parisc: add ftrace (function and graph tracer) functionality
[deliverable/linux.git] / arch / parisc / kernel / time.c
CommitLineData
1da177e4
LT
1/*
2 * linux/arch/parisc/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
5 * Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
6 * Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
7 *
8 * 1994-07-02 Alan Modra
9 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10 * 1998-12-20 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 */
1da177e4
LT
13#include <linux/errno.h>
14#include <linux/module.h>
15#include <linux/sched.h>
16#include <linux/kernel.h>
17#include <linux/param.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/interrupt.h>
21#include <linux/time.h>
22#include <linux/init.h>
23#include <linux/smp.h>
24#include <linux/profile.h>
12df29b6 25#include <linux/clocksource.h>
9eb16864 26#include <linux/platform_device.h>
d75f054a 27#include <linux/ftrace.h>
1da177e4
LT
28
29#include <asm/uaccess.h>
30#include <asm/io.h>
31#include <asm/irq.h>
32#include <asm/param.h>
33#include <asm/pdc.h>
34#include <asm/led.h>
35
36#include <linux/timex.h>
37
bed583f7 38static unsigned long clocktick __read_mostly; /* timer cycles per tick */
1da177e4 39
1604f318
MW
40/*
41 * We keep time on PA-RISC Linux by using the Interval Timer which is
42 * a pair of registers; one is read-only and one is write-only; both
43 * accessed through CR16. The read-only register is 32 or 64 bits wide,
44 * and increments by 1 every CPU clock tick. The architecture only
45 * guarantees us a rate between 0.5 and 2, but all implementations use a
46 * rate of 1. The write-only register is 32-bits wide. When the lowest
47 * 32 bits of the read-only register compare equal to the write-only
48 * register, it raises a maskable external interrupt. Each processor has
49 * an Interval Timer of its own and they are not synchronised.
50 *
51 * We want to generate an interrupt every 1/HZ seconds. So we program
52 * CR16 to interrupt every @clocktick cycles. The it_value in cpu_data
53 * is programmed with the intended time of the next tick. We can be
54 * held off for an arbitrarily long period of time by interrupts being
55 * disabled, so we may miss one or more ticks.
56 */
d75f054a 57irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id)
1da177e4 58{
bed583f7
GG
59 unsigned long now;
60 unsigned long next_tick;
1604f318 61 unsigned long cycles_elapsed, ticks_elapsed;
6e5dc42b
GG
62 unsigned long cycles_remainder;
63 unsigned int cpu = smp_processor_id();
ef017beb 64 struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
1da177e4 65
6b799d92 66 /* gcc can optimize for "read-only" case with a local clocktick */
6e5dc42b 67 unsigned long cpt = clocktick;
6b799d92 68
be577a52 69 profile_tick(CPU_PROFILING);
1da177e4 70
bed583f7 71 /* Initialize next_tick to the expected tick time. */
c7753f18 72 next_tick = cpuinfo->it_value;
1da177e4 73
bed583f7
GG
74 /* Get current interval timer.
75 * CR16 reads as 64 bits in CPU wide mode.
76 * CR16 reads as 32 bits in CPU narrow mode.
1da177e4 77 */
bed583f7 78 now = mfctl(16);
1da177e4 79
bed583f7
GG
80 cycles_elapsed = now - next_tick;
81
6e5dc42b
GG
82 if ((cycles_elapsed >> 5) < cpt) {
83 /* use "cheap" math (add/subtract) instead
84 * of the more expensive div/mul method
bed583f7 85 */
6b799d92 86 cycles_remainder = cycles_elapsed;
1604f318 87 ticks_elapsed = 1;
6e5dc42b
GG
88 while (cycles_remainder > cpt) {
89 cycles_remainder -= cpt;
1604f318 90 ticks_elapsed++;
6e5dc42b 91 }
6b799d92 92 } else {
6e5dc42b 93 cycles_remainder = cycles_elapsed % cpt;
1604f318 94 ticks_elapsed = 1 + cycles_elapsed / cpt;
6b799d92 95 }
bed583f7
GG
96
97 /* Can we differentiate between "early CR16" (aka Scenario 1) and
98 * "long delay" (aka Scenario 3)? I don't think so.
99 *
100 * We expected timer_interrupt to be delivered at least a few hundred
101 * cycles after the IT fires. But it's arbitrary how much time passes
102 * before we call it "late". I've picked one second.
103 */
324c7e65 104 if (unlikely(ticks_elapsed > HZ)) {
bed583f7 105 /* Scenario 3: very long delay? bad in any case */
6b799d92 106 printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
6e5dc42b 107 " cycles %lX rem %lX "
bed583f7
GG
108 " next/now %lX/%lX\n",
109 cpu,
6e5dc42b 110 cycles_elapsed, cycles_remainder,
bed583f7 111 next_tick, now );
bed583f7
GG
112 }
113
6e5dc42b
GG
114 /* convert from "division remainder" to "remainder of clock tick" */
115 cycles_remainder = cpt - cycles_remainder;
bed583f7
GG
116
117 /* Determine when (in CR16 cycles) next IT interrupt will fire.
118 * We want IT to fire modulo clocktick even if we miss/skip some.
119 * But those interrupts don't in fact get delivered that regularly.
120 */
6e5dc42b
GG
121 next_tick = now + cycles_remainder;
122
c7753f18 123 cpuinfo->it_value = next_tick;
6b799d92
GG
124
125 /* Skip one clocktick on purpose if we are likely to miss next_tick.
