID from %#lx to %#lx\n",
1087 kvm_read_c0_guest_entryhi(cop0)
ca64c2be 1088 & KVM_ENTRYHI_ASID,
d116e812 1089 vcpu->arch.gprs[rt]
ca64c2be 1090 & KVM_ENTRYHI_ASID);
e685c689
SL
1091
1092 /* Blow away the shadow host TLBs */
1093 kvm_mips_flush_host_tlb(1);
1094 }
1095 kvm_write_c0_guest_entryhi(cop0,
1096 vcpu->arch.gprs[rt]);
1097 }
1098 /* Are we writing to COUNT */
1099 else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
e30492bb 1100 kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
e685c689
SL
1101 goto done;
1102 } else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) {
1103 kvm_debug("[%#x] MTCz, COMPARE %#lx <- %#lx\n",
1104 pc, kvm_read_c0_guest_compare(cop0),
1105 vcpu->arch.gprs[rt]);
1106
1107 /* If we are writing to COMPARE */
1108 /* Clear pending timer interrupt, if any */
e30492bb 1109 kvm_mips_write_compare(vcpu,
b45bacd2
JH
1110 vcpu->arch.gprs[rt],
1111 true);
e685c689 1112 } else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
6cdc65e3
JH
1113 unsigned int old_val, val, change;
1114
1115 old_val = kvm_read_c0_guest_status(cop0);
1116 val = vcpu->arch.gprs[rt];
1117 change = val ^ old_val;
1118
1119 /* Make sure that the NMI bit is never set */
1120 val &= ~ST0_NMI;
1121
1122 /*
1123 * Don't allow CU1 or FR to be set unless FPU
1124 * capability enabled and exists in guest
1125 * configuration.
1126 */
1127 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1128 val &= ~(ST0_CU1 | ST0_FR);
1129
1130 /*
1131 * Also don't allow FR to be set if host doesn't
1132 * support it.
1133 */
1134 if (!(current_cpu_data.fpu_id & MIPS_FPIR_F64))
1135 val &= ~ST0_FR;
1136
1137
1138 /* Handle changes in FPU mode */
1139 preempt_disable();
1140
1141 /*
1142 * FPU and Vector register state is made
1143 * UNPREDICTABLE by a change of FR, so don't
1144 * even bother saving it.
1145 */
1146 if (change & ST0_FR)
1147 kvm_drop_fpu(vcpu);
1148
2b6009d6
JH
1149 /*
1150 * If MSA state is already live, it is undefined
1151 * how it interacts with FR=0 FPU state, and we
1152 * don't want to hit reserved instruction
1153 * exceptions trying to save the MSA state later
1154 * when CU=1 && FR=1, so play it safe and save
1155 * it first.
1156 */
1157 if (change & ST0_CU1 && !(val & ST0_FR) &&
1158 vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
1159 kvm_lose_fpu(vcpu);
1160
d116e812 1161 /*
6cdc65e3
JH
1162 * Propagate CU1 (FPU enable) changes
1163 * immediately if the FPU context is already
1164 * loaded. When disabling we leave the context
1165 * loaded so it can be quickly enabled again in
1166 * the near future.
d116e812 1167 */
6cdc65e3
JH
1168 if (change & ST0_CU1 &&
1169 vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
1170 change_c0_status(ST0_CU1, val);
1171
1172 preempt_enable();
1173
1174 kvm_write_c0_guest_status(cop0, val);
e685c689
SL
1175
1176#ifdef CONFIG_KVM_MIPS_DYN_TRANS
6cdc65e3
JH
1177 /*
1178 * If FPU present, we need CU1/FR bits to take
1179 * effect fairly soon.
1180 */
1181 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1182 kvm_mips_trans_mtc0(inst, opc, vcpu);
e685c689 1183#endif
6cdc65e3
JH
1184 } else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
1185 unsigned int old_val, val, change, wrmask;
1186
1187 old_val = kvm_read_c0_guest_config5(cop0);
1188 val = vcpu->arch.gprs[rt];
1189
1190 /* Only a few bits are writable in Config5 */
1191 wrmask = kvm_mips_config5_wrmask(vcpu);
1192 change = (val ^ old_val) & wrmask;
1193 val = old_val ^ change;
1194
1195
2b6009d6 1196 /* Handle changes in FPU/MSA modes */
6cdc65e3
JH
1197 preempt_disable();
1198
1199 /*
1200 * Propagate FRE changes immediately if the FPU
1201 * context is already loaded.
1202 */
1203 if (change & MIPS_CONF5_FRE &&
1204 vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
1205 change_c0_config5(MIPS_CONF5_FRE, val);
1206
2b6009d6
JH
1207 /*
1208 * Propagate MSAEn changes immediately if the
1209 * MSA context is already loaded. When disabling
1210 * we leave the context loaded so it can be
1211 * quickly enabled again in the near future.
1212 */
1213 if (change & MIPS_CONF5_MSAEN &&
1214 vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
1215 change_c0_config5(MIPS_CONF5_MSAEN,
1216 val);
1217
6cdc65e3
JH
1218 preempt_enable();
1219
1220 kvm_write_c0_guest_config5(cop0, val);
e30492bb
JH
1221 } else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
1222 uint32_t old_cause, new_cause;
d116e812 1223
e30492bb
JH
1224 old_cause = kvm_read_c0_guest_cause(cop0);
1225 new_cause = vcpu->arch.gprs[rt];
1226 /* Update R/W bits */
1227 kvm_change_c0_guest_cause(cop0, 0x08800300,
1228 new_cause);
1229 /* DC bit enabling/disabling timer? */
1230 if ((old_cause ^ new_cause) & CAUSEF_DC) {
1231 if (new_cause & CAUSEF_DC)
1232 kvm_mips_count_disable_cause(vcpu);
1233 else
1234 kvm_mips_count_enable_cause(vcpu);
1235 }
e685c689
SL
1236 } else {
1237 cop0->reg[rd][sel] = vcpu->arch.gprs[rt];
1238#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1239 kvm_mips_trans_mtc0(inst, opc, vcpu);
1240#endif
1241 }
1242
1243 kvm_debug("[%#x] MTCz, cop0->reg[%d][%d]: %#lx\n", pc,
1244 rd, sel, cop0->reg[rd][sel]);
1245 break;
1246
1247 case dmtc_op:
6ad78a5c
DCZ
1248 kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n",
1249 vcpu->arch.pc, rt, rd, sel);
e685c689
SL
1250 er = EMULATE_FAIL;
1251 break;
1252
b2c59635 1253 case mfmc0_op:
e685c689
SL
1254#ifdef KVM_MIPS_DEBUG_COP0_COUNTERS
1255 cop0->stat[MIPS_CP0_STATUS][0]++;
1256#endif
caa1faa7 1257 if (rt != 0)
e685c689
SL
1258 vcpu->arch.gprs[rt] =
1259 kvm_read_c0_guest_status(cop0);
e685c689
SL
1260 /* EI */
1261 if (inst & 0x20) {
b2c59635 1262 kvm_debug("[%#lx] mfmc0_op: EI\n",
e685c689
SL
1263 vcpu->arch.pc);
1264 kvm_set_c0_guest_status(cop0, ST0_IE);
1265 } else {
b2c59635 1266 kvm_debug("[%#lx] mfmc0_op: DI\n",
e685c689
SL
1267 vcpu->arch.pc);
1268 kvm_clear_c0_guest_status(cop0, ST0_IE);
1269 }
1270
1271 break;
1272
1273 case wrpgpr_op:
1274 {
1275 uint32_t css =
1276 cop0->reg[MIPS_CP0_STATUS][2] & 0xf;
1277 uint32_t pss =
