[SPARC64]: Use compat_sys_futimesat in 32-bit syscall table.
[deliverable/linux.git] / arch / parisc / mm / init.c
CommitLineData
1da177e4
LT
1/*
2 * linux/arch/parisc/mm/init.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Copyright 1999 SuSE GmbH
6 * changed by Philipp Rumpf
7 * Copyright 1999 Philipp Rumpf (prumpf@tux.org)
8 * Copyright 2004 Randolph Chung (tausq@debian.org)
9 *
10 */
11
12#include <linux/config.h>
13
14#include <linux/module.h>
15#include <linux/mm.h>
16#include <linux/bootmem.h>
17#include <linux/delay.h>
18#include <linux/init.h>
19#include <linux/pci.h> /* for hppa_dma_ops and pcxl_dma_ops */
20#include <linux/initrd.h>
21#include <linux/swap.h>
22#include <linux/unistd.h>
23#include <linux/nodemask.h> /* for node_online_map */
24#include <linux/pagemap.h> /* for release_pages and page_cache_release */
25
26#include <asm/pgalloc.h>
27#include <asm/tlb.h>
28#include <asm/pdc_chassis.h>
29#include <asm/mmzone.h>
30
31DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
32
33extern char _text; /* start of kernel code, defined by linker */
34extern int data_start;
35extern char _end; /* end of BSS, defined by linker */
36extern char __init_begin, __init_end;
37
38#ifdef CONFIG_DISCONTIGMEM
8039de10
HD
39struct node_map_data node_data[MAX_NUMNODES] __read_mostly;
40bootmem_data_t bmem_data[MAX_NUMNODES] __read_mostly;
41unsigned char pfnnid_map[PFNNID_MAP_MAX] __read_mostly;
1da177e4
LT
42#endif
43
44static struct resource data_resource = {
45 .name = "Kernel data",
46 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
47};
48
49static struct resource code_resource = {
50 .name = "Kernel code",
51 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
52};
53
54static struct resource pdcdata_resource = {
55 .name = "PDC data (Page Zero)",
56 .start = 0,
57 .end = 0x9ff,
58 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
59};
60
8039de10 61static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly;
1da177e4
LT
62
63/* The following array is initialized from the firmware specific
64 * information retrieved in kernel/inventory.c.
65 */
66
8039de10
HD
67physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly;
68int npmem_ranges __read_mostly;
1da177e4
LT
69
70#ifdef __LP64__
71#define MAX_MEM (~0UL)
72#else /* !__LP64__ */
73#define MAX_MEM (3584U*1024U*1024U)
74#endif /* !__LP64__ */
75
8039de10 76static unsigned long mem_limit __read_mostly = MAX_MEM;
1da177e4
LT
77
78static void __init mem_limit_func(void)
79{
80 char *cp, *end;
81 unsigned long limit;
82 extern char saved_command_line[];
83
84 /* We need this before __setup() functions are called */
85
86 limit = MAX_MEM;
87 for (cp = saved_command_line; *cp; ) {
88 if (memcmp(cp, "mem=", 4) == 0) {
89 cp += 4;
90 limit = memparse(cp, &end);
91 if (end != cp)
92 break;
93 cp = end;
94 } else {
95 while (*cp != ' ' && *cp)
96 ++cp;
97 while (*cp == ' ')
98 ++cp;
99 }
100 }
101
102 if (limit < mem_limit)
103 mem_limit = limit;
104}
105
106#define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
107
108static void __init setup_bootmem(void)
109{
110 unsigned long bootmap_size;
111 unsigned long mem_max;
112 unsigned long bootmap_pages;
113 unsigned long bootmap_start_pfn;
114 unsigned long bootmap_pfn;
115#ifndef CONFIG_DISCONTIGMEM
116 physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
117 int npmem_holes;
118#endif
119 int i, sysram_resource_count;
120
121 disable_sr_hashing(); /* Turn off space register hashing */
122
123 /*
124 * Sort the ranges. Since the number of ranges is typically
125 * small, and performance is not an issue here, just do
126 * a simple insertion sort.