6e5dc42b
GG
126 * We want to avoid the new next_tick being less than CR16.
127 * If that happened, itimer wouldn't fire until CR16 wrapped.
128 * We'll catch the tick we missed on the tick after that.
129 */
130 if (!(cycles_remainder >> 13))
131 next_tick += cpt;
bed583f7
GG
132
133 /* Program the IT when to deliver the next interrupt. */
c7753f18 134 /* Only bottom 32-bits of next_tick are written to cr16. */
6b799d92 135 mtctl(next_tick, 16);
1da177e4 136
6e5dc42b
GG
137
138 /* Done mucking with unreliable delivery of interrupts.
139 * Go do system house keeping.
bed583f7 140 */
c7753f18
MW
141
142 if (!--cpuinfo->prof_counter) {
143 cpuinfo->prof_counter = cpuinfo->prof_multiplier;
144 update_process_times(user_mode(get_irq_regs()));
145 }
146
6e5dc42b
GG
147 if (cpu == 0) {
148 write_seqlock(&xtime_lock);
1604f318 149 do_timer(ticks_elapsed);
6e5dc42b 150 write_sequnlock(&xtime_lock);
1da177e4 151 }
6e5dc42b 152
1da177e4
LT
153 return IRQ_HANDLED;
154}
155
5cd55b0e
RC
156
157unsigned long profile_pc(struct pt_regs *regs)
158{
159 unsigned long pc = instruction_pointer(regs);
160
161 if (regs->gr[0] & PSW_N)
162 pc -= 4;
163
164#ifdef CONFIG_SMP
165 if (in_lock_functions(pc))
166 pc = regs->gr[2];
167#endif
168
169 return pc;
170}
171EXPORT_SYMBOL(profile_pc);
172
173
12df29b6 174/* clock source code */
1da177e4 175
12df29b6 176static cycle_t read_cr16(void)
1da177e4 177{
12df29b6 178 return get_cycles();
1da177e4 179}
bed583f7 180
12df29b6
HD
181static struct clocksource clocksource_cr16 = {
182 .name = "cr16",
183 .rating = 300,
184 .read = read_cr16,
185 .mask = CLOCKSOURCE_MASK(BITS_PER_LONG),
186 .mult = 0, /* to be set */
187 .shift = 22,
87c81747 188 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
12df29b6 189};
bed583f7 190
b2a8289a
KM
191#ifdef CONFIG_SMP
192int update_cr16_clocksource(void)
1da177e4 193{
7022672e 194 /* since the cr16 cycle counters are not synchronized across CPUs,
324c7e65
HD
195 we'll check if we should switch to a safe clocksource: */
196 if (clocksource_cr16.rating != 0 && num_online_cpus() > 1) {
00d1f3c3 197 clocksource_change_rating(&clocksource_cr16, 0);
730e844d 198 return 1;
1da177e4
LT
199 }
200
730e844d 201 return 0;
1da177e4 202}
01363220
KM
203#else
204int update_cr16_clocksource(void)
205{
206 return 0; /* no change */
207}
b2a8289a 208#endif /*CONFIG_SMP*/
1da177e4 209
56f335c8
GG
210void __init start_cpu_itimer(void)
211{
212 unsigned int cpu = smp_processor_id();
213 unsigned long next_tick = mfctl(16) + clocktick;
214
215 mtctl(next_tick, 16); /* kick off Interval Timer (CR16) */
216
ef017beb 217 per_cpu(cpu_data, cpu).it_value = next_tick;
56f335c8
GG
218}
219
9eb16864
KM
220struct platform_device rtc_parisc_dev = {
221 .name = "rtc-parisc",
222 .id = -1,
223};
224
225static int __init rtc_init(void)
226{
227 int ret;
228
229 ret = platform_device_register(&rtc_parisc_dev);
230 if (ret < 0)
231 printk(KERN_ERR "unable to register rtc device...\n");
232
233 /* not necessarily an error */
234 return 0;
235}
236module_init(rtc_init);
237
1da177e4
LT
238void __init time_init(void)
239{
1da177e4 240 static struct pdc_tod tod_data;
12df29b6 241 unsigned long current_cr16_khz;
1da177e4
LT
242
243 clocktick = (100 * PAGE0->mem_10msec) / HZ;
1da177e4 244
56f335c8 245 start_cpu_itimer(); /* get CPU 0 started */
1da177e4 246
12df29b6
HD
247 /* register at clocksource framework */
248 current_cr16_khz = PAGE0->mem_10msec/10; /* kHz */
249 clocksource_cr16.mult = clocksource_khz2mult(current_cr16_khz,
250 clocksource_cr16.shift);
12df29b6
HD
251 clocksource_register(&clocksource_cr16);
252
09690b18
KM
253 if (pdc_tod_read(&tod_data) == 0) {
254 unsigned long flags;
255
256 write_seqlock_irqsave(&xtime_lock, flags);
1da177e4
LT
257 xtime.tv_sec = tod_data.tod_sec;
258 xtime.tv_nsec = tod_data.tod_usec * 1000;
259 set_normalized_timespec(&wall_to_monotonic,
260 -xtime.tv_sec, -xtime.tv_nsec);
09690b18 261 write_sequnlock_irqrestore(&xtime_lock, flags);
1da177e4
LT
262 } else {
263 printk(KERN_ERR "Error reading tod clock\n");
264 xtime.tv_sec = 0;
265 xtime.tv_nsec = 0;
266 }
267}
This page took 0.541436 seconds and 5 git commands to generate.