[PARISC] pdc_init no longer exists
[deliverable/linux.git] / arch / parisc / kernel / time.c
CommitLineData
1da177e4
LT
1/*
2 * linux/arch/parisc/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
5 * Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
6 * Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
7 *
8 * 1994-07-02 Alan Modra
9 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10 * 1998-12-20 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 */
1da177e4
LT
13#include <linux/errno.h>
14#include <linux/module.h>
15#include <linux/sched.h>
16#include <linux/kernel.h>
17#include <linux/param.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/interrupt.h>
21#include <linux/time.h>
22#include <linux/init.h>
23#include <linux/smp.h>
24#include <linux/profile.h>
25
26#include <asm/uaccess.h>
27#include <asm/io.h>
28#include <asm/irq.h>
29#include <asm/param.h>
30#include <asm/pdc.h>
31#include <asm/led.h>
32
33#include <linux/timex.h>
34
bed583f7 35static unsigned long clocktick __read_mostly; /* timer cycles per tick */
1da177e4
LT
36
37#ifdef CONFIG_SMP
38extern void smp_do_timer(struct pt_regs *regs);
39#endif
40
1604f318
MW
41/*
42 * We keep time on PA-RISC Linux by using the Interval Timer which is
43 * a pair of registers; one is read-only and one is write-only; both
44 * accessed through CR16. The read-only register is 32 or 64 bits wide,
45 * and increments by 1 every CPU clock tick. The architecture only
46 * guarantees us a rate between 0.5 and 2, but all implementations use a
47 * rate of 1. The write-only register is 32-bits wide. When the lowest
48 * 32 bits of the read-only register compare equal to the write-only
49 * register, it raises a maskable external interrupt. Each processor has
50 * an Interval Timer of its own and they are not synchronised.
51 *
52 * We want to generate an interrupt every 1/HZ seconds. So we program
53 * CR16 to interrupt every @clocktick cycles. The it_value in cpu_data
54 * is programmed with the intended time of the next tick. We can be
55 * held off for an arbitrarily long period of time by interrupts being
56 * disabled, so we may miss one or more ticks.
57 */
1da177e4
LT
58irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
59{
bed583f7
GG
60 unsigned long now;
61 unsigned long next_tick;
1604f318 62 unsigned long cycles_elapsed, ticks_elapsed;
6e5dc42b
GG
63 unsigned long cycles_remainder;
64 unsigned int cpu = smp_processor_id();
1da177e4 65
6b799d92 66 /* gcc can optimize for "read-only" case with a local clocktick */
6e5dc42b 67 unsigned long cpt = clocktick;
6b799d92 68
be577a52 69 profile_tick(CPU_PROFILING);
1da177e4 70
bed583f7 71 /* Initialize next_tick to the expected tick time. */
1da177e4
LT
72 next_tick = cpu_data[cpu].it_value;
73
bed583f7
GG
74 /* Get current interval timer.
75 * CR16 reads as 64 bits in CPU wide mode.
76 * CR16 reads as 32 bits in CPU narrow mode.
1da177e4 77 */
bed583f7 78 now = mfctl(16);
1da177e4 79
bed583f7
GG
80 cycles_elapsed = now - next_tick;
81
6e5dc42b
GG
82 if ((cycles_elapsed >> 5) < cpt) {
83 /* use "cheap" math (add/subtract) instead
84 * of the more expensive div/mul method
bed583f7 85 */
6b799d92 86 cycles_remainder = cycles_elapsed;
1604f318 87 ticks_elapsed = 1;
6e5dc42b
GG
88 while (cycles_remainder > cpt) {
89 cycles_remainder -= cpt;
1604f318 90 ticks_elapsed++;
6e5dc42b 91 }
6b799d92 92 } else {
6e5dc42b 93 cycles_remainder = cycles_elapsed % cpt;
1604f318 94 ticks_elapsed = 1 + cycles_elapsed / cpt;
6b799d92 95 }
bed583f7
GG
96
97 /* Can we differentiate between "early CR16" (aka Scenario 1) and
98 * "long delay" (aka Scenario 3)? I don't think so.
99 *
100 * We expected timer_interrupt to be delivered at least a few hundred
101 * cycles after the IT fires. But it's arbitrary how much time passes
102 * before we call it "late". I've picked one second.