1278 (cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf;
d116e812
DCZ
1279 /*
1280 * We don't support any shadow register sets, so
1281 * SRSCtl[PSS] == SRSCtl[CSS] = 0
1282 */
e685c689
SL
1283 if (css || pss) {
1284 er = EMULATE_FAIL;
1285 break;
1286 }
1287 kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd,
1288 vcpu->arch.gprs[rt]);
1289 vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt];
1290 }
1291 break;
1292 default:
6ad78a5c
DCZ
1293 kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n",
1294 vcpu->arch.pc, copz);
e685c689
SL
1295 er = EMULATE_FAIL;
1296 break;
1297 }
1298 }
1299
1300done:
d116e812
DCZ
1301 /* Rollback PC only if emulation was unsuccessful */
1302 if (er == EMULATE_FAIL)
e685c689 1303 vcpu->arch.pc = curr_pc;
e685c689
SL
1304
1305dont_update_pc:
1306 /*
1307 * This is for special instructions whose emulation
1308 * updates the PC, so do not overwrite the PC under
1309 * any circumstances
1310 */
1311
1312 return er;
1313}
1314
d116e812
DCZ
1315enum emulation_result kvm_mips_emulate_store(uint32_t inst, uint32_t cause,
1316 struct kvm_run *run,
1317 struct kvm_vcpu *vcpu)
e685c689
SL
1318{
1319 enum emulation_result er = EMULATE_DO_MMIO;
1320 int32_t op, base, rt, offset;
1321 uint32_t bytes;
1322 void *data = run->mmio.data;
1323 unsigned long curr_pc;
1324
1325 /*
1326 * Update PC and hold onto current PC in case there is
1327 * an error and we want to rollback the PC
1328 */
1329 curr_pc = vcpu->arch.pc;
1330 er = update_pc(vcpu, cause);
1331 if (er == EMULATE_FAIL)
1332 return er;
1333
1334 rt = (inst >> 16) & 0x1f;
1335 base = (inst >> 21) & 0x1f;
1336 offset = inst & 0xffff;
1337 op = (inst >> 26) & 0x3f;
1338
1339 switch (op) {
1340 case sb_op:
1341 bytes = 1;
1342 if (bytes > sizeof(run->mmio.data)) {
1343 kvm_err("%s: bad MMIO length: %d\n", __func__,
1344 run->mmio.len);
1345 }
1346 run->mmio.phys_addr =
1347 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1348 host_cp0_badvaddr);
1349 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1350 er = EMULATE_FAIL;
1351 break;
1352 }
1353 run->mmio.len = bytes;
1354 run->mmio.is_write = 1;
1355 vcpu->mmio_needed = 1;
1356 vcpu->mmio_is_write = 1;
1357 *(u8 *) data = vcpu->arch.gprs[rt];
1358 kvm_debug("OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1359 vcpu->arch.host_cp0_badvaddr, vcpu->arch.gprs[rt],
1360 *(uint8_t *) data);
1361
1362 break;
1363
1364 case sw_op:
1365 bytes = 4;
1366 if (bytes > sizeof(run->mmio.data)) {
1367 kvm_err("%s: bad MMIO length: %d\n", __func__,
1368 run->mmio.len);
1369 }
1370 run->mmio.phys_addr =
1371 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1372 host_cp0_badvaddr);
1373 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1374 er = EMULATE_FAIL;
1375 break;
1376 }
1377
1378 run->mmio.len = bytes;
1379 run->mmio.is_write = 1;
1380 vcpu->mmio_needed = 1;
1381 vcpu->mmio_is_write = 1;
1382 *(uint32_t *) data = vcpu->arch.gprs[rt];
1383
1384 kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1385 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1386 vcpu->arch.gprs[rt], *(uint32_t *) data);
1387 break;
1388
1389 case sh_op:
1390 bytes = 2;
1391 if (bytes > sizeof(run->mmio.data)) {
1392 kvm_err("%s: bad MMIO length: %d\n", __func__,
1393 run->mmio.len);
1394 }
1395 run->mmio.phys_addr =
1396 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1397 host_cp0_badvaddr);
1398 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1399 er = EMULATE_FAIL;
1400 break;
1401 }
1402
1403 run->mmio.len = bytes;
1404 run->mmio.is_write = 1;
1405 vcpu->mmio_needed = 1;
1406 vcpu->mmio_is_write = 1;
1407 *(uint16_t *) data = vcpu->arch.gprs[rt];
1408
1409 kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1410 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1411 vcpu->arch.gprs[rt], *(uint32_t *) data);
1412 break;
1413
1414 default:
6ad78a5c 1415 kvm_err("Store not yet supported");
e685c689
SL
1416 er = EMULATE_FAIL;
1417 break;
1418 }
1419
d116e812
DCZ
1420 /* Rollback PC if emulation was unsuccessful */
1421 if (er == EMULATE_FAIL)
e685c689 1422 vcpu->arch.pc = curr_pc;
e685c689
SL
1423
1424 return er;
1425}
1426
d116e812
DCZ
1427enum emulation_result kvm_mips_emulate_load(uint32_t inst, uint32_t cause,
1428 struct kvm_run *run,
1429 struct kvm_vcpu *vcpu)
e685c689
SL
1430{
1431 enum emulation_result er = EMULATE_DO_MMIO;
1432 int32_t op, base, rt, offset;
1433 uint32_t bytes;
1434
1435 rt = (inst >> 16) & 0x1f;
1436 base = (inst >> 21) & 0x1f;
1437 offset = inst & 0xffff;
1438 op = (inst >> 26) & 0x3f;
1439
1440 vcpu->arch.pending_load_cause = cause;
1441 vcpu->arch.io_gpr = rt;
1442
1443 switch (op) {
1444 case lw_op:
1445 bytes = 4;
1446 if (bytes > sizeof(run->mmio.data)) {
1447 kvm_err("%s: bad MMIO length: %d\n", __func__,
1448 run->mmio.len);
1449 er = EMULATE_FAIL;
1450 break;
1451 }
1452 run->mmio.phys_addr =
1453 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1454 host_cp0_badvaddr);
1455 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1456 er = EMULATE_FAIL;
1457 break;
1458 }
1459
1460 run->mmio.len = bytes;
1461 run->mmio.is_write = 0;
1462 vcpu->mmio_needed = 1;
1463 vcpu->mmio_is_write = 0;
1464 break;
1465
1466 case lh_op:
1467 case lhu_op:
1468 bytes = 2;
1469 if (bytes > sizeof(run->mmio.data)) {
1470 kvm_err("%s: bad MMIO length: %d\n", __func__,
1471 run->mmio.len);
1472 er = EMULATE_FAIL;
1473 break;
1474 }
1475 run->mmio.phys_addr =
1476 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1477 host_cp0_badvaddr);
1478 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1479 er = EMULATE_FAIL;
1480 break;
1481 }
1482
1483 run->mmio.len = bytes;
1484 run->mmio.is_write = 0;
1485 vcpu->mmio_needed = 1;
1486 vcpu->mmio_is_write = 0;
1487
1488 if (op == lh_op)
1489 vcpu->mmio_needed = 2;
1490 else
1491 vcpu->mmio_needed = 1;
1492
1493 break;
1494
1495 case lbu_op:
1496 case lb_op:
1497 bytes = 1;
1498 if (bytes > sizeof(run->mmio.data)) {
1499 kvm_err("%s: bad MMIO length: %d\n", __func__,
