powerpc/mm: Move pte accessors that operate on common pte bits to pgtable.h
[deliverable/linux.git] / arch / powerpc / include / asm / book3s / 64 / mmu-hash.h
CommitLineData
11a6f6ab
AK
1#ifndef _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_
2#define _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_
8d2169e8
DG
3/*
4 * PowerPC64 memory management structures
5 *
6 * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
7 * PPC64 rework.
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 */
14
15#include <asm/asm-compat.h>
16#include <asm/page.h>
891121e6 17#include <asm/bug.h>
8d2169e8 18
78f1dbde
AK
19/*
20 * This is necessary to get the definition of PGTABLE_RANGE which we
21 * need for various slices related matters. Note that this isn't the
22 * complete pgtable.h but only a portion of it.
23 */
3dfcb315 24#include <asm/book3s/64/pgtable.h>
cf9427b8 25#include <asm/bug.h>
dad6f37c 26#include <asm/processor.h>
78f1dbde 27
8d2169e8
DG
28/*
29 * SLB
30 */
31
32#define SLB_NUM_BOLTED 3
33#define SLB_CACHE_ENTRIES 8
46db2f86 34#define SLB_MIN_SIZE 32
8d2169e8
DG
35
36/* Bits in the SLB ESID word */
37#define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
38
39/* Bits in the SLB VSID word */
40#define SLB_VSID_SHIFT 12
1189be65
PM
41#define SLB_VSID_SHIFT_1T 24
42#define SLB_VSID_SSIZE_SHIFT 62
8d2169e8
DG
43#define SLB_VSID_B ASM_CONST(0xc000000000000000)
44#define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
45#define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
46#define SLB_VSID_KS ASM_CONST(0x0000000000000800)
47#define SLB_VSID_KP ASM_CONST(0x0000000000000400)
48#define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
49#define SLB_VSID_L ASM_CONST(0x0000000000000100)
50#define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
51#define SLB_VSID_LP ASM_CONST(0x0000000000000030)
52#define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
53#define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
54#define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
55#define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
56#define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
57
58#define SLB_VSID_KERNEL (SLB_VSID_KP)
59#define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
60
61#define SLBIE_C (0x08000000)
1189be65 62#define SLBIE_SSIZE_SHIFT 25
8d2169e8
DG
63
64/*
65 * Hash table
66 */
67
68#define HPTES_PER_GROUP 8
69
2454c7e9 70#define HPTE_V_SSIZE_SHIFT 62
8d2169e8 71#define HPTE_V_AVPN_SHIFT 7
2454c7e9 72#define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80)
8d2169e8 73#define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
91bbbe22 74#define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL))
8d2169e8
DG
75#define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
76#define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
77#define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
78#define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
79#define HPTE_V_VALID ASM_CONST(0x0000000000000001)
80
50de596d
AK
81/*
82 * ISA 3.0 have a different HPTE format.
83 */
84#define HPTE_R_3_0_SSIZE_SHIFT 58
8d2169e8
DG
85#define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
86#define HPTE_R_TS ASM_CONST(0x4000000000000000)
de56a948 87#define HPTE_R_KEY_HI ASM_CONST(0x3000000000000000)
8d2169e8 88#define HPTE_R_RPN_SHIFT 12
de56a948 89#define HPTE_R_RPN ASM_CONST(0x0ffffffffffff000)
8d2169e8
DG
90#define HPTE_R_PP ASM_CONST(0x0000000000000003)
91#define HPTE_R_N ASM_CONST(0x0000000000000004)
de56a948
PM
92#define HPTE_R_G ASM_CONST(0x0000000000000008)
93#define HPTE_R_M ASM_CONST(0x0000000000000010)
94#define HPTE_R_I ASM_CONST(0x0000000000000020)
95#define HPTE_R_W ASM_CONST(0x0000000000000040)
96#define HPTE_R_WIMG ASM_CONST(0x0000000000000078)
8d2169e8
DG
97#define HPTE_R_C ASM_CONST(0x0000000000000080)