127 */
128
129 for (i = 1; i < npmem_ranges; i++) {
130 int j;
131
132 for (j = i; j > 0; j--) {
133 unsigned long tmp;
134
135 if (pmem_ranges[j-1].start_pfn <
136 pmem_ranges[j].start_pfn) {
137
138 break;
139 }
140 tmp = pmem_ranges[j-1].start_pfn;
141 pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
142 pmem_ranges[j].start_pfn = tmp;
143 tmp = pmem_ranges[j-1].pages;
144 pmem_ranges[j-1].pages = pmem_ranges[j].pages;
145 pmem_ranges[j].pages = tmp;
146 }
147 }
148
149#ifndef CONFIG_DISCONTIGMEM
150 /*
151 * Throw out ranges that are too far apart (controlled by
152 * MAX_GAP).
153 */
154
155 for (i = 1; i < npmem_ranges; i++) {
156 if (pmem_ranges[i].start_pfn -
157 (pmem_ranges[i-1].start_pfn +
158 pmem_ranges[i-1].pages) > MAX_GAP) {
159 npmem_ranges = i;
160 printk("Large gap in memory detected (%ld pages). "
161 "Consider turning on CONFIG_DISCONTIGMEM\n",
162 pmem_ranges[i].start_pfn -
163 (pmem_ranges[i-1].start_pfn +
164 pmem_ranges[i-1].pages));
165 break;
166 }
167 }
168#endif
169
170 if (npmem_ranges > 1) {
171
172 /* Print the memory ranges */
173
174 printk(KERN_INFO "Memory Ranges:\n");
175
176 for (i = 0; i < npmem_ranges; i++) {
177 unsigned long start;
178 unsigned long size;
179
180 size = (pmem_ranges[i].pages << PAGE_SHIFT);
181 start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
182 printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
183 i,start, start + (size - 1), size >> 20);
184 }
185 }
186
187 sysram_resource_count = npmem_ranges;
188 for (i = 0; i < sysram_resource_count; i++) {
189 struct resource *res = &sysram_resources[i];
190 res->name = "System RAM";
191 res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
192 res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
193 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
194 request_resource(&iomem_resource, res);
195 }
196
197 /*
198 * For 32 bit kernels we limit the amount of memory we can
199 * support, in order to preserve enough kernel address space
200 * for other purposes. For 64 bit kernels we don't normally
201 * limit the memory, but this mechanism can be used to
202 * artificially limit the amount of memory (and it is written
203 * to work with multiple memory ranges).
204 */
205
206 mem_limit_func(); /* check for "mem=" argument */
207
208 mem_max = 0;
209 num_physpages = 0;
210 for (i = 0; i < npmem_ranges; i++) {
211 unsigned long rsize;
212
213 rsize = pmem_ranges[i].pages << PAGE_SHIFT;
214 if ((mem_max + rsize) > mem_limit) {
215 printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
216 if (mem_max == mem_limit)
217 npmem_ranges = i;
218 else {
219 pmem_ranges[i].pages = (mem_limit >> PAGE_SHIFT)
220 - (mem_max >> PAGE_SHIFT);
221 npmem_ranges = i + 1;
222 mem_max = mem_limit;
223 }
224 num_physpages += pmem_ranges[i].pages;
225 break;
226 }
227 num_physpages += pmem_ranges[i].pages;
228 mem_max += rsize;
229 }
230
231 printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
232
233#ifndef CONFIG_DISCONTIGMEM
234 /* Merge the ranges, keeping track of the holes */
235
236 {
237 unsigned long end_pfn;
238 unsigned long hole_pages;
239
240 npmem_holes = 0;
241 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
242 for (i = 1; i < npmem_ranges; i++) {
243
244 hole_pages = pmem_ranges[i].start_pfn - end_pfn;
245 if (hole_pages) {
246 pmem_holes[npmem_holes].start_pfn = end_pfn;
247 pmem_holes[npmem_holes++].pages = hole_pages;
248 end_pfn += hole_pages;
249 }
250 end_pfn += pmem_ranges[i].pages;
251 }
252
253 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
254 npmem_ranges = 1;
255 }
256#endif
257
258 bootmap_pages = 0;
259 for (i = 0; i < npmem_ranges; i++)
260 bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
261
262 bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
263
264#ifdef CONFIG_DISCONTIGMEM
265 for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
266 memset(NODE_DATA(i), 0, sizeof(pg_data_t));
267 NODE_DATA(i)->bdata = &bmem_data[i];
268 }
269 memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
270
271 for (i = 0; i < npmem_ranges; i++)
272 node_set_online(i);
273#endif
274
275 /*
276 * Initialize and free the full range of memory in each range.