1500 run->mmio.len);
1501 er = EMULATE_FAIL;
1502 break;
1503 }
1504 run->mmio.phys_addr =
1505 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1506 host_cp0_badvaddr);
1507 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1508 er = EMULATE_FAIL;
1509 break;
1510 }
1511
1512 run->mmio.len = bytes;
1513 run->mmio.is_write = 0;
1514 vcpu->mmio_is_write = 0;
1515
1516 if (op == lb_op)
1517 vcpu->mmio_needed = 2;
1518 else
1519 vcpu->mmio_needed = 1;
1520
1521 break;
1522
1523 default:
6ad78a5c 1524 kvm_err("Load not yet supported");
e685c689
SL
1525 er = EMULATE_FAIL;
1526 break;
1527 }
1528
1529 return er;
1530}
1531
d116e812
DCZ
1532enum emulation_result kvm_mips_emulate_cache(uint32_t inst, uint32_t *opc,
1533 uint32_t cause,
1534 struct kvm_run *run,
1535 struct kvm_vcpu *vcpu)
e685c689
SL
1536{
1537 struct mips_coproc *cop0 = vcpu->arch.cop0;
e685c689
SL
1538 enum emulation_result er = EMULATE_DONE;
1539 int32_t offset, cache, op_inst, op, base;
1540 struct kvm_vcpu_arch *arch = &vcpu->arch;
1541 unsigned long va;
1542 unsigned long curr_pc;
1543
1544 /*
1545 * Update PC and hold onto current PC in case there is
1546 * an error and we want to rollback the PC
1547 */
1548 curr_pc = vcpu->arch.pc;
1549 er = update_pc(vcpu, cause);
1550 if (er == EMULATE_FAIL)
1551 return er;
1552
1553 base = (inst >> 21) & 0x1f;
1554 op_inst = (inst >> 16) & 0x1f;
c5c2a3b9 1555 offset = (int16_t)inst;
f4956f62
JH
1556 cache = op_inst & CacheOp_Cache;
1557 op = op_inst & CacheOp_Op;
e685c689
SL
1558
1559 va = arch->gprs[base] + offset;
1560
1561 kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1562 cache, op, base, arch->gprs[base], offset);
1563
d116e812
DCZ
1564 /*
1565 * Treat INDEX_INV as a nop, basically issued by Linux on startup to
1566 * invalidate the caches entirely by stepping through all the
1567 * ways/indexes
e685c689 1568 */
f4956f62 1569 if (op == Index_Writeback_Inv) {
d116e812
DCZ
1570 kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1571 vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base,
1572 arch->gprs[base], offset);
e685c689 1573
f4956f62 1574 if (cache == Cache_D)
e685c689 1575 r4k_blast_dcache();
f4956f62 1576 else if (cache == Cache_I)
e685c689
SL
1577 r4k_blast_icache();
1578 else {
6ad78a5c
DCZ
1579 kvm_err("%s: unsupported CACHE INDEX operation\n",
1580 __func__);
e685c689
SL
1581 return EMULATE_FAIL;
1582 }
1583
1584#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1585 kvm_mips_trans_cache_index(inst, opc, vcpu);
1586#endif
1587 goto done;
1588 }
1589
1590 preempt_disable();
1591 if (KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG0) {
d116e812 1592 if (kvm_mips_host_tlb_lookup(vcpu, va) < 0)
e685c689 1593 kvm_mips_handle_kseg0_tlb_fault(va, vcpu);
e685c689
SL
1594 } else if ((KVM_GUEST_KSEGX(va) < KVM_GUEST_KSEG0) ||
1595 KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG23) {
1596 int index;
1597
1598 /* If an entry already exists then skip */
d116e812 1599 if (kvm_mips_host_tlb_lookup(vcpu, va) >= 0)
e685c689 1600 goto skip_fault;
e685c689 1601
d116e812
DCZ
1602 /*
1603 * If address not in the guest TLB, then give the guest a fault,
1604 * the resulting handler will do the right thing
e685c689
SL
1605 */
1606 index = kvm_mips_guest_tlb_lookup(vcpu, (va & VPN2_MASK) |
48c4ac97 1607 (kvm_read_c0_guest_entryhi
ca64c2be 1608 (cop0) & KVM_ENTRYHI_ASID));
e685c689
SL
1609
1610 if (index < 0) {
e685c689 1611 vcpu->arch.host_cp0_badvaddr = va;
6df82a7b 1612 vcpu->arch.pc = curr_pc;
e685c689
SL
1613 er = kvm_mips_emulate_tlbmiss_ld(cause, NULL, run,
1614 vcpu);
1615 preempt_enable();
1616 goto dont_update_pc;
1617 } else {
1618 struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
d116e812
DCZ
1619 /*
1620 * Check if the entry is valid, if not then setup a TLB
1621 * invalid exception to the guest
1622 */
e685c689 1623 if (!TLB_IS_VALID(*tlb, va)) {
6df82a7b
JH
1624 vcpu->arch.host_cp0_badvaddr = va;
1625 vcpu->arch.pc = curr_pc;
e685c689
SL
1626 er = kvm_mips_emulate_tlbinv_ld(cause, NULL,
1627 run, vcpu);
1628 preempt_enable();
1629 goto dont_update_pc;
1630 } else {
d116e812
DCZ
1631 /*
1632 * We fault an entry from the guest tlb to the
1633 * shadow host TLB
1634 */
e685c689
SL
1635 kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb,
1636 NULL,
1637 NULL);
1638 }
1639 }
1640 } else {
6ad78a5c
DCZ
1641 kvm_err("INVALID CACHE INDEX/ADDRESS (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1642 cache, op, base, arch->gprs[base], offset);
e685c689
SL
1643 er = EMULATE_FAIL;
1644 preempt_enable();
cc81e948 1645 goto done;
e685c689
SL
1646
1647 }
1648
1649skip_fault:
1650 /* XXXKYMA: Only a subset of cache ops are supported, used by Linux */
f4956f62 1651 if (op_inst == Hit_Writeback_Inv_D || op_inst == Hit_Invalidate_D) {
e685c689
SL
1652 flush_dcache_line(va);
1653
1654#ifdef CONFIG_KVM_MIPS_DYN_TRANS
d116e812
DCZ
1655 /*
1656 * Replace the CACHE instruction, with a SYNCI, not the same,
1657 * but avoids a trap
1658 */
e685c689
SL
1659 kvm_mips_trans_cache_va(inst, opc, vcpu);
1660#endif
f4956f62 1661 } else if (op_inst == Hit_Invalidate_I) {
e685c689
SL
1662 flush_dcache_line(va);
1663 flush_icache_line(va);
1664
1665#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1666 /* Replace the CACHE instruction, with a SYNCI */
1667 kvm_mips_trans_cache_va(inst, opc, vcpu);
1668#endif
1669 } else {
6ad78a5c
DCZ
1670 kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1671 cache, op, base, arch->gprs[base], offset);
e685c689 1672 er = EMULATE_FAIL;
e685c689
SL
1673 }
1674
1675 preempt_enable();
cc81e948
JH
1676done:
1677 /* Rollback PC only if emulation was unsuccessful */
1678 if (er == EMULATE_FAIL)
1679 vcpu->arch.pc = curr_pc;
e685c689 1680
d116e812 1681dont_update_pc:
cc81e948
JH
1682 /*
1683 * This is for exceptions whose emulation updates the PC, so do not
1684 * overwrite the PC under any circumstances
1685 */
1686
e685c689
SL
1687 return er;
1688}
1689
d116e812
DCZ
1690enum emulation_result kvm_mips_emulate_inst(unsigned long cause, uint32_t *opc,