98#define HPTE_R_R ASM_CONST(0x0000000000000100)
de56a948 99#define HPTE_R_KEY_LO ASM_CONST(0x0000000000000e00)
8d2169e8 100
b7abc5c5
SS
101#define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000)
102#define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000)
103
8d2169e8 104/* Values for PP (assumes Ks=0, Kp=1) */
8d2169e8
DG
105#define PP_RWXX 0 /* Supervisor read/write, User none */
106#define PP_RWRX 1 /* Supervisor read/write, User read */
107#define PP_RWRW 2 /* Supervisor read/write, User read/write */
108#define PP_RXRX 3 /* Supervisor read, User read */
697d3899 109#define PP_RXXX (HPTE_R_PP0 | 2) /* Supervisor read, user none */
8d2169e8 110
b4072df4
PM
111/* Fields for tlbiel instruction in architecture 2.06 */
112#define TLBIEL_INVAL_SEL_MASK 0xc00 /* invalidation selector */
113#define TLBIEL_INVAL_PAGE 0x000 /* invalidate a single page */
114#define TLBIEL_INVAL_SET_LPID 0x800 /* invalidate a set for current LPID */
115#define TLBIEL_INVAL_SET 0xc00 /* invalidate a set for all LPIDs */
116#define TLBIEL_INVAL_SET_MASK 0xfff000 /* set number to inval. */
117#define TLBIEL_INVAL_SET_SHIFT 12
118
119#define POWER7_TLB_SETS 128 /* # sets in POWER7 TLB */
45706bb5 120#define POWER8_TLB_SETS 512 /* # sets in POWER8 TLB */
c3ab300e 121#define POWER9_TLB_SETS_HASH 256 /* # sets in POWER9 TLB Hash mode */
b4072df4 122
8d2169e8
DG
123#ifndef __ASSEMBLY__
124
8e561e7e 125struct hash_pte {
12f04f2b
AB
126 __be64 v;
127 __be64 r;
8e561e7e 128};
8d2169e8 129
8e561e7e 130extern struct hash_pte *htab_address;
8d2169e8
DG
131extern unsigned long htab_size_bytes;
132extern unsigned long htab_hash_mask;
133
cf9427b8
AK
134
135static inline int shift_to_mmu_psize(unsigned int shift)
136{
137 int psize;
138
139 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
140 if (mmu_psize_defs[psize].shift == shift)
141 return psize;
142 return -1;
143}
144
145static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
146{
147 if (mmu_psize_defs[mmu_psize].shift)
148 return mmu_psize_defs[mmu_psize].shift;
149 BUG();
150}
8d2169e8
DG
151
152#endif /* __ASSEMBLY__ */
153
2454c7e9
PM
154/*
155 * Segment sizes.
156 * These are the values used by hardware in the B field of
157 * SLB entries and the first dword of MMU hashtable entries.
158 * The B field is 2 bits; the values 2 and 3 are unused and reserved.
159 */
160#define MMU_SEGSIZE_256M 0
161#define MMU_SEGSIZE_1T 1
162
5524a27d
AK
163/*
164 * encode page number shift.
165 * in order to fit the 78 bit va in a 64 bit variable we shift the va by
166 * 12 bits. This enable us to address upto 76 bit va.
167 * For hpt hash from a va we can ignore the page size bits of va and for
168 * hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure
169 * we work in all cases including 4k page size.
170 */
171#define VPN_SHIFT 12
1189be65 172
b1022fbd
AK
173/*
174 * HPTE Large Page (LP) details
175 */
176#define LP_SHIFT 12
177#define LP_BITS 8
178#define LP_MASK(i) ((0xFF >> (i)) << LP_SHIFT)
179
8d2169e8
DG
180#ifndef __ASSEMBLY__
181
73d16a6e
IM
182static inline int slb_vsid_shift(int ssize)
183{
184 if (ssize == MMU_SEGSIZE_256M)
185 return SLB_VSID_SHIFT;
186 return SLB_VSID_SHIFT_1T;
187}
188
5524a27d
AK
189static inline int segment_shift(int ssize)
190{
191 if (ssize == MMU_SEGSIZE_256M)
192 return SID_SHIFT;
193 return SID_SHIFT_1T;
194}
195
8d2169e8 196/*
1189be65 197 * The current system page and segment sizes
8d2169e8 198 */
1189be65
PM
199extern int mmu_kernel_ssize;
200extern int mmu_highuser_ssize;
584f8b71 201extern u16 mmu_slb_size;
572fb578 202extern unsigned long tce_alloc_start, tce_alloc_end;
8d2169e8
DG
203
204/*
205 * If the processor supports 64k normal pages but not 64k cache
206 * inhibited pages, we have to be prepared to switch processes
207 * to use 4k pages when they create cache-inhibited mappings.
