PCI/MSI: Rename mask/unmask_msi_irq treewide
[deliverable/linux.git] / arch / mips / pci / msi-xlp.c
CommitLineData
c24a8a7a
J
1/*
2 * Copyright (c) 2003-2012 Broadcom Corporation
3 * All Rights Reserved
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the Broadcom
9 * license below:
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 *
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in
19 * the documentation and/or other materials provided with the
20 * distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY BROADCOM ``AS IS'' AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
24 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
29 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
30 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
31 * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
32 * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35#include <linux/types.h>
36#include <linux/pci.h>
37#include <linux/kernel.h>
38#include <linux/init.h>
39#include <linux/msi.h>
40#include <linux/mm.h>
41#include <linux/irq.h>
42#include <linux/irqdesc.h>
43#include <linux/console.h>
44
45#include <asm/io.h>
46
47#include <asm/netlogic/interrupt.h>
48#include <asm/netlogic/haldefs.h>
49#include <asm/netlogic/common.h>
50#include <asm/netlogic/mips-extns.h>
51
52#include <asm/netlogic/xlp-hal/iomap.h>
53#include <asm/netlogic/xlp-hal/xlp.h>
54#include <asm/netlogic/xlp-hal/pic.h>
55#include <asm/netlogic/xlp-hal/pcibus.h>
56#include <asm/netlogic/xlp-hal/bridge.h>
57
58#define XLP_MSIVEC_PER_LINK 32
d66f3f0e
GR
59#define XLP_MSIXVEC_TOTAL (cpu_is_xlp9xx() ? 128 : 32)
60#define XLP_MSIXVEC_PER_LINK (cpu_is_xlp9xx() ? 32 : 8)
c24a8a7a
J
61
62/* 128 MSI irqs per node, mapped starting at NLM_MSI_VEC_BASE */
63static inline int nlm_link_msiirq(int link, int msivec)
64{
65 return NLM_MSI_VEC_BASE + link * XLP_MSIVEC_PER_LINK + msivec;
66}
67
d66f3f0e 68/* get the link MSI vector from irq number */
c24a8a7a
J
69static inline int nlm_irq_msivec(int irq)
70{
d66f3f0e 71 return (irq - NLM_MSI_VEC_BASE) % XLP_MSIVEC_PER_LINK;
c24a8a7a
J
72}
73
d66f3f0e 74/* get the link from the irq number */
c24a8a7a
J
75static inline int nlm_irq_msilink(int irq)
76{
d66f3f0e
GR
77 int total_msivec = XLP_MSIVEC_PER_LINK * PCIE_NLINKS;
78
79 return ((irq - NLM_MSI_VEC_BASE) % total_msivec) /
80 XLP_MSIVEC_PER_LINK;
c24a8a7a
J
81}
82
83/*
d66f3f0e
GR
84 * For XLP 8xx/4xx/3xx/2xx, only 32 MSI-X vectors are possible because
85 * there are only 32 PIC interrupts for MSI. We split them statically
86 * and use 8 MSI-X vectors per link - this keeps the allocation and
87 * lookup simple.
88 * On XLP 9xx, there are 32 vectors per link, and the interrupts are
89 * not routed thru PIC, so we can use all 128 MSI-X vectors.
c24a8a7a
J
90 */
91static inline int nlm_link_msixirq(int link, int bit)
92{
93 return NLM_MSIX_VEC_BASE + link * XLP_MSIXVEC_PER_LINK + bit;
94}
95
d66f3f0e 96/* get the link MSI vector from irq number */
c24a8a7a
J
97static inline int nlm_irq_msixvec(int irq)
98{
d66f3f0e 99 return (irq - NLM_MSIX_VEC_BASE) % XLP_MSIXVEC_TOTAL;
c24a8a7a
J
100}
101
d66f3f0e
GR
102/* get the link from MSIX vec */
103static inline int nlm_irq_msixlink(int msixvec)
c24a8a7a 104{
d66f3f0e 105 return msixvec / XLP_MSIXVEC_PER_LINK;
c24a8a7a
J
106}
107
108/*
109 * Per link MSI and MSI-X information, set as IRQ handler data for
110 * MSI and MSI-X interrupts.