1691 struct kvm_run *run,
1692 struct kvm_vcpu *vcpu)
e685c689
SL
1693{
1694 enum emulation_result er = EMULATE_DONE;
1695 uint32_t inst;
1696
d116e812
DCZ
1697 /* Fetch the instruction. */
1698 if (cause & CAUSEF_BD)
e685c689 1699 opc += 1;
e685c689
SL
1700
1701 inst = kvm_get_inst(opc, vcpu);
1702
1703 switch (((union mips_instruction)inst).r_format.opcode) {
1704 case cop0_op:
1705 er = kvm_mips_emulate_CP0(inst, opc, cause, run, vcpu);
1706 break;
1707 case sb_op:
1708 case sh_op:
1709 case sw_op:
1710 er = kvm_mips_emulate_store(inst, cause, run, vcpu);
1711 break;
1712 case lb_op:
1713 case lbu_op:
1714 case lhu_op:
1715 case lh_op:
1716 case lw_op:
1717 er = kvm_mips_emulate_load(inst, cause, run, vcpu);
1718 break;
1719
1720 case cache_op:
1721 ++vcpu->stat.cache_exits;
1722 trace_kvm_exit(vcpu, CACHE_EXITS);
1723 er = kvm_mips_emulate_cache(inst, opc, cause, run, vcpu);
1724 break;
1725
1726 default:
6ad78a5c
DCZ
1727 kvm_err("Instruction emulation not supported (%p/%#x)\n", opc,
1728 inst);
e685c689
SL
1729 kvm_arch_vcpu_dump_regs(vcpu);
1730 er = EMULATE_FAIL;
1731 break;
1732 }
1733
1734 return er;
1735}
1736
d116e812
DCZ
1737enum emulation_result kvm_mips_emulate_syscall(unsigned long cause,
1738 uint32_t *opc,
1739 struct kvm_run *run,
1740 struct kvm_vcpu *vcpu)
e685c689
SL
1741{
1742 struct mips_coproc *cop0 = vcpu->arch.cop0;
1743 struct kvm_vcpu_arch *arch = &vcpu->arch;
1744 enum emulation_result er = EMULATE_DONE;
1745
1746 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1747 /* save old pc */
1748 kvm_write_c0_guest_epc(cop0, arch->pc);
1749 kvm_set_c0_guest_status(cop0, ST0_EXL);
1750
1751 if (cause & CAUSEF_BD)
1752 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1753 else
1754 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1755
1756 kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc);
1757
1758 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 1759 (EXCCODE_SYS << CAUSEB_EXCCODE));
e685c689
SL
1760
1761 /* Set PC to the exception entry point */
1762 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1763
1764 } else {
6ad78a5c 1765 kvm_err("Trying to deliver SYSCALL when EXL is already set\n");
e685c689
SL
1766 er = EMULATE_FAIL;
1767 }
1768
1769 return er;
1770}
1771
d116e812
DCZ
1772enum emulation_result kvm_mips_emulate_tlbmiss_ld(unsigned long cause,
1773 uint32_t *opc,
1774 struct kvm_run *run,
1775 struct kvm_vcpu *vcpu)
e685c689
SL
1776{
1777 struct mips_coproc *cop0 = vcpu->arch.cop0;
1778 struct kvm_vcpu_arch *arch = &vcpu->arch;
e685c689 1779 unsigned long entryhi = (vcpu->arch. host_cp0_badvaddr & VPN2_MASK) |
ca64c2be 1780 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
e685c689
SL
1781
1782 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1783 /* save old pc */
1784 kvm_write_c0_guest_epc(cop0, arch->pc);
1785 kvm_set_c0_guest_status(cop0, ST0_EXL);
1786
1787 if (cause & CAUSEF_BD)
1788 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1789 else
1790 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1791
1792 kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n",
1793 arch->pc);
1794
1795 /* set pc to the exception entry point */
1796 arch->pc = KVM_GUEST_KSEG0 + 0x0;
1797
1798 } else {
1799 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1800 arch->pc);
1801
1802 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1803 }
1804
1805 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 1806 (EXCCODE_TLBL << CAUSEB_EXCCODE));
e685c689
SL
1807
1808 /* setup badvaddr, context and entryhi registers for the guest */
1809 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1810 /* XXXKYMA: is the context register used by linux??? */
1811 kvm_write_c0_guest_entryhi(cop0, entryhi);
1812 /* Blow away the shadow host TLBs */
1813 kvm_mips_flush_host_tlb(1);
1814
d98403a5 1815 return EMULATE_DONE;
e685c689
SL
1816}
1817
d116e812
DCZ
1818enum emulation_result kvm_mips_emulate_tlbinv_ld(unsigned long cause,
1819 uint32_t *opc,
1820 struct kvm_run *run,
1821 struct kvm_vcpu *vcpu)
e685c689
SL
1822{
1823 struct mips_coproc *cop0 = vcpu->arch.cop0;
1824 struct kvm_vcpu_arch *arch = &vcpu->arch;
e685c689
SL
1825 unsigned long entryhi =
1826 (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
ca64c2be 1827 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
e685c689
SL
1828
1829 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1830 /* save old pc */
1831 kvm_write_c0_guest_epc(cop0, arch->pc);
1832 kvm_set_c0_guest_status(cop0, ST0_EXL);
1833
1834 if (cause & CAUSEF_BD)
1835 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1836 else
1837 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1838
1839 kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n",
1840 arch->pc);
1841
1842 /* set pc to the exception entry point */
1843 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1844
1845 } else {
1846 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1847 arch->pc);
1848 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1849 }
1850
1851 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 1852 (EXCCODE_TLBL << CAUSEB_EXCCODE));
e685c689
SL
1853
1854 /* setup badvaddr, context and entryhi registers for the guest */
1855 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1856 /* XXXKYMA: is the context register used by linux??? */
1857 kvm_write_c0_guest_entryhi(cop0, entryhi);
1858 /* Blow away the shadow host TLBs */
1859 kvm_mips_flush_host_tlb(1);
1860
d98403a5 1861 return EMULATE_DONE;
e685c689
SL
1862}
1863
d116e812
DCZ
1864enum emulation_result kvm_mips_emulate_tlbmiss_st(unsigned long cause,
1865 uint32_t *opc,
1866 struct kvm_run *run,
1867 struct kvm_vcpu *vcpu)
e685c689
SL
1868{
1869 struct mips_coproc *cop0 = vcpu->arch.cop0;
1870 struct kvm_vcpu_arch *arch = &vcpu->arch;
e685c689 1871 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
ca64c2be 1872 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
e685c689
SL
1873
1874 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1875 /* save old pc */
