MIPS: KVM: Use cacheops.h definitions
[deliverable/linux.git] / arch / mips / kvm / emulate.c
CommitLineData
e685c689 1/*
d116e812
DCZ
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * KVM/MIPS: Instruction/Exception emulation
7 *
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10 */
e685c689
SL
11
12#include <linux/errno.h>
13#include <linux/err.h>
e30492bb 14#include <linux/ktime.h>
e685c689
SL
15#include <linux/kvm_host.h>
16#include <linux/module.h>
17#include <linux/vmalloc.h>
18#include <linux/fs.h>
19#include <linux/bootmem.h>
20#include <linux/random.h>
21#include <asm/page.h>
22#include <asm/cacheflush.h>
f4956f62 23#include <asm/cacheops.h>
e685c689
SL
24#include <asm/cpu-info.h>
25#include <asm/mmu_context.h>
26#include <asm/tlbflush.h>
27#include <asm/inst.h>
28
29#undef CONFIG_MIPS_MT
30#include <asm/r4kcache.h>
31#define CONFIG_MIPS_MT
32
d7d5b05f
DCZ
33#include "opcode.h"
34#include "interrupt.h"
35#include "commpage.h"
e685c689
SL
36
37#include "trace.h"
38
39/*
40 * Compute the return address and do emulate branch simulation, if required.
41 * This function should be called only in branch delay slot active.
42 */
43unsigned long kvm_compute_return_epc(struct kvm_vcpu *vcpu,
44 unsigned long instpc)
45{
46 unsigned int dspcontrol;
47 union mips_instruction insn;
48 struct kvm_vcpu_arch *arch = &vcpu->arch;
49 long epc = instpc;
50 long nextpc = KVM_INVALID_INST;
51
52 if (epc & 3)
53 goto unaligned;
54
d116e812 55 /* Read the instruction */
e685c689
SL
56 insn.word = kvm_get_inst((uint32_t *) epc, vcpu);
57
58 if (insn.word == KVM_INVALID_INST)
59 return KVM_INVALID_INST;
60
61 switch (insn.i_format.opcode) {
d116e812 62 /* jr and jalr are in r_format format. */
e685c689
SL
63 case spec_op:
64 switch (insn.r_format.func) {
65 case jalr_op:
66 arch->gprs[insn.r_format.rd] = epc + 8;
67 /* Fall through */
68 case jr_op:
69 nextpc = arch->gprs[insn.r_format.rs];
70 break;
71 }
72 break;
73
74 /*
75 * This group contains:
76 * bltz_op, bgez_op, bltzl_op, bgezl_op,
77 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
78 */
79 case bcond_op:
80 switch (insn.i_format.rt) {
81 case bltz_op:
82 case bltzl_op:
83 if ((long)arch->gprs[insn.i_format.rs] < 0)
84 epc = epc + 4 + (insn.i_format.simmediate << 2);
85 else
86 epc += 8;
87 nextpc = epc;
88 break;
89
90 case bgez_op:
91 case bgezl_op:
92 if ((long)arch->gprs[insn.i_format.rs] >= 0)
93 epc = epc + 4 + (insn.i_format.simmediate << 2);
94 else
95 epc += 8;
96 nextpc = epc;
97 break;
98
99 case bltzal_op:
100 case bltzall_op:
101 arch->gprs[31] = epc + 8;
102 if ((long)arch->gprs[insn.i_format.rs] < 0)
103 epc = epc + 4 + (insn.i_format.simmediate << 2);
104 else
105 epc += 8;
106 nextpc = epc;
107 break;
108
109 case bgezal_op:
110 case bgezall_op:
111 arch->gprs[31] = epc + 8;
112 if ((long)arch->gprs[insn.i_format.rs] >= 0)
113 epc = epc + 4 + (insn.i_format.simmediate << 2);
114 else
115 epc += 8;
116 nextpc = epc;
117 break;
118 case bposge32_op:
119 if (!cpu_has_dsp)
120 goto sigill;
121
122 dspcontrol = rddsp(0x01);
123
d116e812 124 if (dspcontrol >= 32)
e685c689 125 epc = epc + 4 + (insn.i_format.simmediate << 2);
d116e812 126 else
e685c689
SL
127 epc += 8;
128 nextpc = epc;
129 break;
130 }
131 break;
132
d116e812 133 /* These are unconditional and in j_format. */
e685c689
SL
134 case jal_op:
135 arch->gprs[31] = instpc + 8;
136 case j_op:
137 epc += 4;
138 epc >>= 28;
139 epc <<= 28;
140 epc |= (insn.j_format.target << 2);
141 nextpc = epc;
142 break;
143
d116e812 144 /* These are conditional and in i_format. */
e685c689
SL
145 case beq_op:
146 case beql_op:
147 if (arch->gprs[insn.i_format.rs] ==
148 arch->gprs[insn.i_format.rt])
149 epc = epc + 4 + (insn.i_format.simmediate << 2);
150 else
151 epc += 8;
152 nextpc = epc;
153 break;
154
155 case bne_op:
156 case bnel_op:
157 if (arch->gprs[insn.i_format.rs] !=
158 arch->gprs[insn.i_format.rt])
159 epc = epc + 4 + (insn.i_format.simmediate << 2);
160 else
161 epc += 8;
162 nextpc = epc;
163 break;
164
165 case blez_op: /* not really i_format */
166 case blezl_op:
167 /* rt field assumed to be zero */
168 if ((long)arch->gprs[insn.i_format.rs] <= 0)
169 epc = epc + 4 + (insn.i_format.simmediate << 2);
170 else
171 epc += 8;
172 nextpc = epc;
173 break;
174
175 case bgtz_op:
176 case bgtzl_op:
177 /* rt field assumed to be zero */
178 if ((long)arch->gprs[insn.i_format.rs] > 0)
179 epc = epc + 4 + (insn.i_format.simmediate << 2);
180 else
181 epc += 8;
182 nextpc = epc;
183 break;
184
d116e812 185 /* And now the FPA/cp1 branch instructions. */
e685c689 186 case cop1_op:
6ad78a5c 187 kvm_err("%s: unsupported cop1_op\n", __func__);
e685c689
SL
188 break;
189 }
190
191 return nextpc;
192
193unaligned:
6ad78a5c 194 kvm_err("%s: unaligned epc\n", __func__);
e685c689
SL
195 return nextpc;
196
197sigill:
6ad78a5c 198 kvm_err("%s: DSP branch but not DSP ASE\n", __func__);
e685c689
SL
199 return nextpc;
200}
201
202enum emulation_result update_pc(struct kvm_vcpu *vcpu, uint32_t cause)
203{
204 unsigned long branch_pc;
205 enum emulation_result er = EMULATE_DONE;
206
207 if (cause & CAUSEF_BD) {
208 branch_pc = kvm_compute_return_epc(vcpu, vcpu->arch.pc);
209 if (branch_pc == KVM_INVALID_INST) {
210 er = EMULATE_FAIL;
211 } else {
212 vcpu->arch.pc = branch_pc;
d116e812
DCZ
213 kvm_debug("BD update_pc(): New PC: %#lx\n",
214 vcpu->arch.pc);
e685c689
SL
215 }
216 } else
217 vcpu->arch.pc += 4;
218
219 kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
220
221 return er;
222}
223
e30492bb
JH
224/**
225 * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
226 * @vcpu: Virtual CPU.
e685c689 227 *
f8239342
JH
228 * Returns: 1 if the CP0_Count timer is disabled by either the guest
229 * CP0_Cause.DC bit or the count_ctl.DC bit.
e30492bb 230 * 0 otherwise (in which case CP0_Count timer is running).
e685c689 231 */
e30492bb 232static inline int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
e685c689
SL
233{
234 struct mips_coproc *cop0 = vcpu->arch.cop0;
d116e812 235
f8239342
JH
236 return (vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
237 (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
e30492bb 238}
e685c689 239
e30492bb
JH
240/**
241 * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
242 *
243 * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
244 *
245 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
246 */
247static uint32_t kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
248{
249 s64 now_ns, periods;
250 u64 delta;
251
252 now_ns = ktime_to_ns(now);
253 delta = now_ns + vcpu->arch.count_dyn_bias;
254
255 if (delta >= vcpu->arch.count_period) {
256 /* If delta is out of safe range the bias needs adjusting */
257 periods = div64_s64(now_ns, vcpu->arch.count_period);
258 vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
259 /* Recalculate delta with new bias */
260 delta = now_ns + vcpu->arch.count_dyn_bias;
e685c689
SL
261 }
262
e30492bb
JH
263 /*
264 * We've ensured that:
265 * delta < count_period
266 *
267 * Therefore the intermediate delta*count_hz will never overflow since
268 * at the boundary condition:
269 * delta = count_period
270 * delta = NSEC_PER_SEC * 2^32 / count_hz
271 * delta * count_hz = NSEC_PER_SEC * 2^32
272 */
273 return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
274}
275
f8239342
JH
276/**
277 * kvm_mips_count_time() - Get effective current time.
278 * @vcpu: Virtual CPU.
279 *
280 * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
281 * except when the master disable bit is set in count_ctl, in which case it is
282 * count_resume, i.e. the time that the count was disabled.
283 *
284 * Returns: Effective monotonic ktime for CP0_Count.
285 */
286static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
287{
288 if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
289 return vcpu->arch.count_resume;
290
291 return ktime_get();
292}
293
e30492bb
JH
294/**
295 * kvm_mips_read_count_running() - Read the current count value as if running.
296 * @vcpu: Virtual CPU.
297 * @now: Kernel time to read CP0_Count at.
298 *
299 * Returns the current guest CP0_Count register at time @now and handles if the
300 * timer interrupt is pending and hasn't been handled yet.
301 *
302 * Returns: The current value of the guest CP0_Count register.
303 */
304static uint32_t kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
305{
306 ktime_t expires;
307 int running;
308
309 /* Is the hrtimer pending? */
310 expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
311 if (ktime_compare(now, expires) >= 0) {
312 /*
313 * Cancel it while we handle it so there's no chance of
314 * interference with the timeout handler.
315 */
316 running = hrtimer_cancel(&vcpu->arch.comparecount_timer);
317
318 /* Nothing should be waiting on the timeout */
319 kvm_mips_callbacks->queue_timer_int(vcpu);
320
321 /*
322 * Restart the timer if it was running based on the expiry time
323 * we read, so that we don't push it back 2 periods.
324 */
325 if (running) {
326 expires = ktime_add_ns(expires,
327 vcpu->arch.count_period);
328 hrtimer_start(&vcpu->arch.comparecount_timer, expires,
329 HRTIMER_MODE_ABS);
330 }
331 }
332
333 /* Return the biased and scaled guest CP0_Count */
334 return vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
335}
336
337/**
338 * kvm_mips_read_count() - Read the current count value.
339 * @vcpu: Virtual CPU.
340 *
341 * Read the current guest CP0_Count value, taking into account whether the timer
342 * is stopped.
343 *
344 * Returns: The current guest CP0_Count value.
345 */
346uint32_t kvm_mips_read_count(struct kvm_vcpu *vcpu)
347{
348 struct mips_coproc *cop0 = vcpu->arch.cop0;
349
350 /* If count disabled just read static copy of count */
351 if (kvm_mips_count_disabled(vcpu))
352 return kvm_read_c0_guest_count(cop0);
353
354 return kvm_mips_read_count_running(vcpu, ktime_get());
355}
356
357/**
358 * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
359 * @vcpu: Virtual CPU.
360 * @count: Output pointer for CP0_Count value at point of freeze.
361 *
362 * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
363 * at the point it was frozen. It is guaranteed that any pending interrupts at
364 * the point it was frozen are handled, and none after that point.
365 *
366 * This is useful where the time/CP0_Count is needed in the calculation of the
367 * new parameters.