111 */
112struct xlp_msi_data {
113 struct nlm_soc_info *node;
114 uint64_t lnkbase;
115 uint32_t msi_enabled_mask;
116 uint32_t msi_alloc_mask;
117 uint32_t msix_alloc_mask;
118 spinlock_t msi_lock;
119};
120
121/*
122 * MSI Chip definitions
123 *
124 * On XLP, there is a PIC interrupt associated with each PCIe link on the
125 * chip (which appears as a PCI bridge to us). This gives us 32 MSI irqa
126 * per link and 128 overall.
127 *
128 * When a device connected to the link raises a MSI interrupt, we get a
129 * link interrupt and we then have to look at PCIE_MSI_STATUS register at
130 * the bridge to map it to the IRQ
131 */
132static void xlp_msi_enable(struct irq_data *d)
133{
134 struct xlp_msi_data *md = irq_data_get_irq_handler_data(d);
135 unsigned long flags;
136 int vec;
137
138 vec = nlm_irq_msivec(d->irq);
139 spin_lock_irqsave(&md->msi_lock, flags);
140 md->msi_enabled_mask |= 1u << vec;
d66f3f0e
GR
141 if (cpu_is_xlp9xx())
142 nlm_write_reg(md->lnkbase, PCIE_9XX_MSI_EN,
143 md->msi_enabled_mask);
144 else
145 nlm_write_reg(md->lnkbase, PCIE_MSI_EN, md->msi_enabled_mask);
c24a8a7a
J
146 spin_unlock_irqrestore(&md->msi_lock, flags);
147}
148
149static void xlp_msi_disable(struct irq_data *d)
150{
151 struct xlp_msi_data *md = irq_data_get_irq_handler_data(d);
152 unsigned long flags;
153 int vec;
154
155 vec = nlm_irq_msivec(d->irq);
156 spin_lock_irqsave(&md->msi_lock, flags);
157 md->msi_enabled_mask &= ~(1u << vec);
d66f3f0e
GR
158 if (cpu_is_xlp9xx())
159 nlm_write_reg(md->lnkbase, PCIE_9XX_MSI_EN,
160 md->msi_enabled_mask);
161 else
162 nlm_write_reg(md->lnkbase, PCIE_MSI_EN, md->msi_enabled_mask);
c24a8a7a
J
163 spin_unlock_irqrestore(&md->msi_lock, flags);
164}
165
166static void xlp_msi_mask_ack(struct irq_data *d)
167{
168 struct xlp_msi_data *md = irq_data_get_irq_handler_data(d);
169 int link, vec;
170
171 link = nlm_irq_msilink(d->irq);
172 vec = nlm_irq_msivec(d->irq);
173 xlp_msi_disable(d);
174
175 /* Ack MSI on bridge */
d66f3f0e
GR
176 if (cpu_is_xlp9xx())
177 nlm_write_reg(md->lnkbase, PCIE_9XX_MSI_STATUS, 1u << vec);
178 else
179 nlm_write_reg(md->lnkbase, PCIE_MSI_STATUS, 1u << vec);
c24a8a7a
J
180
181 /* Ack at eirr and PIC */
182 ack_c0_eirr(PIC_PCIE_LINK_MSI_IRQ(link));
d66f3f0e
GR
183 if (cpu_is_xlp9xx())
184 nlm_pic_ack(md->node->picbase,
185 PIC_9XX_IRT_PCIE_LINK_INDEX(link));
186 else
187 nlm_pic_ack(md->node->picbase, PIC_IRT_PCIE_LINK_INDEX(link));
c24a8a7a
J
188}
189
190static struct irq_chip xlp_msi_chip = {
191 .name = "XLP-MSI",
192 .irq_enable = xlp_msi_enable,
193 .irq_disable = xlp_msi_disable,
194 .irq_mask_ack = xlp_msi_mask_ack,
195 .irq_unmask = xlp_msi_enable,
196};
197
198/*
d66f3f0e
GR
199 * XLP8XX/4XX/3XX/2XX:
200 * The MSI-X interrupt handling is different from MSI, there are 32 MSI-X
201 * interrupts generated by the PIC and each of these correspond to a MSI-X
202 * vector (0-31) that can be assigned.
c24a8a7a 203 *
d66f3f0e
GR
204 * We divide the MSI-X vectors to 8 per link and do a per-link allocation
205 *
206 * XLP9XX:
207 * 32 MSI-X vectors are available per link, and the interrupts are not routed
208 * thru the PIC. PIC ack not needed.
c24a8a7a
J
209 *
210 * Enable and disable done using standard MSI functions.