277 * Note that the only writing these routines do are to the bootmap,
278 * and we've made sure to locate the bootmap properly so that they
279 * won't be writing over anything important.
280 */
281
282 bootmap_pfn = bootmap_start_pfn;
283 max_pfn = 0;
284 for (i = 0; i < npmem_ranges; i++) {
285 unsigned long start_pfn;
286 unsigned long npages;
287
288 start_pfn = pmem_ranges[i].start_pfn;
289 npages = pmem_ranges[i].pages;
290
291 bootmap_size = init_bootmem_node(NODE_DATA(i),
292 bootmap_pfn,
293 start_pfn,
294 (start_pfn + npages) );
295 free_bootmem_node(NODE_DATA(i),
296 (start_pfn << PAGE_SHIFT),
297 (npages << PAGE_SHIFT) );
298 bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
299 if ((start_pfn + npages) > max_pfn)
300 max_pfn = start_pfn + npages;
301 }
302
5cdb8205
GG
303 /* IOMMU is always used to access "high mem" on those boxes
304 * that can support enough mem that a PCI device couldn't
305 * directly DMA to any physical addresses.
306 * ISA DMA support will need to revisit this.
307 */
308 max_low_pfn = max_pfn;
309
1da177e4
LT
310 if ((bootmap_pfn - bootmap_start_pfn) != bootmap_pages) {
311 printk(KERN_WARNING "WARNING! bootmap sizing is messed up!\n");
312 BUG();
313 }
314
315 /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
316
317#define PDC_CONSOLE_IO_IODC_SIZE 32768
318
319 reserve_bootmem_node(NODE_DATA(0), 0UL,
320 (unsigned long)(PAGE0->mem_free + PDC_CONSOLE_IO_IODC_SIZE));
321 reserve_bootmem_node(NODE_DATA(0),__pa((unsigned long)&_text),
322 (unsigned long)(&_end - &_text));
323 reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
324 ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT));
325
326#ifndef CONFIG_DISCONTIGMEM
327
328 /* reserve the holes */
329
330 for (i = 0; i < npmem_holes; i++) {
331 reserve_bootmem_node(NODE_DATA(0),
332 (pmem_holes[i].start_pfn << PAGE_SHIFT),
333 (pmem_holes[i].pages << PAGE_SHIFT));
334 }
335#endif
336
337#ifdef CONFIG_BLK_DEV_INITRD
338 if (initrd_start) {
339 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
340 if (__pa(initrd_start) < mem_max) {
341 unsigned long initrd_reserve;
342
343 if (__pa(initrd_end) > mem_max) {
344 initrd_reserve = mem_max - __pa(initrd_start);
345 } else {
346 initrd_reserve = initrd_end - initrd_start;
347 }
348 initrd_below_start_ok = 1;
349 printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
350
351 reserve_bootmem_node(NODE_DATA(0),__pa(initrd_start), initrd_reserve);
352 }
353 }
354#endif
355
356 data_resource.start = virt_to_phys(&data_start);
357 data_resource.end = virt_to_phys(&_end)-1;
358 code_resource.start = virt_to_phys(&_text);
359 code_resource.end = virt_to_phys(&data_start)-1;
360
361 /* We don't know which region the kernel will be in, so try
362 * all of them.