103 */
1604f318 104 if (ticks_elapsed > HZ) {
bed583f7 105 /* Scenario 3: very long delay? bad in any case */
6b799d92 106 printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
6e5dc42b 107 " cycles %lX rem %lX "
bed583f7
GG
108 " next/now %lX/%lX\n",
109 cpu,
6e5dc42b 110 cycles_elapsed, cycles_remainder,
bed583f7 111 next_tick, now );
bed583f7
GG
112 }
113
6e5dc42b
GG
114 /* convert from "division remainder" to "remainder of clock tick" */
115 cycles_remainder = cpt - cycles_remainder;
bed583f7
GG
116
117 /* Determine when (in CR16 cycles) next IT interrupt will fire.
118 * We want IT to fire modulo clocktick even if we miss/skip some.
119 * But those interrupts don't in fact get delivered that regularly.
120 */
6e5dc42b
GG
121 next_tick = now + cycles_remainder;
122
123 cpu_data[cpu].it_value = next_tick;
6b799d92
GG
124
125 /* Skip one clocktick on purpose if we are likely to miss next_tick.
6e5dc42b
GG
126 * We want to avoid the new next_tick being less than CR16.
127 * If that happened, itimer wouldn't fire until CR16 wrapped.
128 * We'll catch the tick we missed on the tick after that.
129 */
130 if (!(cycles_remainder >> 13))
131 next_tick += cpt;
bed583f7
GG
132
133 /* Program the IT when to deliver the next interrupt. */
134 /* Only bottom 32-bits of next_tick are written to cr16. */
6b799d92 135 mtctl(next_tick, 16);
1da177e4 136
6e5dc42b
GG
137
138 /* Done mucking with unreliable delivery of interrupts.
139 * Go do system house keeping.
bed583f7 140 */
1da177e4 141#ifdef CONFIG_SMP
6e5dc42b 142 smp_do_timer(regs);
1da177e4 143#else
6e5dc42b 144 update_process_times(user_mode(regs));
1da177e4 145#endif
6e5dc42b
GG
146 if (cpu == 0) {
147 write_seqlock(&xtime_lock);
1604f318 148 do_timer(ticks_elapsed);
6e5dc42b 149 write_sequnlock(&xtime_lock);
1da177e4 150 }
6e5dc42b 151
1da177e4
LT
152 /* check soft power switch status */
153 if (cpu == 0 && !atomic_read(&power_tasklet.count))
154 tasklet_schedule(&power_tasklet);
155
156 return IRQ_HANDLED;
157}
158
5cd55b0e
RC
159
160unsigned long profile_pc(struct pt_regs *regs)
161{
162 unsigned long pc = instruction_pointer(regs);
163
164 if (regs->gr[0] & PSW_N)
165 pc -= 4;
166
167#ifdef CONFIG_SMP
168 if (in_lock_functions(pc))
169 pc = regs->gr[2];
170#endif
171
172 return pc;
173}
174EXPORT_SYMBOL(profile_pc);
175
176
1da177e4
LT
177/*
178 * Return the number of micro-seconds that elapsed since the last
8ef38609 179 * update to wall time (aka xtime). The xtime_lock
1da177e4
LT
180 * must be at least read-locked when calling this routine.
181 */
6e5dc42b 182static inline unsigned long gettimeoffset (void)
1da177e4
LT
183{
184#ifndef CONFIG_SMP
185 /*
186 * FIXME: This won't work on smp because jiffies are updated by cpu 0.
187 * Once parisc-linux learns the cr16 difference between processors,
188 * this could be made to work.
189 */
bed583f7
GG
190 unsigned long now;
191 unsigned long prev_tick;
192 unsigned long next_tick;
193 unsigned long elapsed_cycles;
194 unsigned long usec;
6b799d92 195 unsigned long cpuid = smp_processor_id();
6e5dc42b 196 unsigned long cpt = clocktick;
1da177e4 197
6b799d92 198 next_tick = cpu_data[cpuid].it_value;
bed583f7 199 now = mfctl(16); /* Read the hardware interval timer. */
1da177e4 200
6e5dc42b 201 prev_tick = next_tick - cpt;
bed583f7
GG
202
203 /* Assume Scenario 1: "now" is later than prev_tick. */
204 elapsed_cycles = now - prev_tick;
205
6e5dc42b
GG
206/* aproximate HZ with shifts. Intended math is "(elapsed/clocktick) > HZ" */
207#if HZ == 1000
208 if (elapsed_cycles > (cpt << 10) )
209#elif HZ == 250
210 if (elapsed_cycles > (cpt << 8) )
211#elif HZ == 100
212 if (elapsed_cycles > (cpt << 7) )
213#else
214#warn WTF is HZ set to anyway?
