powerpc: Make VSID_BITS* dependency explicit
[deliverable/linux.git] / arch / powerpc / include / asm / mmu-hash64.h
CommitLineData
8d2169e8
DG
1#ifndef _ASM_POWERPC_MMU_HASH64_H_
2#define _ASM_POWERPC_MMU_HASH64_H_
3/*
4 * PowerPC64 memory management structures
5 *
6 * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
7 * PPC64 rework.
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 */
14
15#include <asm/asm-compat.h>
16#include <asm/page.h>
17
78f1dbde
AK
18/*
19 * This is necessary to get the definition of PGTABLE_RANGE which we
20 * need for various slices related matters. Note that this isn't the
21 * complete pgtable.h but only a portion of it.
22 */
23#include <asm/pgtable-ppc64.h>
24
8d2169e8
DG
25/*
26 * Segment table
27 */
28
29#define STE_ESID_V 0x80
30#define STE_ESID_KS 0x20
31#define STE_ESID_KP 0x10
32#define STE_ESID_N 0x08
33
34#define STE_VSID_SHIFT 12
35
36/* Location of cpu0's segment table */
84493804 37#define STAB0_PAGE 0x8
8d2169e8
DG
38#define STAB0_OFFSET (STAB0_PAGE << 12)
39#define STAB0_PHYS_ADDR (STAB0_OFFSET + PHYSICAL_START)
40
41#ifndef __ASSEMBLY__
42extern char initial_stab[];
43#endif /* ! __ASSEMBLY */
44
45/*
46 * SLB
47 */
48
49#define SLB_NUM_BOLTED 3
50#define SLB_CACHE_ENTRIES 8
46db2f86 51#define SLB_MIN_SIZE 32
8d2169e8
DG
52
53/* Bits in the SLB ESID word */
54#define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
55
56/* Bits in the SLB VSID word */
57#define SLB_VSID_SHIFT 12
1189be65
PM
58#define SLB_VSID_SHIFT_1T 24
59#define SLB_VSID_SSIZE_SHIFT 62
8d2169e8
DG
60#define SLB_VSID_B ASM_CONST(0xc000000000000000)
61#define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
62#define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
63#define SLB_VSID_KS ASM_CONST(0x0000000000000800)
64#define SLB_VSID_KP ASM_CONST(0x0000000000000400)
65#define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
66#define SLB_VSID_L ASM_CONST(0x0000000000000100)
67#define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
68#define SLB_VSID_LP ASM_CONST(0x0000000000000030)
69#define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
70#define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
71#define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
72#define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
73#define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
74
75#define SLB_VSID_KERNEL (SLB_VSID_KP)
76#define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
77
78#define SLBIE_C (0x08000000)
1189be65 79#define SLBIE_SSIZE_SHIFT 25
8d2169e8
DG
80
81/*
82 * Hash table
83 */
84
85#define HPTES_PER_GROUP 8
86
2454c7e9 87#define HPTE_V_SSIZE_SHIFT 62
8d2169e8 88#define HPTE_V_AVPN_SHIFT 7
2454c7e9 89#define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80)
8d2169e8 90#define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
91bbbe22 91#define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL))
8d2169e8
DG
92#define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
93#define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
94#define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
95#define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
96#define HPTE_V_VALID ASM_CONST(0x0000000000000001)
97
98#define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
99#define HPTE_R_TS ASM_CONST(0x4000000000000000)
de56a948 100#define HPTE_R_KEY_HI ASM_CONST(0x3000000000000000)
8d2169e8 101#define HPTE_R_RPN_SHIFT 12
de56a948 102#define HPTE_R_RPN ASM_CONST(0x0ffffffffffff000)
8d2169e8
DG
103#define HPTE_R_PP ASM_CONST(0x0000000000000003)
104#define HPTE_R_N ASM_CONST(0x0000000000000004)
de56a948
PM
105#define HPTE_R_G ASM_CONST(0x0000000000000008)
106#define HPTE_R_M ASM_CONST(0x0000000000000010)
107#define HPTE_R_I ASM_CONST(0x0000000000000020)
108#define HPTE_R_W ASM_CONST(0x0000000000000040)