1876 kvm_write_c0_guest_epc(cop0, arch->pc);
1877 kvm_set_c0_guest_status(cop0, ST0_EXL);
1878
1879 if (cause & CAUSEF_BD)
1880 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1881 else
1882 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1883
1884 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
1885 arch->pc);
1886
1887 /* Set PC to the exception entry point */
1888 arch->pc = KVM_GUEST_KSEG0 + 0x0;
1889 } else {
1890 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
1891 arch->pc);
1892 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1893 }
1894
1895 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 1896 (EXCCODE_TLBS << CAUSEB_EXCCODE));
e685c689
SL
1897
1898 /* setup badvaddr, context and entryhi registers for the guest */
1899 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1900 /* XXXKYMA: is the context register used by linux??? */
1901 kvm_write_c0_guest_entryhi(cop0, entryhi);
1902 /* Blow away the shadow host TLBs */
1903 kvm_mips_flush_host_tlb(1);
1904
d98403a5 1905 return EMULATE_DONE;
e685c689
SL
1906}
1907
d116e812
DCZ
1908enum emulation_result kvm_mips_emulate_tlbinv_st(unsigned long cause,
1909 uint32_t *opc,
1910 struct kvm_run *run,
1911 struct kvm_vcpu *vcpu)
e685c689
SL
1912{
1913 struct mips_coproc *cop0 = vcpu->arch.cop0;
1914 struct kvm_vcpu_arch *arch = &vcpu->arch;
e685c689 1915 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
ca64c2be 1916 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
e685c689
SL
1917
1918 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1919 /* save old pc */
1920 kvm_write_c0_guest_epc(cop0, arch->pc);
1921 kvm_set_c0_guest_status(cop0, ST0_EXL);
1922
1923 if (cause & CAUSEF_BD)
1924 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1925 else
1926 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1927
1928 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
1929 arch->pc);
1930
1931 /* Set PC to the exception entry point */
1932 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1933 } else {
1934 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
1935 arch->pc);
1936 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1937 }
1938
1939 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 1940 (EXCCODE_TLBS << CAUSEB_EXCCODE));
e685c689
SL
1941
1942 /* setup badvaddr, context and entryhi registers for the guest */
1943 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1944 /* XXXKYMA: is the context register used by linux??? */
1945 kvm_write_c0_guest_entryhi(cop0, entryhi);
1946 /* Blow away the shadow host TLBs */
1947 kvm_mips_flush_host_tlb(1);
1948
d98403a5 1949 return EMULATE_DONE;
e685c689
SL
1950}
1951
1952/* TLBMOD: store into address matching TLB with Dirty bit off */
d116e812
DCZ
1953enum emulation_result kvm_mips_handle_tlbmod(unsigned long cause, uint32_t *opc,
1954 struct kvm_run *run,
1955 struct kvm_vcpu *vcpu)
e685c689
SL
1956{
1957 enum emulation_result er = EMULATE_DONE;
e685c689 1958#ifdef DEBUG
3d654833
JH
1959 struct mips_coproc *cop0 = vcpu->arch.cop0;
1960 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
ca64c2be 1961 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
3d654833
JH
1962 int index;
1963
d116e812 1964 /* If address not in the guest TLB, then we are in trouble */
e685c689
SL
1965 index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
1966 if (index < 0) {
1967 /* XXXKYMA Invalidate and retry */
1968 kvm_mips_host_tlb_inv(vcpu, vcpu->arch.host_cp0_badvaddr);
1969 kvm_err("%s: host got TLBMOD for %#lx but entry not present in Guest TLB\n",
1970 __func__, entryhi);
1971 kvm_mips_dump_guest_tlbs(vcpu);
1972 kvm_mips_dump_host_tlbs();
1973 return EMULATE_FAIL;
1974 }
1975#endif
1976
1977 er = kvm_mips_emulate_tlbmod(cause, opc, run, vcpu);
1978 return er;
1979}
1980
d116e812
DCZ
1981enum emulation_result kvm_mips_emulate_tlbmod(unsigned long cause,
1982 uint32_t *opc,
1983 struct kvm_run *run,
1984 struct kvm_vcpu *vcpu)
e685c689
SL
1985{
1986 struct mips_coproc *cop0 = vcpu->arch.cop0;
1987 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
ca64c2be 1988 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
e685c689 1989 struct kvm_vcpu_arch *arch = &vcpu->arch;
e685c689
SL
1990
1991 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1992 /* save old pc */
1993 kvm_write_c0_guest_epc(cop0, arch->pc);
1994 kvm_set_c0_guest_status(cop0, ST0_EXL);
1995
1996 if (cause & CAUSEF_BD)
1997 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1998 else
1999 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2000
2001 kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n",
2002 arch->pc);
2003
2004 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2005 } else {
2006 kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n",
2007 arch->pc);
2008 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2009 }
2010
16d100db
JH
2011 kvm_change_c0_guest_cause(cop0, (0xff),
2012 (EXCCODE_MOD << CAUSEB_EXCCODE));
e685c689
SL
2013
2014 /* setup badvaddr, context and entryhi registers for the guest */
2015 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2016 /* XXXKYMA: is the context register used by linux??? */
2017 kvm_write_c0_guest_entryhi(cop0, entryhi);
2018 /* Blow away the shadow host TLBs */
2019 kvm_mips_flush_host_tlb(1);
2020
d98403a5 2021 return EMULATE_DONE;
e685c689
SL
2022}
2023
d116e812
DCZ
2024enum emulation_result kvm_mips_emulate_fpu_exc(unsigned long cause,
2025 uint32_t *opc,
2026 struct kvm_run *run,
2027 struct kvm_vcpu *vcpu)
e685c689
SL
2028{
2029 struct mips_coproc *cop0 = vcpu->arch.cop0;
2030 struct kvm_vcpu_arch *arch = &vcpu->arch;
e685c689
SL
2031
2032 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2033 /* save old pc */
2034 kvm_write_c0_guest_epc(cop0, arch->pc);
2035 kvm_set_c0_guest_status(cop0, ST0_EXL);
2036
2037 if (cause & CAUSEF_BD)
2038 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2039 else
2040 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2041
