powerpc: Hugetlb for BookE
[deliverable/linux.git] / arch / powerpc / include / asm / mmu-hash64.h
CommitLineData
8d2169e8
DG
1#ifndef _ASM_POWERPC_MMU_HASH64_H_
2#define _ASM_POWERPC_MMU_HASH64_H_
3/*
4 * PowerPC64 memory management structures
5 *
6 * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
7 * PPC64 rework.
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 */
14
15#include <asm/asm-compat.h>
16#include <asm/page.h>
17
18/*
19 * Segment table
20 */
21
22#define STE_ESID_V 0x80
23#define STE_ESID_KS 0x20
24#define STE_ESID_KP 0x10
25#define STE_ESID_N 0x08
26
27#define STE_VSID_SHIFT 12
28
29/* Location of cpu0's segment table */
84493804 30#define STAB0_PAGE 0x8
8d2169e8
DG
31#define STAB0_OFFSET (STAB0_PAGE << 12)
32#define STAB0_PHYS_ADDR (STAB0_OFFSET + PHYSICAL_START)
33
34#ifndef __ASSEMBLY__
35extern char initial_stab[];
36#endif /* ! __ASSEMBLY */
37
38/*
39 * SLB
40 */
41
42#define SLB_NUM_BOLTED 3
43#define SLB_CACHE_ENTRIES 8
46db2f86 44#define SLB_MIN_SIZE 32
8d2169e8
DG
45
46/* Bits in the SLB ESID word */
47#define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
48
49/* Bits in the SLB VSID word */
50#define SLB_VSID_SHIFT 12
1189be65
PM
51#define SLB_VSID_SHIFT_1T 24
52#define SLB_VSID_SSIZE_SHIFT 62
8d2169e8
DG
53#define SLB_VSID_B ASM_CONST(0xc000000000000000)
54#define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
55#define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
56#define SLB_VSID_KS ASM_CONST(0x0000000000000800)
57#define SLB_VSID_KP ASM_CONST(0x0000000000000400)
58#define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
59#define SLB_VSID_L ASM_CONST(0x0000000000000100)
60#define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
61#define SLB_VSID_LP ASM_CONST(0x0000000000000030)
62#define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
63#define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
64#define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
65#define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
66#define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
67
68#define SLB_VSID_KERNEL (SLB_VSID_KP)
69#define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
70
71#define SLBIE_C (0x08000000)
1189be65 72#define SLBIE_SSIZE_SHIFT 25
8d2169e8
DG
73
74/*
75 * Hash table
76 */
77
78#define HPTES_PER_GROUP 8
79
2454c7e9 80#define HPTE_V_SSIZE_SHIFT 62
8d2169e8 81#define HPTE_V_AVPN_SHIFT 7
2454c7e9 82#define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80)
8d2169e8 83#define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
91bbbe22 84#define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL))
8d2169e8
DG
85#define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
86#define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
87#define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
88#define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
89#define HPTE_V_VALID ASM_CONST(0x0000000000000001)
90
91#define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
92#define HPTE_R_TS ASM_CONST(0x4000000000000000)
de56a948 93#define HPTE_R_KEY_HI ASM_CONST(0x3000000000000000)
8d2169e8 94#define HPTE_R_RPN_SHIFT 12
de56a948 95#define HPTE_R_RPN ASM_CONST(0x0ffffffffffff000)
8d2169e8
DG
96#define HPTE_R_PP ASM_CONST(0x0000000000000003)
97#define HPTE_R_N ASM_CONST(0x0000000000000004)
de56a948
PM
98#define HPTE_R_G ASM_CONST(0x0000000000000008)
99#define HPTE_R_M ASM_CONST(0x0000000000000010)
100#define HPTE_R_I ASM_CONST(0x0000000000000020)
101#define HPTE_R_W ASM_CONST(0x0000000000000040)
102#define HPTE_R_WIMG ASM_CONST(0x0000000000000078)
8d2169e8
DG
103#define HPTE_R_C ASM_CONST(0x0000000000000080)
104#define HPTE_R_R ASM_CONST(0x0000000000000100)
de56a948 105#define HPTE_R_KEY_LO ASM_CONST(0x0000000000000e00)
8d2169e8 106
b7abc5c5
SS