368 *
369 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
370 *
371 * Returns: The ktime at the point of freeze.
372 */
373static ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu,
374 uint32_t *count)
375{
376 ktime_t now;
377
378 /* stop hrtimer before finding time */
379 hrtimer_cancel(&vcpu->arch.comparecount_timer);
380 now = ktime_get();
381
382 /* find count at this point and handle pending hrtimer */
383 *count = kvm_mips_read_count_running(vcpu, now);
384
385 return now;
386}
387
e30492bb
JH
388/**
389 * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
390 * @vcpu: Virtual CPU.
391 * @now: ktime at point of resume.
392 * @count: CP0_Count at point of resume.
393 *
394 * Resumes the timer and updates the timer expiry based on @now and @count.
395 * This can be used in conjunction with kvm_mips_freeze_timer() when timer
396 * parameters need to be changed.
397 *
398 * It is guaranteed that a timer interrupt immediately after resume will be
399 * handled, but not if CP_Compare is exactly at @count. That case is already
400 * handled by kvm_mips_freeze_timer().
401 *
402 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
403 */
404static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
405 ktime_t now, uint32_t count)
406{
407 struct mips_coproc *cop0 = vcpu->arch.cop0;
408 uint32_t compare;
409 u64 delta;
410 ktime_t expire;
411
412 /* Calculate timeout (wrap 0 to 2^32) */
413 compare = kvm_read_c0_guest_compare(cop0);
414 delta = (u64)(uint32_t)(compare - count - 1) + 1;
415 delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
416 expire = ktime_add_ns(now, delta);
417
418 /* Update hrtimer to use new timeout */
419 hrtimer_cancel(&vcpu->arch.comparecount_timer);
420 hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
421}
422
423/**
424 * kvm_mips_update_hrtimer() - Update next expiry time of hrtimer.
425 * @vcpu: Virtual CPU.
426 *
427 * Recalculates and updates the expiry time of the hrtimer. This can be used
428 * after timer parameters have been altered which do not depend on the time that
429 * the change occurs (in those cases kvm_mips_freeze_hrtimer() and
430 * kvm_mips_resume_hrtimer() are used directly).
431 *
432 * It is guaranteed that no timer interrupts will be lost in the process.
433 *
434 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
435 */
436static void kvm_mips_update_hrtimer(struct kvm_vcpu *vcpu)
437{
438 ktime_t now;
439 uint32_t count;
440
441 /*
442 * freeze_hrtimer takes care of a timer interrupts <= count, and
443 * resume_hrtimer the hrtimer takes care of a timer interrupts > count.
444 */
445 now = kvm_mips_freeze_hrtimer(vcpu, &count);
446 kvm_mips_resume_hrtimer(vcpu, now, count);
447}
448
449/**
450 * kvm_mips_write_count() - Modify the count and update timer.
451 * @vcpu: Virtual CPU.
452 * @count: Guest CP0_Count value to set.
453 *
454 * Sets the CP0_Count value and updates the timer accordingly.
455 */
456void kvm_mips_write_count(struct kvm_vcpu *vcpu, uint32_t count)
457{
458 struct mips_coproc *cop0 = vcpu->arch.cop0;
459 ktime_t now;
460
461 /* Calculate bias */
f8239342 462 now = kvm_mips_count_time(vcpu);
e30492bb
JH
463 vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
464
465 if (kvm_mips_count_disabled(vcpu))
466 /* The timer's disabled, adjust the static count */
467 kvm_write_c0_guest_count(cop0, count);
468 else
469 /* Update timeout */
470 kvm_mips_resume_hrtimer(vcpu, now, count);
471}
472
473/**
474 * kvm_mips_init_count() - Initialise timer.
475 * @vcpu: Virtual CPU.
476 *
477 * Initialise the timer to a sensible frequency, namely 100MHz, zero it, and set
478 * it going if it's enabled.
479 */
480void kvm_mips_init_count(struct kvm_vcpu *vcpu)
481{
482 /* 100 MHz */
483 vcpu->arch.count_hz = 100*1000*1000;
484 vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32,
485 vcpu->arch.count_hz);
486 vcpu->arch.count_dyn_bias = 0;
487
488 /* Starting at 0 */
489 kvm_mips_write_count(vcpu, 0);
490}
491
f74a8e22
JH
492/**
493 * kvm_mips_set_count_hz() - Update the frequency of the timer.
494 * @vcpu: Virtual CPU.
495 * @count_hz: Frequency of CP0_Count timer in Hz.
496 *
497 * Change the frequency of the CP0_Count timer. This is done atomically so that
498 * CP0_Count is continuous and no timer interrupt is lost.
499 *
500 * Returns: -EINVAL if @count_hz is out of range.
501 * 0 on success.
502 */
503int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
504{
505 struct mips_coproc *cop0 = vcpu->arch.cop0;
506 int dc;
507 ktime_t now;
508 u32 count;
509
510 /* ensure the frequency is in a sensible range... */
511 if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
512 return -EINVAL;
513 /* ... and has actually changed */
514 if (vcpu->arch.count_hz == count_hz)
515 return 0;
516
517 /* Safely freeze timer so we can keep it continuous */
518 dc = kvm_mips_count_disabled(vcpu);
519 if (dc) {
520 now = kvm_mips_count_time(vcpu);
521 count = kvm_read_c0_guest_count(cop0);
522 } else {
523 now = kvm_mips_freeze_hrtimer(vcpu, &count);
524 }
525
526 /* Update the frequency */
527 vcpu->arch.count_hz = count_hz;
528 vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
529 vcpu->arch.count_dyn_bias = 0;
530
531 /* Calculate adjusted bias so dynamic count is unchanged */
532 vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
533
534 /* Update and resume hrtimer */
535 if (!dc)
536 kvm_mips_resume_hrtimer(vcpu, now, count);
537 return 0;
538}
539
e30492bb
JH
540/**
541 * kvm_mips_write_compare() - Modify compare and update timer.
542 * @vcpu: Virtual CPU.
543 * @compare: New CP0_Compare value.
544 *
545 * Update CP0_Compare to a new value and update the timeout.
546 */
547void kvm_mips_write_compare(struct kvm_vcpu *vcpu, uint32_t compare)
548{
549 struct mips_coproc *cop0 = vcpu->arch.cop0;
550
551 /* if unchanged, must just be an ack */
552 if (kvm_read_c0_guest_compare(cop0) == compare)
553 return;
554
555 /* Update compare */
556 kvm_write_c0_guest_compare(cop0, compare);
557
558 /* Update timeout if count enabled */
559 if (!kvm_mips_count_disabled(vcpu))
560 kvm_mips_update_hrtimer(vcpu);
561}
562
563/**
564 * kvm_mips_count_disable() - Disable count.
565 * @vcpu: Virtual CPU.
566 *
567 * Disable the CP0_Count timer. A timer interrupt on or before the final stop
568 * time will be handled but not after.
569 *
f8239342
JH
570 * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
571 * count_ctl.DC has been set (count disabled).
e30492bb
JH
572 *
573 * Returns: The time that the timer was stopped.
574 */
575static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
576{
577 struct mips_coproc *cop0 = vcpu->arch.cop0;
578 uint32_t count;
579 ktime_t now;
580
581 /* Stop hrtimer */
582 hrtimer_cancel(&vcpu->arch.comparecount_timer);
583
584 /* Set the static count from the dynamic count, handling pending TI */
585 now = ktime_get();
586 count = kvm_mips_read_count_running(vcpu, now);
587 kvm_write_c0_guest_count(cop0, count);
588
589 return now;
590}
591
592/**
593 * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
594 * @vcpu: Virtual CPU.
595 *
596 * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
f8239342
JH
597 * before the final stop time will be handled if the timer isn't disabled by
598 * count_ctl.DC, but not after.
e30492bb
JH
599 *
600 * Assumes CP0_Cause.DC is clear (count enabled).
601 */
602void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
603{
604 struct mips_coproc *cop0 = vcpu->arch.cop0;
605
606 kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
f8239342
JH
607 if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
608 kvm_mips_count_disable(vcpu);
e30492bb
JH
609}
610
611/**
612 * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
613 * @vcpu: Virtual CPU.
614 *
615 * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
f8239342
JH
616 * the start time will be handled if the timer isn't disabled by count_ctl.DC,
617 * potentially before even returning, so the caller should be careful with
618 * ordering of CP0_Cause modifications so as not to lose it.
e30492bb
JH
619 *
620 * Assumes CP0_Cause.DC is set (count disabled).
621 */
622void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
623{
624 struct mips_coproc *cop0 = vcpu->arch.cop0;
625 uint32_t count;
626
627 kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);
628
629 /*
630 * Set the dynamic count to match the static count.
f8239342
JH
631 * This starts the hrtimer if count_ctl.DC allows it.
632 * Otherwise it conveniently updates the biases.
e30492bb
JH
633 */
634 count = kvm_read_c0_guest_count(cop0);
635 kvm_mips_write_count(vcpu, count);
636}
637
f8239342
JH
638/**
639 * kvm_mips_set_count_ctl() - Update the count control KVM register.
640 * @vcpu: Virtual CPU.
641 * @count_ctl: Count control register new value.
642 *
643 * Set the count control KVM register. The timer is updated accordingly.
644 *
645 * Returns: -EINVAL if reserved bits are set.
646 * 0 on success.
647 */
648int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
649{
650 struct mips_coproc *cop0 = vcpu->arch.cop0;
651 s64 changed = count_ctl ^ vcpu->arch.count_ctl;
652 s64 delta;
653 ktime_t expire, now;
654 uint32_t count, compare;
655
656 /* Only allow defined bits to be changed */
657 if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
658 return -EINVAL;
659
660 /* Apply new value */
661 vcpu->arch.count_ctl = count_ctl;
662
663 /* Master CP0_Count disable */
664 if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
665 /* Is CP0_Cause.DC already disabling CP0_Count? */
666 if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
667 if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
668 /* Just record the current time */
669 vcpu->arch.count_resume = ktime_get();
670 } else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
671 /* disable timer and record current time */
672 vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
673 } else {
674 /*
675 * Calculate timeout relative to static count at resume
676 * time (wrap 0 to 2^32).
677 */
678 count = kvm_read_c0_guest_count(cop0);
679 compare = kvm_read_c0_guest_compare(cop0);
680 delta = (u64)(uint32_t)(compare - count - 1) + 1;
681 delta = div_u64(delta * NSEC_PER_SEC,
682 vcpu->arch.count_hz);
683 expire = ktime_add_ns(vcpu->arch.count_resume, delta);
684
685 /* Handle pending interrupt */
686 now = ktime_get();
687 if (ktime_compare(now, expire) >= 0)
688 /* Nothing should be waiting on the timeout */
689 kvm_mips_callbacks->queue_timer_int(vcpu);
690
691 /* Resume hrtimer without changing bias */
692 count = kvm_mips_read_count_running(vcpu, now);
693 kvm_mips_resume_hrtimer(vcpu, now, count);
694 }
695 }
696
697 return 0;
698}
699
700/**
701 * kvm_mips_set_count_resume() - Update the count resume KVM register.
702 * @vcpu: Virtual CPU.
703 * @count_resume: Count resume register new value.
704 *
705 * Set the count resume KVM register.
706 *
707 * Returns: -EINVAL if out of valid range (0..now).
708 * 0 on success.
709 */
710int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
711{
712 /*
713 * It doesn't make sense for the resume time to be in the future, as it
714 * would be possible for the next interrupt to be more than a full
715 * period in the future.
716 */
717 if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
718 return -EINVAL;
719
720 vcpu->arch.count_resume = ns_to_ktime(count_resume);
721 return 0;
722}
723
e30492bb
JH
724/**
725 * kvm_mips_count_timeout() - Push timer forward on timeout.
726 * @vcpu: Virtual CPU.
727 *
728 * Handle an hrtimer event by push the hrtimer forward a period.