2042 }
2043
2044 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2045
2046 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 2047 (EXCCODE_CPU << CAUSEB_EXCCODE));
e685c689
SL
2048 kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE));
2049
d98403a5 2050 return EMULATE_DONE;
e685c689
SL
2051}
2052
d116e812
DCZ
2053enum emulation_result kvm_mips_emulate_ri_exc(unsigned long cause,
2054 uint32_t *opc,
2055 struct kvm_run *run,
2056 struct kvm_vcpu *vcpu)
e685c689
SL
2057{
2058 struct mips_coproc *cop0 = vcpu->arch.cop0;
2059 struct kvm_vcpu_arch *arch = &vcpu->arch;
2060 enum emulation_result er = EMULATE_DONE;
2061
2062 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2063 /* save old pc */
2064 kvm_write_c0_guest_epc(cop0, arch->pc);
2065 kvm_set_c0_guest_status(cop0, ST0_EXL);
2066
2067 if (cause & CAUSEF_BD)
2068 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2069 else
2070 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2071
2072 kvm_debug("Delivering RI @ pc %#lx\n", arch->pc);
2073
2074 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 2075 (EXCCODE_RI << CAUSEB_EXCCODE));
e685c689
SL
2076
2077 /* Set PC to the exception entry point */
2078 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2079
2080 } else {
2081 kvm_err("Trying to deliver RI when EXL is already set\n");
2082 er = EMULATE_FAIL;
2083 }
2084
2085 return er;
2086}
2087
d116e812
DCZ
2088enum emulation_result kvm_mips_emulate_bp_exc(unsigned long cause,
2089 uint32_t *opc,
2090 struct kvm_run *run,
2091 struct kvm_vcpu *vcpu)
e685c689
SL
2092{
2093 struct mips_coproc *cop0 = vcpu->arch.cop0;
2094 struct kvm_vcpu_arch *arch = &vcpu->arch;
2095 enum emulation_result er = EMULATE_DONE;
2096
2097 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2098 /* save old pc */
2099 kvm_write_c0_guest_epc(cop0, arch->pc);
2100 kvm_set_c0_guest_status(cop0, ST0_EXL);
2101
2102 if (cause & CAUSEF_BD)
2103 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2104 else
2105 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2106
2107 kvm_debug("Delivering BP @ pc %#lx\n", arch->pc);
2108
2109 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 2110 (EXCCODE_BP << CAUSEB_EXCCODE));
e685c689
SL
2111
2112 /* Set PC to the exception entry point */
2113 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2114
2115 } else {
6ad78a5c 2116 kvm_err("Trying to deliver BP when EXL is already set\n");
e685c689
SL
2117 er = EMULATE_FAIL;
2118 }
2119
2120 return er;
2121}
2122
0a560427
JH
2123enum emulation_result kvm_mips_emulate_trap_exc(unsigned long cause,
2124 uint32_t *opc,
2125 struct kvm_run *run,
2126 struct kvm_vcpu *vcpu)
2127{
2128 struct mips_coproc *cop0 = vcpu->arch.cop0;
2129 struct kvm_vcpu_arch *arch = &vcpu->arch;
2130 enum emulation_result er = EMULATE_DONE;
2131
2132 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2133 /* save old pc */
2134 kvm_write_c0_guest_epc(cop0, arch->pc);
2135 kvm_set_c0_guest_status(cop0, ST0_EXL);
2136
2137 if (cause & CAUSEF_BD)
2138 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2139 else
2140 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2141
2142 kvm_debug("Delivering TRAP @ pc %#lx\n", arch->pc);
2143
2144 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 2145 (EXCCODE_TR << CAUSEB_EXCCODE));
0a560427
JH
2146
2147 /* Set PC to the exception entry point */
2148 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2149
2150 } else {
2151 kvm_err("Trying to deliver TRAP when EXL is already set\n");
2152 er = EMULATE_FAIL;
2153 }
2154
2155 return er;
2156}
2157
c2537ed9
JH
2158enum emulation_result kvm_mips_emulate_msafpe_exc(unsigned long cause,
2159 uint32_t *opc,
2160 struct kvm_run *run,
2161 struct kvm_vcpu *vcpu)
2162{
2163 struct mips_coproc *cop0 = vcpu->arch.cop0;
2164 struct kvm_vcpu_arch *arch = &vcpu->arch;
2165 enum emulation_result er = EMULATE_DONE;
2166
2167 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2168 /* save old pc */
2169 kvm_write_c0_guest_epc(cop0, arch->pc);
2170 kvm_set_c0_guest_status(cop0, ST0_EXL);
2171
2172 if (cause & CAUSEF_BD)
2173 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2174 else
2175 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2176
2177 kvm_debug("Delivering MSAFPE @ pc %#lx\n", arch->pc);
2178
2179 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 2180 (EXCCODE_MSAFPE << CAUSEB_EXCCODE));
c2537ed9
JH
2181
2182 /* Set PC to the exception entry point */
2183 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2184
2185 } else {
2186 kvm_err("Trying to deliver MSAFPE when EXL is already set\n");
2187 er = EMULATE_FAIL;
2188 }
2189
2190 return er;
2191}
2192
1c0cd66a
JH
2193enum emulation_result kvm_mips_emulate_fpe_exc(unsigned long cause,
2194 uint32_t *opc,
2195 struct kvm_run *run,
2196 struct kvm_vcpu *vcpu)
2197{
2198 struct mips_coproc *cop0 = vcpu->arch.cop0;
2199 struct kvm_vcpu_arch *arch = &vcpu->arch;
2200 enum emulation_result er = EMULATE_DONE;
2201
2202 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2203 /* save old pc */
2204 kvm_write_c0_guest_epc(cop0, arch->pc);
2205 kvm_set_c0_guest_status(cop0, ST0_EXL);
2206
2207 if (cause & CAUSEF_BD)
2208 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2209 else
2210 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2211
2212 kvm_debug("Delivering FPE @ pc %#lx\n", arch->pc);
2213
2214 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 2215 (EXCCODE_FPE << CAUSEB_EXCCODE));
1c0cd66a
JH
2216
2217 /* Set PC to the exception entry point */
2218 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2219
2220 } else {
2221 kvm_err("Trying to deliver FPE when EXL is already set\n");
2222 er = EMULATE_FAIL;
2223 }
2224
2225 return er;
2226}
2227
c2537ed9
JH
2228enum emulation_result kvm_mips_emulate_msadis_exc(unsigned long cause,
2229 uint32_t *opc,
2230 struct kvm_run *run,
2231 struct kvm_vcpu *vcpu)
2232{
2233 struct mips_coproc *cop0 = vcpu->arch.cop0;
2234 struct kvm_vcpu_arch *arch = &vcpu->arch;