107#define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000)
108#define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000)
109
8d2169e8
DG
110/* Values for PP (assumes Ks=0, Kp=1) */
111/* pp0 will always be 0 for linux */
112#define PP_RWXX 0 /* Supervisor read/write, User none */
113#define PP_RWRX 1 /* Supervisor read/write, User read */
114#define PP_RWRW 2 /* Supervisor read/write, User read/write */
115#define PP_RXRX 3 /* Supervisor read, User read */
116
117#ifndef __ASSEMBLY__
118
8e561e7e 119struct hash_pte {
8d2169e8
DG
120 unsigned long v;
121 unsigned long r;
8e561e7e 122};
8d2169e8 123
8e561e7e 124extern struct hash_pte *htab_address;
8d2169e8
DG
125extern unsigned long htab_size_bytes;
126extern unsigned long htab_hash_mask;
127
128/*
129 * Page size definition
130 *
131 * shift : is the "PAGE_SHIFT" value for that page size
132 * sllp : is a bit mask with the value of SLB L || LP to be or'ed
133 * directly to a slbmte "vsid" value
134 * penc : is the HPTE encoding mask for the "LP" field:
135 *
136 */
137struct mmu_psize_def
138{
139 unsigned int shift; /* number of bits */
140 unsigned int penc; /* HPTE encoding */
141 unsigned int tlbiel; /* tlbiel supported for that page size */
142 unsigned long avpnm; /* bits to mask out in AVPN in the HPTE */
143 unsigned long sllp; /* SLB L||LP (exact mask to use in slbmte) */
144};
145
146#endif /* __ASSEMBLY__ */
147
2454c7e9
PM
148/*
149 * Segment sizes.
150 * These are the values used by hardware in the B field of
151 * SLB entries and the first dword of MMU hashtable entries.
152 * The B field is 2 bits; the values 2 and 3 are unused and reserved.
153 */
154#define MMU_SEGSIZE_256M 0
155#define MMU_SEGSIZE_1T 1
156
1189be65 157
8d2169e8
DG
158#ifndef __ASSEMBLY__
159
160/*
1189be65 161 * The current system page and segment sizes
8d2169e8
DG
162 */
163extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
164extern int mmu_linear_psize;
165extern int mmu_virtual_psize;
166extern int mmu_vmalloc_psize;
cec08e7a 167extern int mmu_vmemmap_psize;
8d2169e8 168extern int mmu_io_psize;
1189be65
PM
169extern int mmu_kernel_ssize;
170extern int mmu_highuser_ssize;
584f8b71 171extern u16 mmu_slb_size;
572fb578 172extern unsigned long tce_alloc_start, tce_alloc_end;
8d2169e8
DG
173
174/*
175 * If the processor supports 64k normal pages but not 64k cache
176 * inhibited pages, we have to be prepared to switch processes
177 * to use 4k pages when they create cache-inhibited mappings.
178 * If this is the case, mmu_ci_restrictions will be set to 1.
179 */
180extern int mmu_ci_restrictions;
181
8d2169e8
DG
182/*
183 * This function sets the AVPN and L fields of the HPTE appropriately
184 * for the page size
185 */
1189be65
PM
186static inline unsigned long hpte_encode_v(unsigned long va, int psize,
187 int ssize)
8d2169e8 188{
1189be65 189 unsigned long v;
8d2169e8
DG
190 v = (va >> 23) & ~(mmu_psize_defs[psize].avpnm);
191 v <<= HPTE_V_AVPN_SHIFT;
192 if (psize != MMU_PAGE_4K)
193 v |= HPTE_V_LARGE;
1189be65 194 v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
8d2169e8
DG
195 return v;
196}
197
198/*
199 * This function sets the ARPN, and LP fields of the HPTE appropriately
200 * for the page size. We assume the pa is already "clean" that is properly
201 * aligned for the requested page size
202 */
203static inline unsigned long hpte_encode_r(unsigned long pa, int psize)
204{
205 unsigned long r;
206
207 /* A 4K page needs no special encoding */
208 if (psize == MMU_PAGE_4K)
209 return pa & HPTE_R_RPN;
210 else {
211 unsigned int penc = mmu_psize_defs[psize].penc;
212 unsigned int shift = mmu_psize_defs[psize].shift;
213 return (pa & ~((1ul << shift) - 1)) | (penc << 12);
214 }
215 return r;
216}
217
218/*
1189be65 219 * Build a VA given VSID, EA and segment size
8d2169e8 220 */
1189be65