363 */
364 for (i = 0; i < sysram_resource_count; i++) {
365 struct resource *res = &sysram_resources[i];
366 request_resource(res, &code_resource);
367 request_resource(res, &data_resource);
368 }
369 request_resource(&sysram_resources[0], &pdcdata_resource);
370}
371
372void free_initmem(void)
373{
374 /* FIXME: */
375#if 0
376 printk(KERN_INFO "NOT FREEING INITMEM (%dk)\n",
377 (&__init_end - &__init_begin) >> 10);
378 return;
379#else
380 unsigned long addr;
381
382 printk(KERN_INFO "Freeing unused kernel memory: ");
383
384#if 1
385 /* Attempt to catch anyone trying to execute code here
386 * by filling the page with BRK insns.
387 *
388 * If we disable interrupts for all CPUs, then IPI stops working.
389 * Kinda breaks the global cache flushing.
390 */
391 local_irq_disable();
392
393 memset(&__init_begin, 0x00,
394 (unsigned long)&__init_end - (unsigned long)&__init_begin);
395
396 flush_data_cache();
397 asm volatile("sync" : : );
398 flush_icache_range((unsigned long)&__init_begin, (unsigned long)&__init_end);
399 asm volatile("sync" : : );
400
401 local_irq_enable();
402#endif
403
404 addr = (unsigned long)(&__init_begin);
405 for (; addr < (unsigned long)(&__init_end); addr += PAGE_SIZE) {
406 ClearPageReserved(virt_to_page(addr));
407 set_page_count(virt_to_page(addr), 1);
408 free_page(addr);
409 num_physpages++;
410 totalram_pages++;
411 }
412
413 /* set up a new led state on systems shipped LED State panel */
414 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
415
416 printk("%luk freed\n", (unsigned long)(&__init_end - &__init_begin) >> 10);
417#endif
418}
419
420/*
421 * Just an arbitrary offset to serve as a "hole" between mapping areas
422 * (between top of physical memory and a potential pcxl dma mapping
423 * area, and below the vmalloc mapping area).
424 *
425 * The current 32K value just means that there will be a 32K "hole"
426 * between mapping areas. That means that any out-of-bounds memory
427 * accesses will hopefully be caught. The vmalloc() routines leaves
428 * a hole of 4kB between each vmalloced area for the same reason.
429 */
430
431 /* Leave room for gateway page expansion */
432#if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
433#error KERNEL_MAP_START is in gateway reserved region
434#endif
435#define MAP_START (KERNEL_MAP_START)
436
437#define VM_MAP_OFFSET (32*1024)
438#define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
439 & ~(VM_MAP_OFFSET-1)))
440
8039de10 441void *vmalloc_start __read_mostly;
1da177e4
LT
442EXPORT_SYMBOL(vmalloc_start);
443
444#ifdef CONFIG_PA11
8039de10 445unsigned long pcxl_dma_start __read_mostly;
1da177e4
LT
446#endif
447
448void __init mem_init(void)
449{
450 high_memory = __va((max_pfn << PAGE_SHIFT));
451
452#ifndef CONFIG_DISCONTIGMEM
453 max_mapnr = page_to_pfn(virt_to_page(high_memory - 1)) + 1;
454 totalram_pages += free_all_bootmem();
455#else
456 {
457 int i;
458
459 for (i = 0; i < npmem_ranges; i++)
460 totalram_pages += free_all_bootmem_node(NODE_DATA(i));
461 }
462#endif
463
464 printk(KERN_INFO "Memory: %luk available\n", num_physpages << (PAGE_SHIFT-10));
465
466#ifdef CONFIG_PA11
467 if (hppa_dma_ops == &pcxl_dma_ops) {
468 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
469 vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start + PCXL_DMA_MAP_SIZE);
470 } else {
471 pcxl_dma_start = 0;
472 vmalloc_start = SET_MAP_OFFSET(MAP_START);
473 }
474#else
475 vmalloc_start = SET_MAP_OFFSET(MAP_START);
476#endif
477
478}
479
480int do_check_pgt_cache(int low, int high)
481{
482 return 0;
483}
484
8039de10 485unsigned long *empty_zero_page __read_mostly;
1da177e4
LT
486
487void show_mem(void)
488{
489 int i,free = 0,total = 0,reserved = 0;
490 int shared = 0, cached = 0;
491
492 printk(KERN_INFO "Mem-info:\n");
493 show_free_areas();
494 printk(KERN_INFO "Free swap: %6ldkB\n",