2235 enum emulation_result er = EMULATE_DONE;
2236
2237 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2238 /* save old pc */
2239 kvm_write_c0_guest_epc(cop0, arch->pc);
2240 kvm_set_c0_guest_status(cop0, ST0_EXL);
2241
2242 if (cause & CAUSEF_BD)
2243 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2244 else
2245 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2246
2247 kvm_debug("Delivering MSADIS @ pc %#lx\n", arch->pc);
2248
2249 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 2250 (EXCCODE_MSADIS << CAUSEB_EXCCODE));
c2537ed9
JH
2251
2252 /* Set PC to the exception entry point */
2253 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2254
2255 } else {
2256 kvm_err("Trying to deliver MSADIS when EXL is already set\n");
2257 er = EMULATE_FAIL;
2258 }
2259
2260 return er;
2261}
2262
d116e812 2263/* ll/sc, rdhwr, sync emulation */
e685c689
SL
2264
2265#define OPCODE 0xfc000000
2266#define BASE 0x03e00000
2267#define RT 0x001f0000
2268#define OFFSET 0x0000ffff
2269#define LL 0xc0000000
2270#define SC 0xe0000000
2271#define SPEC0 0x00000000
2272#define SPEC3 0x7c000000
2273#define RD 0x0000f800
2274#define FUNC 0x0000003f
2275#define SYNC 0x0000000f
2276#define RDHWR 0x0000003b
2277
d116e812
DCZ
2278enum emulation_result kvm_mips_handle_ri(unsigned long cause, uint32_t *opc,
2279 struct kvm_run *run,
2280 struct kvm_vcpu *vcpu)
e685c689
SL
2281{
2282 struct mips_coproc *cop0 = vcpu->arch.cop0;
2283 struct kvm_vcpu_arch *arch = &vcpu->arch;
2284 enum emulation_result er = EMULATE_DONE;
2285 unsigned long curr_pc;
2286 uint32_t inst;
2287
2288 /*
2289 * Update PC and hold onto current PC in case there is
2290 * an error and we want to rollback the PC
2291 */
2292 curr_pc = vcpu->arch.pc;
2293 er = update_pc(vcpu, cause);
2294 if (er == EMULATE_FAIL)
2295 return er;
2296
d116e812 2297 /* Fetch the instruction. */
e685c689
SL
2298 if (cause & CAUSEF_BD)
2299 opc += 1;
2300
2301 inst = kvm_get_inst(opc, vcpu);
2302
2303 if (inst == KVM_INVALID_INST) {
6ad78a5c 2304 kvm_err("%s: Cannot get inst @ %p\n", __func__, opc);
e685c689
SL
2305 return EMULATE_FAIL;
2306 }
2307
2308 if ((inst & OPCODE) == SPEC3 && (inst & FUNC) == RDHWR) {
26f4f3b5 2309 int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
e685c689
SL
2310 int rd = (inst & RD) >> 11;
2311 int rt = (inst & RT) >> 16;
26f4f3b5
JH
2312 /* If usermode, check RDHWR rd is allowed by guest HWREna */
2313 if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) {
2314 kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n",
2315 rd, opc);
2316 goto emulate_ri;
2317 }
e685c689
SL
2318 switch (rd) {
2319 case 0: /* CPU number */
2320 arch->gprs[rt] = 0;
2321 break;
2322 case 1: /* SYNCI length */
2323 arch->gprs[rt] = min(current_cpu_data.dcache.linesz,
2324 current_cpu_data.icache.linesz);
2325 break;
2326 case 2: /* Read count register */
e30492bb 2327 arch->gprs[rt] = kvm_mips_read_count(vcpu);
e685c689
SL
2328 break;
2329 case 3: /* Count register resolution */
2330 switch (current_cpu_data.cputype) {
2331 case CPU_20KC:
2332 case CPU_25KF:
2333 arch->gprs[rt] = 1;
2334 break;
2335 default:
2336 arch->gprs[rt] = 2;
2337 }
2338 break;
2339 case 29:
e685c689 2340 arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0);
e685c689
SL
2341 break;
2342
2343 default:
15505679 2344 kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc);
26f4f3b5 2345 goto emulate_ri;
e685c689
SL
2346 }
2347 } else {
15505679 2348 kvm_debug("Emulate RI not supported @ %p: %#x\n", opc, inst);
26f4f3b5 2349 goto emulate_ri;
e685c689
SL
2350 }
2351
26f4f3b5
JH
2352 return EMULATE_DONE;
2353
2354emulate_ri:
e685c689 2355 /*
26f4f3b5
JH
2356 * Rollback PC (if in branch delay slot then the PC already points to
2357 * branch target), and pass the RI exception to the guest OS.
e685c689 2358 */
26f4f3b5
JH
2359 vcpu->arch.pc = curr_pc;
2360 return kvm_mips_emulate_ri_exc(cause, opc, run, vcpu);
e685c689
SL
2361}
2362
d116e812
DCZ
2363enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu,
2364 struct kvm_run *run)
e685c689
SL
2365{
2366 unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
2367 enum emulation_result er = EMULATE_DONE;
e685c689
SL
2368
2369 if (run->mmio.len > sizeof(*gpr)) {
6ad78a5c 2370 kvm_err("Bad MMIO length: %d", run->mmio.len);
e685c689
SL
2371 er = EMULATE_FAIL;
2372 goto done;
2373 }
2374
e685c689
SL
2375 er = update_pc(vcpu, vcpu->arch.pending_load_cause);
2376 if (er == EMULATE_FAIL)
2377 return er;
2378
2379 switch (run->mmio.len) {
2380 case 4:
2381 *gpr = *(int32_t *) run->mmio.data;
2382 break;
2383
2384 case 2:
2385 if (vcpu->mmio_needed == 2)
2386 *gpr = *(int16_t *) run->mmio.data;
2387 else
ed9244e6 2388 *gpr = *(uint16_t *)run->mmio.data;
e685c689
SL
2389
2390 break;
2391 case 1:
2392 if (vcpu->mmio_needed == 2)
2393 *gpr = *(int8_t *) run->mmio.data;
2394 else
2395 *gpr = *(u8 *) run->mmio.data;
2396 break;
2397 }
2398
2399 if (vcpu->arch.pending_load_cause & CAUSEF_BD)
d116e812
DCZ
2400 kvm_debug("[%#lx] Completing %d byte BD Load to gpr %d (0x%08lx) type %d\n",
2401 vcpu->arch.pc, run->mmio.len, vcpu->arch.io_gpr, *gpr,
2402 vcpu->mmio_needed);
e685c689
SL
2403
2404done:
2405 return er;
2406}
2407
d116e812
DCZ
2408static enum emulation_result kvm_mips_emulate_exc(unsigned long cause,
2409 uint32_t *opc,
2410 struct kvm_run *run,
2411 struct kvm_vcpu *vcpu)
e685c689
SL
2412{
2413 uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2414 struct mips_coproc *cop0 = vcpu->arch.cop0;
2415 struct kvm_vcpu_arch *arch = &vcpu->arch;
2416 enum emulation_result er = EMULATE_DONE;
2417
2418 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2419 /* save old pc */
2420 kvm_write_c0_guest_epc(cop0, arch->pc);
2421 kvm_set_c0_guest_status(cop0, ST0_EXL);
2422
2423 if (cause & CAUSEF_BD)
2424 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2425 else
2426 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2427
2428 kvm_change_c0_guest_cause(cop0, (0xff),
2429 (exccode << CAUSEB_EXCCODE));
2430
