powerpc/mm: Split hash MMU specific hugepage code into a new file
[deliverable/linux.git] / arch / powerpc / include / asm / mmu-hash64.h
CommitLineData
8d2169e8
DG
1#ifndef _ASM_POWERPC_MMU_HASH64_H_
2#define _ASM_POWERPC_MMU_HASH64_H_
3/*
4 * PowerPC64 memory management structures
5 *
6 * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
7 * PPC64 rework.
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 */
14
15#include <asm/asm-compat.h>
16#include <asm/page.h>
17
18/*
19 * Segment table
20 */
21
22#define STE_ESID_V 0x80
23#define STE_ESID_KS 0x20
24#define STE_ESID_KP 0x10
25#define STE_ESID_N 0x08
26
27#define STE_VSID_SHIFT 12
28
29/* Location of cpu0's segment table */
30#define STAB0_PAGE 0x6
31#define STAB0_OFFSET (STAB0_PAGE << 12)
32#define STAB0_PHYS_ADDR (STAB0_OFFSET + PHYSICAL_START)
33
34#ifndef __ASSEMBLY__
35extern char initial_stab[];
36#endif /* ! __ASSEMBLY */
37
38/*
39 * SLB
40 */
41
42#define SLB_NUM_BOLTED 3
43#define SLB_CACHE_ENTRIES 8
46db2f86 44#define SLB_MIN_SIZE 32
8d2169e8
DG
45
46/* Bits in the SLB ESID word */
47#define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
48
49/* Bits in the SLB VSID word */
50#define SLB_VSID_SHIFT 12
1189be65
PM
51#define SLB_VSID_SHIFT_1T 24
52#define SLB_VSID_SSIZE_SHIFT 62
8d2169e8
DG
53#define SLB_VSID_B ASM_CONST(0xc000000000000000)
54#define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
55#define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
56#define SLB_VSID_KS ASM_CONST(0x0000000000000800)
57#define SLB_VSID_KP ASM_CONST(0x0000000000000400)
58#define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
59#define SLB_VSID_L ASM_CONST(0x0000000000000100)
60#define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
61#define SLB_VSID_LP ASM_CONST(0x0000000000000030)
62#define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
63#define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
64#define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
65#define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
66#define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
67
68#define SLB_VSID_KERNEL (SLB_VSID_KP)
69#define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
70
71#define SLBIE_C (0x08000000)
1189be65 72#define SLBIE_SSIZE_SHIFT 25
8d2169e8
DG
73
74/*
75 * Hash table
76 */
77
78#define HPTES_PER_GROUP 8
79
2454c7e9 80#define HPTE_V_SSIZE_SHIFT 62
8d2169e8 81#define HPTE_V_AVPN_SHIFT 7
2454c7e9 82#define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80)
8d2169e8 83#define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
91bbbe22 84#define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL))
8d2169e8
DG
85#define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
86#define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
87#define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
88#define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
89#define HPTE_V_VALID ASM_CONST(0x0000000000000001)
90
91#define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
92#define HPTE_R_TS ASM_CONST(0x4000000000000000)
93#define HPTE_R_RPN_SHIFT 12
94#define HPTE_R_RPN ASM_CONST(0x3ffffffffffff000)
95#define HPTE_R_FLAGS ASM_CONST(0x00000000000003ff)
96#define HPTE_R_PP ASM_CONST(0x0000000000000003)
97#define HPTE_R_N ASM_CONST(0x0000000000000004)
98#define HPTE_R_C ASM_CONST(0x0000000000000080)
99#define HPTE_R_R ASM_CONST(0x0000000000000100)
100
b7abc5c5
SS
101#define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000)
102#define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000)
103
8d2169e8
DG
104/* Values for PP (assumes Ks=0, Kp=1) */
105/* pp0 will always be 0 for linux */
106#define PP_RWXX 0 /* Supervisor read/write, User none */
107#define PP_RWRX 1 /* Supervisor read/write, User read */
108#define PP_RWRW 2 /* Supervisor read/write, User read/write */
109#define PP_RXRX 3 /* Supervisor read, User read */
110
111#ifndef __ASSEMBLY__
112
8e561e7e 113struct hash_pte {
8d2169e8
DG
114 unsigned long v;
115 unsigned long r;
8e561e7e 116};
8d2169e8 117
8e561e7e 118extern struct hash_pte *htab_address;
8d2169e8
DG
119extern unsigned long htab_size_bytes;
120extern unsigned long htab_hash_mask;
121
122/*
123 * Page size definition
124 *
125 * shift : is the "PAGE_SHIFT" value for that page size
126 * sllp : is a bit mask with the value of SLB L || LP to be or'ed
127 * directly to a slbmte "vsid" value
128 * penc : is the HPTE encoding mask for the "LP" field:
129 *
130 */
131struct mmu_psize_def
132{
133 unsigned int shift; /* number of bits */
134 unsigned int penc; /* HPTE encoding */
135 unsigned int tlbiel; /* tlbiel supported for that page size */
136 unsigned long avpnm; /* bits to mask out in AVPN in the HPTE */
137 unsigned long sllp; /* SLB L||LP (exact mask to use in slbmte) */
138};
139
140#endif /* __ASSEMBLY__ */
141
2454c7e9
PM
142/*
143 * Segment sizes.