495 nr_swap_pages<<(PAGE_SHIFT-10));
496#ifndef CONFIG_DISCONTIGMEM
497 i = max_mapnr;
498 while (i-- > 0) {
499 total++;
500 if (PageReserved(mem_map+i))
501 reserved++;
502 else if (PageSwapCache(mem_map+i))
503 cached++;
504 else if (!page_count(&mem_map[i]))
505 free++;
506 else
507 shared += page_count(&mem_map[i]) - 1;
508 }
509#else
510 for (i = 0; i < npmem_ranges; i++) {
511 int j;
512
513 for (j = node_start_pfn(i); j < node_end_pfn(i); j++) {
514 struct page *p;
208d54e5 515 unsigned long flags;
1da177e4 516
208d54e5 517 pgdat_resize_lock(NODE_DATA(i), &flags);
408fde81 518 p = nid_page_nr(i, j) - node_start_pfn(i);
1da177e4
LT
519
520 total++;
521 if (PageReserved(p))
522 reserved++;
523 else if (PageSwapCache(p))
524 cached++;
525 else if (!page_count(p))
526 free++;
527 else
528 shared += page_count(p) - 1;
208d54e5 529 pgdat_resize_unlock(NODE_DATA(i), &flags);
1da177e4
LT
530 }
531 }
532#endif
533 printk(KERN_INFO "%d pages of RAM\n", total);
534 printk(KERN_INFO "%d reserved pages\n", reserved);
535 printk(KERN_INFO "%d pages shared\n", shared);
536 printk(KERN_INFO "%d pages swap cached\n", cached);
537
538
539#ifdef CONFIG_DISCONTIGMEM
540 {
541 struct zonelist *zl;
542 int i, j, k;
543
544 for (i = 0; i < npmem_ranges; i++) {
545 for (j = 0; j < MAX_NR_ZONES; j++) {
546 zl = NODE_DATA(i)->node_zonelists + j;
547
548 printk("Zone list for zone %d on node %d: ", j, i);
549 for (k = 0; zl->zones[k] != NULL; k++)
550 printk("[%d/%s] ", zl->zones[k]->zone_pgdat->node_id, zl->zones[k]->name);
551 printk("\n");
552 }
553 }
554 }
555#endif
556}
557
558
559static void __init map_pages(unsigned long start_vaddr, unsigned long start_paddr, unsigned long size, pgprot_t pgprot)
560{
561 pgd_t *pg_dir;
562 pmd_t *pmd;
563 pte_t *pg_table;
564 unsigned long end_paddr;
565 unsigned long start_pmd;
566 unsigned long start_pte;
567 unsigned long tmp1;
568 unsigned long tmp2;
569 unsigned long address;
570 unsigned long ro_start;
571 unsigned long ro_end;
572 unsigned long fv_addr;
573 unsigned long gw_addr;
574 extern const unsigned long fault_vector_20;
575 extern void * const linux_gateway_page;
576
577 ro_start = __pa((unsigned long)&_text);
578 ro_end = __pa((unsigned long)&data_start);
579 fv_addr = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
580 gw_addr = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
581
582 end_paddr = start_paddr + size;
583
584 pg_dir = pgd_offset_k(start_vaddr);
585
586#if PTRS_PER_PMD == 1
587 start_pmd = 0;
588#else
589 start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
590#endif
591 start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
592
593 address = start_paddr;
594 while (address < end_paddr) {
595#if PTRS_PER_PMD == 1
596 pmd = (pmd_t *)__pa(pg_dir);
597#else
598 pmd = (pmd_t *)pgd_address(*pg_dir);
599
600 /*
601 * pmd is physical at this point
602 */
603
604 if (!pmd) {
605 pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE << PMD_ORDER);
606 pmd = (pmd_t *) __pa(pmd);
607 }
608
609 pgd_populate(NULL, pg_dir, __va(pmd));
610#endif
611 pg_dir++;
612
613 /* now change pmd to kernel virtual addresses */
614
615 pmd = (pmd_t *)__va(pmd) + start_pmd;
616 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++,pmd++) {
617
618 /*
619 * pg_table is physical at this point
620 */
621
622 pg_table = (pte_t *)pmd_address(*pmd);
623 if (!pg_table) {
624 pg_table = (pte_t *)
625 alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE);
626 pg_table = (pte_t *) __pa(pg_table);
627 }
628
629 pmd_populate_kernel(NULL, pmd, __va(pg_table));
630
631 /* now change pg_table to kernel virtual addresses */
632
633 pg_table = (pte_t *) __va(pg_table) + start_pte;
634 for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++,pg_table++) {
635 pte_t pte;
636
637 /*
638 * Map the fault vector writable so we can
639 * write the HPMC checksum.