PM
221static inline unsigned long hpt_va(unsigned long ea, unsigned long vsid,
222 int ssize)
223{
224 if (ssize == MMU_SEGSIZE_256M)
225 return (vsid << 28) | (ea & 0xfffffffUL);
226 return (vsid << 40) | (ea & 0xffffffffffUL);
227}
8d2169e8 228
1189be65
PM
229/*
230 * This hashes a virtual address
231 */
232
233static inline unsigned long hpt_hash(unsigned long va, unsigned int shift,
234 int ssize)
8d2169e8 235{
1189be65
PM
236 unsigned long hash, vsid;
237
238 if (ssize == MMU_SEGSIZE_256M) {
239 hash = (va >> 28) ^ ((va & 0x0fffffffUL) >> shift);
240 } else {
241 vsid = va >> 40;
242 hash = vsid ^ (vsid << 25) ^ ((va & 0xffffffffffUL) >> shift);
243 }
244 return hash & 0x7fffffffffUL;
8d2169e8
DG
245}
246
247extern int __hash_page_4K(unsigned long ea, unsigned long access,
248 unsigned long vsid, pte_t *ptep, unsigned long trap,
fa28237c 249 unsigned int local, int ssize, int subpage_prot);
8d2169e8
DG
250extern int __hash_page_64K(unsigned long ea, unsigned long access,
251 unsigned long vsid, pte_t *ptep, unsigned long trap,
1189be65 252 unsigned int local, int ssize);
8d2169e8 253struct mm_struct;
0895ecda 254unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);
8d2169e8 255extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap);
a4fe3ce7
DG
256int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
257 pte_t *ptep, unsigned long trap, int local, int ssize,
258 unsigned int shift, unsigned int mmu_psize);
4b8692c0
BH
259extern void hash_failure_debug(unsigned long ea, unsigned long access,
260 unsigned long vsid, unsigned long trap,
261 int ssize, int psize, unsigned long pte);
8d2169e8 262extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
bc033b63 263 unsigned long pstart, unsigned long prot,
1189be65 264 int psize, int ssize);
41151e77 265extern void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages);
fa28237c 266extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
8d2169e8 267
8d2169e8
DG
268extern void hpte_init_native(void);
269extern void hpte_init_lpar(void);
270extern void hpte_init_iSeries(void);
271extern void hpte_init_beat(void);
7f2c8577 272extern void hpte_init_beat_v3(void);
8d2169e8
DG
273
274extern void stabs_alloc(void);
275extern void slb_initialize(void);
276extern void slb_flush_and_rebolt(void);
277extern void stab_initialize(unsigned long stab);
278
67439b76 279extern void slb_vmalloc_update(void);
46db2f86 280extern void slb_set_size(u16 size);
8d2169e8
DG
281#endif /* __ASSEMBLY__ */
282
283/*
284 * VSID allocation
285 *
286 * We first generate a 36-bit "proto-VSID". For kernel addresses this
287 * is equal to the ESID, for user addresses it is:
288 * (context << 15) | (esid & 0x7fff)
289 *
290 * The two forms are distinguishable because the top bit is 0 for user
291 * addresses, whereas the top two bits are 1 for kernel addresses.
292 * Proto-VSIDs with the top two bits equal to 0b10 are reserved for
293 * now.
294 *
295 * The proto-VSIDs are then scrambled into real VSIDs with the
296 * multiplicative hash:
297 *
298 * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
299 * where VSID_MULTIPLIER = 268435399 = 0xFFFFFC7
300 * VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF
301 *
302 * This scramble is only well defined for proto-VSIDs below
303 * 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are
304 * reserved. VSID_MULTIPLIER is prime, so in particular it is
305 * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
306 * Because the modulus is 2^n-1 we can compute it efficiently without
307 * a divide or extra multiply (see below).
308 *
309 * This scheme has several advantages over older methods:
310 *
311 * - We have VSIDs allocated for every kernel address
312 * (i.e. everything above 0xC000000000000000), except the very top
313 * segment, which simplifies several things.