109#define HPTE_R_WIMG ASM_CONST(0x0000000000000078)
8d2169e8
DG
110#define HPTE_R_C ASM_CONST(0x0000000000000080)
111#define HPTE_R_R ASM_CONST(0x0000000000000100)
de56a948 112#define HPTE_R_KEY_LO ASM_CONST(0x0000000000000e00)
8d2169e8 113
b7abc5c5
SS
114#define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000)
115#define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000)
116
8d2169e8 117/* Values for PP (assumes Ks=0, Kp=1) */
8d2169e8
DG
118#define PP_RWXX 0 /* Supervisor read/write, User none */
119#define PP_RWRX 1 /* Supervisor read/write, User read */
120#define PP_RWRW 2 /* Supervisor read/write, User read/write */
121#define PP_RXRX 3 /* Supervisor read, User read */
697d3899 122#define PP_RXXX (HPTE_R_PP0 | 2) /* Supervisor read, user none */
8d2169e8 123
b4072df4
PM
124/* Fields for tlbiel instruction in architecture 2.06 */
125#define TLBIEL_INVAL_SEL_MASK 0xc00 /* invalidation selector */
126#define TLBIEL_INVAL_PAGE 0x000 /* invalidate a single page */
127#define TLBIEL_INVAL_SET_LPID 0x800 /* invalidate a set for current LPID */
128#define TLBIEL_INVAL_SET 0xc00 /* invalidate a set for all LPIDs */
129#define TLBIEL_INVAL_SET_MASK 0xfff000 /* set number to inval. */
130#define TLBIEL_INVAL_SET_SHIFT 12
131
132#define POWER7_TLB_SETS 128 /* # sets in POWER7 TLB */
133
8d2169e8
DG
134#ifndef __ASSEMBLY__
135
8e561e7e 136struct hash_pte {
8d2169e8
DG
137 unsigned long v;
138 unsigned long r;
8e561e7e 139};
8d2169e8 140
8e561e7e 141extern struct hash_pte *htab_address;
8d2169e8
DG
142extern unsigned long htab_size_bytes;
143extern unsigned long htab_hash_mask;
144
145/*
146 * Page size definition
147 *
148 * shift : is the "PAGE_SHIFT" value for that page size
149 * sllp : is a bit mask with the value of SLB L || LP to be or'ed
150 * directly to a slbmte "vsid" value
151 * penc : is the HPTE encoding mask for the "LP" field:
152 *
153 */
154struct mmu_psize_def
155{
156 unsigned int shift; /* number of bits */
157 unsigned int penc; /* HPTE encoding */
158 unsigned int tlbiel; /* tlbiel supported for that page size */
159 unsigned long avpnm; /* bits to mask out in AVPN in the HPTE */
160 unsigned long sllp; /* SLB L||LP (exact mask to use in slbmte) */
161};
162
163#endif /* __ASSEMBLY__ */
164
2454c7e9
PM
165/*
166 * Segment sizes.
167 * These are the values used by hardware in the B field of
168 * SLB entries and the first dword of MMU hashtable entries.
169 * The B field is 2 bits; the values 2 and 3 are unused and reserved.
170 */
171#define MMU_SEGSIZE_256M 0
172#define MMU_SEGSIZE_1T 1
173
5524a27d
AK
174/*
175 * encode page number shift.
176 * in order to fit the 78 bit va in a 64 bit variable we shift the va by
177 * 12 bits. This enable us to address upto 76 bit va.
178 * For hpt hash from a va we can ignore the page size bits of va and for
179 * hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure
180 * we work in all cases including 4k page size.
181 */
182#define VPN_SHIFT 12
1189be65 183
8d2169e8
DG
184#ifndef __ASSEMBLY__
185
5524a27d
AK
186static inline int segment_shift(int ssize)
187{
188 if (ssize == MMU_SEGSIZE_256M)
189 return SID_SHIFT;
190 return SID_SHIFT_1T;
191}
192
8d2169e8 193/*
1189be65 194 * The current system page and segment sizes
8d2169e8
DG
195 */
196extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
197extern int mmu_linear_psize;
198extern int mmu_virtual_psize;
199extern int mmu_vmalloc_psize;
cec08e7a 200extern int mmu_vmemmap_psize;
8d2169e8 201extern int mmu_io_psize;
1189be65
PM
202extern int mmu_kernel_ssize;
203extern int mmu_highuser_ssize;
584f8b71 204extern u16 mmu_slb_size;
572fb578 205extern unsigned long tce_alloc_start, tce_alloc_end;
8d2169e8
DG
206
207/*
208 * If the processor supports 64k normal pages but not 64k cache
209 * inhibited pages, we have to be prepared to switch processes
210 * to use 4k pages when they create cache-inhibited mappings.