211 */
212static void xlp_msix_mask_ack(struct irq_data *d)
213{
d66f3f0e 214 struct xlp_msi_data *md;
c24a8a7a 215 int link, msixvec;
d66f3f0e 216 uint32_t status_reg, bit;
c24a8a7a
J
217
218 msixvec = nlm_irq_msixvec(d->irq);
d66f3f0e 219 link = nlm_irq_msixlink(msixvec);
280510f1 220 pci_msi_mask_irq(d);
d66f3f0e 221 md = irq_data_get_irq_handler_data(d);
c24a8a7a
J
222
223 /* Ack MSI on bridge */
d66f3f0e
GR
224 if (cpu_is_xlp9xx()) {
225 status_reg = PCIE_9XX_MSIX_STATUSX(link);
226 bit = msixvec % XLP_MSIXVEC_PER_LINK;
227 } else {
228 status_reg = PCIE_MSIX_STATUS;
229 bit = msixvec;
230 }
231 nlm_write_reg(md->lnkbase, status_reg, 1u << bit);
c24a8a7a
J
232
233 /* Ack at eirr and PIC */
234 ack_c0_eirr(PIC_PCIE_MSIX_IRQ(link));
d66f3f0e
GR
235 if (!cpu_is_xlp9xx())
236 nlm_pic_ack(md->node->picbase,
237 PIC_IRT_PCIE_MSIX_INDEX(msixvec));
c24a8a7a
J
238}
239
240static struct irq_chip xlp_msix_chip = {
241 .name = "XLP-MSIX",
280510f1
TG
242 .irq_enable = pci_msi_unmask_irq,
243 .irq_disable = pci_msi_mask_irq,
c24a8a7a 244 .irq_mask_ack = xlp_msix_mask_ack,
280510f1 245 .irq_unmask = pci_msi_unmask_irq,
c24a8a7a
J
246};
247
c24a8a7a
J
248void arch_teardown_msi_irq(unsigned int irq)
249{
c24a8a7a
J
250}
251
252/*
253 * Setup a PCIe link for MSI. By default, the links are in
254 * legacy interrupt mode. We will switch them to MSI mode
255 * at the first MSI request.
256 */
257static void xlp_config_link_msi(uint64_t lnkbase, int lirq, uint64_t msiaddr)
258{
259 u32 val;
260
d66f3f0e
GR
261 if (cpu_is_xlp9xx()) {
262 val = nlm_read_reg(lnkbase, PCIE_9XX_INT_EN0);
263 if ((val & 0x200) == 0) {
264 val |= 0x200; /* MSI Interrupt enable */
265 nlm_write_reg(lnkbase, PCIE_9XX_INT_EN0, val);
266 }
267 } else {
268 val = nlm_read_reg(lnkbase, PCIE_INT_EN0);
269 if ((val & 0x200) == 0) {
270 val |= 0x200;
271 nlm_write_reg(lnkbase, PCIE_INT_EN0, val);
272 }
c24a8a7a
J
273 }
274
275 val = nlm_read_reg(lnkbase, 0x1); /* CMD */
276 if ((val & 0x0400) == 0) {
277 val |= 0x0400;
278 nlm_write_reg(lnkbase, 0x1, val);
279 }
280
281 /* Update IRQ in the PCI irq reg */
282 val = nlm_read_pci_reg(lnkbase, 0xf);
283 val &= ~0x1fu;
284 val |= (1 << 8) | lirq;
285 nlm_write_pci_reg(lnkbase, 0xf, val);
286
287 /* MSI addr */
288 nlm_write_reg(lnkbase, PCIE_BRIDGE_MSI_ADDRH, msiaddr >> 32);
289 nlm_write_reg(lnkbase, PCIE_BRIDGE_MSI_ADDRL, msiaddr & 0xffffffff);
290
291 /* MSI cap for bridge */
292 val = nlm_read_reg(lnkbase, PCIE_BRIDGE_MSI_CAP);
293 if ((val & (1 << 16)) == 0) {
294 val |= 0xb << 16; /* mmc32, msi enable */
295 nlm_write_reg(lnkbase, PCIE_BRIDGE_MSI_CAP, val);
296 }
297}
298
299/*
300 * Allocate a MSI vector on a link
301 */
302static int xlp_setup_msi(uint64_t lnkbase, int node, int link,