144 * These are the values used by hardware in the B field of
145 * SLB entries and the first dword of MMU hashtable entries.
146 * The B field is 2 bits; the values 2 and 3 are unused and reserved.
147 */
148#define MMU_SEGSIZE_256M 0
149#define MMU_SEGSIZE_1T 1
150
1189be65 151
8d2169e8
DG
152#ifndef __ASSEMBLY__
153
154/*
1189be65 155 * The current system page and segment sizes
8d2169e8
DG
156 */
157extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
158extern int mmu_linear_psize;
159extern int mmu_virtual_psize;
160extern int mmu_vmalloc_psize;
cec08e7a 161extern int mmu_vmemmap_psize;
8d2169e8 162extern int mmu_io_psize;
1189be65
PM
163extern int mmu_kernel_ssize;
164extern int mmu_highuser_ssize;
584f8b71 165extern u16 mmu_slb_size;
572fb578 166extern unsigned long tce_alloc_start, tce_alloc_end;
8d2169e8
DG
167
168/*
169 * If the processor supports 64k normal pages but not 64k cache
170 * inhibited pages, we have to be prepared to switch processes
171 * to use 4k pages when they create cache-inhibited mappings.
172 * If this is the case, mmu_ci_restrictions will be set to 1.
173 */
174extern int mmu_ci_restrictions;
175
8d2169e8
DG
176/*
177 * This function sets the AVPN and L fields of the HPTE appropriately
178 * for the page size
179 */
1189be65
PM
180static inline unsigned long hpte_encode_v(unsigned long va, int psize,
181 int ssize)
8d2169e8 182{
1189be65 183 unsigned long v;
8d2169e8
DG
184 v = (va >> 23) & ~(mmu_psize_defs[psize].avpnm);
185 v <<= HPTE_V_AVPN_SHIFT;
186 if (psize != MMU_PAGE_4K)
187 v |= HPTE_V_LARGE;
1189be65 188 v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
8d2169e8
DG
189 return v;
190}
191
192/*
193 * This function sets the ARPN, and LP fields of the HPTE appropriately
194 * for the page size. We assume the pa is already "clean" that is properly
195 * aligned for the requested page size
196 */
197static inline unsigned long hpte_encode_r(unsigned long pa, int psize)
198{
199 unsigned long r;
200
201 /* A 4K page needs no special encoding */
202 if (psize == MMU_PAGE_4K)
203 return pa & HPTE_R_RPN;
204 else {
205 unsigned int penc = mmu_psize_defs[psize].penc;
206 unsigned int shift = mmu_psize_defs[psize].shift;
207 return (pa & ~((1ul << shift) - 1)) | (penc << 12);
208 }
209 return r;
210}
211
212/*
1189be65 213 * Build a VA given VSID, EA and segment size
8d2169e8 214 */
1189be65
PM
215static inline unsigned long hpt_va(unsigned long ea, unsigned long vsid,
216 int ssize)
217{
218 if (ssize == MMU_SEGSIZE_256M)
219 return (vsid << 28) | (ea & 0xfffffffUL);
220 return (vsid << 40) | (ea & 0xffffffffffUL);
221}
8d2169e8 222
1189be65
PM
223/*
224 * This hashes a virtual address
225 */
226
227static inline unsigned long hpt_hash(unsigned long va, unsigned int shift,
228 int ssize)
8d2169e8 229{
1189be65
PM
230 unsigned long hash, vsid;
231
232 if (ssize == MMU_SEGSIZE_256M) {
233 hash = (va >> 28) ^ ((va & 0x0fffffffUL) >> shift);
234 } else {
235 vsid = va >> 40;
236 hash = vsid ^ (vsid << 25) ^ ((va & 0xffffffffffUL) >> shift);
237 }
238 return hash & 0x7fffffffffUL;
8d2169e8
DG
239}
240
241extern int __hash_page_4K(unsigned long ea, unsigned long access,
242 unsigned long vsid, pte_t *ptep, unsigned long trap,
fa28237c 243 unsigned int local, int ssize, int subpage_prot);
8d2169e8
DG
244extern int __hash_page_64K(unsigned long ea, unsigned long access,
245 unsigned long vsid, pte_t *ptep, unsigned long trap,
1189be65 246 unsigned int local, int ssize);
8d2169e8
DG
247struct mm_struct;
248extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap);
a4fe3ce7
DG
249int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
250 pte_t *ptep, unsigned long trap, int local, int ssize,
251 unsigned int shift, unsigned int mmu_psize);
8d2169e8
DG
252
253extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
bc033b63 254 unsigned long pstart, unsigned long prot,
1189be65 255 int psize, int ssize);
658013e9
JT
256extern void add_gpage(unsigned long addr, unsigned long page_size,