729 *
730 * Returns: The hrtimer_restart value to return to the hrtimer subsystem.
731 */
732enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
733{
734 /* Add the Count period to the current expiry time */
735 hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
736 vcpu->arch.count_period);
737 return HRTIMER_RESTART;
e685c689
SL
738}
739
740enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu)
741{
742 struct mips_coproc *cop0 = vcpu->arch.cop0;
743 enum emulation_result er = EMULATE_DONE;
744
745 if (kvm_read_c0_guest_status(cop0) & ST0_EXL) {
746 kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc,
747 kvm_read_c0_guest_epc(cop0));
748 kvm_clear_c0_guest_status(cop0, ST0_EXL);
749 vcpu->arch.pc = kvm_read_c0_guest_epc(cop0);
750
751 } else if (kvm_read_c0_guest_status(cop0) & ST0_ERL) {
752 kvm_clear_c0_guest_status(cop0, ST0_ERL);
753 vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0);
754 } else {
6ad78a5c
DCZ
755 kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n",
756 vcpu->arch.pc);
e685c689
SL
757 er = EMULATE_FAIL;
758 }
759
760 return er;
761}
762
763enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
764{
e685c689
SL
765 kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
766 vcpu->arch.pending_exceptions);
767
768 ++vcpu->stat.wait_exits;
769 trace_kvm_exit(vcpu, WAIT_EXITS);
770 if (!vcpu->arch.pending_exceptions) {
771 vcpu->arch.wait = 1;
772 kvm_vcpu_block(vcpu);
773
d116e812
DCZ
774 /*
775 * We we are runnable, then definitely go off to user space to
776 * check if any I/O interrupts are pending.
e685c689
SL
777 */
778 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
779 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
780 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
781 }
782 }
783
d98403a5 784 return EMULATE_DONE;
e685c689
SL
785}
786
d116e812
DCZ
787/*
788 * XXXKYMA: Linux doesn't seem to use TLBR, return EMULATE_FAIL for now so that
789 * we can catch this, if things ever change
e685c689
SL
790 */
791enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu)
792{
793 struct mips_coproc *cop0 = vcpu->arch.cop0;
e685c689
SL
794 uint32_t pc = vcpu->arch.pc;
795
6ad78a5c 796 kvm_err("[%#x] COP0_TLBR [%ld]\n", pc, kvm_read_c0_guest_index(cop0));
d98403a5 797 return EMULATE_FAIL;
e685c689
SL
798}
799
800/* Write Guest TLB Entry @ Index */
801enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu)
802{
803 struct mips_coproc *cop0 = vcpu->arch.cop0;
804 int index = kvm_read_c0_guest_index(cop0);
e685c689
SL
805 struct kvm_mips_tlb *tlb = NULL;
806 uint32_t pc = vcpu->arch.pc;
807
808 if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
6ad78a5c
DCZ
809 kvm_debug("%s: illegal index: %d\n", __func__, index);
810 kvm_debug("[%#x] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
811 pc, index, kvm_read_c0_guest_entryhi(cop0),
812 kvm_read_c0_guest_entrylo0(cop0),
813 kvm_read_c0_guest_entrylo1(cop0),
814 kvm_read_c0_guest_pagemask(cop0));
e685c689
SL
815 index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE;
816 }
817
818 tlb = &vcpu->arch.guest_tlb[index];
d116e812
DCZ
819 /*
820 * Probe the shadow host TLB for the entry being overwritten, if one
821 * matches, invalidate it
822 */
e685c689 823 kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);
e685c689
SL
824
825 tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
826 tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
827 tlb->tlb_lo0 = kvm_read_c0_guest_entrylo0(cop0);
828 tlb->tlb_lo1 = kvm_read_c0_guest_entrylo1(cop0);
829
d116e812
DCZ
830 kvm_debug("[%#x] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
831 pc, index, kvm_read_c0_guest_entryhi(cop0),
832 kvm_read_c0_guest_entrylo0(cop0),
833 kvm_read_c0_guest_entrylo1(cop0),
834 kvm_read_c0_guest_pagemask(cop0));
e685c689 835
d98403a5 836 return EMULATE_DONE;
e685c689
SL
837}
838
839/* Write Guest TLB Entry @ Random Index */
840enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu)
841{
842 struct mips_coproc *cop0 = vcpu->arch.cop0;
e685c689
SL
843 struct kvm_mips_tlb *tlb = NULL;
844 uint32_t pc = vcpu->arch.pc;
845 int index;
846
e685c689
SL
847 get_random_bytes(&index, sizeof(index));
848 index &= (KVM_MIPS_GUEST_TLB_SIZE - 1);
e685c689 849
e685c689
SL
850 tlb = &vcpu->arch.guest_tlb[index];
851
d116e812
DCZ
852 /*
853 * Probe the shadow host TLB for the entry being overwritten, if one
854 * matches, invalidate it
855 */
e685c689 856 kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);
e685c689
SL
857
858 tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
859 tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
860 tlb->tlb_lo0 = kvm_read_c0_guest_entrylo0(cop0);
861 tlb->tlb_lo1 = kvm_read_c0_guest_entrylo1(cop0);
862
d116e812
DCZ
863 kvm_debug("[%#x] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n",
864 pc, index, kvm_read_c0_guest_entryhi(cop0),
865 kvm_read_c0_guest_entrylo0(cop0),
866 kvm_read_c0_guest_entrylo1(cop0));
e685c689 867
d98403a5 868 return EMULATE_DONE;
e685c689
SL
869}
870
871enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu)
872{
873 struct mips_coproc *cop0 = vcpu->arch.cop0;
874 long entryhi = kvm_read_c0_guest_entryhi(cop0);
e685c689
SL
875 uint32_t pc = vcpu->arch.pc;
876 int index = -1;
877
878 index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
879
880 kvm_write_c0_guest_index(cop0, index);
881
882 kvm_debug("[%#x] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi,
883 index);
884
d98403a5 885 return EMULATE_DONE;
e685c689
SL
886}
887
c771607a
JH
888/**
889 * kvm_mips_config1_wrmask() - Find mask of writable bits in guest Config1
890 * @vcpu: Virtual CPU.
891 *
892 * Finds the mask of bits which are writable in the guest's Config1 CP0
893 * register, by userland (currently read-only to the guest).
894 */
895unsigned int kvm_mips_config1_wrmask(struct kvm_vcpu *vcpu)
896{
6cdc65e3
JH
897 unsigned int mask = 0;
898
899 /* Permit FPU to be present if FPU is supported */
900 if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
901 mask |= MIPS_CONF1_FP;
902
903 return mask;
c771607a
JH
904}
905
906/**
907 * kvm_mips_config3_wrmask() - Find mask of writable bits in guest Config3
908 * @vcpu: Virtual CPU.
909 *
910 * Finds the mask of bits which are writable in the guest's Config3 CP0
911 * register, by userland (currently read-only to the guest).
912 */
913unsigned int kvm_mips_config3_wrmask(struct kvm_vcpu *vcpu)
914{
915 /* Config4 is optional */
2b6009d6
JH
916 unsigned int mask = MIPS_CONF_M;
917
918 /* Permit MSA to be present if MSA is supported */
919 if (kvm_mips_guest_can_have_msa(&vcpu->arch))
920 mask |= MIPS_CONF3_MSA;
921
922 return mask;
c771607a
JH
923}
924
925/**
926 * kvm_mips_config4_wrmask() - Find mask of writable bits in guest Config4
927 * @vcpu: Virtual CPU.
928 *
929 * Finds the mask of bits which are writable in the guest's Config4 CP0
930 * register, by userland (currently read-only to the guest).
931 */
932unsigned int kvm_mips_config4_wrmask(struct kvm_vcpu *vcpu)
933{
934 /* Config5 is optional */
935 return MIPS_CONF_M;
936}
937
938/**
939 * kvm_mips_config5_wrmask() - Find mask of writable bits in guest Config5
940 * @vcpu: Virtual CPU.
941 *
942 * Finds the mask of bits which are writable in the guest's Config5 CP0
943 * register, by the guest itself.
944 */
945unsigned int kvm_mips_config5_wrmask(struct kvm_vcpu *vcpu)
946{
6cdc65e3
JH
947 unsigned int mask = 0;
948
2b6009d6
JH
949 /* Permit MSAEn changes if MSA supported and enabled */
950 if (kvm_mips_guest_has_msa(&vcpu->arch))
951 mask |= MIPS_CONF5_MSAEN;
952
6cdc65e3
JH
953 /*
954 * Permit guest FPU mode changes if FPU is enabled and the relevant
955 * feature exists according to FIR register.