2431 /* Set PC to the exception entry point */
2432 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2433 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2434
2435 kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n",
2436 exccode, kvm_read_c0_guest_epc(cop0),
2437 kvm_read_c0_guest_badvaddr(cop0));
2438 } else {
6ad78a5c 2439 kvm_err("Trying to deliver EXC when EXL is already set\n");
e685c689
SL
2440 er = EMULATE_FAIL;
2441 }
2442
2443 return er;
2444}
2445
d116e812
DCZ
2446enum emulation_result kvm_mips_check_privilege(unsigned long cause,
2447 uint32_t *opc,
2448 struct kvm_run *run,
2449 struct kvm_vcpu *vcpu)
e685c689
SL
2450{
2451 enum emulation_result er = EMULATE_DONE;
2452 uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2453 unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
2454
2455 int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2456
2457 if (usermode) {
2458 switch (exccode) {
16d100db
JH
2459 case EXCCODE_INT:
2460 case EXCCODE_SYS:
2461 case EXCCODE_BP:
2462 case EXCCODE_RI:
2463 case EXCCODE_TR:
2464 case EXCCODE_MSAFPE:
2465 case EXCCODE_FPE:
2466 case EXCCODE_MSADIS:
e685c689
SL
2467 break;
2468
16d100db 2469 case EXCCODE_CPU:
e685c689
SL
2470 if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0)
2471 er = EMULATE_PRIV_FAIL;
2472 break;
2473
16d100db 2474 case EXCCODE_MOD:
e685c689
SL
2475 break;
2476
16d100db 2477 case EXCCODE_TLBL:
d116e812
DCZ
2478 /*
2479 * We we are accessing Guest kernel space, then send an
2480 * address error exception to the guest
2481 */
e685c689 2482 if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
6ad78a5c
DCZ
2483 kvm_debug("%s: LD MISS @ %#lx\n", __func__,
2484 badvaddr);
e685c689 2485 cause &= ~0xff;
16d100db 2486 cause |= (EXCCODE_ADEL << CAUSEB_EXCCODE);
e685c689
SL
2487 er = EMULATE_PRIV_FAIL;
2488 }
2489 break;
2490
16d100db 2491 case EXCCODE_TLBS:
d116e812
DCZ
2492 /*
2493 * We we are accessing Guest kernel space, then send an
2494 * address error exception to the guest
2495 */
e685c689 2496 if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
6ad78a5c
DCZ
2497 kvm_debug("%s: ST MISS @ %#lx\n", __func__,
2498 badvaddr);
e685c689 2499 cause &= ~0xff;
16d100db 2500 cause |= (EXCCODE_ADES << CAUSEB_EXCCODE);
e685c689
SL
2501 er = EMULATE_PRIV_FAIL;
2502 }
2503 break;
2504
16d100db 2505 case EXCCODE_ADES:
6ad78a5c
DCZ
2506 kvm_debug("%s: address error ST @ %#lx\n", __func__,
2507 badvaddr);
e685c689
SL
2508 if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2509 cause &= ~0xff;
16d100db 2510 cause |= (EXCCODE_TLBS << CAUSEB_EXCCODE);
e685c689
SL
2511 }
2512 er = EMULATE_PRIV_FAIL;
2513 break;
16d100db 2514 case EXCCODE_ADEL:
6ad78a5c
DCZ
2515 kvm_debug("%s: address error LD @ %#lx\n", __func__,
2516 badvaddr);
e685c689
SL
2517 if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2518 cause &= ~0xff;
16d100db 2519 cause |= (EXCCODE_TLBL << CAUSEB_EXCCODE);
e685c689
SL
2520 }
2521 er = EMULATE_PRIV_FAIL;
2522 break;
2523 default:
2524 er = EMULATE_PRIV_FAIL;
2525 break;
2526 }
2527 }
2528
d116e812 2529 if (er == EMULATE_PRIV_FAIL)
e685c689 2530 kvm_mips_emulate_exc(cause, opc, run, vcpu);
d116e812 2531
e685c689
SL
2532 return er;
2533}
2534
d116e812
DCZ
2535/*
2536 * User Address (UA) fault, this could happen if
e685c689
SL
2537 * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this
2538 * case we pass on the fault to the guest kernel and let it handle it.
2539 * (2) TLB entry is present in the Guest TLB but not in the shadow, in this
2540 * case we inject the TLB from the Guest TLB into the shadow host TLB
2541 */
d116e812
DCZ
2542enum emulation_result kvm_mips_handle_tlbmiss(unsigned long cause,
2543 uint32_t *opc,
2544 struct kvm_run *run,
2545 struct kvm_vcpu *vcpu)
e685c689
SL
2546{
2547 enum emulation_result er = EMULATE_DONE;
2548 uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2549 unsigned long va = vcpu->arch.host_cp0_badvaddr;
2550 int index;
2551
e4e94c0f
JH
2552 kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx\n",
2553 vcpu->arch.host_cp0_badvaddr);
e685c689 2554
d116e812
DCZ
2555 /*
2556 * KVM would not have got the exception if this entry was valid in the
2557 * shadow host TLB. Check the Guest TLB, if the entry is not there then
2558 * send the guest an exception. The guest exc handler should then inject
2559 * an entry into the guest TLB.
e685c689
SL
2560 */
2561 index = kvm_mips_guest_tlb_lookup(vcpu,
caa1faa7 2562 (va & VPN2_MASK) |
ca64c2be
PB
2563 (kvm_read_c0_guest_entryhi(vcpu->arch.cop0) &
2564 KVM_ENTRYHI_ASID));
e685c689 2565 if (index < 0) {
16d100db 2566 if (exccode == EXCCODE_TLBL) {
e685c689 2567 er = kvm_mips_emulate_tlbmiss_ld(cause, opc, run, vcpu);
16d100db 2568 } else if (exccode == EXCCODE_TLBS) {
e685c689
SL
2569 er = kvm_mips_emulate_tlbmiss_st(cause, opc, run, vcpu);
2570 } else {
6ad78a5c
DCZ
2571 kvm_err("%s: invalid exc code: %d\n", __func__,
2572 exccode);
e685c689
SL
2573 er = EMULATE_FAIL;
2574 }
2575 } else {
2576 struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
2577
d116e812
DCZ
2578 /*
2579 * Check if the entry is valid, if not then setup a TLB invalid
2580 * exception to the guest
2581 */
e685c689 2582 if (!TLB_IS_VALID(*tlb, va)) {
16d100db 2583 if (exccode == EXCCODE_TLBL) {
e685c689
SL
2584 er = kvm_mips_emulate_tlbinv_ld(cause, opc, run,
2585 vcpu);
16d100db 2586 } else if (exccode == EXCCODE_TLBS) {
e685c689
SL
2587 er = kvm_mips_emulate_tlbinv_st(cause, opc, run,
2588 vcpu);
2589 } else {
6ad78a5c
DCZ
2590 kvm_err("%s: invalid exc code: %d\n", __func__,
2591 exccode);
e685c689
SL
2592 er = EMULATE_FAIL;
2593 }
2594 } else {
d116e812
DCZ
2595 kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n",
2596 tlb->tlb_hi, tlb->tlb_lo0, tlb->tlb_lo1);
2597 /*
2598 * OK we have a Guest TLB entry, now inject it into the
2599 * shadow host TLB
2600 */
e685c689
SL
2601 kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, NULL,
2602 NULL);
2603 }
2604 }
2605
2606 return er;
2607}
This page took 0.291262 seconds and 5 git commands to generate.