640 */
641 if (address >= ro_start && address < ro_end
642 && address != fv_addr
643 && address != gw_addr)
644 pte = __mk_pte(address, PAGE_KERNEL_RO);
645 else
646 pte = __mk_pte(address, pgprot);
647
648 if (address >= end_paddr)
649 pte_val(pte) = 0;
650
651 set_pte(pg_table, pte);
652
653 address += PAGE_SIZE;
654 }
655 start_pte = 0;
656
657 if (address >= end_paddr)
658 break;
659 }
660 start_pmd = 0;
661 }
662}
663
664/*
665 * pagetable_init() sets up the page tables
666 *
667 * Note that gateway_init() places the Linux gateway page at page 0.
668 * Since gateway pages cannot be dereferenced this has the desirable
669 * side effect of trapping those pesky NULL-reference errors in the
670 * kernel.
671 */
672static void __init pagetable_init(void)
673{
674 int range;
675
676 /* Map each physical memory range to its kernel vaddr */
677
678 for (range = 0; range < npmem_ranges; range++) {
679 unsigned long start_paddr;
680 unsigned long end_paddr;
681 unsigned long size;
682
683 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
684 end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
685 size = pmem_ranges[range].pages << PAGE_SHIFT;
686
687 map_pages((unsigned long)__va(start_paddr), start_paddr,
688 size, PAGE_KERNEL);
689 }
690
691#ifdef CONFIG_BLK_DEV_INITRD
692 if (initrd_end && initrd_end > mem_limit) {
693 printk("initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
694 map_pages(initrd_start, __pa(initrd_start),
695 initrd_end - initrd_start, PAGE_KERNEL);
696 }
697#endif
698
699 empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
700 memset(empty_zero_page, 0, PAGE_SIZE);
701}
702
703static void __init gateway_init(void)
704{
705 unsigned long linux_gateway_page_addr;
706 /* FIXME: This is 'const' in order to trick the compiler
707 into not treating it as DP-relative data. */
708 extern void * const linux_gateway_page;
709
710 linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
711
712 /*
713 * Setup Linux Gateway page.
714 *
715 * The Linux gateway page will reside in kernel space (on virtual
716 * page 0), so it doesn't need to be aliased into user space.
717 */
718
719 map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
720 PAGE_SIZE, PAGE_GATEWAY);
721}
722
723#ifdef CONFIG_HPUX
724void
725map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm)
726{
727 pgd_t *pg_dir;
728 pmd_t *pmd;
729 pte_t *pg_table;
730 unsigned long start_pmd;
731 unsigned long start_pte;
732 unsigned long address;
733 unsigned long hpux_gw_page_addr;
734 /* FIXME: This is 'const' in order to trick the compiler
735 into not treating it as DP-relative data. */
736 extern void * const hpux_gateway_page;
737
738 hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
739
740 /*
741 * Setup HP-UX Gateway page.