956 */
957 if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
958 if (cpu_has_fre)
959 mask |= MIPS_CONF5_FRE;
960 /* We don't support UFR or UFE */
961 }
962
963 return mask;
c771607a
JH
964}
965
d116e812
DCZ
966enum emulation_result kvm_mips_emulate_CP0(uint32_t inst, uint32_t *opc,
967 uint32_t cause, struct kvm_run *run,
968 struct kvm_vcpu *vcpu)
e685c689
SL
969{
970 struct mips_coproc *cop0 = vcpu->arch.cop0;
971 enum emulation_result er = EMULATE_DONE;
972 int32_t rt, rd, copz, sel, co_bit, op;
973 uint32_t pc = vcpu->arch.pc;
974 unsigned long curr_pc;
975
976 /*
977 * Update PC and hold onto current PC in case there is
978 * an error and we want to rollback the PC
979 */
980 curr_pc = vcpu->arch.pc;
981 er = update_pc(vcpu, cause);
d116e812 982 if (er == EMULATE_FAIL)
e685c689 983 return er;
e685c689
SL
984
985 copz = (inst >> 21) & 0x1f;
986 rt = (inst >> 16) & 0x1f;
987 rd = (inst >> 11) & 0x1f;
988 sel = inst & 0x7;
989 co_bit = (inst >> 25) & 1;
990
e685c689
SL
991 if (co_bit) {
992 op = (inst) & 0xff;
993
994 switch (op) {
995 case tlbr_op: /* Read indexed TLB entry */
996 er = kvm_mips_emul_tlbr(vcpu);
997 break;
998 case tlbwi_op: /* Write indexed */
999 er = kvm_mips_emul_tlbwi(vcpu);
1000 break;
1001 case tlbwr_op: /* Write random */
1002 er = kvm_mips_emul_tlbwr(vcpu);
1003 break;
1004 case tlbp_op: /* TLB Probe */
1005 er = kvm_mips_emul_tlbp(vcpu);
1006 break;
1007 case rfe_op:
6ad78a5c 1008 kvm_err("!!!COP0_RFE!!!\n");
e685c689
SL
1009 break;
1010 case eret_op:
1011 er = kvm_mips_emul_eret(vcpu);
1012 goto dont_update_pc;
1013 break;
1014 case wait_op:
1015 er = kvm_mips_emul_wait(vcpu);
1016 break;
1017 }
1018 } else {
1019 switch (copz) {
1020 case mfc_op:
1021#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1022 cop0->stat[rd][sel]++;
1023#endif
1024 /* Get reg */
1025 if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
e30492bb 1026 vcpu->arch.gprs[rt] = kvm_mips_read_count(vcpu);
e685c689
SL
1027 } else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) {
1028 vcpu->arch.gprs[rt] = 0x0;
1029#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1030 kvm_mips_trans_mfc0(inst, opc, vcpu);
1031#endif
d116e812 1032 } else {
e685c689
SL
1033 vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1034
1035#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1036 kvm_mips_trans_mfc0(inst, opc, vcpu);
1037#endif
1038 }
1039
1040 kvm_debug
1041 ("[%#x] MFCz[%d][%d], vcpu->arch.gprs[%d]: %#lx\n",
1042 pc, rd, sel, rt, vcpu->arch.gprs[rt]);
1043
1044 break;
1045
1046 case dmfc_op:
1047 vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1048 break;
1049
1050 case mtc_op:
1051#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1052 cop0->stat[rd][sel]++;
1053#endif
1054 if ((rd == MIPS_CP0_TLB_INDEX)
1055 && (vcpu->arch.gprs[rt] >=
1056 KVM_MIPS_GUEST_TLB_SIZE)) {
6ad78a5c
DCZ
1057 kvm_err("Invalid TLB Index: %ld",
1058 vcpu->arch.gprs[rt]);
e685c689
SL
1059 er = EMULATE_FAIL;
1060 break;
1061 }
1062#define C0_EBASE_CORE_MASK 0xff
1063 if ((rd == MIPS_CP0_PRID) && (sel == 1)) {
1064 /* Preserve CORE number */
1065 kvm_change_c0_guest_ebase(cop0,
1066 ~(C0_EBASE_CORE_MASK),
1067 vcpu->arch.gprs[rt]);
6ad78a5c
DCZ
1068 kvm_err("MTCz, cop0->reg[EBASE]: %#lx\n",
1069 kvm_read_c0_guest_ebase(cop0));
e685c689 1070 } else if (rd == MIPS_CP0_TLB_HI && sel == 0) {
48c4ac97 1071 uint32_t nasid =
d116e812
DCZ
1072 vcpu->arch.gprs[rt] & ASID_MASK;
1073 if ((KSEGX(vcpu->arch.gprs[rt]) != CKSEG0) &&
48c4ac97
DD
1074 ((kvm_read_c0_guest_entryhi(cop0) &
1075 ASID_MASK) != nasid)) {
d116e812
DCZ
1076 kvm_debug("MTCz, change ASID from %#lx to %#lx\n",
1077 kvm_read_c0_guest_entryhi(cop0)
1078 & ASID_MASK,
1079 vcpu->arch.gprs[rt]
1080 & ASID_MASK);
e685c689
SL
1081
1082 /* Blow away the shadow host TLBs */
1083 kvm_mips_flush_host_tlb(1);
1084 }
1085 kvm_write_c0_guest_entryhi(cop0,
1086 vcpu->arch.gprs[rt]);
1087 }
1088 /* Are we writing to COUNT */
1089 else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
e30492bb 1090 kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
e685c689
SL
1091 goto done;
1092 } else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) {
1093 kvm_debug("[%#x] MTCz, COMPARE %#lx <- %#lx\n",
1094 pc, kvm_read_c0_guest_compare(cop0),
1095 vcpu->arch.gprs[rt]);
1096
1097 /* If we are writing to COMPARE */
1098 /* Clear pending timer interrupt, if any */
1099 kvm_mips_callbacks->dequeue_timer_int(vcpu);
e30492bb
JH
1100 kvm_mips_write_compare(vcpu,
1101 vcpu->arch.gprs[rt]);
e685c689 1102 } else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
6cdc65e3
JH
1103 unsigned int old_val, val, change;
1104
1105 old_val = kvm_read_c0_guest_status(cop0);
1106 val = vcpu->arch.gprs[rt];
1107 change = val ^ old_val;
1108
1109 /* Make sure that the NMI bit is never set */
1110 val &= ~ST0_NMI;
1111
1112 /*
1113 * Don't allow CU1 or FR to be set unless FPU
1114 * capability enabled and exists in guest
1115 * configuration.
1116 */
1117 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1118 val &= ~(ST0_CU1 | ST0_FR);
1119
1120 /*
1121 * Also don't allow FR to be set if host doesn't
1122 * support it.
1123 */
1124 if (!(current_cpu_data.fpu_id & MIPS_FPIR_F64))
1125 val &= ~ST0_FR;
1126
1127
1128 /* Handle changes in FPU mode */
1129 preempt_disable();
1130
1131 /*
1132 * FPU and Vector register state is made
1133 * UNPREDICTABLE by a change of FR, so don't
1134 * even bother saving it.
1135 */
1136 if (change & ST0_FR)
1137 kvm_drop_fpu(vcpu);
1138
2b6009d6
JH
1139 /*
1140 * If MSA state is already live, it is undefined
1141 * how it interacts with FR=0 FPU state, and we
1142 * don't want to hit reserved instruction
1143 * exceptions trying to save the MSA state later
1144 * when CU=1 && FR=1, so play it safe and save
1145 * it first.
1146 */
1147 if (change & ST0_CU1 && !(val & ST0_FR) &&
1148 vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
1149 kvm_lose_fpu(vcpu);
1150
d116e812 1151 /*
6cdc65e3
JH
1152 * Propagate CU1 (FPU enable) changes
1153 * immediately if the FPU context is already
1154 * loaded. When disabling we leave the context
1155 * loaded so it can be quickly enabled again in
1156 * the near future.
d116e812 1157 */
6cdc65e3
JH
1158 if (change & ST0_CU1 &&
1159 vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
1160 change_c0_status(ST0_CU1, val);
1161
1162 preempt_enable();
1163
1164 kvm_write_c0_guest_status(cop0, val);
e685c689
SL
1165
1166#ifdef CONFIG_KVM_MIPS_DYN_TRANS
6cdc65e3
JH
1167 /*
1168 * If FPU present, we need CU1/FR bits to take
1169 * effect fairly soon.
1170 */
1171 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1172 kvm_mips_trans_mtc0(inst, opc, vcpu);
e685c689 1173#endif
6cdc65e3
JH
1174 } else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
1175 unsigned int old_val, val, change, wrmask;
1176
1177 old_val = kvm_read_c0_guest_config5(cop0);
1178 val = vcpu->arch.gprs[rt];
1179
1180 /* Only a few bits are writable in Config5 */
1181 wrmask = kvm_mips_config5_wrmask(vcpu);
1182 change = (val ^ old_val) & wrmask;
1183 val = old_val ^ change;
1184
1185
2b6009d6 1186 /* Handle changes in FPU/MSA modes */
6cdc65e3
JH
1187 preempt_disable();
1188
1189 /*
1190 * Propagate FRE changes immediately if the FPU
1191 * context is already loaded.
1192 */
1193 if (change & MIPS_CONF5_FRE &&
1194 vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
1195 change_c0_config5(MIPS_CONF5_FRE, val);
1196
2b6009d6
JH
1197 /*
1198 * Propagate MSAEn changes immediately if the
1199 * MSA context is already loaded. When disabling
1200 * we leave the context loaded so it can be
1201 * quickly enabled again in the near future.
1202 */
1203 if (change & MIPS_CONF5_MSAEN &&
1204 vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
1205 change_c0_config5(MIPS_CONF5_MSAEN,
1206 val);
1207
6cdc65e3
JH
1208 preempt_enable();
1209
1210 kvm_write_c0_guest_config5(cop0, val);
e30492bb
JH
1211 } else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
1212 uint32_t old_cause, new_cause;
d116e812 1213
e30492bb
JH
1214 old_cause = kvm_read_c0_guest_cause(cop0);
1215 new_cause = vcpu->arch.gprs[rt];
1216 /* Update R/W bits */
1217 kvm_change_c0_guest_cause(cop0, 0x08800300,
1218 new_cause);
1219 /* DC bit enabling/disabling timer? */
1220 if ((old_cause ^ new_cause) & CAUSEF_DC) {
1221 if (new_cause & CAUSEF_DC)
1222 kvm_mips_count_disable_cause(vcpu);
1223 else
1224 kvm_mips_count_enable_cause(vcpu);
1225 }
e685c689
SL
1226 } else {
1227 cop0->reg[rd][sel] = vcpu->arch.gprs[rt];
1228#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1229 kvm_mips_trans_mtc0(inst, opc, vcpu);
1230#endif
1231 }
1232
1233 kvm_debug("[%#x] MTCz, cop0->reg[%d][%d]: %#lx\n", pc,
1234 rd, sel, cop0->reg[rd][sel]);
1235 break;
1236
1237 case dmtc_op:
6ad78a5c
DCZ
1238 kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n",
1239 vcpu->arch.pc, rt, rd, sel);
e685c689
SL
1240 er = EMULATE_FAIL;
1241 break;
1242
1243 case mfmcz_op:
1244#ifdef KVM_MIPS_DEBUG_COP0_COUNTERS
1245 cop0->stat[MIPS_CP0_STATUS][0]++;
1246#endif
caa1faa7 1247 if (rt != 0)
e685c689
SL
1248 vcpu->arch.gprs[rt] =
1249 kvm_read_c0_guest_status(cop0);
e685c689
SL
1250 /* EI */
1251 if (inst & 0x20) {
1252 kvm_debug("[%#lx] mfmcz_op: EI\n",
1253 vcpu->arch.pc);
1254 kvm_set_c0_guest_status(cop0, ST0_IE);
1255 } else {
1256 kvm_debug("[%#lx] mfmcz_op: DI\n",
1257 vcpu->arch.pc);
1258 kvm_clear_c0_guest_status(cop0, ST0_IE);
1259 }
1260
1261 break;
1262
1263 case wrpgpr_op:
1264 {
1265 uint32_t css =
1266 cop0->reg[MIPS_CP0_STATUS][2] & 0xf;
1267 uint32_t pss =
1268 (cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf;
d116e812
DCZ
1269 /*
1270 * We don't support any shadow register sets, so
1271 * SRSCtl[PSS] == SRSCtl[CSS] = 0
1272 */
e685c689
SL
1273 if (css || pss) {
1274 er = EMULATE_FAIL;
1275 break;
1276 }
1277 kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd,
1278 vcpu->arch.gprs[rt]);
1279 vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt];
1280 }
1281 break;
1282 default:
6ad78a5c
DCZ
1283 kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n",
1284 vcpu->arch.pc, copz);
e685c689
SL
1285 er = EMULATE_FAIL;
1286 break;
1287 }
1288 }
1289
1290done:
d116e812
DCZ
1291 /* Rollback PC only if emulation was unsuccessful */
1292 if (er == EMULATE_FAIL)
e685c689 1293 vcpu->arch.pc = curr_pc;
e685c689
SL
1294
1295dont_update_pc:
1296 /*
1297 * This is for special instructions whose emulation
1298 * updates the PC, so do not overwrite the PC under
1299 * any circumstances
1300 */
1301
1302 return er;
1303}
1304
d116e812
DCZ
1305enum emulation_result kvm_mips_emulate_store(uint32_t inst, uint32_t cause,
1306 struct kvm_run *run,
1307 struct kvm_vcpu *vcpu)
e685c689
SL
1308{
1309 enum emulation_result er = EMULATE_DO_MMIO;
1310 int32_t op, base, rt, offset;
1311 uint32_t bytes;
1312 void *data = run->mmio.data;
1313 unsigned long curr_pc;
1314
1315 /*
1316 * Update PC and hold onto current PC in case there is