303 struct msi_desc *desc)
304{
305 struct xlp_msi_data *md;
306 struct msi_msg msg;
307 unsigned long flags;
308 int msivec, irt, lirq, xirq, ret;
309 uint64_t msiaddr;
310
311 /* Get MSI data for the link */
312 lirq = PIC_PCIE_LINK_MSI_IRQ(link);
313 xirq = nlm_irq_to_xirq(node, nlm_link_msiirq(link, 0));
314 md = irq_get_handler_data(xirq);
315 msiaddr = MSI_LINK_ADDR(node, link);
316
317 spin_lock_irqsave(&md->msi_lock, flags);
318 if (md->msi_alloc_mask == 0) {
c24a8a7a 319 xlp_config_link_msi(lnkbase, lirq, msiaddr);
d66f3f0e
GR
320 /* switch the link IRQ to MSI range */
321 if (cpu_is_xlp9xx())
322 irt = PIC_9XX_IRT_PCIE_LINK_INDEX(link);
323 else
324 irt = PIC_IRT_PCIE_LINK_INDEX(link);
c24a8a7a
J
325 nlm_setup_pic_irq(node, lirq, lirq, irt);
326 nlm_pic_init_irt(nlm_get_node(node)->picbase, irt, lirq,
98d4884c 327 node * nlm_threads_per_node(), 1 /*en */);
c24a8a7a
J
328 }
329
330 /* allocate a MSI vec, and tell the bridge about it */
331 msivec = fls(md->msi_alloc_mask);
332 if (msivec == XLP_MSIVEC_PER_LINK) {
333 spin_unlock_irqrestore(&md->msi_lock, flags);
334 return -ENOMEM;
335 }
336 md->msi_alloc_mask |= (1u << msivec);
337 spin_unlock_irqrestore(&md->msi_lock, flags);
338
339 msg.address_hi = msiaddr >> 32;
340 msg.address_lo = msiaddr & 0xffffffff;
341 msg.data = 0xc00 | msivec;
342
343 xirq = xirq + msivec; /* msi mapped to global irq space */
344 ret = irq_set_msi_desc(xirq, desc);
465665f7 345 if (ret < 0)
c24a8a7a 346 return ret;
c24a8a7a 347
83a18912 348 pci_write_msi_msg(xirq, &msg);
c24a8a7a
J
349 return 0;
350}
351
352/*
353 * Switch a link to MSI-X mode
354 */
355static void xlp_config_link_msix(uint64_t lnkbase, int lirq, uint64_t msixaddr)
356{
357 u32 val;
358
359 val = nlm_read_reg(lnkbase, 0x2C);
360 if ((val & 0x80000000U) == 0) {
361 val |= 0x80000000U;
362 nlm_write_reg(lnkbase, 0x2C, val);
363 }
d66f3f0e
GR
364
365 if (cpu_is_xlp9xx()) {
366 val = nlm_read_reg(lnkbase, PCIE_9XX_INT_EN0);
367 if ((val & 0x200) == 0) {
368 val |= 0x200; /* MSI Interrupt enable */
369 nlm_write_reg(lnkbase, PCIE_9XX_INT_EN0, val);
370 }
371 } else {
372 val = nlm_read_reg(lnkbase, PCIE_INT_EN0);
373 if ((val & 0x200) == 0) {
374 val |= 0x200; /* MSI Interrupt enable */
375 nlm_write_reg(lnkbase, PCIE_INT_EN0, val);
376 }
c24a8a7a
J
377 }
378
379 val = nlm_read_reg(lnkbase, 0x1); /* CMD */
380 if ((val & 0x0400) == 0) {
381 val |= 0x0400;
382 nlm_write_reg(lnkbase, 0x1, val);
383 }
384
385 /* Update IRQ in the PCI irq reg */
386 val = nlm_read_pci_reg(lnkbase, 0xf);
387 val &= ~0x1fu;
388 val |= (1 << 8) | lirq;
389 nlm_write_pci_reg(lnkbase, 0xf, val);
390
d66f3f0e
GR
391 if (cpu_is_xlp9xx()) {
392 /* MSI-X addresses */
393 nlm_write_reg(lnkbase, PCIE_9XX_BRIDGE_MSIX_ADDR_BASE,