208 * If this is the case, mmu_ci_restrictions will be set to 1.
209 */
210extern int mmu_ci_restrictions;
211
5524a27d
AK
212/*
213 * This computes the AVPN and B fields of the first dword of a HPTE,
214 * for use when we want to match an existing PTE. The bottom 7 bits
215 * of the returned value are zero.
216 */
217static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize,
218 int ssize)
219{
220 unsigned long v;
221 /*
222 * The AVA field omits the low-order 23 bits of the 78 bits VA.
223 * These bits are not needed in the PTE, because the
224 * low-order b of these bits are part of the byte offset
225 * into the virtual page and, if b < 23, the high-order
226 * 23-b of these bits are always used in selecting the
227 * PTEGs to be searched
228 */
229 v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm);
230 v <<= HPTE_V_AVPN_SHIFT;
50de596d
AK
231 if (!cpu_has_feature(CPU_FTR_ARCH_300))
232 v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
5524a27d
AK
233 return v;
234}
235
8d2169e8
DG
236/*
237 * This function sets the AVPN and L fields of the HPTE appropriately
b1022fbd 238 * using the base page size and actual page size.
8d2169e8 239 */
b1022fbd
AK
240static inline unsigned long hpte_encode_v(unsigned long vpn, int base_psize,
241 int actual_psize, int ssize)
8d2169e8 242{
1189be65 243 unsigned long v;
b1022fbd
AK
244 v = hpte_encode_avpn(vpn, base_psize, ssize);
245 if (actual_psize != MMU_PAGE_4K)
8d2169e8
DG
246 v |= HPTE_V_LARGE;
247 return v;
248}
249
250/*
251 * This function sets the ARPN, and LP fields of the HPTE appropriately
252 * for the page size. We assume the pa is already "clean" that is properly
253 * aligned for the requested page size
254 */
b1022fbd 255static inline unsigned long hpte_encode_r(unsigned long pa, int base_psize,
50de596d 256 int actual_psize, int ssize)
8d2169e8 257{
50de596d
AK
258
259 if (cpu_has_feature(CPU_FTR_ARCH_300))
260 pa |= ((unsigned long) ssize) << HPTE_R_3_0_SSIZE_SHIFT;
261
8d2169e8 262 /* A 4K page needs no special encoding */
b1022fbd 263 if (actual_psize == MMU_PAGE_4K)
8d2169e8
DG
264 return pa & HPTE_R_RPN;
265 else {
b1022fbd
AK
266 unsigned int penc = mmu_psize_defs[base_psize].penc[actual_psize];
267 unsigned int shift = mmu_psize_defs[actual_psize].shift;
268 return (pa & ~((1ul << shift) - 1)) | (penc << LP_SHIFT);
8d2169e8 269 }
8d2169e8
DG
270}
271
272/*
5524a27d 273 * Build a VPN_SHIFT bit shifted va given VSID, EA and segment size.
8d2169e8 274 */
5524a27d
AK
275static inline unsigned long hpt_vpn(unsigned long ea,
276 unsigned long vsid, int ssize)
1189be65 277{
5524a27d
AK
278 unsigned long mask;
279 int s_shift = segment_shift(ssize);
280
281 mask = (1ul << (s_shift - VPN_SHIFT)) - 1;
282 return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask);
1189be65 283}
8d2169e8 284
1189be65
PM
285/*
286 * This hashes a virtual address
287 */
5524a27d
AK
288static inline unsigned long hpt_hash(unsigned long vpn,
289 unsigned int shift, int ssize)
8d2169e8 290{
5524a27d 291 int mask;
1189be65
PM
292 unsigned long hash, vsid;
293
5524a27d 294 /* VPN_SHIFT can be atmost 12 */
1189be65 295 if (ssize == MMU_SEGSIZE_256M) {
5524a27d
AK
296 mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1;
297 hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^
298 ((vpn & mask) >> (shift - VPN_SHIFT));
1189be65 299 } else {
5524a27d
AK
300 mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1;
301 vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT);
302 hash = vsid ^ (vsid << 25) ^
303 ((vpn & mask) >> (shift - VPN_SHIFT)) ;
1189be65
PM
304 }
305 return hash & 0x7fffffffffUL;
8d2169e8
DG
306}
307
aefa5688
AK
308#define HPTE_LOCAL_UPDATE 0x1
309#define HPTE_NOHPTE_UPDATE 0x2
310
8d2169e8
DG