1317 * an error and we want to rollback the PC
1318 */
1319 curr_pc = vcpu->arch.pc;
1320 er = update_pc(vcpu, cause);
1321 if (er == EMULATE_FAIL)
1322 return er;
1323
1324 rt = (inst >> 16) & 0x1f;
1325 base = (inst >> 21) & 0x1f;
1326 offset = inst & 0xffff;
1327 op = (inst >> 26) & 0x3f;
1328
1329 switch (op) {
1330 case sb_op:
1331 bytes = 1;
1332 if (bytes > sizeof(run->mmio.data)) {
1333 kvm_err("%s: bad MMIO length: %d\n", __func__,
1334 run->mmio.len);
1335 }
1336 run->mmio.phys_addr =
1337 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1338 host_cp0_badvaddr);
1339 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1340 er = EMULATE_FAIL;
1341 break;
1342 }
1343 run->mmio.len = bytes;
1344 run->mmio.is_write = 1;
1345 vcpu->mmio_needed = 1;
1346 vcpu->mmio_is_write = 1;
1347 *(u8 *) data = vcpu->arch.gprs[rt];
1348 kvm_debug("OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1349 vcpu->arch.host_cp0_badvaddr, vcpu->arch.gprs[rt],
1350 *(uint8_t *) data);
1351
1352 break;
1353
1354 case sw_op:
1355 bytes = 4;
1356 if (bytes > sizeof(run->mmio.data)) {
1357 kvm_err("%s: bad MMIO length: %d\n", __func__,
1358 run->mmio.len);
1359 }
1360 run->mmio.phys_addr =
1361 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1362 host_cp0_badvaddr);
1363 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1364 er = EMULATE_FAIL;
1365 break;
1366 }
1367
1368 run->mmio.len = bytes;
1369 run->mmio.is_write = 1;
1370 vcpu->mmio_needed = 1;
1371 vcpu->mmio_is_write = 1;
1372 *(uint32_t *) data = vcpu->arch.gprs[rt];
1373
1374 kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1375 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1376 vcpu->arch.gprs[rt], *(uint32_t *) data);
1377 break;
1378
1379 case sh_op:
1380 bytes = 2;
1381 if (bytes > sizeof(run->mmio.data)) {
1382 kvm_err("%s: bad MMIO length: %d\n", __func__,
1383 run->mmio.len);
1384 }
1385 run->mmio.phys_addr =
1386 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1387 host_cp0_badvaddr);
1388 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1389 er = EMULATE_FAIL;
1390 break;
1391 }
1392
1393 run->mmio.len = bytes;
1394 run->mmio.is_write = 1;
1395 vcpu->mmio_needed = 1;
1396 vcpu->mmio_is_write = 1;
1397 *(uint16_t *) data = vcpu->arch.gprs[rt];
1398
1399 kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1400 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1401 vcpu->arch.gprs[rt], *(uint32_t *) data);
1402 break;
1403
1404 default:
6ad78a5c 1405 kvm_err("Store not yet supported");
e685c689
SL
1406 er = EMULATE_FAIL;
1407 break;
1408 }
1409
d116e812
DCZ
1410 /* Rollback PC if emulation was unsuccessful */
1411 if (er == EMULATE_FAIL)
e685c689 1412 vcpu->arch.pc = curr_pc;
e685c689
SL
1413
1414 return er;
1415}
1416
d116e812
DCZ
1417enum emulation_result kvm_mips_emulate_load(uint32_t inst, uint32_t cause,
1418 struct kvm_run *run,
1419 struct kvm_vcpu *vcpu)
e685c689
SL
1420{
1421 enum emulation_result er = EMULATE_DO_MMIO;
1422 int32_t op, base, rt, offset;
1423 uint32_t bytes;
1424
1425 rt = (inst >> 16) & 0x1f;
1426 base = (inst >> 21) & 0x1f;
1427 offset = inst & 0xffff;
1428 op = (inst >> 26) & 0x3f;
1429
1430 vcpu->arch.pending_load_cause = cause;
1431 vcpu->arch.io_gpr = rt;
1432
1433 switch (op) {
1434 case lw_op:
1435 bytes = 4;
1436 if (bytes > sizeof(run->mmio.data)) {
1437 kvm_err("%s: bad MMIO length: %d\n", __func__,
1438 run->mmio.len);
1439 er = EMULATE_FAIL;
1440 break;
1441 }
1442 run->mmio.phys_addr =
1443 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1444 host_cp0_badvaddr);
1445 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1446 er = EMULATE_FAIL;
1447 break;
1448 }
1449
1450 run->mmio.len = bytes;
1451 run->mmio.is_write = 0;
1452 vcpu->mmio_needed = 1;
1453 vcpu->mmio_is_write = 0;
1454 break;
1455
1456 case lh_op:
1457 case lhu_op:
1458 bytes = 2;
1459 if (bytes > sizeof(run->mmio.data)) {
1460 kvm_err("%s: bad MMIO length: %d\n", __func__,
1461 run->mmio.len);
1462 er = EMULATE_FAIL;
1463 break;
1464 }
1465 run->mmio.phys_addr =
1466 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1467 host_cp0_badvaddr);
1468 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1469 er = EMULATE_FAIL;
1470 break;
1471 }
1472
1473 run->mmio.len = bytes;
1474 run->mmio.is_write = 0;
1475 vcpu->mmio_needed = 1;
1476 vcpu->mmio_is_write = 0;
1477
1478 if (op == lh_op)
1479 vcpu->mmio_needed = 2;
1480 else
1481 vcpu->mmio_needed = 1;
1482
1483 break;
1484
1485 case lbu_op:
1486 case lb_op:
1487 bytes = 1;
1488 if (bytes > sizeof(run->mmio.data)) {
1489 kvm_err("%s: bad MMIO length: %d\n", __func__,
1490 run->mmio.len);
1491 er = EMULATE_FAIL;
1492 break;
1493 }
1494 run->mmio.phys_addr =
1495 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1496 host_cp0_badvaddr);
1497 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1498 er = EMULATE_FAIL;
1499 break;
1500 }
1501
1502 run->mmio.len = bytes;
1503 run->mmio.is_write = 0;
1504 vcpu->mmio_is_write = 0;
1505
1506 if (op == lb_op)
1507 vcpu->mmio_needed = 2;
1508 else
1509 vcpu->mmio_needed = 1;
1510
1511 break;
1512
1513 default:
6ad78a5c 1514 kvm_err("Load not yet supported");
e685c689
SL
1515 er = EMULATE_FAIL;
1516 break;
1517 }
1518
1519 return er;
1520}
1521
1522int kvm_mips_sync_icache(unsigned long va, struct kvm_vcpu *vcpu)
1523{
1524 unsigned long offset = (va & ~PAGE_MASK);
1525 struct kvm *kvm = vcpu->kvm;
1526 unsigned long pa;
1527 gfn_t gfn;
1528 pfn_t pfn;
1529
1530 gfn = va >> PAGE_SHIFT;
1531
1532 if (gfn >= kvm->arch.guest_pmap_npages) {
6ad78a5c 1533 kvm_err("%s: Invalid gfn: %#llx\n", __func__, gfn);
e685c689
SL
1534 kvm_mips_dump_host_tlbs();
1535 kvm_arch_vcpu_dump_regs(vcpu);
1536 return -1;
1537 }
1538 pfn = kvm->arch.guest_pmap[gfn];
1539 pa = (pfn << PAGE_SHIFT) | offset;
1540
6ad78a5c
DCZ
1541 kvm_debug("%s: va: %#lx, unmapped: %#x\n", __func__, va,
1542 CKSEG0ADDR(pa));
e685c689 1543
facaaec1 1544 local_flush_icache_range(CKSEG0ADDR(pa), 32);
e685c689
SL
1545 return 0;
1546}
1547
d116e812
DCZ
1548enum emulation_result kvm_mips_emulate_cache(uint32_t inst, uint32_t *opc,
1549 uint32_t cause,
1550 struct kvm_run *run,
1551 struct kvm_vcpu *vcpu)
e685c689
SL
1552{
1553 struct mips_coproc *cop0 = vcpu->arch.cop0;
e685c689
SL
1554 enum emulation_result er = EMULATE_DONE;
1555 int32_t offset, cache, op_inst, op, base;
1556 struct kvm_vcpu_arch *arch = &vcpu->arch;
1557 unsigned long va;
1558 unsigned long curr_pc;
1559
1560 /*
1561 * Update PC and hold onto current PC in case there is
1562 * an error and we want to rollback the PC
1563 */
1564 curr_pc = vcpu->arch.pc;
1565 er = update_pc(vcpu, cause);
1566 if (er == EMULATE_FAIL)
1567 return er;
1568
1569 base = (inst >> 21) & 0x1f;
1570 op_inst = (inst >> 16) & 0x1f;
c5c2a3b9 1571 offset = (int16_t)inst;
f4956f62
JH
1572 cache = op_inst & CacheOp_Cache;
1573 op = op_inst & CacheOp_Op;
e685c689
SL
1574
1575 va = arch->gprs[base] + offset;
1576
1577 kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1578 cache, op, base, arch->gprs[base], offset);
1579
d116e812
DCZ
1580 /*
1581 * Treat INDEX_INV as a nop, basically issued by Linux on startup to
1582 * invalidate the caches entirely by stepping through all the
1583 * ways/indexes
e685c689 1584 */
f4956f62 1585 if (op == Index_Writeback_Inv) {
d116e812
DCZ
1586 kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1587 vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base,
1588 arch->gprs[base], offset);
e685c689 1589
f4956f62 1590 if (cache == Cache_D)
e685c689 1591 r4k_blast_dcache();
f4956f62 1592 else if (cache == Cache_I)
e685c689
SL
1593 r4k_blast_icache();
1594 else {
6ad78a5c
DCZ
1595 kvm_err("%s: unsupported CACHE INDEX operation\n",
1596 __func__);
e685c689
SL
1597 return EMULATE_FAIL;
1598 }
1599
1600#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1601 kvm_mips_trans_cache_index(inst, opc, vcpu);
1602#endif
1603 goto done;
1604 }
1605
1606 preempt_disable();
1607 if (KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG0) {
d116e812 1608 if (kvm_mips_host_tlb_lookup(vcpu, va) < 0)
e685c689 1609 kvm_mips_handle_kseg0_tlb_fault(va, vcpu);
e685c689
SL
1610 } else if ((KVM_GUEST_KSEGX(va) < KVM_GUEST_KSEG0) ||
1611 KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG23) {
1612 int index;
1613
1614 /* If an entry already exists then skip */
d116e812 1615 if (kvm_mips_host_tlb_lookup(vcpu, va) >= 0)
e685c689 1616 goto skip_fault;
e685c689 1617
d116e812
DCZ
1618 /*
1619 * If address not in the guest TLB, then give the guest a fault,
1620 * the resulting handler will do the right thing
e685c689
SL
1621 */
1622 index = kvm_mips_guest_tlb_lookup(vcpu, (va & VPN2_MASK) |
48c4ac97
DD
1623 (kvm_read_c0_guest_entryhi
1624 (cop0) & ASID_MASK));
e685c689
SL
1625
1626 if (index < 0) {
1627 vcpu->arch.host_cp0_entryhi = (va & VPN2_MASK);
1628 vcpu->arch.host_cp0_badvaddr = va;
1629 er = kvm_mips_emulate_tlbmiss_ld(cause, NULL, run,
1630 vcpu);
1631 preempt_enable();
1632 goto dont_update_pc;
1633 } else {
1634 struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
d116e812
DCZ
1635 /*
1636 * Check if the entry is valid, if not then setup a TLB
1637 * invalid exception to the guest
1638 */
e685c689
SL
1639 if (!TLB_IS_VALID(*tlb, va)) {
1640 er = kvm_mips_emulate_tlbinv_ld(cause, NULL,
1641 run, vcpu);
1642 preempt_enable();
1643 goto dont_update_pc;
1644 } else {
d116e812
DCZ
1645 /*
1646 * We fault an entry from the guest tlb to the
1647 * shadow host TLB
1648 */
e685c689
SL
1649 kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb,
1650 NULL,
1651 NULL);
1652 }
1653 }
1654 } else {
6ad78a5c
DCZ
1655 kvm_err("INVALID CACHE INDEX/ADDRESS (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1656 cache, op, base, arch->gprs[base], offset);
e685c689
SL
1657 er = EMULATE_FAIL;
1658 preempt_enable();
1659 goto dont_update_pc;
1660
1661 }
1662
1663skip_fault:
1664 /* XXXKYMA: Only a subset of cache ops are supported, used by Linux */
f4956f62 1665 if (op_inst == Hit_Writeback_Inv_D || op_inst == Hit_Invalidate_D) {
e685c689
SL
1666 flush_dcache_line(va);
1667
1668#ifdef CONFIG_KVM_MIPS_DYN_TRANS
d116e812
DCZ
1669 /*
1670 * Replace the CACHE instruction, with a SYNCI, not the same,
1671 * but avoids a trap
1672 */
e685c689
SL
1673 kvm_mips_trans_cache_va(inst, opc, vcpu);
1674#endif
f4956f62 1675 } else if (op_inst == Hit_Invalidate_I) {
e685c689
SL
1676 flush_dcache_line(va);
1677 flush_icache_line(va);
1678
1679#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1680 /* Replace the CACHE instruction, with a SYNCI */
1681 kvm_mips_trans_cache_va(inst, opc, vcpu);
1682#endif
1683 } else {
6ad78a5c
DCZ
1684 kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1685 cache, op, base, arch->gprs[base], offset);
e685c689
SL
1686 er = EMULATE_FAIL;
1687 preempt_enable();
1688 goto dont_update_pc;
1689 }
1690
1691 preempt_enable();
1692
d116e812
DCZ
1693dont_update_pc:
1694 /* Rollback PC */
e685c689 1695 vcpu->arch.pc = curr_pc;
d116e812 1696done:
e685c689
SL
1697 return er;
1698}
1699
d116e812
DCZ
1700enum emulation_result kvm_mips_emulate_inst(unsigned long cause, uint32_t *opc,
1701 struct kvm_run *run,
1702 struct kvm_vcpu *vcpu)
e685c689
SL
1703{
1704 enum emulation_result er = EMULATE_DONE;
1705 uint32_t inst;
1706
d116e812
DCZ
1707 /* Fetch the instruction. */
1708 if (cause & CAUSEF_BD)
e685c689 1709 opc += 1;
e685c689
SL
1710
1711 inst = kvm_get_inst(opc, vcpu);
1712
1713 switch (((union mips_instruction)inst).r_format.opcode) {
1714 case cop0_op:
1715 er = kvm_mips_emulate_CP0(inst, opc, cause, run, vcpu);
1716 break;
1717 case sb_op:
1718 case sh_op:
1719 case sw_op:
1720 er = kvm_mips_emulate_store(inst, cause, run, vcpu);
1721 break;
1722 case lb_op:
1723 case lbu_op:
1724 case lhu_op:
1725 case lh_op:
1726 case lw_op:
1727 er = kvm_mips_emulate_load(inst, cause, run, vcpu);
1728 break;
1729
1730 case cache_op:
1731 ++vcpu->stat.cache_exits;
1732 trace_kvm_exit(vcpu, CACHE_EXITS);
1733 er = kvm_mips_emulate_cache(inst, opc, cause, run, vcpu);
1734 break;
1735
1736 default:
6ad78a5c
DCZ
1737 kvm_err("Instruction emulation not supported (%p/%#x)\n", opc,
1738 inst);
e685c689
SL
1739 kvm_arch_vcpu_dump_regs(vcpu);
1740 er = EMULATE_FAIL;
1741 break;
1742 }
1743
1744 return er;
1745}
1746
d116e812
DCZ
1747enum emulation_result kvm_mips_emulate_syscall(unsigned long cause,
1748 uint32_t *opc,
1749 struct kvm_run *run,
1750 struct kvm_vcpu *vcpu)
e685c689
SL
1751{
1752 struct mips_coproc *cop0 = vcpu->arch.cop0;
1753 struct kvm_vcpu_arch *arch = &vcpu->arch;
1754 enum emulation_result er = EMULATE_DONE;
1755
1756 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1757 /* save old pc */
1758 kvm_write_c0_guest_epc(cop0, arch->pc);
1759 kvm_set_c0_guest_status(cop0, ST0_EXL);
1760
1761 if (cause & CAUSEF_BD)
1762 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1763 else
1764 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1765
1766 kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc);
1767
1768 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 1769 (EXCCODE_SYS << CAUSEB_EXCCODE));
e685c689
SL
1770
1771 /* Set PC to the exception entry point */
1772 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1773
1774 } else {
6ad78a5c 1775 kvm_err("Trying to deliver SYSCALL when EXL is already set\n");
e685c689
SL
1776 er = EMULATE_FAIL;
1777 }
1778
1779 return er;
1780}
1781
d116e812
DCZ
1782enum emulation_result kvm_mips_emulate_tlbmiss_ld(unsigned long cause,
1783 uint32_t *opc,
1784 struct kvm_run *run,
1785 struct kvm_vcpu *vcpu)
e685c689
SL
1786{
1787 struct mips_coproc *cop0 = vcpu->arch.cop0;
1788 struct kvm_vcpu_arch *arch = &vcpu->arch;
e685c689 1789 unsigned long entryhi = (vcpu->arch. host_cp0_badvaddr & VPN2_MASK) |
48c4ac97 1790 (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
e685c689
SL
1791
1792 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1793 /* save old pc */
1794 kvm_write_c0_guest_epc(cop0, arch->pc);
1795 kvm_set_c0_guest_status(cop0, ST0_EXL);
1796
1797 if (cause & CAUSEF_BD)
1798 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1799 else
1800 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1801
1802 kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n",
1803 arch->pc);
1804
1805 /* set pc to the exception entry point */
1806 arch->pc = KVM_GUEST_KSEG0 + 0x0;
1807
1808 } else {
1809 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1810 arch->pc);
1811
1812 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1813 }
1814
1815 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 1816 (EXCCODE_TLBL << CAUSEB_EXCCODE));
e685c689
SL
1817
1818 /* setup badvaddr, context and entryhi registers for the guest */
1819 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1820 /* XXXKYMA: is the context register used by linux??? */
1821 kvm_write_c0_guest_entryhi(cop0, entryhi);
1822 /* Blow away the shadow host TLBs */
1823 kvm_mips_flush_host_tlb(1);
1824
d98403a5 1825 return EMULATE_DONE;
e685c689
SL
1826}
1827
d116e812
DCZ
1828enum emulation_result kvm_mips_emulate_tlbinv_ld(unsigned long cause,
1829 uint32_t *opc,
1830 struct kvm_run *run,
1831 struct kvm_vcpu *vcpu)
e685c689
SL
1832{
1833 struct mips_coproc *cop0 = vcpu->arch.cop0;
1834 struct kvm_vcpu_arch *arch = &vcpu->arch;
e685c689
SL
1835 unsigned long entryhi =
1836 (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
48c4ac97 1837 (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
e685c689
SL
1838
1839 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1840 /* save old pc */
1841 kvm_write_c0_guest_epc(cop0, arch->pc);
1842 kvm_set_c0_guest_status(cop0, ST0_EXL);
1843
1844 if (cause & CAUSEF_BD)
1845 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1846 else
1847 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1848
1849 kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n",
1850 arch->pc);
1851
1852 /* set pc to the exception entry point */
1853 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1854
1855 } else {
1856 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1857 arch->pc);
1858 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1859 }
1860
1861 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 1862 (EXCCODE_TLBL << CAUSEB_EXCCODE));
e685c689
SL
1863
1864 /* setup badvaddr, context and entryhi registers for the guest */
1865 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1866 /* XXXKYMA: is the context register used by linux??? */
1867 kvm_write_c0_guest_entryhi(cop0, entryhi);
1868 /* Blow away the shadow host TLBs */
1869 kvm_mips_flush_host_tlb(1);
1870
d98403a5 1871 return EMULATE_DONE;
e685c689
SL
1872}
1873
d116e812
DCZ
1874enum emulation_result kvm_mips_emulate_tlbmiss_st(unsigned long cause,
1875 uint32_t *opc,
1876 struct kvm_run *run,
1877 struct kvm_vcpu *vcpu)
e685c689
SL
1878{
1879 struct mips_coproc *cop0 = vcpu->arch.cop0;
1880 struct kvm_vcpu_arch *arch = &vcpu->arch;
e685c689 1881 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
48c4ac97 1882 (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
e685c689
SL
1883
1884 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1885 /* save old pc */
1886 kvm_write_c0_guest_epc(cop0, arch->pc);
1887 kvm_set_c0_guest_status(cop0, ST0_EXL);
1888
1889 if (cause & CAUSEF_BD)
1890 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1891 else
1892 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1893
1894 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
1895 arch->pc);
1896
1897 /* Set PC to the exception entry point */
1898 arch->pc = KVM_GUEST_KSEG0 + 0x0;
1899 } else {
1900 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
1901 arch->pc);
1902 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1903 }
1904
1905 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 1906 (EXCCODE_TLBS << CAUSEB_EXCCODE));
e685c689
SL
1907
1908 /* setup badvaddr, context and entryhi registers for the guest */
1909 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1910 /* XXXKYMA: is the context register used by linux??? */
1911 kvm_write_c0_guest_entryhi(cop0, entryhi);
1912 /* Blow away the shadow host TLBs */
1913 kvm_mips_flush_host_tlb(1);
1914
d98403a5 1915 return EMULATE_DONE;
e685c689
SL
1916}
1917
d116e812
DCZ
1918enum emulation_result kvm_mips_emulate_tlbinv_st(unsigned long cause,
1919 uint32_t *opc,
1920 struct kvm_run *run,
1921 struct kvm_vcpu *vcpu)
e685c689
SL
1922{
1923 struct mips_coproc *cop0 = vcpu->arch.cop0;
1924 struct kvm_vcpu_arch *arch = &vcpu->arch;
e685c689 1925 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
48c4ac97 1926 (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
e685c689
SL
1927
1928 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1929 /* save old pc */
1930 kvm_write_c0_guest_epc(cop0, arch->pc);
1931 kvm_set_c0_guest_status(cop0, ST0_EXL);
1932
1933 if (cause & CAUSEF_BD)
1934 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1935 else
1936 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1937
1938 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
1939 arch->pc);
1940
1941 /* Set PC to the exception entry point */
1942 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1943 } else {
1944 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
1945 arch->pc);
1946 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1947 }
1948
1949 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 1950 (EXCCODE_TLBS << CAUSEB_EXCCODE));
e685c689
SL
1951
1952 /* setup badvaddr, context and entryhi registers for the guest */
1953 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1954 /* XXXKYMA: is the context register used by linux??? */
1955 kvm_write_c0_guest_entryhi(cop0, entryhi);
1956 /* Blow away the shadow host TLBs */
1957 kvm_mips_flush_host_tlb(1);
1958
d98403a5 1959 return EMULATE_DONE;
e685c689
SL
1960}
1961
1962/* TLBMOD: store into address matching TLB with Dirty bit off */
d116e812
DCZ
1963enum emulation_result kvm_mips_handle_tlbmod(unsigned long cause, uint32_t *opc,
1964 struct kvm_run *run,
1965 struct kvm_vcpu *vcpu)
e685c689
SL
1966{
1967 enum emulation_result er = EMULATE_DONE;
e685c689 1968#ifdef DEBUG
3d654833
JH
1969 struct mips_coproc *cop0 = vcpu->arch.cop0;
1970 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1971 (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1972 int index;
1973
d116e812 1974 /* If address not in the guest TLB, then we are in trouble */
e685c689
SL
1975 index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
1976 if (index < 0) {
1977 /* XXXKYMA Invalidate and retry */
1978 kvm_mips_host_tlb_inv(vcpu, vcpu->arch.host_cp0_badvaddr);
1979 kvm_err("%s: host got TLBMOD for %#lx but entry not present in Guest TLB\n",
1980 __func__, entryhi);
1981 kvm_mips_dump_guest_tlbs(vcpu);
1982 kvm_mips_dump_host_tlbs();
1983 return EMULATE_FAIL;
1984 }
1985#endif
1986
1987 er = kvm_mips_emulate_tlbmod(cause, opc, run, vcpu);
1988 return er;
1989}
1990
d116e812
DCZ
1991enum emulation_result kvm_mips_emulate_tlbmod(unsigned long cause,
1992 uint32_t *opc,
1993 struct kvm_run *run,
1994 struct kvm_vcpu *vcpu)
e685c689
SL
1995{
1996 struct mips_coproc *cop0 = vcpu->arch.cop0;
1997 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
48c4ac97 1998 (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
e685c689 1999 struct kvm_vcpu_arch *arch = &vcpu->arch;
e685c689
SL
2000
2001 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2002 /* save old pc */
2003 kvm_write_c0_guest_epc(cop0, arch->pc);
2004 kvm_set_c0_guest_status(cop0, ST0_EXL);
2005
2006 if (cause & CAUSEF_BD)
2007 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2008 else
2009 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2010
2011 kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n",
2012 arch->pc);
2013
2014 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2015 } else {
2016 kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n",
2017 arch->pc);