394 msixaddr >> 8);
395 nlm_write_reg(lnkbase, PCIE_9XX_BRIDGE_MSIX_ADDR_LIMIT,
396 (msixaddr + MSI_ADDR_SZ) >> 8);
397 } else {
398 /* MSI-X addresses */
399 nlm_write_reg(lnkbase, PCIE_BRIDGE_MSIX_ADDR_BASE,
400 msixaddr >> 8);
401 nlm_write_reg(lnkbase, PCIE_BRIDGE_MSIX_ADDR_LIMIT,
402 (msixaddr + MSI_ADDR_SZ) >> 8);
403 }
c24a8a7a
J
404}
405
406/*
407 * Allocate a MSI-X vector
408 */
409static int xlp_setup_msix(uint64_t lnkbase, int node, int link,
410 struct msi_desc *desc)
411{
412 struct xlp_msi_data *md;
413 struct msi_msg msg;
414 unsigned long flags;
415 int t, msixvec, lirq, xirq, ret;
416 uint64_t msixaddr;
417
418 /* Get MSI data for the link */
419 lirq = PIC_PCIE_MSIX_IRQ(link);
420 xirq = nlm_irq_to_xirq(node, nlm_link_msixirq(link, 0));
421 md = irq_get_handler_data(xirq);
422 msixaddr = MSIX_LINK_ADDR(node, link);
423
424 spin_lock_irqsave(&md->msi_lock, flags);
425 /* switch the PCIe link to MSI-X mode at the first alloc */
426 if (md->msix_alloc_mask == 0)
427 xlp_config_link_msix(lnkbase, lirq, msixaddr);
428
429 /* allocate a MSI-X vec, and tell the bridge about it */
430 t = fls(md->msix_alloc_mask);
431 if (t == XLP_MSIXVEC_PER_LINK) {
432 spin_unlock_irqrestore(&md->msi_lock, flags);
433 return -ENOMEM;
434 }
435 md->msix_alloc_mask |= (1u << t);
436 spin_unlock_irqrestore(&md->msi_lock, flags);
437
438 xirq += t;
439 msixvec = nlm_irq_msixvec(xirq);
d66f3f0e 440
c24a8a7a
J
441 msg.address_hi = msixaddr >> 32;
442 msg.address_lo = msixaddr & 0xffffffff;
443 msg.data = 0xc00 | msixvec;
444
445 ret = irq_set_msi_desc(xirq, desc);
446 if (ret < 0) {
447 destroy_irq(xirq);
448 return ret;
449 }
450
83a18912 451 pci_write_msi_msg(xirq, &msg);
c24a8a7a
J
452 return 0;
453}
454
455int arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc)
456{
457 struct pci_dev *lnkdev;
458 uint64_t lnkbase;
459 int node, link, slot;
460
461 lnkdev = xlp_get_pcie_link(dev);
462 if (lnkdev == NULL) {
463 dev_err(&dev->dev, "Could not find bridge\n");
464 return 1;
465 }
466 slot = PCI_SLOT(lnkdev->devfn);
467 link = PCI_FUNC(lnkdev->devfn);
468 node = slot / 8;
469 lnkbase = nlm_get_pcie_base(node, link);
470
471 if (desc->msi_attrib.is_msix)
472 return xlp_setup_msix(lnkbase, node, link, desc);
473 else
474 return xlp_setup_msi(lnkbase, node, link, desc);
475}
476
477void __init xlp_init_node_msi_irqs(int node, int link)
478{
479 struct nlm_soc_info *nodep;
480 struct xlp_msi_data *md;
d66f3f0e 481 int irq, i, irt, msixvec, val;
c24a8a7a
J
482
483 pr_info("[%d %d] Init node PCI IRT\n", node, link);
484 nodep = nlm_get_node(node);
485
486 /* Alloc an MSI block for the link */
487 md = kzalloc(sizeof(*md), GFP_KERNEL);
488 spin_lock_init(&md->msi_lock);