311extern int __hash_page_4K(unsigned long ea, unsigned long access,
312 unsigned long vsid, pte_t *ptep, unsigned long trap,
aefa5688 313 unsigned long flags, int ssize, int subpage_prot);
8d2169e8
DG
314extern int __hash_page_64K(unsigned long ea, unsigned long access,
315 unsigned long vsid, pte_t *ptep, unsigned long trap,
aefa5688 316 unsigned long flags, int ssize);
8d2169e8 317struct mm_struct;
0895ecda 318unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);
aefa5688
AK
319extern int hash_page_mm(struct mm_struct *mm, unsigned long ea,
320 unsigned long access, unsigned long trap,
321 unsigned long flags);
322extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
323 unsigned long dsisr);
a4fe3ce7 324int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
aefa5688
AK
325 pte_t *ptep, unsigned long trap, unsigned long flags,
326 int ssize, unsigned int shift, unsigned int mmu_psize);
6d492ecc
AK
327#ifdef CONFIG_TRANSPARENT_HUGEPAGE
328extern int __hash_page_thp(unsigned long ea, unsigned long access,
329 unsigned long vsid, pmd_t *pmdp, unsigned long trap,
aefa5688 330 unsigned long flags, int ssize, unsigned int psize);
6d492ecc
AK
331#else
332static inline int __hash_page_thp(unsigned long ea, unsigned long access,
333 unsigned long vsid, pmd_t *pmdp,
aefa5688 334 unsigned long trap, unsigned long flags,
6d492ecc
AK
335 int ssize, unsigned int psize)
336{
337 BUG();
ff1e7683 338 return -1;
6d492ecc
AK
339}
340#endif
4b8692c0
BH
341extern void hash_failure_debug(unsigned long ea, unsigned long access,
342 unsigned long vsid, unsigned long trap,
d8139ebf
AK
343 int ssize, int psize, int lpsize,
344 unsigned long pte);
8d2169e8 345extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
bc033b63 346 unsigned long pstart, unsigned long prot,
1189be65 347 int psize, int ssize);
f6026df1
AB
348int htab_remove_mapping(unsigned long vstart, unsigned long vend,
349 int psize, int ssize);
41151e77 350extern void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages);
fa28237c 351extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
8d2169e8 352
8d2169e8
DG
353extern void hpte_init_native(void);
354extern void hpte_init_lpar(void);
8d2169e8 355extern void hpte_init_beat(void);
7f2c8577 356extern void hpte_init_beat_v3(void);
8d2169e8 357
8d2169e8
DG
358extern void slb_initialize(void);
359extern void slb_flush_and_rebolt(void);
8d2169e8 360
67439b76 361extern void slb_vmalloc_update(void);
46db2f86 362extern void slb_set_size(u16 size);
8d2169e8
DG
363#endif /* __ASSEMBLY__ */
364
365/*
f033d659 366 * VSID allocation (256MB segment)
8d2169e8 367 *
c60ac569
AK
368 * We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated
369 * from mmu context id and effective segment id of the address.
8d2169e8 370 *
c60ac569
AK
371 * For user processes max context id is limited to ((1ul << 19) - 5)
372 * for kernel space, we use the top 4 context ids to map address as below
373 * NOTE: each context only support 64TB now.
374 * 0x7fffc - [ 0xc000000000000000 - 0xc0003fffffffffff ]
375 * 0x7fffd - [ 0xd000000000000000 - 0xd0003fffffffffff ]
376 * 0x7fffe - [ 0xe000000000000000 - 0xe0003fffffffffff ]
377 * 0x7ffff - [ 0xf000000000000000 - 0xf0003fffffffffff ]
8d2169e8
DG
378 *
379 * The proto-VSIDs are then scrambled into real VSIDs with the
380 * multiplicative hash:
381 *
382 * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
8d2169e8 383 *
f033d659 384 * VSID_MULTIPLIER is prime, so in particular it is
8d2169e8
DG
385 * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
386 * Because the modulus is 2^n-1 we can compute it efficiently without
c60ac569
AK
387 * a divide or extra multiply (see below). The scramble function gives
388 * robust scattering in the hash table (at least based on some initial
389 * results).