2018 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2019 }
2020
16d100db
JH
2021 kvm_change_c0_guest_cause(cop0, (0xff),
2022 (EXCCODE_MOD << CAUSEB_EXCCODE));
e685c689
SL
2023
2024 /* setup badvaddr, context and entryhi registers for the guest */
2025 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2026 /* XXXKYMA: is the context register used by linux??? */
2027 kvm_write_c0_guest_entryhi(cop0, entryhi);
2028 /* Blow away the shadow host TLBs */
2029 kvm_mips_flush_host_tlb(1);
2030
d98403a5 2031 return EMULATE_DONE;
e685c689
SL
2032}
2033
d116e812
DCZ
2034enum emulation_result kvm_mips_emulate_fpu_exc(unsigned long cause,
2035 uint32_t *opc,
2036 struct kvm_run *run,
2037 struct kvm_vcpu *vcpu)
e685c689
SL
2038{
2039 struct mips_coproc *cop0 = vcpu->arch.cop0;
2040 struct kvm_vcpu_arch *arch = &vcpu->arch;
e685c689
SL
2041
2042 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2043 /* save old pc */
2044 kvm_write_c0_guest_epc(cop0, arch->pc);
2045 kvm_set_c0_guest_status(cop0, ST0_EXL);
2046
2047 if (cause & CAUSEF_BD)
2048 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2049 else
2050 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2051
2052 }
2053
2054 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2055
2056 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 2057 (EXCCODE_CPU << CAUSEB_EXCCODE));
e685c689
SL
2058 kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE));
2059
d98403a5 2060 return EMULATE_DONE;
e685c689
SL
2061}
2062
d116e812
DCZ
2063enum emulation_result kvm_mips_emulate_ri_exc(unsigned long cause,
2064 uint32_t *opc,
2065 struct kvm_run *run,
2066 struct kvm_vcpu *vcpu)
e685c689
SL
2067{
2068 struct mips_coproc *cop0 = vcpu->arch.cop0;
2069 struct kvm_vcpu_arch *arch = &vcpu->arch;
2070 enum emulation_result er = EMULATE_DONE;
2071
2072 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2073 /* save old pc */
2074 kvm_write_c0_guest_epc(cop0, arch->pc);
2075 kvm_set_c0_guest_status(cop0, ST0_EXL);
2076
2077 if (cause & CAUSEF_BD)
2078 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2079 else
2080 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2081
2082 kvm_debug("Delivering RI @ pc %#lx\n", arch->pc);
2083
2084 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 2085 (EXCCODE_RI << CAUSEB_EXCCODE));
e685c689
SL
2086
2087 /* Set PC to the exception entry point */
2088 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2089
2090 } else {
2091 kvm_err("Trying to deliver RI when EXL is already set\n");
2092 er = EMULATE_FAIL;
2093 }
2094
2095 return er;
2096}
2097
d116e812
DCZ
2098enum emulation_result kvm_mips_emulate_bp_exc(unsigned long cause,
2099 uint32_t *opc,
2100 struct kvm_run *run,
2101 struct kvm_vcpu *vcpu)
e685c689
SL
2102{
2103 struct mips_coproc *cop0 = vcpu->arch.cop0;
2104 struct kvm_vcpu_arch *arch = &vcpu->arch;
2105 enum emulation_result er = EMULATE_DONE;
2106
2107 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2108 /* save old pc */
2109 kvm_write_c0_guest_epc(cop0, arch->pc);
2110 kvm_set_c0_guest_status(cop0, ST0_EXL);
2111
2112 if (cause & CAUSEF_BD)
2113 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2114 else
2115 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2116
2117 kvm_debug("Delivering BP @ pc %#lx\n", arch->pc);
2118
2119 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 2120 (EXCCODE_BP << CAUSEB_EXCCODE));
e685c689
SL
2121
2122 /* Set PC to the exception entry point */
2123 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2124
2125 } else {
6ad78a5c 2126 kvm_err("Trying to deliver BP when EXL is already set\n");
e685c689
SL
2127 er = EMULATE_FAIL;
2128 }
2129
2130 return er;
2131}
2132
0a560427
JH
2133enum emulation_result kvm_mips_emulate_trap_exc(unsigned long cause,
2134 uint32_t *opc,
2135 struct kvm_run *run,
2136 struct kvm_vcpu *vcpu)
2137{
2138 struct mips_coproc *cop0 = vcpu->arch.cop0;
2139 struct kvm_vcpu_arch *arch = &vcpu->arch;
2140 enum emulation_result er = EMULATE_DONE;
2141
2142 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2143 /* save old pc */
2144 kvm_write_c0_guest_epc(cop0, arch->pc);
2145 kvm_set_c0_guest_status(cop0, ST0_EXL);
2146
2147 if (cause & CAUSEF_BD)
2148 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2149 else
2150 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2151
2152 kvm_debug("Delivering TRAP @ pc %#lx\n", arch->pc);
2153
2154 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 2155 (EXCCODE_TR << CAUSEB_EXCCODE));
0a560427
JH
2156
2157 /* Set PC to the exception entry point */
2158 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2159
2160 } else {
2161 kvm_err("Trying to deliver TRAP when EXL is already set\n");
2162 er = EMULATE_FAIL;
2163 }
2164
2165 return er;
2166}
2167
c2537ed9
JH
2168enum emulation_result kvm_mips_emulate_msafpe_exc(unsigned long cause,
2169 uint32_t *opc,
2170 struct kvm_run *run,
2171 struct kvm_vcpu *vcpu)
2172{
2173 struct mips_coproc *cop0 = vcpu->arch.cop0;
2174 struct kvm_vcpu_arch *arch = &vcpu->arch;
2175 enum emulation_result er = EMULATE_DONE;
2176
2177 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2178 /* save old pc */
2179 kvm_write_c0_guest_epc(cop0, arch->pc);
2180 kvm_set_c0_guest_status(cop0, ST0_EXL);
2181
2182 if (cause & CAUSEF_BD)
2183 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2184 else
2185 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2186
2187 kvm_debug("Delivering MSAFPE @ pc %#lx\n", arch->pc);
2188
2189 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 2190 (EXCCODE_MSAFPE << CAUSEB_EXCCODE));
c2537ed9
JH
2191
2192 /* Set PC to the exception entry point */
2193 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2194
2195 } else {
2196 kvm_err("Trying to deliver MSAFPE when EXL is already set\n");
2197 er = EMULATE_FAIL;
2198 }
2199
2200 return er;
2201}
2202
1c0cd66a
JH
2203enum emulation_result kvm_mips_emulate_fpe_exc(unsigned long cause,
2204 uint32_t *opc,
2205 struct kvm_run *run,
2206 struct kvm_vcpu *vcpu)
2207{
2208 struct mips_coproc *cop0 = vcpu->arch.cop0;
2209 struct kvm_vcpu_arch *arch = &vcpu->arch;
2210 enum emulation_result er = EMULATE_DONE;
2211
2212 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2213 /* save old pc */
2214 kvm_write_c0_guest_epc(cop0, arch->pc);
2215 kvm_set_c0_guest_status(cop0, ST0_EXL);
2216
2217 if (cause & CAUSEF_BD)
2218 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2219 else
2220 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2221
2222 kvm_debug("Delivering FPE @ pc %#lx\n", arch->pc);
2223
2224 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 2225 (EXCCODE_FPE << CAUSEB_EXCCODE));
1c0cd66a
JH
2226
2227 /* Set PC to the exception entry point */
2228 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2229
2230 } else {
2231 kvm_err("Trying to deliver FPE when EXL is already set\n");
2232 er = EMULATE_FAIL;
2233 }
2234
2235 return er;
2236}
2237
c2537ed9
JH
2238enum emulation_result kvm_mips_emulate_msadis_exc(unsigned long cause,
2239 uint32_t *opc,
2240 struct kvm_run *run,
2241 struct kvm_vcpu *vcpu)
2242{
2243 struct mips_coproc *cop0 = vcpu->arch.cop0;
2244 struct kvm_vcpu_arch *arch = &vcpu->arch;
2245 enum emulation_result er = EMULATE_DONE;
2246
2247 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2248 /* save old pc */
2249 kvm_write_c0_guest_epc(cop0, arch->pc);
2250 kvm_set_c0_guest_status(cop0, ST0_EXL);
2251
2252 if (cause & CAUSEF_BD)
2253 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2254 else
2255 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2256
2257 kvm_debug("Delivering MSADIS @ pc %#lx\n", arch->pc);
2258
2259 kvm_change_c0_guest_cause(cop0, (0xff),
16d100db 2260 (EXCCODE_MSADIS << CAUSEB_EXCCODE));
c2537ed9
JH
2261
2262 /* Set PC to the exception entry point */
2263 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2264
2265 } else {
2266 kvm_err("Trying to deliver MSADIS when EXL is already set\n");
2267 er = EMULATE_FAIL;
2268 }
2269
2270 return er;
2271}
2272
d116e812 2273/* ll/sc, rdhwr, sync emulation */
e685c689
SL
2274
2275#define OPCODE 0xfc000000
2276#define BASE 0x03e00000
2277#define RT 0x001f0000
2278#define OFFSET 0x0000ffff
2279#define LL 0xc0000000
2280#define SC 0xe0000000
2281#define SPEC0 0x00000000
2282#define SPEC3 0x7c000000
2283#define RD 0x0000f800
2284#define FUNC 0x0000003f
2285#define SYNC 0x0000000f
2286#define RDHWR 0x0000003b
2287
d116e812
DCZ
2288enum emulation_result kvm_mips_handle_ri(unsigned long cause, uint32_t *opc,
2289 struct kvm_run *run,
2290 struct kvm_vcpu *vcpu)
e685c689
SL
2291{
2292 struct mips_coproc *cop0 = vcpu->arch.cop0;
2293 struct kvm_vcpu_arch *arch = &vcpu->arch;
2294 enum emulation_result er = EMULATE_DONE;
2295 unsigned long curr_pc;
2296 uint32_t inst;
2297
2298 /*
2299 * Update PC and hold onto current PC in case there is
2300 * an error and we want to rollback the PC
2301 */
2302 curr_pc = vcpu->arch.pc;
2303 er = update_pc(vcpu, cause);
2304 if (er == EMULATE_FAIL)
2305 return er;
2306
d116e812 2307 /* Fetch the instruction. */
e685c689
SL
2308 if (cause & CAUSEF_BD)
2309 opc += 1;
2310
2311 inst = kvm_get_inst(opc, vcpu);
2312
2313 if (inst == KVM_INVALID_INST) {
6ad78a5c 2314 kvm_err("%s: Cannot get inst @ %p\n", __func__, opc);
e685c689
SL
2315 return EMULATE_FAIL;
2316 }
2317
2318 if ((inst & OPCODE) == SPEC3 && (inst & FUNC) == RDHWR) {
26f4f3b5 2319 int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
e685c689
SL
2320 int rd = (inst & RD) >> 11;
2321 int rt = (inst & RT) >> 16;
26f4f3b5
JH
2322 /* If usermode, check RDHWR rd is allowed by guest HWREna */
2323 if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) {
2324 kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n",
2325 rd, opc);
2326 goto emulate_ri;
2327 }
e685c689
SL
2328 switch (rd) {
2329 case 0: /* CPU number */
2330 arch->gprs[rt] = 0;
2331 break;
2332 case 1: /* SYNCI length */
2333 arch->gprs[rt] = min(current_cpu_data.dcache.linesz,
2334 current_cpu_data.icache.linesz);
2335 break;
2336 case 2: /* Read count register */
e30492bb 2337 arch->gprs[rt] = kvm_mips_read_count(vcpu);
e685c689
SL
2338 break;
2339 case 3: /* Count register resolution */
2340 switch (current_cpu_data.cputype) {
2341 case CPU_20KC:
2342 case CPU_25KF:
2343 arch->gprs[rt] = 1;
2344 break;
2345 default:
2346 arch->gprs[rt] = 2;
2347 }
2348 break;
2349 case 29:
e685c689 2350 arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0);
e685c689
SL
2351 break;
2352
2353 default:
15505679 2354 kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc);
26f4f3b5 2355 goto emulate_ri;
e685c689
SL
2356 }
2357 } else {
15505679 2358 kvm_debug("Emulate RI not supported @ %p: %#x\n", opc, inst);
26f4f3b5 2359 goto emulate_ri;
e685c689
SL
2360 }
2361
26f4f3b5
JH
2362 return EMULATE_DONE;
2363
2364emulate_ri:
e685c689 2365 /*
26f4f3b5
JH
2366 * Rollback PC (if in branch delay slot then the PC already points to
2367 * branch target), and pass the RI exception to the guest OS.