314 *
315 * - We allow for 15 significant bits of ESID and 20 bits of
316 * context for user addresses. i.e. 8T (43 bits) of address space for
317 * up to 1M contexts (although the page table structure and context
318 * allocation will need changes to take advantage of this).
319 *
320 * - The scramble function gives robust scattering in the hash
321 * table (at least based on some initial results). The previous
322 * method was more susceptible to pathological cases giving excessive
323 * hash collisions.
324 */
325/*
326 * WARNING - If you change these you must make sure the asm
327 * implementations in slb_allocate (slb_low.S), do_stab_bolted
328 * (head.S) and ASM_VSID_SCRAMBLE (below) are changed accordingly.
329 *
330 * You'll also need to change the precomputed VSID values in head.S
331 * which are used by the iSeries firmware.
332 */
333
1189be65
PM
334#define VSID_MULTIPLIER_256M ASM_CONST(200730139) /* 28-bit prime */
335#define VSID_BITS_256M 36
336#define VSID_MODULUS_256M ((1UL<<VSID_BITS_256M)-1)
8d2169e8 337
1189be65
PM
338#define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */
339#define VSID_BITS_1T 24
340#define VSID_MODULUS_1T ((1UL<<VSID_BITS_1T)-1)
341
342#define CONTEXT_BITS 19
343#define USER_ESID_BITS 16
344#define USER_ESID_BITS_1T 4
8d2169e8
DG
345
346#define USER_VSID_RANGE (1UL << (USER_ESID_BITS + SID_SHIFT))
347
348/*
349 * This macro generates asm code to compute the VSID scramble
350 * function. Used in slb_allocate() and do_stab_bolted. The function
351 * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
352 *
353 * rt = register continaing the proto-VSID and into which the
354 * VSID will be stored
355 * rx = scratch register (clobbered)
356 *
357 * - rt and rx must be different registers
1189be65 358 * - The answer will end up in the low VSID_BITS bits of rt. The higher
8d2169e8
DG
359 * bits may contain other garbage, so you may need to mask the
360 * result.
361 */
1189be65
PM
362#define ASM_VSID_SCRAMBLE(rt, rx, size) \
363 lis rx,VSID_MULTIPLIER_##size@h; \
364 ori rx,rx,VSID_MULTIPLIER_##size@l; \
8d2169e8
DG
365 mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
366 \
1189be65
PM
367 srdi rx,rt,VSID_BITS_##size; \
368 clrldi rt,rt,(64-VSID_BITS_##size); \
8d2169e8
DG
369 add rt,rt,rx; /* add high and low bits */ \
370 /* Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
371 * 2^36-1+2^28-1. That in particular means that if r3 >= \
372 * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
373 * the bit clear, r3 already has the answer we want, if it \
374 * doesn't, the answer is the low 36 bits of r3+1. So in all \
375 * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
376 addi rx,rt,1; \
1189be65 377 srdi rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */ \
8d2169e8
DG
378 add rt,rt,rx
379
380
381#ifndef __ASSEMBLY__
382
d28513bc
DG
383#ifdef CONFIG_PPC_SUBPAGE_PROT
384/*
385 * For the sub-page protection option, we extend the PGD with one of
386 * these. Basically we have a 3-level tree, with the top level being
387 * the protptrs array. To optimize speed and memory consumption when
388 * only addresses < 4GB are being protected, pointers to the first
389 * four pages of sub-page protection words are stored in the low_prot
390 * array.
391 * Each page of sub-page protection words protects 1GB (4 bytes
392 * protects 64k). For the 3-level tree, each page of pointers then
393 * protects 8TB.