8d2169e8 390 *
c60ac569
AK
391 * We also consider VSID 0 special. We use VSID 0 for slb entries mapping
392 * bad address. This enables us to consolidate bad address handling in
393 * hash_page.
8d2169e8 394 *
c60ac569
AK
395 * We also need to avoid the last segment of the last context, because that
396 * would give a protovsid of 0x1fffffffff. That will result in a VSID 0
397 * because of the modulo operation in vsid scramble. But the vmemmap
398 * (which is what uses region 0xf) will never be close to 64TB in size
399 * (it's 56 bytes per page of system memory).
8d2169e8 400 */
8d2169e8 401
e39d1a47 402#define CONTEXT_BITS 19
af81d787
AK
403#define ESID_BITS 18
404#define ESID_BITS_1T 6
e39d1a47 405
c60ac569
AK
406/*
407 * 256MB segment
af81d787 408 * The proto-VSID space has 2^(CONTEX_BITS + ESID_BITS) - 1 segments
c60ac569
AK
409 * available for user + kernel mapping. The top 4 contexts are used for
410 * kernel mapping. Each segment contains 2^28 bytes. Each
411 * context maps 2^46 bytes (64TB) so we can support 2^19-1 contexts
412 * (19 == 37 + 28 - 46).
413 */
414#define MAX_USER_CONTEXT ((ASM_CONST(1) << CONTEXT_BITS) - 5)
415
048ee099
AK
416/*
417 * This should be computed such that protovosid * vsid_mulitplier
418 * doesn't overflow 64 bits. It should also be co-prime to vsid_modulus
419 */
420#define VSID_MULTIPLIER_256M ASM_CONST(12538073) /* 24-bit prime */
af81d787 421#define VSID_BITS_256M (CONTEXT_BITS + ESID_BITS)
1189be65 422#define VSID_MODULUS_256M ((1UL<<VSID_BITS_256M)-1)
8d2169e8 423
1189be65 424#define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */
af81d787 425#define VSID_BITS_1T (CONTEXT_BITS + ESID_BITS_1T)
1189be65
PM
426#define VSID_MODULUS_1T ((1UL<<VSID_BITS_1T)-1)
427
8d2169e8 428
af81d787 429#define USER_VSID_RANGE (1UL << (ESID_BITS + SID_SHIFT))
8d2169e8
DG
430
431/*
432 * This macro generates asm code to compute the VSID scramble
433 * function. Used in slb_allocate() and do_stab_bolted. The function
434 * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
435 *
436 * rt = register continaing the proto-VSID and into which the
437 * VSID will be stored
438 * rx = scratch register (clobbered)
439 *
440 * - rt and rx must be different registers
1189be65 441 * - The answer will end up in the low VSID_BITS bits of rt. The higher
8d2169e8
DG
442 * bits may contain other garbage, so you may need to mask the
443 * result.
444 */
1189be65
PM
445#define ASM_VSID_SCRAMBLE(rt, rx, size) \
446 lis rx,VSID_MULTIPLIER_##size@h; \
447 ori rx,rx,VSID_MULTIPLIER_##size@l; \
8d2169e8
DG
448 mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
449 \
1189be65
PM
450 srdi rx,rt,VSID_BITS_##size; \
451 clrldi rt,rt,(64-VSID_BITS_##size); \
8d2169e8 452 add rt,rt,rx; /* add high and low bits */ \
c60ac569
AK
453 /* NOTE: explanation based on VSID_BITS_##size = 36 \
454 * Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
8d2169e8
DG
455 * 2^36-1+2^28-1. That in particular means that if r3 >= \
456 * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
457 * the bit clear, r3 already has the answer we want, if it \
458 * doesn't, the answer is the low 36 bits of r3+1. So in all \
459 * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
460 addi rx,rt,1; \
1189be65 461 srdi rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */ \
8d2169e8
DG
462 add rt,rt,rx
463
78f1dbde
AK
464/* 4 bits per slice and we have one slice per 1TB */
465#define SLICE_ARRAY_SIZE (PGTABLE_RANGE >> 41)
8d2169e8
DG
466
467#ifndef __ASSEMBLY__
468
d28513bc
DG
469#ifdef CONFIG_PPC_SUBPAGE_PROT
470/*
471 * For the sub-page protection option, we extend the PGD with one of
472 * these. Basically we have a 3-level tree, with the top level being
473 * the protptrs array. To optimize speed and memory consumption when
474 * only addresses < 4GB are being protected, pointers to the first
475 * four pages of sub-page protection words are stored in the low_prot
476 * array.