e685c689 2368 */
26f4f3b5
JH
2369 vcpu->arch.pc = curr_pc;
2370 return kvm_mips_emulate_ri_exc(cause, opc, run, vcpu);
e685c689
SL
2371}
2372
d116e812
DCZ
2373enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu,
2374 struct kvm_run *run)
e685c689
SL
2375{
2376 unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
2377 enum emulation_result er = EMULATE_DONE;
e685c689
SL
2378
2379 if (run->mmio.len > sizeof(*gpr)) {
6ad78a5c 2380 kvm_err("Bad MMIO length: %d", run->mmio.len);
e685c689
SL
2381 er = EMULATE_FAIL;
2382 goto done;
2383 }
2384
e685c689
SL
2385 er = update_pc(vcpu, vcpu->arch.pending_load_cause);
2386 if (er == EMULATE_FAIL)
2387 return er;
2388
2389 switch (run->mmio.len) {
2390 case 4:
2391 *gpr = *(int32_t *) run->mmio.data;
2392 break;
2393
2394 case 2:
2395 if (vcpu->mmio_needed == 2)
2396 *gpr = *(int16_t *) run->mmio.data;
2397 else
ed9244e6 2398 *gpr = *(uint16_t *)run->mmio.data;
e685c689
SL
2399
2400 break;
2401 case 1:
2402 if (vcpu->mmio_needed == 2)
2403 *gpr = *(int8_t *) run->mmio.data;
2404 else
2405 *gpr = *(u8 *) run->mmio.data;
2406 break;
2407 }
2408
2409 if (vcpu->arch.pending_load_cause & CAUSEF_BD)
d116e812
DCZ
2410 kvm_debug("[%#lx] Completing %d byte BD Load to gpr %d (0x%08lx) type %d\n",
2411 vcpu->arch.pc, run->mmio.len, vcpu->arch.io_gpr, *gpr,
2412 vcpu->mmio_needed);
e685c689
SL
2413
2414done:
2415 return er;
2416}
2417
d116e812
DCZ
2418static enum emulation_result kvm_mips_emulate_exc(unsigned long cause,
2419 uint32_t *opc,
2420 struct kvm_run *run,
2421 struct kvm_vcpu *vcpu)
e685c689
SL
2422{
2423 uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2424 struct mips_coproc *cop0 = vcpu->arch.cop0;
2425 struct kvm_vcpu_arch *arch = &vcpu->arch;
2426 enum emulation_result er = EMULATE_DONE;
2427
2428 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2429 /* save old pc */
2430 kvm_write_c0_guest_epc(cop0, arch->pc);
2431 kvm_set_c0_guest_status(cop0, ST0_EXL);
2432
2433 if (cause & CAUSEF_BD)
2434 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2435 else
2436 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2437
2438 kvm_change_c0_guest_cause(cop0, (0xff),
2439 (exccode << CAUSEB_EXCCODE));
2440
2441 /* Set PC to the exception entry point */
2442 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2443 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2444
2445 kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n",
2446 exccode, kvm_read_c0_guest_epc(cop0),
2447 kvm_read_c0_guest_badvaddr(cop0));
2448 } else {
6ad78a5c 2449 kvm_err("Trying to deliver EXC when EXL is already set\n");
e685c689
SL
2450 er = EMULATE_FAIL;
2451 }
2452
2453 return er;
2454}
2455
d116e812
DCZ
2456enum emulation_result kvm_mips_check_privilege(unsigned long cause,
2457 uint32_t *opc,
2458 struct kvm_run *run,
2459 struct kvm_vcpu *vcpu)
e685c689
SL
2460{
2461 enum emulation_result er = EMULATE_DONE;
2462 uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2463 unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
2464
2465 int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2466
2467 if (usermode) {
2468 switch (exccode) {
16d100db
JH
2469 case EXCCODE_INT:
2470 case EXCCODE_SYS:
2471 case EXCCODE_BP:
2472 case EXCCODE_RI:
2473 case EXCCODE_TR:
2474 case EXCCODE_MSAFPE:
2475 case EXCCODE_FPE:
2476 case EXCCODE_MSADIS:
e685c689
SL
2477 break;
2478
16d100db 2479 case EXCCODE_CPU:
e685c689
SL
2480 if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0)
2481 er = EMULATE_PRIV_FAIL;
2482 break;
2483
16d100db 2484 case EXCCODE_MOD:
e685c689
SL
2485 break;
2486
16d100db 2487 case EXCCODE_TLBL:
d116e812
DCZ
2488 /*
2489 * We we are accessing Guest kernel space, then send an
2490 * address error exception to the guest
2491 */
e685c689 2492 if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
6ad78a5c
DCZ
2493 kvm_debug("%s: LD MISS @ %#lx\n", __func__,
2494 badvaddr);
e685c689 2495 cause &= ~0xff;
16d100db 2496 cause |= (EXCCODE_ADEL << CAUSEB_EXCCODE);
e685c689
SL
2497 er = EMULATE_PRIV_FAIL;
2498 }
2499 break;
2500
16d100db 2501 case EXCCODE_TLBS:
d116e812
DCZ
2502 /*
2503 * We we are accessing Guest kernel space, then send an
2504 * address error exception to the guest
2505 */
e685c689 2506 if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
6ad78a5c
DCZ
2507 kvm_debug("%s: ST MISS @ %#lx\n", __func__,
2508 badvaddr);
e685c689 2509 cause &= ~0xff;
16d100db 2510 cause |= (EXCCODE_ADES << CAUSEB_EXCCODE);
e685c689
SL
2511 er = EMULATE_PRIV_FAIL;
2512 }
2513 break;
2514
16d100db 2515 case EXCCODE_ADES:
6ad78a5c
DCZ
2516 kvm_debug("%s: address error ST @ %#lx\n", __func__,
2517 badvaddr);
e685c689
SL
2518 if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2519 cause &= ~0xff;
16d100db 2520 cause |= (EXCCODE_TLBS << CAUSEB_EXCCODE);
e685c689
SL
2521 }
2522 er = EMULATE_PRIV_FAIL;
2523 break;
16d100db 2524 case EXCCODE_ADEL:
6ad78a5c
DCZ
2525 kvm_debug("%s: address error LD @ %#lx\n", __func__,
2526 badvaddr);
e685c689
SL
2527 if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2528 cause &= ~0xff;
16d100db 2529 cause |= (EXCCODE_TLBL << CAUSEB_EXCCODE);
e685c689
SL
2530 }
2531 er = EMULATE_PRIV_FAIL;
2532 break;
2533 default:
2534 er = EMULATE_PRIV_FAIL;
2535 break;
2536 }
2537 }
2538
d116e812 2539 if (er == EMULATE_PRIV_FAIL)
e685c689 2540 kvm_mips_emulate_exc(cause, opc, run, vcpu);
d116e812 2541
e685c689
SL
2542 return er;
2543}
2544
d116e812
DCZ
2545/*
2546 * User Address (UA) fault, this could happen if
e685c689
SL
2547 * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this
2548 * case we pass on the fault to the guest kernel and let it handle it.
2549 * (2) TLB entry is present in the Guest TLB but not in the shadow, in this
2550 * case we inject the TLB from the Guest TLB into the shadow host TLB
2551 */
d116e812
DCZ
2552enum emulation_result kvm_mips_handle_tlbmiss(unsigned long cause,
2553 uint32_t *opc,
2554 struct kvm_run *run,
2555 struct kvm_vcpu *vcpu)
e685c689
SL
2556{
2557 enum emulation_result er = EMULATE_DONE;
2558 uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2559 unsigned long va = vcpu->arch.host_cp0_badvaddr;
2560 int index;
2561
2562 kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx, entryhi: %#lx\n",
2563 vcpu->arch.host_cp0_badvaddr, vcpu->arch.host_cp0_entryhi);
2564
d116e812
DCZ
2565 /*
2566 * KVM would not have got the exception if this entry was valid in the
2567 * shadow host TLB. Check the Guest TLB, if the entry is not there then
2568 * send the guest an exception. The guest exc handler should then inject
2569 * an entry into the guest TLB.
e685c689
SL
2570 */
2571 index = kvm_mips_guest_tlb_lookup(vcpu,
caa1faa7
JH
2572 (va & VPN2_MASK) |
2573 (kvm_read_c0_guest_entryhi(vcpu->arch.cop0) & ASID_MASK));
e685c689 2574 if (index < 0) {
16d100db 2575 if (exccode == EXCCODE_TLBL) {
e685c689 2576 er = kvm_mips_emulate_tlbmiss_ld(cause, opc, run, vcpu);
16d100db 2577 } else if (exccode == EXCCODE_TLBS) {
e685c689
SL
2578 er = kvm_mips_emulate_tlbmiss_st(cause, opc, run, vcpu);
2579 } else {
6ad78a5c
DCZ
2580 kvm_err("%s: invalid exc code: %d\n", __func__,
2581 exccode);
e685c689
SL
2582 er = EMULATE_FAIL;
2583 }
2584 } else {
2585 struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
2586
d116e812
DCZ
2587 /*
2588 * Check if the entry is valid, if not then setup a TLB invalid
2589 * exception to the guest
2590 */
e685c689 2591 if (!TLB_IS_VALID(*tlb, va)) {
16d100db 2592 if (exccode == EXCCODE_TLBL) {
e685c689
SL
2593 er = kvm_mips_emulate_tlbinv_ld(cause, opc, run,
2594 vcpu);
16d100db 2595 } else if (exccode == EXCCODE_TLBS) {
e685c689
SL
2596 er = kvm_mips_emulate_tlbinv_st(cause, opc, run,
2597 vcpu);
2598 } else {
6ad78a5c
DCZ
2599 kvm_err("%s: invalid exc code: %d\n", __func__,
2600 exccode);
e685c689
SL
2601 er = EMULATE_FAIL;
2602 }
2603 } else {
d116e812
DCZ
2604 kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n",
2605 tlb->tlb_hi, tlb->tlb_lo0, tlb->tlb_lo1);
2606 /*
2607 * OK we have a Guest TLB entry, now inject it into the
2608 * shadow host TLB
2609 */
e685c689
SL
2610 kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, NULL,
2611 NULL);
2612 }
2613 }
2614
2615 return er;
2616}
This page took 0.241708 seconds and 5 git commands to generate.