257 unsigned long number_of_pages);
fa28237c 258extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
8d2169e8 259
8d2169e8
DG
260extern void hpte_init_native(void);
261extern void hpte_init_lpar(void);
262extern void hpte_init_iSeries(void);
263extern void hpte_init_beat(void);
7f2c8577 264extern void hpte_init_beat_v3(void);
8d2169e8
DG
265
266extern void stabs_alloc(void);
267extern void slb_initialize(void);
268extern void slb_flush_and_rebolt(void);
269extern void stab_initialize(unsigned long stab);
270
67439b76 271extern void slb_vmalloc_update(void);
46db2f86 272extern void slb_set_size(u16 size);
8d2169e8
DG
273#endif /* __ASSEMBLY__ */
274
275/*
276 * VSID allocation
277 *
278 * We first generate a 36-bit "proto-VSID". For kernel addresses this
279 * is equal to the ESID, for user addresses it is:
280 * (context << 15) | (esid & 0x7fff)
281 *
282 * The two forms are distinguishable because the top bit is 0 for user
283 * addresses, whereas the top two bits are 1 for kernel addresses.
284 * Proto-VSIDs with the top two bits equal to 0b10 are reserved for
285 * now.
286 *
287 * The proto-VSIDs are then scrambled into real VSIDs with the
288 * multiplicative hash:
289 *
290 * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
291 * where VSID_MULTIPLIER = 268435399 = 0xFFFFFC7
292 * VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF
293 *
294 * This scramble is only well defined for proto-VSIDs below
295 * 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are
296 * reserved. VSID_MULTIPLIER is prime, so in particular it is
297 * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
298 * Because the modulus is 2^n-1 we can compute it efficiently without
299 * a divide or extra multiply (see below).
300 *
301 * This scheme has several advantages over older methods:
302 *
303 * - We have VSIDs allocated for every kernel address
304 * (i.e. everything above 0xC000000000000000), except the very top
305 * segment, which simplifies several things.
306 *
307 * - We allow for 15 significant bits of ESID and 20 bits of
308 * context for user addresses. i.e. 8T (43 bits) of address space for
309 * up to 1M contexts (although the page table structure and context
310 * allocation will need changes to take advantage of this).
311 *
312 * - The scramble function gives robust scattering in the hash
313 * table (at least based on some initial results). The previous
314 * method was more susceptible to pathological cases giving excessive
315 * hash collisions.
316 */
317/*
318 * WARNING - If you change these you must make sure the asm
319 * implementations in slb_allocate (slb_low.S), do_stab_bolted
320 * (head.S) and ASM_VSID_SCRAMBLE (below) are changed accordingly.
321 *
322 * You'll also need to change the precomputed VSID values in head.S
323 * which are used by the iSeries firmware.
324 */
325
1189be65
PM
326#define VSID_MULTIPLIER_256M ASM_CONST(200730139) /* 28-bit prime */
327#define VSID_BITS_256M 36
328#define VSID_MODULUS_256M ((1UL<<VSID_BITS_256M)-1)
8d2169e8 329
1189be65
PM
330#define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */
331#define VSID_BITS_1T 24
332#define VSID_MODULUS_1T ((1UL<<VSID_BITS_1T)-1)
333
334#define CONTEXT_BITS 19
335#define USER_ESID_BITS 16
336#define USER_ESID_BITS_1T 4
8d2169e8
DG
337
338#define USER_VSID_RANGE (1UL << (USER_ESID_BITS + SID_SHIFT))
339
340/*
341 * This macro generates asm code to compute the VSID scramble
342 * function. Used in slb_allocate() and do_stab_bolted. The function
343 * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
344 *
345 * rt = register continaing the proto-VSID and into which the
346 * VSID will be stored
347 * rx = scratch register (clobbered)
348 *
349 * - rt and rx must be different registers
1189be65 350 * - The answer will end up in the low VSID_BITS bits of rt. The higher
8d2169e8
DG
351 * bits may contain other garbage, so you may need to mask the
352 * result.