477 * Each page of sub-page protection words protects 1GB (4 bytes
478 * protects 64k). For the 3-level tree, each page of pointers then
479 * protects 8TB.
480 */
481struct subpage_prot_table {
482 unsigned long maxaddr; /* only addresses < this are protected */
dad6f37c 483 unsigned int **protptrs[(TASK_SIZE_USER64 >> 43)];
d28513bc
DG
484 unsigned int *low_prot[4];
485};
486
487#define SBP_L1_BITS (PAGE_SHIFT - 2)
488#define SBP_L2_BITS (PAGE_SHIFT - 3)
489#define SBP_L1_COUNT (1 << SBP_L1_BITS)
490#define SBP_L2_COUNT (1 << SBP_L2_BITS)
491#define SBP_L2_SHIFT (PAGE_SHIFT + SBP_L1_BITS)
492#define SBP_L3_SHIFT (SBP_L2_SHIFT + SBP_L2_BITS)
493
494extern void subpage_prot_free(struct mm_struct *mm);
495extern void subpage_prot_init_new_context(struct mm_struct *mm);
496#else
497static inline void subpage_prot_free(struct mm_struct *mm) {}
498static inline void subpage_prot_init_new_context(struct mm_struct *mm) { }
499#endif /* CONFIG_PPC_SUBPAGE_PROT */
500
8d2169e8 501#if 0
1189be65
PM
502/*
503 * The code below is equivalent to this function for arguments
504 * < 2^VSID_BITS, which is all this should ever be called
505 * with. However gcc is not clever enough to compute the
506 * modulus (2^n-1) without a second multiply.
507 */
34692708 508#define vsid_scramble(protovsid, size) \
1189be65 509 ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
8d2169e8 510
1189be65
PM
511#else /* 1 */
512#define vsid_scramble(protovsid, size) \
513 ({ \
514 unsigned long x; \
515 x = (protovsid) * VSID_MULTIPLIER_##size; \
516 x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
517 (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
518 })
8d2169e8 519#endif /* 1 */
8d2169e8 520
1189be65
PM
521/* Returns the segment size indicator for a user address */
522static inline int user_segment_size(unsigned long addr)
8d2169e8 523{
1189be65
PM
524 /* Use 1T segments if possible for addresses >= 1T */
525 if (addr >= (1UL << SID_SHIFT_1T))
526 return mmu_highuser_ssize;
527 return MMU_SEGSIZE_256M;
8d2169e8
DG
528}
529
1189be65
PM
530static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
531 int ssize)
532{
c60ac569
AK
533 /*
534 * Bad address. We return VSID 0 for that
535 */
536 if ((ea & ~REGION_MASK) >= PGTABLE_RANGE)
537 return 0;
538
1189be65 539 if (ssize == MMU_SEGSIZE_256M)
af81d787 540 return vsid_scramble((context << ESID_BITS)
1189be65 541 | (ea >> SID_SHIFT), 256M);
af81d787 542 return vsid_scramble((context << ESID_BITS_1T)
1189be65
PM
543 | (ea >> SID_SHIFT_1T), 1T);
544}
545
c60ac569
AK
546/*
547 * This is only valid for addresses >= PAGE_OFFSET
548 *
549 * For kernel space, we use the top 4 context ids to map address as below
550 * 0x7fffc - [ 0xc000000000000000 - 0xc0003fffffffffff ]
551 * 0x7fffd - [ 0xd000000000000000 - 0xd0003fffffffffff ]
552 * 0x7fffe - [ 0xe000000000000000 - 0xe0003fffffffffff ]
553 * 0x7ffff - [ 0xf000000000000000 - 0xf0003fffffffffff ]
554 */
555static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
556{
557 unsigned long context;
558
559 /*
560 * kernel take the top 4 context from the available range
561 */
562 context = (MAX_USER_CONTEXT) + ((ea >> 60) - 0xc) + 1;
563 return get_vsid(context, ea, ssize);
564}
5c3c7ede
DG
565
566unsigned htab_shift_for_mem_size(unsigned long mem_size);
567
8d2169e8
DG
568#endif /* __ASSEMBLY__ */
569
11a6f6ab 570#endif /* _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_ */
This page took 0.609675 seconds and 5 git commands to generate.