211 * If this is the case, mmu_ci_restrictions will be set to 1.
212 */
213extern int mmu_ci_restrictions;
214
5524a27d
AK
215/*
216 * This computes the AVPN and B fields of the first dword of a HPTE,
217 * for use when we want to match an existing PTE. The bottom 7 bits
218 * of the returned value are zero.
219 */
220static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize,
221 int ssize)
222{
223 unsigned long v;
224 /*
225 * The AVA field omits the low-order 23 bits of the 78 bits VA.
226 * These bits are not needed in the PTE, because the
227 * low-order b of these bits are part of the byte offset
228 * into the virtual page and, if b < 23, the high-order
229 * 23-b of these bits are always used in selecting the
230 * PTEGs to be searched
231 */
232 v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm);
233 v <<= HPTE_V_AVPN_SHIFT;
234 v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
235 return v;
236}
237
8d2169e8
DG
238/*
239 * This function sets the AVPN and L fields of the HPTE appropriately
240 * for the page size
241 */
5524a27d
AK
242static inline unsigned long hpte_encode_v(unsigned long vpn,
243 int psize, int ssize)
8d2169e8 244{
1189be65 245 unsigned long v;
5524a27d 246 v = hpte_encode_avpn(vpn, psize, ssize);
8d2169e8
DG
247 if (psize != MMU_PAGE_4K)
248 v |= HPTE_V_LARGE;
249 return v;
250}
251
252/*
253 * This function sets the ARPN, and LP fields of the HPTE appropriately
254 * for the page size. We assume the pa is already "clean" that is properly
255 * aligned for the requested page size
256 */
257static inline unsigned long hpte_encode_r(unsigned long pa, int psize)
258{
259 unsigned long r;
260
261 /* A 4K page needs no special encoding */
262 if (psize == MMU_PAGE_4K)
263 return pa & HPTE_R_RPN;
264 else {
265 unsigned int penc = mmu_psize_defs[psize].penc;
266 unsigned int shift = mmu_psize_defs[psize].shift;
267 return (pa & ~((1ul << shift) - 1)) | (penc << 12);
268 }
269 return r;
270}
271
272/*
5524a27d 273 * Build a VPN_SHIFT bit shifted va given VSID, EA and segment size.
8d2169e8 274 */
5524a27d
AK
275static inline unsigned long hpt_vpn(unsigned long ea,
276 unsigned long vsid, int ssize)
1189be65 277{
5524a27d
AK
278 unsigned long mask;
279 int s_shift = segment_shift(ssize);
280
281 mask = (1ul << (s_shift - VPN_SHIFT)) - 1;
282 return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask);
1189be65 283}
8d2169e8 284
1189be65
PM
285/*
286 * This hashes a virtual address
287 */
5524a27d
AK
288static inline unsigned long hpt_hash(unsigned long vpn,
289 unsigned int shift, int ssize)
8d2169e8 290{
5524a27d 291 int mask;
1189be65
PM
292 unsigned long hash, vsid;
293
5524a27d 294 /* VPN_SHIFT can be atmost 12 */
1189be65 295 if (ssize == MMU_SEGSIZE_256M) {
5524a27d
AK
296 mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1;
297 hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^
298 ((vpn & mask) >> (shift - VPN_SHIFT));
1189be65 299 } else {
5524a27d
AK
300 mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1;
301 vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT);
302 hash = vsid ^ (vsid << 25) ^
303 ((vpn & mask) >> (shift - VPN_SHIFT)) ;
1189be65
PM
304 }
305 return hash & 0x7fffffffffUL;
8d2169e8
DG
306}
307
308extern int __hash_page_4K(unsigned long ea, unsigned long access,
309 unsigned long vsid, pte_t *ptep, unsigned long trap,
fa28237c 310 unsigned int local, int ssize, int subpage_prot);