742 *
743 * The HP-UX gateway page resides in the user address space,
744 * so it needs to be aliased into each process.
745 */
746
747 pg_dir = pgd_offset(mm,hpux_gw_page_addr);
748
749#if PTRS_PER_PMD == 1
750 start_pmd = 0;
751#else
752 start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
753#endif
754 start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
755
756 address = __pa(&hpux_gateway_page);
757#if PTRS_PER_PMD == 1
758 pmd = (pmd_t *)__pa(pg_dir);
759#else
760 pmd = (pmd_t *) pgd_address(*pg_dir);
761
762 /*
763 * pmd is physical at this point
764 */
765
766 if (!pmd) {
767 pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL);
768 pmd = (pmd_t *) __pa(pmd);
769 }
770
771 __pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd);
772#endif
773 /* now change pmd to kernel virtual addresses */
774
775 pmd = (pmd_t *)__va(pmd) + start_pmd;
776
777 /*
778 * pg_table is physical at this point
779 */
780
781 pg_table = (pte_t *) pmd_address(*pmd);
782 if (!pg_table)
783 pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL));
784
785 __pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table);
786
787 /* now change pg_table to kernel virtual addresses */
788
789 pg_table = (pte_t *) __va(pg_table) + start_pte;
790 set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY));
791}
792EXPORT_SYMBOL(map_hpux_gateway_page);
793#endif
794
795extern void flush_tlb_all_local(void);
796
797void __init paging_init(void)
798{
799 int i;
800
801 setup_bootmem();
802 pagetable_init();
803 gateway_init();
804 flush_cache_all_local(); /* start with known state */
805 flush_tlb_all_local();
806
807 for (i = 0; i < npmem_ranges; i++) {
808 unsigned long zones_size[MAX_NR_ZONES] = { 0, 0, 0 };
809
810 /* We have an IOMMU, so all memory can go into a single
811 ZONE_DMA zone. */
812 zones_size[ZONE_DMA] = pmem_ranges[i].pages;
813
814#ifdef CONFIG_DISCONTIGMEM
815 /* Need to initialize the pfnnid_map before we can initialize
816 the zone */
817 {
818 int j;
819 for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
820 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
821 j++) {
822 pfnnid_map[j] = i;
823 }
824 }
825#endif
826
827 free_area_init_node(i, NODE_DATA(i), zones_size,
828 pmem_ranges[i].start_pfn, NULL);
829 }
830}
831
832#ifdef CONFIG_PA20
833
834/*
835 * Currently, all PA20 chips have 18 bit protection id's, which is the
836 * limiting factor (space ids are 32 bits).
837 */
838
839#define NR_SPACE_IDS 262144
840
841#else
842
843/*
844 * Currently we have a one-to-one relationship between space id's and
845 * protection id's. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
846 * support 15 bit protection id's, so that is the limiting factor.
847 * PCXT' has 18 bit protection id's, but only 16 bit spaceids, so it's
848 * probably not worth the effort for a special case here.