394 */
395struct subpage_prot_table {
396 unsigned long maxaddr; /* only addresses < this are protected */
397 unsigned int **protptrs[2];
398 unsigned int *low_prot[4];
399};
400
401#define SBP_L1_BITS (PAGE_SHIFT - 2)
402#define SBP_L2_BITS (PAGE_SHIFT - 3)
403#define SBP_L1_COUNT (1 << SBP_L1_BITS)
404#define SBP_L2_COUNT (1 << SBP_L2_BITS)
405#define SBP_L2_SHIFT (PAGE_SHIFT + SBP_L1_BITS)
406#define SBP_L3_SHIFT (SBP_L2_SHIFT + SBP_L2_BITS)
407
408extern void subpage_prot_free(struct mm_struct *mm);
409extern void subpage_prot_init_new_context(struct mm_struct *mm);
410#else
411static inline void subpage_prot_free(struct mm_struct *mm) {}
412static inline void subpage_prot_init_new_context(struct mm_struct *mm) { }
413#endif /* CONFIG_PPC_SUBPAGE_PROT */
414
8d2169e8 415typedef unsigned long mm_context_id_t;
851d2e2f 416struct spinlock;
8d2169e8
DG
417
418typedef struct {
419 mm_context_id_t id;
d0f13e3c
BH
420 u16 user_psize; /* page size index */
421
422#ifdef CONFIG_PPC_MM_SLICES
423 u64 low_slices_psize; /* SLB page size encodings */
424 u64 high_slices_psize; /* 4 bits per slice for now */
425#else
426 u16 sllp; /* SLB page size encoding */
8d2169e8
DG
427#endif
428 unsigned long vdso_base;
d28513bc
DG
429#ifdef CONFIG_PPC_SUBPAGE_PROT
430 struct subpage_prot_table spt;
431#endif /* CONFIG_PPC_SUBPAGE_PROT */
851d2e2f
THFL
432#ifdef CONFIG_PPC_ICSWX
433 struct spinlock *cop_lockp; /* guard acop and cop_pid */
434 unsigned long acop; /* mask of enabled coprocessor types */
435 unsigned int cop_pid; /* pid value used with coprocessors */
436#endif /* CONFIG_PPC_ICSWX */
8d2169e8
DG
437} mm_context_t;
438
439
8d2169e8 440#if 0
1189be65
PM
441/*
442 * The code below is equivalent to this function for arguments
443 * < 2^VSID_BITS, which is all this should ever be called
444 * with. However gcc is not clever enough to compute the
445 * modulus (2^n-1) without a second multiply.
446 */
34692708 447#define vsid_scramble(protovsid, size) \
1189be65 448 ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
8d2169e8 449
1189be65
PM
450#else /* 1 */
451#define vsid_scramble(protovsid, size) \
452 ({ \
453 unsigned long x; \
454 x = (protovsid) * VSID_MULTIPLIER_##size; \
455 x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
456 (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
457 })
8d2169e8 458#endif /* 1 */
8d2169e8 459
549e8152 460/* This is only valid for addresses >= PAGE_OFFSET */
1189be65 461static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
8d2169e8 462{
1189be65
PM
463 if (ssize == MMU_SEGSIZE_256M)
464 return vsid_scramble(ea >> SID_SHIFT, 256M);
465 return vsid_scramble(ea >> SID_SHIFT_1T, 1T);
8d2169e8
DG
466}
467
1189be65
PM
468/* Returns the segment size indicator for a user address */
469static inline int user_segment_size(unsigned long addr)
8d2169e8 470{
1189be65
PM
471 /* Use 1T segments if possible for addresses >= 1T */
472 if (addr >= (1UL << SID_SHIFT_1T))
473 return mmu_highuser_ssize;
474 return MMU_SEGSIZE_256M;
8d2169e8
DG
475}
476
1189be65
PM
477/* This is only valid for user addresses (which are below 2^44) */
478static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
479 int ssize)
480{
481 if (ssize == MMU_SEGSIZE_256M)
482 return vsid_scramble((context << USER_ESID_BITS)
483 | (ea >> SID_SHIFT), 256M);
484 return vsid_scramble((context << USER_ESID_BITS_1T)
485 | (ea >> SID_SHIFT_1T), 1T);
486}
487
488/*
489 * This is only used on legacy iSeries in lparmap.c,
490 * hence the 256MB segment assumption.
491 */
492#define VSID_SCRAMBLE(pvsid) (((pvsid) * VSID_MULTIPLIER_256M) % \
493 VSID_MODULUS_256M)
8d2169e8
DG
494#define KERNEL_VSID(ea) VSID_SCRAMBLE(GET_ESID(ea))
495
8d2169e8
DG
496#endif /* __ASSEMBLY__ */
497
498#endif /* _ASM_POWERPC_MMU_HASH64_H_ */
This page took 0.357949 seconds and 5 git commands to generate.