8d2169e8
DG
311extern int __hash_page_64K(unsigned long ea, unsigned long access,
312 unsigned long vsid, pte_t *ptep, unsigned long trap,
1189be65 313 unsigned int local, int ssize);
8d2169e8 314struct mm_struct;
0895ecda 315unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);
8d2169e8 316extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap);
a4fe3ce7
DG
317int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
318 pte_t *ptep, unsigned long trap, int local, int ssize,
319 unsigned int shift, unsigned int mmu_psize);
4b8692c0
BH
320extern void hash_failure_debug(unsigned long ea, unsigned long access,
321 unsigned long vsid, unsigned long trap,
322 int ssize, int psize, unsigned long pte);
8d2169e8 323extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
bc033b63 324 unsigned long pstart, unsigned long prot,
1189be65 325 int psize, int ssize);
41151e77 326extern void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages);
fa28237c 327extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
8d2169e8 328
8d2169e8
DG
329extern void hpte_init_native(void);
330extern void hpte_init_lpar(void);
8d2169e8 331extern void hpte_init_beat(void);
7f2c8577 332extern void hpte_init_beat_v3(void);
8d2169e8
DG
333
334extern void stabs_alloc(void);
335extern void slb_initialize(void);
336extern void slb_flush_and_rebolt(void);
337extern void stab_initialize(unsigned long stab);
338
67439b76 339extern void slb_vmalloc_update(void);
46db2f86 340extern void slb_set_size(u16 size);
8d2169e8
DG
341#endif /* __ASSEMBLY__ */
342
343/*
f033d659 344 * VSID allocation (256MB segment)
8d2169e8 345 *
f033d659
AK
346 * We first generate a 38-bit "proto-VSID". For kernel addresses this
347 * is equal to the ESID | 1 << 37, for user addresses it is:
348 * (context << USER_ESID_BITS) | (esid & ((1U << USER_ESID_BITS) - 1)
8d2169e8 349 *
f033d659
AK
350 * This splits the proto-VSID into the below range
351 * 0 - (2^(CONTEXT_BITS + USER_ESID_BITS) - 1) : User proto-VSID range
352 * 2^(CONTEXT_BITS + USER_ESID_BITS) - 2^(VSID_BITS) : Kernel proto-VSID range
353 *
354 * We also have CONTEXT_BITS + USER_ESID_BITS = VSID_BITS - 1
355 * That is, we assign half of the space to user processes and half
356 * to the kernel.
8d2169e8
DG
357 *
358 * The proto-VSIDs are then scrambled into real VSIDs with the
359 * multiplicative hash:
360 *
361 * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
8d2169e8 362 *
f033d659 363 * VSID_MULTIPLIER is prime, so in particular it is
8d2169e8
DG
364 * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
365 * Because the modulus is 2^n-1 we can compute it efficiently without
366 * a divide or extra multiply (see below).
367 *
368 * This scheme has several advantages over older methods:
369 *
f033d659 370 * - We have VSIDs allocated for every kernel address
8d2169e8
DG
371 * (i.e. everything above 0xC000000000000000), except the very top
372 * segment, which simplifies several things.
373 *
f033d659
AK
374 * - We allow for USER_ESID_BITS significant bits of ESID and
375 * CONTEXT_BITS bits of context for user addresses.
376 * i.e. 64T (46 bits) of address space for up to half a million contexts.
8d2169e8 377 *
f033d659 378 * - The scramble function gives robust scattering in the hash
8d2169e8
DG
379 * table (at least based on some initial results). The previous
380 * method was more susceptible to pathological cases giving excessive
381 * hash collisions.