215 if (elapsed_cycles > (HZ * cpt) )
216#endif
217 {
bed583f7 218 /* Scenario 3: clock ticks are missing. */
6e5dc42b
GG
219 printk (KERN_CRIT "gettimeoffset(CPU %ld): missing %ld ticks!"
220 " cycles %lX prev/now/next %lX/%lX/%lX clock %lX\n",
221 cpuid, elapsed_cycles / cpt,
222 elapsed_cycles, prev_tick, now, next_tick, cpt);
bed583f7
GG
223 }
224
225 /* FIXME: Can we improve the precision? Not with PAGE0. */
226 usec = (elapsed_cycles * 10000) / PAGE0->mem_10msec;
bed583f7 227 return usec;
1da177e4
LT
228#else
229 return 0;
230#endif
231}
232
233void
234do_gettimeofday (struct timeval *tv)
235{
236 unsigned long flags, seq, usec, sec;
237
bed583f7 238 /* Hold xtime_lock and adjust timeval. */
1da177e4
LT
239 do {
240 seq = read_seqbegin_irqsave(&xtime_lock, flags);
241 usec = gettimeoffset();
242 sec = xtime.tv_sec;
243 usec += (xtime.tv_nsec / 1000);
244 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
245
bed583f7 246 /* Move adjusted usec's into sec's. */
61c34016
JB
247 while (usec >= USEC_PER_SEC) {
248 usec -= USEC_PER_SEC;
1da177e4
LT
249 ++sec;
250 }
251
bed583f7 252 /* Return adjusted result. */
1da177e4
LT
253 tv->tv_sec = sec;
254 tv->tv_usec = usec;
255}
256
257EXPORT_SYMBOL(do_gettimeofday);
258
259int
260do_settimeofday (struct timespec *tv)
261{
262 time_t wtm_sec, sec = tv->tv_sec;
263 long wtm_nsec, nsec = tv->tv_nsec;
264
265 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
266 return -EINVAL;
267
268 write_seqlock_irq(&xtime_lock);
269 {
270 /*
271 * This is revolting. We need to set "xtime"
272 * correctly. However, the value in this location is
273 * the value at the most recent update of wall time.
274 * Discover what correction gettimeofday would have
275 * done, and then undo it!
276 */
277 nsec -= gettimeoffset() * 1000;
278
279 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
280 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
281
282 set_normalized_timespec(&xtime, sec, nsec);
283 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
284
b149ee22 285 ntp_clear();
1da177e4
LT
286 }
287 write_sequnlock_irq(&xtime_lock);
288 clock_was_set();
289 return 0;
290}
291EXPORT_SYMBOL(do_settimeofday);
292
293/*
294 * XXX: We can do better than this.
295 * Returns nanoseconds
296 */
297
298unsigned long long sched_clock(void)
299{
300 return (unsigned long long)jiffies * (1000000000 / HZ);
301}
302
303
56f335c8
GG
304void __init start_cpu_itimer(void)
305{
306 unsigned int cpu = smp_processor_id();
307 unsigned long next_tick = mfctl(16) + clocktick;
308
309 mtctl(next_tick, 16); /* kick off Interval Timer (CR16) */
310
311 cpu_data[cpu].it_value = next_tick;
312}
313
1da177e4
LT
314void __init time_init(void)
315{
1da177e4
LT
316 static struct pdc_tod tod_data;
317
318 clocktick = (100 * PAGE0->mem_10msec) / HZ;
1da177e4 319
56f335c8 320 start_cpu_itimer(); /* get CPU 0 started */
1da177e4 321
09690b18
KM
322 if (pdc_tod_read(&tod_data) == 0) {
323 unsigned long flags;
324
325 write_seqlock_irqsave(&xtime_lock, flags);
1da177e4
LT
326 xtime.tv_sec = tod_data.tod_sec;
327 xtime.tv_nsec = tod_data.tod_usec * 1000;
328 set_normalized_timespec(&wall_to_monotonic,
329 -xtime.tv_sec, -xtime.tv_nsec);
09690b18 330 write_sequnlock_irqrestore(&xtime_lock, flags);
1da177e4
LT
331 } else {
332 printk(KERN_ERR "Error reading tod clock\n");
333 xtime.tv_sec = 0;
334 xtime.tv_nsec = 0;
335 }
336}
337
This page took 0.182226 seconds and 5 git commands to generate.