849 */
850
851#define NR_SPACE_IDS 32768
852
853#endif /* !CONFIG_PA20 */
854
855#define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
856#define SID_ARRAY_SIZE (NR_SPACE_IDS / (8 * sizeof(long)))
857
858static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
859static unsigned long dirty_space_id[SID_ARRAY_SIZE];
860static unsigned long space_id_index;
861static unsigned long free_space_ids = NR_SPACE_IDS - 1;
862static unsigned long dirty_space_ids = 0;
863
864static DEFINE_SPINLOCK(sid_lock);
865
866unsigned long alloc_sid(void)
867{
868 unsigned long index;
869
870 spin_lock(&sid_lock);
871
872 if (free_space_ids == 0) {
873 if (dirty_space_ids != 0) {
874 spin_unlock(&sid_lock);
875 flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
876 spin_lock(&sid_lock);
877 }
878 if (free_space_ids == 0)
879 BUG();
880 }
881
882 free_space_ids--;
883
884 index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
885 space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
886 space_id_index = index;
887
888 spin_unlock(&sid_lock);
889
890 return index << SPACEID_SHIFT;
891}
892
893void free_sid(unsigned long spaceid)
894{
895 unsigned long index = spaceid >> SPACEID_SHIFT;
896 unsigned long *dirty_space_offset;
897
898 dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
899 index &= (BITS_PER_LONG - 1);
900
901 spin_lock(&sid_lock);
902
903 if (*dirty_space_offset & (1L << index))
904 BUG(); /* attempt to free space id twice */
905
906 *dirty_space_offset |= (1L << index);
907 dirty_space_ids++;
908
909 spin_unlock(&sid_lock);
910}
911
912
913#ifdef CONFIG_SMP
914static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
915{
916 int i;
917
918 /* NOTE: sid_lock must be held upon entry */
919
920 *ndirtyptr = dirty_space_ids;
921 if (dirty_space_ids != 0) {
922 for (i = 0; i < SID_ARRAY_SIZE; i++) {
923 dirty_array[i] = dirty_space_id[i];
924 dirty_space_id[i] = 0;
925 }
926 dirty_space_ids = 0;
927 }
928
929 return;
930}
931
932static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
933{
934 int i;
935
936 /* NOTE: sid_lock must be held upon entry */
937
938 if (ndirty != 0) {
939 for (i = 0; i < SID_ARRAY_SIZE; i++) {
940 space_id[i] ^= dirty_array[i];
941 }
942
943 free_space_ids += ndirty;
944 space_id_index = 0;
945 }
946}
947
948#else /* CONFIG_SMP */
949
950static void recycle_sids(void)
951{
952 int i;
953
954 /* NOTE: sid_lock must be held upon entry */
955
956 if (dirty_space_ids != 0) {
957 for (i = 0; i < SID_ARRAY_SIZE; i++) {
958 space_id[i] ^= dirty_space_id[i];
959 dirty_space_id[i] = 0;
960 }
961
962 free_space_ids += dirty_space_ids;
963 dirty_space_ids = 0;
964 space_id_index = 0;
965 }
966}
967#endif
968
969/*
970 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
971 * purged, we can safely reuse the space ids that were released but
972 * not flushed from the tlb.
973 */
974
975#ifdef CONFIG_SMP
976
977static unsigned long recycle_ndirty;
978static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
979static unsigned int recycle_inuse = 0;
980
981void flush_tlb_all(void)
982{
983 int do_recycle;
984
985 do_recycle = 0;
986 spin_lock(&sid_lock);
987 if (dirty_space_ids > RECYCLE_THRESHOLD) {
988 if (recycle_inuse) {
989 BUG(); /* FIXME: Use a semaphore/wait queue here */
990 }
991 get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
992 recycle_inuse++;
993 do_recycle++;
994 }
995 spin_unlock(&sid_lock);
996 on_each_cpu((void (*)(void *))flush_tlb_all_local, NULL, 1, 1);
997 if (do_recycle) {
998 spin_lock(&sid_lock);
999 recycle_sids(recycle_ndirty,recycle_dirty_array);
1000 recycle_inuse = 0;
1001 spin_unlock(&sid_lock);
1002 }
1003}
1004#else
1005void flush_tlb_all(void)
1006{
1007 spin_lock(&sid_lock);
1b2425e3 1008 flush_tlb_all_local(NULL);
1da177e4
LT
1009 recycle_sids();
1010 spin_unlock(&sid_lock);
1011}
1012#endif
1013
1014#ifdef CONFIG_BLK_DEV_INITRD
1015void free_initrd_mem(unsigned long start, unsigned long end)
1016{
1017#if 0
1018 if (start < end)
1019 printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1020 for (; start < end; start += PAGE_SIZE) {
1021 ClearPageReserved(virt_to_page(start));
1022 set_page_count(virt_to_page(start), 1);
1023 free_page(start);
1024 num_physpages++;
1025 totalram_pages++;
1026 }
1027#endif
1028}
1029#endif
This page took 0.1387 seconds and 5 git commands to generate.