382 */
8d2169e8 383
e39d1a47
AK
384#define CONTEXT_BITS 19
385#define USER_ESID_BITS 18
386#define USER_ESID_BITS_1T 6
387
048ee099
AK
388/*
389 * This should be computed such that protovosid * vsid_mulitplier
390 * doesn't overflow 64 bits. It should also be co-prime to vsid_modulus
391 */
392#define VSID_MULTIPLIER_256M ASM_CONST(12538073) /* 24-bit prime */
e39d1a47 393#define VSID_BITS_256M (CONTEXT_BITS + USER_ESID_BITS + 1)
1189be65 394#define VSID_MODULUS_256M ((1UL<<VSID_BITS_256M)-1)
8d2169e8 395
1189be65 396#define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */
e39d1a47 397#define VSID_BITS_1T (CONTEXT_BITS + USER_ESID_BITS_1T + 1)
1189be65
PM
398#define VSID_MODULUS_1T ((1UL<<VSID_BITS_1T)-1)
399
8d2169e8
DG
400
401#define USER_VSID_RANGE (1UL << (USER_ESID_BITS + SID_SHIFT))
402
403/*
404 * This macro generates asm code to compute the VSID scramble
405 * function. Used in slb_allocate() and do_stab_bolted. The function
406 * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
407 *
408 * rt = register continaing the proto-VSID and into which the
409 * VSID will be stored
410 * rx = scratch register (clobbered)
411 *
412 * - rt and rx must be different registers
1189be65 413 * - The answer will end up in the low VSID_BITS bits of rt. The higher
8d2169e8
DG
414 * bits may contain other garbage, so you may need to mask the
415 * result.
416 */
1189be65
PM
417#define ASM_VSID_SCRAMBLE(rt, rx, size) \
418 lis rx,VSID_MULTIPLIER_##size@h; \
419 ori rx,rx,VSID_MULTIPLIER_##size@l; \
8d2169e8
DG
420 mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
421 \
1189be65
PM
422 srdi rx,rt,VSID_BITS_##size; \
423 clrldi rt,rt,(64-VSID_BITS_##size); \
8d2169e8
DG
424 add rt,rt,rx; /* add high and low bits */ \
425 /* Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
426 * 2^36-1+2^28-1. That in particular means that if r3 >= \
427 * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
428 * the bit clear, r3 already has the answer we want, if it \
429 * doesn't, the answer is the low 36 bits of r3+1. So in all \
430 * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
431 addi rx,rt,1; \
1189be65 432 srdi rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */ \
8d2169e8
DG
433 add rt,rt,rx
434
78f1dbde
AK
435/* 4 bits per slice and we have one slice per 1TB */
436#define SLICE_ARRAY_SIZE (PGTABLE_RANGE >> 41)
8d2169e8
DG
437
438#ifndef __ASSEMBLY__
439
d28513bc
DG
440#ifdef CONFIG_PPC_SUBPAGE_PROT
441/*
442 * For the sub-page protection option, we extend the PGD with one of
443 * these. Basically we have a 3-level tree, with the top level being
444 * the protptrs array. To optimize speed and memory consumption when
445 * only addresses < 4GB are being protected, pointers to the first
446 * four pages of sub-page protection words are stored in the low_prot
447 * array.
448 * Each page of sub-page protection words protects 1GB (4 bytes
449 * protects 64k). For the 3-level tree, each page of pointers then
450 * protects 8TB.
451 */
452struct subpage_prot_table {
453 unsigned long maxaddr; /* only addresses < this are protected */
454 unsigned int **protptrs[2];
455 unsigned int *low_prot[4];
456};
457
458#define SBP_L1_BITS (PAGE_SHIFT - 2)
459#define SBP_L2_BITS (PAGE_SHIFT - 3)
460#define SBP_L1_COUNT (1 << SBP_L1_BITS)
461#define SBP_L2_COUNT (1 << SBP_L2_BITS)
462#define SBP_L2_SHIFT (PAGE_SHIFT + SBP_L1_BITS)
463#define SBP_L3_SHIFT (SBP_L2_SHIFT + SBP_L2_BITS)
464
465extern void subpage_prot_free(struct mm_struct *mm);
466extern void subpage_prot_init_new_context(struct mm_struct *mm);
467#else
468static inline void subpage_prot_free(struct mm_struct *mm) {}
469static inline void subpage_prot_init_new_context(struct mm_struct *mm) { }
470#endif /* CONFIG_PPC_SUBPAGE_PROT */
471
8d2169e8 472typedef unsigned long mm_context_id_t;
851d2e2f 473struct spinlock;
8d2169e8
DG
474
475typedef struct {
476 mm_context_id_t id;
d0f13e3c
BH
477 u16 user_psize; /* page size index */
478
479#ifdef CONFIG_PPC_MM_SLICES
480 u64 low_slices_psize; /* SLB page size encodings */
78f1dbde 481 unsigned char high_slices_psize[SLICE_ARRAY_SIZE];
d0f13e3c
BH
482#else
483 u16 sllp; /* SLB page size encoding */
8d2169e8
DG
484#endif
485 unsigned long vdso_base;
d28513bc
DG
486#ifdef CONFIG_PPC_SUBPAGE_PROT
487 struct subpage_prot_table spt;
488#endif /* CONFIG_PPC_SUBPAGE_PROT */
851d2e2f
THFL
489#ifdef CONFIG_PPC_ICSWX
490 struct spinlock *cop_lockp; /* guard acop and cop_pid */
491 unsigned long acop; /* mask of enabled coprocessor types */
492 unsigned int cop_pid; /* pid value used with coprocessors */
493#endif /* CONFIG_PPC_ICSWX */
8d2169e8
DG
494} mm_context_t;
495
496
8d2169e8 497#if 0
1189be65
PM
498/*
499 * The code below is equivalent to this function for arguments
500 * < 2^VSID_BITS, which is all this should ever be called
501 * with. However gcc is not clever enough to compute the
502 * modulus (2^n-1) without a second multiply.