489 md->msi_enabled_mask = 0;
490 md->msi_alloc_mask = 0;
491 md->msix_alloc_mask = 0;
492 md->node = nodep;
493 md->lnkbase = nlm_get_pcie_base(node, link);
494
495 /* extended space for MSI interrupts */
496 irq = nlm_irq_to_xirq(node, nlm_link_msiirq(link, 0));
497 for (i = irq; i < irq + XLP_MSIVEC_PER_LINK; i++) {
498 irq_set_chip_and_handler(i, &xlp_msi_chip, handle_level_irq);
499 irq_set_handler_data(i, md);
500 }
501
d66f3f0e
GR
502 for (i = 0; i < XLP_MSIXVEC_PER_LINK ; i++) {
503 if (cpu_is_xlp9xx()) {
504 val = ((node * nlm_threads_per_node()) << 7 |
505 PIC_PCIE_MSIX_IRQ(link) << 1 | 0 << 0);
506 nlm_write_pcie_reg(md->lnkbase, PCIE_9XX_MSIX_VECX(i +
507 (link * XLP_MSIXVEC_PER_LINK)), val);
508 } else {
509 /* Initialize MSI-X irts to generate one interrupt
510 * per link
511 */
512 msixvec = link * XLP_MSIXVEC_PER_LINK + i;
513 irt = PIC_IRT_PCIE_MSIX_INDEX(msixvec);
514 nlm_pic_init_irt(nodep->picbase, irt,
515 PIC_PCIE_MSIX_IRQ(link),
516 node * nlm_threads_per_node(), 1);
517 }
c24a8a7a
J
518
519 /* Initialize MSI-X extended irq space for the link */
520 irq = nlm_irq_to_xirq(node, nlm_link_msixirq(link, i));
521 irq_set_chip_and_handler(irq, &xlp_msix_chip, handle_level_irq);
522 irq_set_handler_data(irq, md);
523 }
c24a8a7a
J
524}
525
526void nlm_dispatch_msi(int node, int lirq)
527{
528 struct xlp_msi_data *md;
529 int link, i, irqbase;
530 u32 status;
531
532 link = lirq - PIC_PCIE_LINK_MSI_IRQ_BASE;
533 irqbase = nlm_irq_to_xirq(node, nlm_link_msiirq(link, 0));
534 md = irq_get_handler_data(irqbase);
d66f3f0e
GR
535 if (cpu_is_xlp9xx())
536 status = nlm_read_reg(md->lnkbase, PCIE_9XX_MSI_STATUS) &
537 md->msi_enabled_mask;
538 else
539 status = nlm_read_reg(md->lnkbase, PCIE_MSI_STATUS) &
c24a8a7a
J
540 md->msi_enabled_mask;
541 while (status) {
542 i = __ffs(status);
543 do_IRQ(irqbase + i);
544 status &= status - 1;
545 }
546}
547
548void nlm_dispatch_msix(int node, int lirq)
549{
550 struct xlp_msi_data *md;
551 int link, i, irqbase;
552 u32 status;
553
554 link = lirq - PIC_PCIE_MSIX_IRQ_BASE;
555 irqbase = nlm_irq_to_xirq(node, nlm_link_msixirq(link, 0));
556 md = irq_get_handler_data(irqbase);
d66f3f0e
GR
557 if (cpu_is_xlp9xx())
558 status = nlm_read_reg(md->lnkbase, PCIE_9XX_MSIX_STATUSX(link));
559 else
560 status = nlm_read_reg(md->lnkbase, PCIE_MSIX_STATUS);
c24a8a7a
J
561
562 /* narrow it down to the MSI-x vectors for our link */
d66f3f0e
GR
563 if (!cpu_is_xlp9xx())
564 status = (status >> (link * XLP_MSIXVEC_PER_LINK)) &
c24a8a7a
J
565 ((1 << XLP_MSIXVEC_PER_LINK) - 1);
566
567 while (status) {
568 i = __ffs(status);
569 do_IRQ(irqbase + i);
570 status &= status - 1;
571 }
572}
This page took 0.082849 seconds and 5 git commands to generate.