353 */
1189be65
PM
354#define ASM_VSID_SCRAMBLE(rt, rx, size) \
355 lis rx,VSID_MULTIPLIER_##size@h; \
356 ori rx,rx,VSID_MULTIPLIER_##size@l; \
8d2169e8
DG
357 mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
358 \
1189be65
PM
359 srdi rx,rt,VSID_BITS_##size; \
360 clrldi rt,rt,(64-VSID_BITS_##size); \
8d2169e8
DG
361 add rt,rt,rx; /* add high and low bits */ \
362 /* Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
363 * 2^36-1+2^28-1. That in particular means that if r3 >= \
364 * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
365 * the bit clear, r3 already has the answer we want, if it \
366 * doesn't, the answer is the low 36 bits of r3+1. So in all \
367 * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
368 addi rx,rt,1; \
1189be65 369 srdi rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */ \
8d2169e8
DG
370 add rt,rt,rx
371
372
373#ifndef __ASSEMBLY__
374
375typedef unsigned long mm_context_id_t;
376
377typedef struct {
378 mm_context_id_t id;
d0f13e3c
BH
379 u16 user_psize; /* page size index */
380
381#ifdef CONFIG_PPC_MM_SLICES
382 u64 low_slices_psize; /* SLB page size encodings */
383 u64 high_slices_psize; /* 4 bits per slice for now */
384#else
385 u16 sllp; /* SLB page size encoding */
8d2169e8
DG
386#endif
387 unsigned long vdso_base;
388} mm_context_t;
389
390
8d2169e8 391#if 0
1189be65
PM
392/*
393 * The code below is equivalent to this function for arguments
394 * < 2^VSID_BITS, which is all this should ever be called
395 * with. However gcc is not clever enough to compute the
396 * modulus (2^n-1) without a second multiply.
397 */
398#define vsid_scrample(protovsid, size) \
399 ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
8d2169e8 400
1189be65
PM
401#else /* 1 */
402#define vsid_scramble(protovsid, size) \
403 ({ \
404 unsigned long x; \
405 x = (protovsid) * VSID_MULTIPLIER_##size; \
406 x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
407 (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
408 })
8d2169e8 409#endif /* 1 */
8d2169e8 410
549e8152 411/* This is only valid for addresses >= PAGE_OFFSET */
1189be65 412static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
8d2169e8 413{
1189be65
PM
414 if (ssize == MMU_SEGSIZE_256M)
415 return vsid_scramble(ea >> SID_SHIFT, 256M);
416 return vsid_scramble(ea >> SID_SHIFT_1T, 1T);
8d2169e8
DG
417}
418
1189be65
PM
419/* Returns the segment size indicator for a user address */
420static inline int user_segment_size(unsigned long addr)
8d2169e8 421{
1189be65
PM
422 /* Use 1T segments if possible for addresses >= 1T */
423 if (addr >= (1UL << SID_SHIFT_1T))
424 return mmu_highuser_ssize;
425 return MMU_SEGSIZE_256M;
8d2169e8
DG
426}
427
1189be65
PM
428/* This is only valid for user addresses (which are below 2^44) */
429static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
430 int ssize)
431{
432 if (ssize == MMU_SEGSIZE_256M)
433 return vsid_scramble((context << USER_ESID_BITS)
434 | (ea >> SID_SHIFT), 256M);
435 return vsid_scramble((context << USER_ESID_BITS_1T)
436 | (ea >> SID_SHIFT_1T), 1T);
437}
438
439/*
440 * This is only used on legacy iSeries in lparmap.c,
441 * hence the 256MB segment assumption.
442 */
443#define VSID_SCRAMBLE(pvsid) (((pvsid) * VSID_MULTIPLIER_256M) % \
444 VSID_MODULUS_256M)
8d2169e8
DG
445#define KERNEL_VSID(ea) VSID_SCRAMBLE(GET_ESID(ea))
446
8d2169e8
DG
447#endif /* __ASSEMBLY__ */
448
449#endif /* _ASM_POWERPC_MMU_HASH64_H_ */
This page took 0.376653 seconds and 5 git commands to generate.