503 */
34692708 504#define vsid_scramble(protovsid, size) \
1189be65 505 ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
8d2169e8 506
1189be65
PM
507#else /* 1 */
508#define vsid_scramble(protovsid, size) \
509 ({ \
510 unsigned long x; \
511 x = (protovsid) * VSID_MULTIPLIER_##size; \
512 x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
513 (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
514 })
8d2169e8 515#endif /* 1 */
8d2169e8 516
048ee099
AK
517/*
518 * This is only valid for addresses >= PAGE_OFFSET
519 * The proto-VSID space is divided into two class
520 * User: 0 to 2^(CONTEXT_BITS + USER_ESID_BITS) -1
521 * kernel: 2^(CONTEXT_BITS + USER_ESID_BITS) to 2^(VSID_BITS) - 1
522 *
523 * With KERNEL_START at 0xc000000000000000, the proto vsid for
524 * the kernel ends up with 0xc00000000 (36 bits). With 64TB
525 * support we need to have kernel proto-VSID in the
526 * [2^37 to 2^38 - 1] range due to the increased USER_ESID_BITS.
527 */
1189be65 528static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
8d2169e8 529{
048ee099
AK
530 unsigned long proto_vsid;
531 /*
532 * We need to make sure proto_vsid for the kernel is
533 * >= 2^(CONTEXT_BITS + USER_ESID_BITS[_1T])
534 */
535 if (ssize == MMU_SEGSIZE_256M) {
536 proto_vsid = ea >> SID_SHIFT;
537 proto_vsid |= (1UL << (CONTEXT_BITS + USER_ESID_BITS));
538 return vsid_scramble(proto_vsid, 256M);
539 }
540 proto_vsid = ea >> SID_SHIFT_1T;
541 proto_vsid |= (1UL << (CONTEXT_BITS + USER_ESID_BITS_1T));
542 return vsid_scramble(proto_vsid, 1T);
8d2169e8
DG
543}
544
1189be65
PM
545/* Returns the segment size indicator for a user address */
546static inline int user_segment_size(unsigned long addr)
8d2169e8 547{
1189be65
PM
548 /* Use 1T segments if possible for addresses >= 1T */
549 if (addr >= (1UL << SID_SHIFT_1T))
550 return mmu_highuser_ssize;
551 return MMU_SEGSIZE_256M;
8d2169e8
DG
552}
553
1189be65
PM
554/* This is only valid for user addresses (which are below 2^44) */
555static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
556 int ssize)
557{
558 if (ssize == MMU_SEGSIZE_256M)
559 return vsid_scramble((context << USER_ESID_BITS)
560 | (ea >> SID_SHIFT), 256M);
561 return vsid_scramble((context << USER_ESID_BITS_1T)
562 | (ea >> SID_SHIFT_1T), 1T);
563}
564
8d2169e8
DG
565#endif /* __ASSEMBLY__ */
566
567#endif /* _ASM_POWERPC_MMU_HASH64_H_ */
This page took 0.621003 seconds and 5 git commands to generate.